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Ao amigo e irmão Érick Scopel, que além do doutorado trilha junto comigo uma

caminhada que segue desde a graduação até o trabalho no IFRS, meu agradecimento pela
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ABSTRACT

ASYMPTOTIC BEHAVIOUR AND COMPARISON PRINCIPLE FOR

SOLUTIONS OF LOCAL AND NON-LOCAL EQUATIONS IN

EXTERIOR DOMAINS

In this work, we establish an asymptotic behaviour theorem for solutions of a class

of quasilinear elliptic equations in Rn\K, whereK is a compact set, provided the structure

of the equation and the dimension n are related. This result is obtained by a combination

of the Harnack inequality with symmetrization techniques. Furthermore, with the choice

of suitable test functions, a Comparison Principle is obtained for solutions of a class of

non-local elliptic equations in Rn\K, where K is a compact set.

Keywords: Asymptotic behaviour; Comparison Principle; Exterior domains.



RESUMO

COMPORTAMENTO ASSINTÓTICO E PRINCÍPIO DE COMPARAÇÃO

PARA SOLUÇÕES DE EQUAÇÕES LOCAIS E NÃO LOCAIS EM

DOMÍNIOS EXTERIORES

Neste trabalho, provamos um teorema de comportamento assintótico para soluções

de equações eĺıpticas quasilineares definidas em Rn\K, onde K é um conjunto compacto,

desde que a estrutura dessa equação e a dimensão n estejam relacionadas. Esse resultado

é obtido através da aplicação de uma desigualdade de Harnack associada com técnicas de

simetrização. Além disso, com a escolha adequada de funções teste, obtemos um Prinćıpio

de Comparação para soluções de uma classe de equações eĺıpticas não locais definidas em

Rn\K, sendo K um conjunto compacto.

Palavras Chave: Comportamento assintótico; Prinćıpio de Comparação; Domı́nios ex-

teriores.



SYMBOL LIST

⇀ means weak convergence;

→ means strong convergence;

B(x, r) = Br(x) is the open ball centered at x and with radius r > 0 in Rn;

∂Ω is the boundary of the set Ω;

Ω represents the closure of Ω;

Ωc means Rn\Ω;

f+ = max{f, 0} (f− = max{−f, 0}) is the positive (negative) part of f ;

|A| represents the Lebesgue measure of the set A;

a.e. is short for almost everywhere;

u |A is the restriction of the function u to the set A ;

inf
X
u (sup

X
u) represents the infimum (supremum) of the function u over the set X;

osc u
X

= sup
X
u− inf

X
u is the oscillation of the function u in X;

lim inf
x→x0

u (lim sup
x→x0

u) represents the limit inferior (superior) of the function u when x→ x0;

∥u∥Lp(Ω) = ∥u∥p,Ω =
(∫

Ω
|u|pdx

) 1
p ;

∥u∥L∞(Ω) = inf{a ≥ 0; |{x ∈ Ω; |u(x)| > a}| = 0};

Lp(Ω) = {u : Ω → R is measurable and ∥u∥Lp(Ω) <∞}, 1 ≤ p <∞;

L∞(Ω) = {u : Ω → R;u is measurable and ∥u∥L∞(Ω) <∞};

Lp
loc(Ω) = {u : Ω → R is measurable and f |K ∈ Lp(K), for every K ⊂ Ω compact};



supp(u) = {x ∈ Ω;u(x) ̸= 0};

Cc(Ω) = {u ∈ C(Ω); supp(u) ⊂ Ω is compact};

Ck(Ω) = {u : Ω → R;u is k times continuously differentiable};

C∞(Ω) =
⋂
k≥0

Ck(Ω);

C∞
c = C∞(Rn) ∩ Cc(Ω);

SO(n) is the special orthogonal group in dimension n;

W s,p(Ω) =

{
w ∈ Lp(Ω) ; w(x)−w(y)

|x−y|
n
p +s ∈ Lp(Ω× Ω)

}
, s ∈ (0, 1), p ∈ (1,∞);
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INTRODUCTION

The theory of Partial Differential Equations (PDE’s) had great developments in

the last century, mainly due to its applications in several areas, such as engineering,

physics, biology, and economics. In this sense, understanding the existence, multiplicity,

and the behavior of solutions for different types of PDE’s grows in importance, given that

several applied problems depend on two or more independent variables.

Partial Differential Equations can be classified by many properties, like, for in-

stance, linearity, order, homogeneity, locality, and, as elliptic, hyperbolic, or parabolic.

This work addresses properties for solutions of two particular classes of elliptic PDE’s.

The first is described by a quasilinear local operator; the second, described by an integro-

differential non-local operator.

In the first part of the dissertation, we investigate the behaviour at infinity for

solutions u on exterior domains Rn\K, where K ⊂ Rn is any compact set, of an equation

associated to the quasilinear operator

div
(
|∇u|p−2A(|∇u|)∇u

)
.

In some sense, this generalizes results from Gilbarg and Serrin [15]. We prove the existence

of the limit at infinity for such solutions in a non-homogeneous context, considering the

case p < n, where p ∈ (1,+∞). Our main result is the following.

Theorem. Consider p < n and let u ∈ C1(Rn \K) be a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= f

in Rn \K. If

f ∈ Lr(Rn\K) , for some r < n/p

and

f ∈ L
n

p−θ (Rn\K) , for some θ ∈ (0, 1)

with

lim
R→+∞

Rθ ∥ f ∥
L

n
p−θ (Rn\BR(0) )

= 0,

then the limit lim
|x|→∞

u(x) exists.
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We follow some ideas from Gilbarg and Serrin [15] based on the Harnack inequality,

but to overcome the non-homogeneity of the PDE, we employ symmetrization results to

obtain a sufficient condition for the existence of the limit in terms of the integrability of

f at infinity. The main properties of our operator are described in Section 1.1.

In the second half of the last century, several works about quasilinear operators,

similar to the one we study here, have been made. We mention considerations on singular-

ities of solutions of second order PDE’s by Gilbarg and Serrin [15]. Singularity problems

and the behavior of solutions have also been studied by Serrin [30, 31] and Serrin and

Weinberger [33]. Some years later, research concerning the regularity of solutions have

been developed by Evans [12], Tolksdorf [38], and Lieberman [24].

More recently, Fraas and Pinchover [13] studied singularities of positive solutions

of p−Laplace type equations, improving results from Serrin [30] and proving a limit result

at infinity under suitable conditions. Moreover, Liouville type results and asymptotic

behaviour of solutions have been developed by Serrin [32] and Fraas and Pinchover [14].

On exterior domains, this has been addressed by Dancer, Daners, and Hauer [9] and

Bonorino, Silva, and Zingano [4].

On the comparison of solutions of PDE’s and their Schwarz symmetrizations, we

cite classical works from Talenti [36, 37], which, among other outcomes, estimates the

spherically symmetric rearrangement of a solution to a PDE by an expression that involves

the solution itself. Moreover, results that are similar to Talenti’s have been made by

Trombetti and Vasquez [39] and Bonorino and Montenegro [3]. It is important to mention

that we use the result from Talenti mentioned above (see Section 1.2) in order to prove

the limit result.

In the second part of this work, we obtain a Comparison Principle for solutions

on exterior domains Rn\K, where K ⊂ Rn is a compact set, of an equation involving the

general integro-differential operator

Lu(x) =

∫
Rn

K(x, y)
∣∣u(x)− u(y)

∣∣ p−2 (
u(x)− u(y)

)
dxdy.

Properties of L, including the spaces of the definition to the function u and properties of

the kernel K(x, y) are discussed in Section 1.3. We restrict ourselves to the case sp ≥ n.

The main difference from this operator to divergent form operators studied in Bonorino,

Silva, and Zingano [4] is its non-locality, which requires a different approach in important

aspects of the problem. Our main theorem is the following.

Theorem. Let K be a compact set of Rn and let u, v ∈ C(Rn)∩W s,p
loc (Rn\K) be bounded

weak solutions of Lw = 0 in Rn\K. Suppose, further, that sp ≥ n. If v ≥ u on K, then

v ≥ u in Rn\K.

12



Integro-differential operators of this kind has been extensively studied by several

authors in recent years. Initially, the case p = 2 and K(x, y) = |x − y|−n−2s, that gives

the classical fractional Laplace equation, was studied. For example, we can mention

the description of the fractional Laplacian by an extension problem made by Caffarelli

and Silvestre [7], the study of solutions by Servadei and Valdinoci [34], and the work by

Silvestre [35], that treats the regularity of the associated obstacle problem. A friendly

intro to the fractional Sobolev spaces and to the fractional Laplacian is Nezza, Palatucci

and Valdinoci [26]. Finally, we also cite the book by Landkof [23] about potential theory

and kernels that are used in this class of operators.

Regarding p-fractional Laplacian operators, many investigations have been per-

formed in the last decade. In bounded domains, fractional supersolutions, the obsta-

cle problem, and the Perron method were studied by Kovenpää, Kuusi, and Palatucci

[19, 20, 21], and Palatucci [27] made contribuitions to the Dirichlet problem and compari-

son results. For the evolution p-fractional Laplacian equation, fundamental solutions and

asymptotic behaviour were studied by Vásquez [40].

Regarding symmetrization applied to fractional equations, Park [28] proved a result

that states a fractional version of Pólya-Szegö inequality, while Di Blasio and Volzone

[11] established, via symmetrization methods, comparison and regularity results for the

fractional Laplacian. Another example, for parabolic equations, is Vásquez and Volzone

[41], where the authors adress symmetrization for linear and non-linear equations of porous

medium type.

We organize the work in three chapters. In Chapter 1, the preliminary theory is

developed. We define the operators that are studied in the work, we recall some results

about these operators involving symmetrization and, finally, two crucial estimates are

proved.

Chapter 2 is devoted to exploring results involving the quasilinear operator. In

this chapter, we prove the main theorem involving the limit at infinity to solutions to this

problem. Moreover, we provide an example that indicates the optimality of our result

and present a few corollaries of our limit theorem.

In Chapter 3, we study the non-local problem. Initially, we obtain properties for

the Gagliardo seminorm to solutions to our problem. Using these properties, the main

comparison result is proved. In addition, we show a few consequences of this theorem,

including a non-homogeneous version of the Comparison Principle.

We emphasize that in addition to the author and advisor of this research, the

results of Chapters 2 and 3 were obtained in collaboration with Diego Marcon Farias and

Filipe Jung dos Santos.
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Chapter 1

PRELIMINARIES

In this chapter, we present the preliminary theory that is necessary to a better un-

derstanding of the next chapters. We introduce, in Section 1.1, concepts about quasilinear

operators, especially the one considered in our result from Chapter 2. In Section 1.2, we

recall symmetrization techniques and results usefull to the next chapter. In Section 1.3,

we treat fractional Sobolev spaces and non-local operators. In the last section, we present

two important estimates for our purposes.

1.1 Quasilinear Operator

In this section, we recall properties and results about a quasilinear divergent

operator. Classical results about operators that are similar (mostly, more general) to the

one that we study here can be found in Ladyzhenskaya and Ural’tseva [22], Gilbarg and

Trudinger [16] and Pucci and Serrin [29].

We consider, for p ∈ (1,∞), the operator in divergence form

−div
(
|∇u|p−2A(|∇u|)∇u

)
, (1.1)

defined in the weak sense for functions u ∈ W 1,p(Ω). Here, the function A is assumed to

satisfy

i. A ∈ C([0,+∞)) and A(0) > 0;

ii. t 7→ tp−1A(t) is strictly increasing for t > 0;

iii. δ ≤ A ≤ Γ, for positive constants δ,Γ.

The conditions i., ii. and iii. to the function A are based on Serrin [32]. The

prototype case for the generalization in (1.1) is the p-Laplace equation −∆p, where A(t) ≡
1 so that

−div
(
|∇u|p−2∇u

)
.

14



Remark 1.1. Note that, if we consider η(t) = tp−1A(t), by conditions i., ii. and iii.

above, we have that

δtp−1 ≤ η(t) ≤ Γtp−1.

Considering now the inverse η−1, it follows that(
t

Γ

) 1
p−1

≤ η−1(t) ≤

(
t

δ

) 1
p−1

. (1.2)

These inequalities are important for some estimates.

We recall that a function u ∈ W 1,p
loc (Ω) on some domain Ω ⊆ Rn is a weak solution

of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= f in Ω (1.3)

if u satisfies ∫
Ω

|∇u|p−2A(|∇u|)∇u · ∇φdx =

∫
Ω

fφ dx (1.4)

for all φ ∈ C∞
0 (Ω).

In the proof of the limit result for this operator, we use a Harnack inequality, which

we present below, and symmetrization results that are presented in Section 1.2.

The following statement is derived from Theorem 3.14 of Malý and Ziemer [25]

and an earlier version is stated in [31, Theorem 5].

Theorem 1.2. Let u be a non-negative weak solution of (1.3) in an open ball BR. Assume

that p ≤ n and that there exists θ ∈ (0, 1) such that f ∈ L
n

p−θ (BR). Then, for any

σ ∈ (0, 1),

sup
BσR

u ≤ C
(
inf
BσR

u+K(R)
)
, (1.5)

where

K(R) =
(
R θ ∥ f ∥

L
n

p−θ (BR)

) 1
p−1

(1.6)

and C depends on n, p, σ, θ, δ,Γ.

The result above can be extended with no difficulty to arbitrary compact subsets.

We can extract the corollary below which gives the Harnack inequality for solutions on

exterior domains over the spheres SR, for all R large, with C independent of R.

Corollary 1.3. Let u be a non-negative weak solution of (1.3) on Rn\B1. Assume that

p ≤ n and that there is some θ ∈ (0, 1) such that f ∈ L
n

p−θ . Then, for all R sufficiently

large,

sup
SR

u ≤ C
(
inf
SR

u+K(R)
)
, (1.7)

where

K(R) =
((
R/4

) θ ∥ f ∥
L

n
p−θ (Rn\BR/4(0) )

) 1
p−1

(1.8)

and C depends on n, p, θ, δ,Γ.

15



Proof. We can cover SR with a quantity N of balls Bi = BR/2(xi) with centers xi lying

on SR, with N not depending on R. Ordering these balls so that Bi ∩Bi+1 ̸= ∅, we have

inf
Bi

u ≤ sup
Bi+1

u. (1.9)

Now for each i, we apply Theorem 1.2 on the ball B3R/4(xi) ⊂ Rn\B1, with σ = 2/3. We

obtain

sup
Bi

u ≤ C
(
inf
Bi

u+K(R)
)

(1.10)

with

K(R) =
((

3R/4
) θ ∥ f ∥

L
n

p−θ (B3R/4(xi) )

) 1
p−1

≤ 3
1

p−1

((
R/4

) θ ∥ f ∥
L

n
p−θ (Rn\BR/4(0) )

) 1
p−1
.

Then combining inequalities (1.9) and (1.10) yields, for all i, j ∈ {1, . . . , N},

sup
Bi

u ≤ C
(
inf
Bj

u+K(R)
)

after a proper redefinition of C depending only on N . This leads to (1.7), as it is clear

we can choose K above as in (1.8), redefining C if necessary.

1.2 Symmetrization

In this section we recall important definitions and useful results about symmetriza-

tion. For an exhaustive treatment about this topics we refer to Hardy, Littlewood and

Pólya [17], Talenti [36], Alvino, Lions and Trombetti [2] and Brothers and Ziemer [5].

First, if Ω is an open bounded set in Rn and u : Ω → R is a measurable function,

the distribution function of u is given by

µu(t) = |{x ∈ Ω : |u(x)| > t}|, for t ≥ 0.

The decreasing rearrangement of u, also called the generalized inverse of µu, is defined by

u∗(s) = sup{t ≥ 0 : µu(t) ≥ s}.

If Ω♯ is the open ball in Rn, centered at 0, with the same measure as Ω and ωn is the

measure of the unit ball in Rn, the function

u♯(x) = u∗(ωn|x|n), for x ∈ Ω♯

is the spherically symmetric decreasing rearrangement of u. It is also called the Schwarz

symmetrization of u. The next remark reviews important properties of rearrangements

and will be used through this work.
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Remark 1.4. Let v, w be integrable functions in Ω and let g : R → R be a non-decreasing

non-negative function. Then∫
Ω

g(|v(x)|) dx =

∫ |Ω|

0

g(v∗(s)) ds =

∫
Ω♯

g(v♯(x)) dx.

Hence, if µv(t) ≥ µw(t) for all t > t1 > 0, it follows that∫
t1<v

g(v(x)) dx =

∫ µu(t1)

0

g(v∗(s)) ds ≥
∫ µw(t1)

0

g(w∗(s)) ds =

∫
t1<w

g(w(x)) dx,

since v∗(s) ≥ w∗(s) for s ≤ µw(t1). Finally, the Pólya-Szegö principle, as you can see, for

instance, in Brothers and Ziemer [5], states that∫
Ω

|Dv(x)|2 dx ≥
∫
Ω♯

|Dv♯(x)|2 dx, for v ∈ H1
0 (Ω).

This inequality also holds if we replace Ω and Ω♯ by {t1 < v < t2} and {t1 < v♯ < t2},
respectively.

The next Theorem is one of several results that compare solutions of PDE’s in

general domains with their Schwarz symmetrizations, obtaining estimates that are similar

to Pólya-Szegö principle, for example. As references for works in this line of research, we

can cite Talenti [36], Trombetti and Vasquez [39], Kesavan [18], Bonorino and Montenegro

[3], and Talenti [37], from which we can enunciate, in our context

Theorem 1.5. Consider a solution u of (1.3) on a bounded domain Ω, where A satisfies

i − iii, and assume f ∈ L1. Then, u♯, the spherically symmetric rearrangement of u,

satisfies

u♯(x) ≤ sup
∂Ω

|u| +
∫ |Ω|

ωn|x|n
η−1

(
r−1+1/n

nω
1/n
n

∫ r

0

f ∗(s) ds

)
r−1+1/n

nω
1/n
n

dr, (1.11)

where η(t) = t p−1A(t).

Proof. [37, Theorem 1].

From the Theorem above, we can derive the following statement.

Corollary 1.6. Under the same hypotheses from Theorem 1.5, u♯ satisfies

sup
Ω♯

u♯ ≤ sup
∂Ω

|u| +
( 1

nωn δ

) 1
p−1

∫ ( |Ω|
ωn

)1/n
0

ρ−
n−1
p−1

(∫
Bρ

f ♯(x) dx

) 1
p−1

dρ. (1.12)

Proof. Making the changes of variables

s = ωn t
n , ds = nωn t

n−1dt

17



in (1.11), it follows

u♯(x) ≤ sup
∂Ω

|u| +
∫ |Ω|

ωn|x|n
η−1

(
r−1+ 1

n

ω
−1+ 1

n
n

∫ ( r
ωn

) 1
n

0

f ∗(ωn t
n) tn−1 dt

)
r−1+ 1

n

nω
1
n
n

dr.

If we consider now the change of variables

r = ωn ρ
n , dr = nωn ρ

n−1dρ,

with

r−1+1/n = ω−1+1/n
n ρ−n+1,

it follows

u♯(x) ≤ sup
∂Ω

|u| +
∫ ( |Ω|

ωn

)1/n
|x|

η−1

(
ρ−n+1

∫ ρ

0

f ∗(ωn t
n) tn−1 dt

)
dρ.

Note that, from Remark 1.4, we get∫ ρ

0

f ∗(ωn t
n) tn−1 dt =

1

nωn

∫
Bρ

f ♯(x) dx,

and so,

u♯(x) ≤ sup
∂Ω

|u| +
∫ ( |Ω|

ωn

)1/n
|x|

η−1

(
ρ−n+1

nωn

∫
Bρ

f ♯(x) dx

)
dρ.

Using the lower estimate in (1.2), we get

u♯(x) ≤ sup
∂Ω

|u| +
( 1

nωn δ

) 1
p−1

∫ ( |Ω|
ωn

)1/n
|x|

ρ−
n−1
p−1

(∫
Bρ

f ♯(x) dx

) 1
p−1

dρ,

from which we obtain (1.12).

1.3 Fractional Sobolev Spaces and Non-local Opera-

tors

In this section we define the fractional Sobolev spaces and the non-local operators

that are important concepts for this work. For references about this topics, we can

cite Demengel, Demengel and Erné [10], Bucur and Valdinoci [6], Palatucci [27] and the

classical Nezza, Palatucci and Valdinoci [26].

Let Ω ⊂ Rn be an open set. Define, for each s ∈ (0, 1) and p ∈ (1,∞), the usual

fractional Sobolev space

W s,p(Ω) =

{
w ∈ Lp(Ω) ;

w(x)− w(y)

|x− y|
n
p
+s

∈ Lp(Ω× Ω)

}
.
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We emphasize that such space is an intermediate set between Lp(Ω) and W 1,p(Ω), where

can be considered the norm

∥w∥W s,p(Ω) =
(
∥w∥pLp(Ω) + [w]pW s,p(Ω)

) 1
p
,

where the term

[w]W s,p(Ω) :=

(∫
Ω

∫
Ω

|w(x)− w(y)|p

|x− y|n+ps
dxdy

) 1
p

,

is called Gagliardo seminorm from w.

We can mention that such normed vector space is a Banach space, as you can see

in [10, Proposition 4.24].

Like the classical case, where s is an integer, every function in the Sobolev space

W s,p(Rn) can be approached by a sequence of infinitely differentiable functions. The next

result is stated in [1, Theorem 7.38].

Proposition 1.7. For every s ∈ (0, 1), the space C∞
0 (Rn) of smooth functions with com-

pact support is dense in W s,p(Rn).

Consider W s,p
0 (Ω) the closure of C∞

0 (Ω) functions with the norm ∥ · ∥W s,p(Ω). It

follows from Proposition 1.7 that W s,p
0 (Rn) = W s,p(Rn). But in general, for Ω ⊂ Rn, the

set C∞
0 (Ω) is not dense in W s,p(Ω), that is, W s,p

0 (Ω) ̸= W s,p(Ω).

Similarly to the usual Sobolev spaces, we have that the fractional space W s,p(Ω)

is of local type, that is

Proposition 1.8. For every u ∈ W s,p(Ω) and for every φ ∈ C∞
0 (Ω), the product φu

belongs to W s,p(Ω).

Proof. [10, Proposition 4.26].

Also, W s,p
loc (Ω) is defined as the subspace of those u ∈ Lp

loc(Ω) such that

[u ]W s,p(Γ) :=

(∫
Γ

∫
Γ

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

< ∞,

for every Γ ⊂⊂ Ω.

The tail space, denoted by L p−1
sp (Rn), is defined as the space of the functions

u ∈ L p−1
loc (Rn) such that ∫

Rn\B1(0)

|u(z)| p−1 |z|−n−sp dz < ∞.
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We are interested in the general operator L acting on functions u ∈ W s,p(Ω) ∩ L p−1
sp (Rn)

described by

Lu(x) =

∫
Rn

K(x, y)
∣∣u(x)− u(y)

∣∣ p−2 (
u(x)− u(y)

)
dxdy, x ∈ Ω. (1.13)

The assumptions we require on the kernel K(x, y) are

1. K(x, y) ≥ 0

2. K(x, y) = K(y, x)

3. λ ≤ K(x, y) |x− y|n+sp ≤ Λ , for constants Λ ≥ λ > 0.

(1.14)

If we consider, in (1.13), the particular kernelK(x, y) = |x−y|−n−sp, we have, up to

a constant, the very studied p-fractional Laplace operator, denoted by (−∆)sp. Moreover,

we can mention the very important case where p = 2, when the operator (−∆)sp reduces

to the fractional Laplacian, which is denoted by (−∆)s.

A typical property of these operators is the non-locality, in the sense that the value

Lu(x), in each point x ∈ Ω, does not depend only on the values of u in the neighborhood

of x, but the whole Rn. In this sense, and due to the random nature of the process, it is

natural to express the Dirichlet condition in Rn \ Ω rather than ∂Ω.

We remind that the Laplacian operator, −∆, is linear, as the fractional Laplacian

(−∆)s. On the other hand, in the general case p ̸= 2, operators p−Laplacian −∆p,

p−fractional Laplacian (−∆)sp and L are not linear. However, we highlight that L is an

(p− 1)-homogeneous operator, that is, for every w and α > 0, we have L(αw) = αp−1Lw.
A function u ∈ W s,p(Ω) ∩ L p−1

sp (Rn) is a weak (sub) supersolution to

Lu(x) = 0, x ∈ Ω, (1.15)

if ∫
Rn

∫
Rn

K(x, y) |u(x)− u(y)|p−2 (u(x)− u(y)) (φ(x)− φ(y)) dxdy (≤) ≥ 0,

for all test functions φ ∈ C∞
0 (Ω) with φ ≥ 0. Also, if v ∈ W s,p(Ω) ∩ L p−1

sp (Rn), we can

say that Lu ≤ Lv in Ω in the weak sense, if∫
Rn

∫
Rn

K(x, y) |u(x)− u(y)|p−2 (u(x)− u(y)) (φ(x)− φ(y)) dxdy

≤
∫
Rn

∫
Rn

K(x, y) |v(x)− v(y)|p−2 (v(x)− v(y)) (φ(x)− φ(y)) dxdy,

for all test functions φ ∈ C∞
0 (Ω) with φ ≥ 0.
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By definition, u is a weak solution to (1.15) if it is both a sub and supersolution

to (1.15), in case that∫
Rn

∫
Rn

K(x, y) |u(x)− u(y)|p−2 (u(x)− u(y)) (φ(x)− φ(y)) dxdy = 0, (1.16)

for all φ ∈ C∞
0 (Ω). Moreover, a function u satisfies Lu(x) = f in Ω in the weak sense if

1

2

∫
Rn

∫
Rn

K(x, y) |u(x)−u(y)|p−2
(
u(x)−u(y)

)(
φ(x)−φ(y)

)
dxdy =

∫
Rn

f(x)φ(x) dx (1.17)

holds for any φ ∈ C∞
0 (Ω). Observe that in these definitions of weak solutions, we can

consider φ ∈ W s,p
0 (Ω) instead of φ ∈ C∞

0 (Ω), since we can use density arguments and that

W s,p
0 (Ω) = C∞

0 (Ω).

Finally, for K(x, y) = |x−y|−n−sp we can prove the following result concerning the

invariance under rotations to the p-fractional Laplacian (−∆)sp.

Theorem 1.9. Consider u ∈ W s,p(Ω) a weak solution of (−∆)sp u = f in Ω and any

rotation R ∈ SO(n). Then, we have that ũ := u ◦ R is a weak solution of (−∆)sp ũ = f̃

in Ω̃ := R−1(Ω), where f̃ := f ◦R.
In particular, if (−∆)sp u = 0 in Rn, then also (−∆)sp ũ = 0 in Rn.

Proof. In fact, let φ ∈ W s,p
0 (Ω̃) a test function. Noticing that det(JR) = 1, R−1 ∈ SO(n)

is also a rotation and so |R−1x| = |x|, for all x ∈ Rn, we have, by changing variables

w = Rx, dw = dx, z = Ry, dz = dy,∫
Rn

∫
Rn

∣∣u(Rx)− u(Ry)
∣∣p−2 (

u(Rx)− u(Ry)
) (
φ(x)− φ(y)

)
|x− y|n+sp

dxdy

=

∫
Rn

∫
Rn

∣∣u(w)− u(z)
∣∣p−2 (

u(w)− u(z)
) (
φ(R−1w)− φ(R−1z)

)
|R−1w −R−1z|n+sp

dwdz

=

∫
Rn

∫
Rn

∣∣u(w)− u(z)
∣∣p−2 (

u(w)− u(z)
) (
φ(R−1w)− φ(R−1z)

)
|w − z|n+sp

dwdz

=

∫
Rn

f(x)φ(R−1x) dx,

where the last equality is valid since φ ◦R−1 ∈ W 1,p
0 (Ω) is a test function in Ω. Changing

variables again in the last expression, making w = R−1x, dw = dx, we get∫
Rn

∫
Rn

∣∣u(Rx)− u(Ry)
∣∣p−2 (

u(Rx)− u(Ry)
) (
φ(x)− φ(y)

)
|x− y|n+sp

dxdy

=

∫
Rn

f(Rw)φ(w) dw,

as we wanted.
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1.4 Auxiliary Estimates

In this section, we obtain estimates that are usefull to the proof of the results in

Chapter 3. The first Lemma shows that we can control the Gagliardo seminorm from a

family of functions with interesting properties.

Lemma 1.10. Consider the open sets V ⊂⊂ U ⊂⊂ BR0(0) and, for every R ≥ R0 ≥ 1,

ψ = ψR ∈ C1(Rn) such that

ψ = 0 in V

ψ = 1 in BR(0)\U

ψ = 0 in Rn\B2R(0)

|∇ψ| ≤ m, in U\V , where m is a constant depending only on U and V

|∇ψ| ≤ 2/R, in B2R(0)\BR(0).

Then, if sp ≥ n, the functions ψR satisfy

sup
R

[ψR ]W s,p(Rn) < ∞.

Proof. Notice we may write ψR = ψ1 + ψ2
R, where ψ

1, ψ2
R ∈ C1(Rn),

|ψ1| ≤ 1 , suppψ1 ⊆ BR0(0) , |∇ψ1| ≤ m;

|ψ2
R| ≤ 1 , suppψ2

R ⊆ B2R(0) , |∇ψ2
R| ≤

2

R
.

It follows then by the triangle inequality for the seminorm that

[ψR ]W s,p(Rn) ≤ [ψ1 ]W s,p(Rn) + [ψ2
R ]W s,p(Rn),

so, as we know [ψ1 ]W s,p < ∞ and does not depend on R, we need only to estimate

[ψ2
R ]W s,p . Observe that, although it is not really the case, each ψ2

R is essentially obtained

by a change of scale in the function ψ2
1, namely, ψ2

R(x) = ψ2
1(

x
R
), and so, ψ2

R(Rw) = ψ2
1(w),

considering x = Rw. Therefore,∫
Rn

∫
Rn

|ψ2
R(x)− ψ2

R(y)|p

|x− y|n+sp
dxdy =

∫
Rn

∫
Rn

|ψ2
R(Rw)− ψ2

R(Rz)|p

Rn+sp |w − z|n+sp
R 2n dxdy

= Rn−sp

∫
Rn

∫
Rn

|ψ2
1(w)− ψ2

1(z)|p

|w − z|n+sp
dxdy

≤ Rn−sp
0 [ψ2

1]
p
W s,p(Rn),

as we wanted.
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In the next Lemma, we consider the function L : R → R given by L(x) = x|x|p−2,

and we get some inequalities that will be helpfull to the proof of the Comparison Principle.

This result uses ideas from Damascelli [8].

Lemma 1.11. For p ≥ 2, there is a positive constant c1, depending on p, such that, for

all s ≤ t ∈ R,
L(t)− L(s) ≥ c1

(
|t|+ |s|

) p−2
(t− s).

In particular, for all s ≤ t ∈ R,

L(t)− L(s) ≥ c1 |t− s| p−2 (t− s), (1.18)

and for all s, t ∈ R, (
L(t)− L(s)

)
(t− s) ≥ c1 |t− s| p. (1.19)

Proof. The proof comes by using that L′(t) = (p− 1) |t| p−2 and writing

L(t)− L(s) =

∫ 1

0

L′(s+ τ(t− s)
)
(t− s) dτ

=(p− 1)
(∫ 1

0

|s+ τ(t− s)| p−2 dτ
)
(t− s).

The remaining integral is estimated at [8, Lemma 2.1], for p > 2, as∫ 1

0

|s+ τ(t− s)| p−2 dτ ≥ c (|t|+ |s|) p−2,

for all s, t, by some positive constant c depending on p.
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Chapter 2

ASYMPTOTIC BEHAVIOUR

In this section, we obtain some limit results for the solutions in exterior domains to

the equation (1.3) in the case p < n. The proof follows ideas from Gilbarg and Serrin [15]

using the Harnack inequality, but in our case, they were combined with symmetrization

results, since our problem is non-homogeneous.

On the matter of the limit at infinity for solutions, there is no loss of generality in

assuming K = B1. Our main theorem then reads as follows.

Theorem 2.1. Consider p < n and let u ∈ C1(Rn \B1) be a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= f

in Rn \B1. If

f ∈ Lr(Rn\B1) , for some r < n/p (2.1)

and

f ∈ L
n

p−θ (Rn\B1) , for some θ ∈ (0, 1) (2.2)

with

lim
R→+∞

Rθ ∥ f ∥
L

n
p−θ (Rn\BR(0) )

= 0, (2.3)

then the limit lim
|x|→∞

u(x) exists.

Proof. Let u be a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= f

on Rn\B1 and set m = lim inf
|x|→∞

u. For a given ε > 0 there is some R0 > 0 such that

u(x) > m− ε for all x such that |x| ≥ R0 ,

so that the function

v = u−m+ ε
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is a positive solution on Rn\BR0 . We pick up a sequence (xk) with |xk| → ∞ and

R0 < |xk| < |xk+1| such that

u(xk) ≤ m+ ϵ,

hence

v(xk) ≤ 2ϵ. (2.4)

Now let Rk = |xk|, SRk
= ∂BRk

(0). By applying Corollary 1.3 to v we get

sup v
SRk

≤ C
(
inf
SRk

v +K(Rk)
)

for a positive constant C independent of k, with

K(Rk) =
((
Rk/4

) θ ∥ f ∥ n
p−θ

,Rn\BRk/4(0)

) 1
p−1
.

By hypothesis (2.3), K(R) → 0 as R → ∞, so that K(Rk) ≤ ϵ, for all k sufficiently large.

Hence, using (2.4), it follows

sup v
SRk

≤ C ϵ , for all k sufficiently large,

and, consequently,

sup v
∂A(Rk,Rk+1)

≤ C ϵ , for all k sufficiently large. (2.5)

In the sequence, we obtain a bound for v on the interior of the annuli A(Rk, Rk+1).

For that we apply Corollary 1.6 to v on Ω = A(Rk, Rk+1), with

fk = f | .
A(Rk,Rk+1)

As |Ω| = ωn (R
n
k+1 −Rn

k ) ≤ ωnR
n
k+1 we obtain

sup v♯

A(Rk,Rk+1)♯
≤ sup v

∂A(Rk,Rk+1)

+
( 1

nωn δ

) 1
p−1

∫ Rk+1

0

ρ−
n−1
p−1

(∫
Bρ

f ♯
k(x) dx

) 1
p−1

dρ, (2.6)

where A(Rk, Rk+1)
♯ is the ball centered at 0 with the same measure as A(Rk, Rk+1). Let

us split the integral above as∫ Rk+1

0

ρ−
n−1
p−1

(∫
Bρ

f ♯
k(x) dx

) 1
p−1

dρ

=

∫ 1

0

ρ−
n−1
p−1

(∫
Bρ

f ♯
k(x) dx

) 1
p−1

dρ +

∫ Rk+1

1

ρ−
n−1
p−1

(∫
Bρ

f ♯
k(x) dx

) 1
p−1

dρ.

(2.7)

By the Hölder inequality we have, for any q ≥ 1,∫
Bρ

f ♯
k(x) dx ≤

(∫
Bρ

(
f ♯
k

)q
(x) dx

)1/q (
ωn ρ

n
) 1

q′ ,
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and using that (∫
Bρ

(
f ♯
k

)q
(x) dx

)1/q

≤ ∥f∥ q ,A(Rk,Rk+1),

we get ∫
Bρ

f ♯
k(x) dx ≤ ω

1
q′
n ρ

n
q′ ∥f∥ q ,A(Rk,Rk+1). (2.8)

Using this with q chosen as s = n
p−θ

> n
p
we have for the first integral in (2.7)∫ 1

0

ρ−
n−1
p−1

(∫
Bρ

f ♯
k(x) dx

) 1
p−1

dρ ≤ ω
1

s′(p−1)
n

∫ 1

0

ρ−
n−s

s(p−1) dρ ∥f∥
1

p−1

s ,A(Rk,Rk+1)

= ω
1

s′(p−1)
n

s(p− 1)

sp− n
∥f∥

1
p−1

s ,A(Rk,Rk+1)
.

For the second integral in (2.7), we use (2.8) with q = r < n/p to get∫ Rk+1

1

ρ−
n−1
p−1

(∫
Bρ

f ♯
k(x) dx

) 1
p−1

dρ ≤ ω
1

r′(p−1)
n

∫ Rk+1

1

ρ−
n−r

r(p−1) dρ ∥f∥
1

p−1

r ,A(Rk,Rk+1)

≤ ω
1

r′(p−1)
n

(
r(p− 1)

rp− n
ρ

rp−n
r(p−1)

)∣∣∣∣Rk+1

1

∥f∥
1

p−1

r ,A(Rk,Rk+1)

≤ ω
1

r′(p−1)
n

r(p− 1)

n− pr
∥f∥

1
p−1

r ,A(Rk,Rk+1)
.

Putting these estimates together in (2.7), we obtain as a result from (2.6) that

sup v♯

A(Rk,Rk+1)♯
≤ sup v

∂A(Rk,Rk+1)

+ C
(
∥f∥

1
p−1

r ,A(Rk,Rk+1)
+ ∥f∥

1
p−1

s ,A(Rk,Rk+1)

)
, (2.9)

for some constant C depending only on n, p, δ,Γ, r, s. Now by the hypotheses (2.1), (2.2),

we have

∥f∥
1

p−1

r ,A(Rk,Rk+1)
+ ∥f∥

1
p−1

s ,A(Rk,Rk+1)
≤ ϵ , for all k sufficiently large.

Then using (2.5), (2.9) yields

sup v♯

A(Rk,Rk+1)♯
≤ C ϵ , for all k sufficiently large,

with a constant C depending only on n, p, δ,Γ, r, s. Now, since

sup v
A(Rk,Rk+1)

= sup v♯

A(Rk,Rk+1)♯
,

it follows that

sup v
A(Rk,Rk+1)

≤ C ϵ , for all k sufficiently large,

which amounts to say that

v(x) ≤ C ϵ , for all |x| sufficiently large.
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Therefore, by definition of v, we have

u(x)−m ≤ C ϵ , for all |x| sufficiently large,

and by arbitrariness of ϵ follows

lim sup
|x|→∞

u ≤ m,

proving that lim
|x|→∞

u(x) = m .

If we consider, in particular, a pointwise limitation for the function f , we get the

next corollary.

Corollary 2.2. Consider p < n and let u ∈ C1(Rn \B1) be a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= f

in Rn \B1. If f satisfies

|f(x)| ≤ C

|x|p+ε
, (2.10)

for ε > 0 and x ∈ Rn \B1, then the limit lim
|x|→∞

u(x) exists.

Proof. If f satisfies (2.10), then the conditions (2.1), (2.2), and (2.3) from Theorem 2.1

are valid, as long as we choose r > max
{
1, n−ε

p

}
for condition (2.1).

Remark 2.3. This result is the best possible with respect to the conditions (2.1), (2.2),

and (2.3), in the sense that considering the counterexample given by the function

u(x) = cos (log log |x|), for |x| > 1,

clearly u does not attain a limit at infinity and satisfies

∆pu(x) = f

with f such that

|f(x)| ≤ C (log |x|)−p+1 |x|−p, for all |x| ≥ 2

for some positive constant C. In case p
p−1

< n, f satisfies conditions (2.2) and (2.3),

f ∈ L
n
p (Rn\B2(0)) but fails to satisfy (2.1), for any r < n/p.

The next corollary is a consequence from Theorem 2.1 that states a kind of Maxi-

mum Principle to solutions of (1.3).

Corollary 2.4. Consider p < n and u ∈ C1(Rn \B1) a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= f
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in Rn \B1. If f satisfies the assumptions (2.1), (2.2), and (2.3), then

sup u
Rn\BRk

(0)

≤ max{ sup u
∂BRk

(0)

,m} + C
(
∥f∥

1
p−1

r ,Rn\BRk
(0) + ∥f∥

1
p−1
n

p−θ
,Rn\BRk

(0)

)
,

and

inf u
Rn\BRk

(0)
≥ min{ inf u

∂BRk
(0)
,m} − C

(
∥f∥

1
p−1

r ,Rn\BRk
(0) + ∥f∥

1
p−1
n

p−θ
,Rn\BRk

(0)

)
,

where m = lim
|x|→∞

u(x) and C = C(n, p, δ,Γ, r, θ). In particular, if inf u
∂BRk

(0)
≤ m ≤ sup u

∂BRk
(0)

,

we have

osc u
Rn\BRk

(0)
≤ osc u

∂BRk
(0)

+ C
(
∥f∥

1
p−1

r ,Rn\BRk
(0) + ∥f∥

1
p−1
n

p−θ
,Rn\BRk

(0)

)
.

Proof. Consedering the equation (2.9), using that v = u−m+ ϵ, and

sup v
A(Rk,Rk+1)

= sup v♯

A(Rk,Rk+1)♯
,

we obtain

sup u
A(Rk,Rk+1)

≤ sup u
∂A(Rk,Rk+1)

+ C
(
∥f∥

1
p−1

r ,A(Rk,Rk+1)
+ ∥f∥

1
p−1
n

p−θ
, A(Rk,Rk+1)

)
. (2.11)

Now, observe that

sup u
∂A(Rk,Rk+1)

= max{ sup u
∂BRk

(0)

, sup u
∂BRk+1

(0)

}.

Then, making Rk+1 → ∞ in (2.11), we have

sup u
Rn\BRk

(0)

≤ max{ sup u
∂BRk

(0)

,m} + C
(
∥f∥

1
p−1

r ,Rn\BRk
(0) + ∥f∥

1
p−1
n

p−θ
,Rn\BRk

(0)

)
.

The result for the infimun follows considering the solution −u.
If inf u

∂BRk
(0)

≤ m ≤ sup u
∂BRk

(0)

, we obtain

max{ sup u
∂BRk

(0)

,m} = sup u
∂BRk

(0)

and min{ inf u
∂BRk

(0)
,m} = inf u

∂BRk
(0)
,

and the result for the oscillation follows when we subtract the estimates.

As an important application from Theorem 2.1, we can consider the case of the

mean curvature operator.

Corollary 2.5. Consider p = 2, n ≥ 3, and u ∈ C1(Rn \B1) a bounded weak solution of

−div

(
∇u√

1 + |∇u|2

)
= f(x)

in Rn \B1. If ∇u is uniformly limited in Rn \B1, and f satisfies conditions (2.1), (2.2),

(2.3), then the limit lim
|x|→∞

u(x) exists.
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Proof. Considering the limitation for ∇u, we have that A, defined by

A(t) =
1√

1 + t2
,

satisfies the condition iii., when restricted to [ 0, sup |∇u| ]. In this case, since the pre-

scribed mean curvature equation can be written as −div(A(|∇u|)∇u) = f(x), all hy-

potheses that validate Theorem 2.1 can be verified.

The next corollary is a generalization for Theorem 2.1:

Corollary 2.6. Consider p < n and u ∈ C1(Rn \B1) a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= g(x, u)

in Rn \ B1. If |g(x, t)| ≤ h1(x)h2(t), where h1 satisfies conditions (2.1), (2.2), (2.3), and

h2 ∈ L∞
loc(R), then the limit lim

|x|→∞
u(x) exists.

Proof. The result follows considering

f(x) := g(x, u),

and observing that f satisfies conditions (2.1), (2.2), and (2.3) from Theorem 2.1.

As an application of Corollary 2.6, we can consider the next corollary, which shows

the limit result for an eigenvalue problem.

Corollary 2.7. Consider p < n and u ∈ C1(Rn \B1) a bounded weak solution of

−div
(
|∇u|p−2A(|∇u|)∇u

)
= g(x, u)

in Rn \B1, where

g(x, t) =
k∑

i=1

Vi(x) t |t|pi−2 + h(x).

If the functions h and Vi, for each i = 1, 2, · · · , k, satisfy the conditions (2.1), (2.2), and

(2.3), we have the existence of the limit lim
|x|→∞

u(x).
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Chapter 3

COMPARISON PRINCIPLE

In this chapter, we obtain results concerning the operator (1.13) in exterior do-

mains. The main result, Theorem 3.3, is a Comparison Principle for the solutions of

(1.15) in exterior domains. The proof follows some steps made by Bonorino, Silva and

Zingano [4] for an operator similar to (1.1).

The first result is a limitation for a Gagliardo seminorn of u by the supremum of

u.

Theorem 3.1. Let K ⊂ Rn be a compact set and u ∈ W s,p
loc (Rn\K) ∩ L∞(Rn) be a weak

solution of Lu(x) = 0 in Rn\K. Suppose that sp ≥ n. Then, for any open set U ⊂ Rn

such that K ⊂ U , it holds(∫
Rn

∫
Rn\U

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

≤ C sup |u|, (3.1)

with C depending on n, s, p, λ,Λ, K and U .

Proof. In what follows, let us write simply Br for denoting the ball of radius r whenever it

is centered at the origin, making explicit the center point if necessary. We start assuming

with no loss of generality that U is bounded. In this case, there is some R0 > 0 such that

U ⊆ BR0 and we consider for every R ≥ R0 functions ψ = ψR ∈ C∞(Rn) satisfying

ψ = 0 in V , where V is an open set such that K ⊂ V ⊂⊂ U

ψ = 1 in BR\U

ψ = 0 in Rn\B2R

|∇ψ| ≤ m, in U\V , where m is a constant depending only on U and V

|∇ψ| ≤ 2/R, in B2R\BR

Using φ = φR : = ψp
R u ∈ W s,p

0 (Rn\K) as test function in (1.16) and splitting the integral
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as the sum of the integrals over B4R ×B4R and its complement on Rn × Rn we obtain∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y)) dxdy +

+ 2

∫
Rn\B4R

∫
B4R

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))φ(x) dxdy = 0.
(3.2)

Using that

φ(x)− φ(y) = (u(x)− u(y))ψ(x)p + (ψ(x)p − ψ(y)p)u(y),

we have ∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y)) dxdy

=

∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|pψ(x)p dxdy +

+

∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(ψ(x)p − ψ(y)p)u(y) dxdy.

Taking it to (3.2) and isolating the first integral above we get∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|pψ(x)p dxdy

= −
∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))(ψ(x)p − ψ(y)p)u(y) dxdy

− 2

∫
Rn\B4R

∫
B4R

K(x, y)|u(x)− u(y)|p−2(u(x)− u(y))φ(x) dxdy

≤ Λ

∫
B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|n+sp
|ψ(x)p − ψ(y)p| |u(y)| dxdy

+ 2Λ

∫
Rn\B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|n+sp
|φ(x)| dxdy

: = (i) + (ii).

(3.3)

Estimate of (i).

Applying the mean value theorem to t 7→ tp we can estimate, for some 0 < θ < 1,

|ψ(x)p − ψ(y)p| = p |θ ψ(x) + (1− θ)ψ(y)|p−1 |ψ(x)− ψ(y)|

≤ p 2 p−1
(
ψ(x)p−1 + ψ(y)p−1

)
|ψ(x)− ψ(y)|,

(3.4)
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where we also used that (a+ b)p−1 ≤ 2p−1(ap−1 + bp−1), for a, b ≥ 0. Then, we have∫
B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|n+sp
|ψ(x)p − ψ(y)p| |u(y)| dxdy

≤ p 2 p−1 sup |u|
∫
B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|n+sp

(
ψ(x)p−1 + ψ(y)p−1

)
|ψ(x)− ψ(y)| dxdy

= p 2 p sup |u|
∫
B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|n+sp
ψ(x)p−1|ψ(x)− ψ(y)| dxdy

= p 2 p sup |u|
∫
B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|(n+sp)(p−1)/p
ψ(x)p−1 |ψ(x)− ψ(y)|

|x− y|(n+sp)/p
dxdy

≤ p 2p sup |u|

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p
( ∫

B4R

∫
B4R

|ψ(x)− ψ(y)|p

|x− y|n+sp
dxdy

) 1
p

≤ p 2p sup |u|

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

[ψ ]W s,p(Rn).

From Lemma 1.10, the ψR seminorm on the right stays bounded with respect to R, so it

follows the estimate

(i) ≤ C sup |u|

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

,

for some positive constant C depending on n, s, p,Λ, and U .

Estimate of (ii).

Observing that φ = ψp u and suppψ ⊂ B2R we have

2

∫
Rn\B4R

∫
B4R

|u(x)− u(y)|p−1

|x− y|n+sp
|φ(x)| dxdy

= 2

∫
Rn\B4R

∫
B2R

|u(x)− u(y)|p−1

|x− y|n+sp
ψ(x)p|u(x)| dxdy

≤ (2 sup |u|) p
∫

Rn\B4R

∫
B2R

dxdy

|x− y|n+sp
.

Switching the order of integration and making the change of variables y = x − z, with
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z ∈ Rn\B4R(x), gives∫
Rn\B4R

∫
B2R

dxdy

|x− y|n+sp
=

∫
B2R

∫
Rn\B4R

dy

|x− y|n+sp
dx

=

∫
B2R

∫
Rn\B4R(x)

dz

|z|n+sp
dx.

Observe now that as x ∈ B2R(0), then B2R(0) ⊂ B4R(x), so that Rn\B4R(x) ⊂ Rn\B2R(0).

Consequently,∫
B2R

∫
Rn\B4R(x)

dz

|z|n+sp
dx ≤

∫
B2R

∫
Rn\B2R

dz

|z|n+sp
dx

=

∫
B2R

∞∫
2R

r−1−spdr nωn dx

=

∫
B2R

nωn

sp
(2R)−sp dx

=
nω2

n

sp
(2R)n−sp ≤ nω2

n

sp
(2R0)

n−sp,

and we have obtained the estimate

(ii) ≤ C ( sup |u|) p,

for some positive constant C depending on n, s, p and Λ.

Using the estimates for (i) and (ii) in (3.3) it follows that∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

≤ 1

λ

∫
B4R

∫
B4R

K(x, y)|u(x)− u(y)|p ψ(x)p dxdy

≤ C sup |u|

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

+ (sup |u|)p−1

 ,
(3.5)

with C depending on n, p, s, λ,Λ and U .

Next we look the following cases:

1. If

(sup |u|)p−1 ≤

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

,
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(3.5) gives∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy ≤ 2C sup |u|

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

,

which leads to ( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) 1
p

≤ 2C sup |u|.

2. If ( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

≤ (sup |u|)p−1,

then (3.5) readily gives∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy ≤ 2C (sup |u|)p.

It follows in both cases that( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)

p dxdy

) 1
p

≤ C sup |u|,

for some new constant. Now considering ψ ≡ 1 in BR\U we have∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy ≥

∫
B4R

∫
BR\U

|u(x)− u(y)|p

|x− y|n+sp
dxdy

and then ( ∫
B4R

∫
BR\U

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

≤ C sup |u|

holds, for all R. Letting R → ∞, this concludes the proof.

A similar result to that of Theorem 3.1 can be stated for solutions of the non-

homogeneous equation as well. This result is goint to be usefull to prove the Comparison

Principle for the non-homogeneous case, applying some similar ideas as in [4].

Corollary 3.2. Let K ⊂ Rn be a compact set and u ∈ W s,p
loc (Rn\K) ∩ L∞(Rn) a weak

solution of

Lu(x) = f in Rn\K ,

where f ∈ L1(Rn\U), for any open set U ⊃ K. Suppose that sp ≥ n. Then, for any open

set U ⊂ Rn such that K ⊂ U it holds(∫
Rn

∫
Rn\U

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

< ∞.
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Proof. Following the steps in the proof of the previous theorem, instead of (3.5), we obtain∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

≤ C sup |u|

[( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

+ (sup |u|)p−1

]
+

+

∫
Rn

f(x)ψp(x)u(x) dx

≤ C sup |u|

[( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

+ (sup |u|)p−1 +

+ ∥ f ∥L1(Rn\U)

]
.

If

∥ f ∥L1(Rn\U) ≤

( ∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy

) p−1
p

+ (sup |u|)p−1

for large R, then we fall back on estimate (3.5), from which the conclusion follows the

same way as before. Otherwise, we simply get∫
B4R

∫
B4R

|u(x)− u(y)|p

|x− y|n+sp
ψ(x)p dxdy ≤ C ∥ f ∥L1(Rn\U) sup |u| < ∞,

which also leads to the conclusion.

The next theorem is the main result of this chapter and states a Comparison

Principle for solutions to the equation (1.15) in exterior domains.

Theorem 3.3. Let K be a compact set of Rn and let u, v ∈ C(Rn) ∩ W s,p
loc (Rn\K) be

bounded weak solutions of Lw = 0 in Rn\K. Suppose, further, that sp ≥ n. If v ≥ u on

K, then v ≥ u in Rn\K.

Proof. Let ϵ > 0. Since v ≥ u in K, by continuity there exists a bounded open set U ⊃ K

such that v− u+ ϵ > 0 in U\K. Let R0 ≥ 1 such that U ⊂ BR0 and consider for R ≥ R0

the ψ = ψR associated to U as described in the previous theorem. Using the definition of

ψ and the fact that u, v ∈ W s,p
loc (Rn\K), we have that

φ := (v − u+ ϵ)− ψp
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has a compact support in Rn\K and φ ∈ W s,p
0 (Rn\K). Then using φ as test function for

the solutions u and v, and considering L(x) = x|x|p−2, we have∫
Rn

∫
Rn

K(x, y)L(v(x)− v(y)) (φ(x)− φ(y)) dxdy = 0,

∫
Rn

∫
Rn

K(x, y)L(u(x)− u(y)) (φ(x)− φ(y)) dxdy = 0,

which subtracted result∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(φ(x)− φ(y)) dxdy = 0. (3.6)

Observing that

φ(x)− φ(y) =
[
(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)

]
ψp(x) +

+ (v − u+ ϵ)−(y)
(
ψp(x)− ψp(y)

)
,

it follows

−
∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

·
[
(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)

]
ψp(x) dxdy

=

∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

· (v − u+ ϵ)−(y)
(
ψp(x)− ψp(y)

)
dxdy.

(3.7)

We estimate each side of this equality separately.

Left-hand side estimate:

Let us denote Gϵ := supp (v − u+ ϵ)−. The left-hand side then splits like

−
∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

·
[
(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)

]
ψp(x) dxdy

=

∫
Gϵ

∫
Gϵ

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

](
v(x)− v(y)− u(x) + u(y)

)
ψp(x) dxdy

+

∫
Gϵ

∫
Rn\Gϵ

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(v − u+ ϵ)−(y)ψp(x) dxdy

−
∫

Rn\Gϵ

∫
Gϵ

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(v − u+ ϵ)−(x)ψp(x) dxdy.
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For the first integral above, observe that from (1.19) in Lemma 1.11, we have[
L(v(x)− v(y))− L(u(x)− u(y))

] (
v(x)− v(y)− u(x) + u(y)

)
≥ c1 |v(x)− v(y)− u(x) + v(y)|p,

with c1 > 0. Then using λ ≤ K(x, y) |x− y|n+sp comes∫
Gϵ

∫
Gϵ

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

](
v(x)− v(y)− u(x) + u(y)

)
ψp(x) dxdy

≥ c1 λ

∫
Gϵ

∫
Gϵ

|v(x)− u(x)− v(y) + u(y)|p

|x− y|n+sp
ψp(x) dxdy

= c1 λ

∫
Gϵ

∫
Gϵ

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
ψp(x) dxdy.

Let us look now for the last integral

−
∫

Rn\Gϵ

∫
Gϵ

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(v − u+ ϵ)−(x)ψp(x) dxdy

=

∫
Rn\Gϵ

∫
Gϵ

K(x, y)
[
L(u(x)− u(y))− L(v(x)− v(y))

]
(v − u+ ϵ)−(x)ψp(x) dxdy.

Noticing that x ∈ Gϵ and y ∈ Rn\Gϵ, we have v(x) − u(x) + ϵ ≤ 0, v(y) − u(y) + ϵ ≥ 0,

and so u(x)− u(y) ≥ v(x)− v(y). Then using (1.18) we get

L(u(x)− u(y))− L(v(x)− v(y))

≥ c1
∣∣u(x)− u(y)− v(x) + v(y)

∣∣ p−2
(u(x)− u(y)− v(x) + v(y))

= c1
∣∣u(x)− u(y)− v(x) + v(y)

∣∣ p−1

= c1
∣∣− (v(x)− u(x) + ϵ) + v(y)− u(y) + ϵ

∣∣ p−1

≥ c1
∣∣(v − u+ ϵ)−(x)

∣∣ p−1
,

the last inequality being valid since v(y)− u(y) + ϵ ≥ 0. Therefore∫
Rn\Gϵ

∫
Gϵ

K(x, y)
[
L(u(x)− u(y))− L(v(x)− v(y))

]
(v − u+ ϵ)−(x)ψp(x) dxdy

≥ c1 λ

∫
Rn\Gϵ

∫
Gϵ

|(v − u+ ϵ)−(x)|p

|x− y|n+sp
ψp(x) dxdy

= c1 λ

∫
Rn\Gϵ

∫
Gϵ

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
ψp(x) dxdy.

A similar argument holds for the integral in the middle and yields∫
Gϵ

∫
Rn\Gϵ

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(v − u+ ϵ)−(y)ψp(x) dxdy

≥ c1 λ

∫
Gϵ

∫
Rn\Gϵ

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
ψp(x) dxdy.
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By adding these inequalities we obtain the following estimate for the right-hand

side

−
∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

·
[
(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)

]
ψp(x) dxdy

≥ c1 λ

∫
Rn

∫
Rn

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
ψp(x) dxdy.

Still, noting that ψ ≡ 1 in BR\U , then

−
∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

·
[
(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)

]
ψp(x) dxdy

≥ c1 λ

∫
Rn

∫
BR\U

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
dxdy.

Right-hand side estimate:

For the right-hand side of (3.7) observe that∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

· (v(y)− u(y) + ϵ)−
(
ψp(x)− ψp(y)

)
dxdy

=

∫
Gϵ

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

· (v(y)− u(y) + ϵ)−
(
ψp(x)− ψp(y)

)
dxdy.

Let us write

( . . . ) := K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(v(y)− u(y) + ϵ)−

(
ψp(x)− ψp(y)

)
for an easier and shorter notation. Then, we split the integral as∫

Gϵ

∫
Rn

( . . . ) dxdy =

∫
Gϵ\BR

∫
Rn

( . . . ) dxdy +

∫
Gϵ∩BR

∫
Rn

( . . . ) dxdy

=

∫
Gϵ\BR

∫
Rn

( . . . ) dxdy +

∫
Gϵ∩BR

∫
BR

( . . . ) dxdy +

∫
Gϵ∩BR

∫
Rn\BR

( . . . ) dxdy.

(3.8)

Claim 1. ∫
Gϵ∩BR

∫
BR

( . . . ) dxdy ≤ 0. (3.9)
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To prove it we write∫
Gϵ∩BR

∫
BR

( . . . ) dxdy =

∫
Gϵ∩BR

∫
U

( . . . ) dxdy +

∫
Gϵ∩BR

∫
BR\U

( . . . ) dxdy.

In the first integral on the right, since U ⊂ Rn\Gϵ, then x ∈ U and y ∈ Gϵ imply that

v(x)− v(y) ≥ u(x)− u(y), and so

L(v(x)− v(y))− L(u(x)− u(y)) ≥ 0.

On the other hand, ψp(x)− ψp(y) ≤ 0, since ψ ≤ 1 and ψ ≡ 1 in BR\U ⊇ Gϵ ∩BR. This

gives ∫
Gϵ∩BR

∫
U

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

· (v(y)− u(y) + ϵ)−
(
ψp(x)− ψp(y)

)
dxdy ≤ 0.

In the last integral we note that x ∈ BR\U and y ∈ Gϵ ∩BR gives ψp(x) = ψp(y) = 1, so

that ∫
Gϵ∩BR

∫
BR\U

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

· (v(y)− u(y) + ϵ)−
(
ψp(x)− ψp(y)

)
dxdy = 0,

proving (3.9).

Now back to estimate (3.8), (3.9) then gives∫
Gϵ

∫
Rn

( . . . ) dxdy ≤
∫

Gϵ\BR

∫
Rn

( . . . ) dxdy +

∫
Gϵ∩BR

∫
Rn\BR

( . . . ) dxdy .

Claim 2.∫
Gϵ\BR

∫
Rn

( . . . ) dxdy → 0,

∫
Gϵ∩BR

∫
Rn\BR

( . . . ) dxdy → 0 as R → ∞. (3.10)

To prove the first limit we denote M := sup(v− u+ ϵ)−, use inequality (3.4), and

that K(x, y) |x− y|n+sp ≤ Λ to estimate∫
Gϵ\BR

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
·

· (v(y)− u(y) + ϵ)−
(
ψp(x)− ψp(y)

)
dxdy

≤ M 2ppΛ

∫
Gϵ\BR

∫
Rn

|v(x)− v(y)|p−1 + |u(x)− u(y)|p−1

|x− y|n+sp
|ψ(x)− ψ(y)| dxdy

≤ M 2ppΛ

∫
Gϵ\BR

∫
Rn

|v(x)− v(y)|p−1 + |u(x)− u(y)|p−1

|x− y|
(n+sp ) ( p−1 )

p

|ψ(x)− ψ(y)|
|x− y|

n+sp
p

dxdy.
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Distributing the product and applying Hölder’s inequality, we get

≤M 2ppΛ

[( ∫
Gϵ\BR

∫
Rn

|v(x)− v(y)|p

|x− y|n+sp
dxdy

) p−1
p

+

( ∫
Gϵ\BR

∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) p−1
p

]
·

·
( ∫

Gϵ\BR

∫
Rn

|ψ(x)− ψ(y)|p

|x− y|n+sp
dxdy

) 1
p

.

We have ( ∫
Gϵ\BR

∫
Rn

|ψ(x)− ψ(y)|p

|x− y|n+sp
dxdy

) 1
p

≤ [ψ ]W s,p(Rn),

and, by Lemma 1.10, this seminorm is bounded with R. Since Gϵ ⊂ Rn\U , the previous

theorem ensures the integrals on the brackets go to zero as R → ∞, then it follows the

first limit in (3.10). By an analogous argument we can also prove the second one and

conclude the claim.

Putting together the estimates so obtained for the members in (3.7) it follows that

the expression ∫
Rn

∫
BR\U

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
dxdy

is bounded from above by a quantity that goes to zero as R → ∞. As BR\U → Rn\U
with R → ∞ we obtain∫

Rn

∫
Rn\U

|(v − u+ ϵ)−(x)− (v − u+ ϵ)−(y)|p

|x− y|n+sp
dxdy = 0.

Hence (v − u + ϵ)− is constant in Rn and, as (v − u + ϵ)− = 0 in K, we then have

(v − u+ ϵ)− = 0 in Rn, concluding the result.

The Comparison Principle yields some consequences. The first, Corollary 3.4, is a

uniqueness result that follows immediately from the Comparison Principle.

Corollary 3.4. Let K be a compact set of Rn and let u, v ∈ C(Rn) ∩ W s,p
loc (Rn\K) be

bounded solutions of (1.15) in Rn\K. In case sp ≥ n, if v = u on K, then v = u in Rn.

The next result is a consequence of Theorem 3.3 that compares a solution u of

(1.15) to a continuous function in K.

Corollary 3.5. Let K be a compact set of Rn and f be a continuous function in K.

Suppose that sp ≥ n and u ∈ C(Rn) ∩W s,p
loc (Rn\K) is a bounded solution of (1.15) in

Rn\K. If u = f on K, then

min f ≤ u ≤ max f in Rn\K.

40



Proof. Observe that v ≡ max f is a solution of (1.15) and satisfies v ≥ u in K. Then,

from Theorem 3.3, we get u ≤ max f . By a similar argument, min f ≤ u.

Considering new assumptions, we are able to prove a new version of the Comparison

Principle.

Theorem 3.6. Let K be a compact set of Rn and let u, v ∈ C(Rn) ∩ W s,p
loc (Rn\K) be

bounded functions such that Lu ≤ Lv in Rn\K in the weak sense. Suppose that sp ≥ n,(∫
Rn

∫
Rn\U

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

<∞

and (∫
Rn

∫
Rn\U

|v(x)− v(y)|p

|x− y|n+sp
dxdy

) 1
p

<∞,

for any open set U with K ⊂ U , as in (3.1). If v ≥ u in K, then v ≥ u in Rn\K.

Proof. Since u and v satisfies Lu ≤ Lv in Rn\K in the weak sense, we have, instead of

(3.6) in Theorem 3.3,∫
Rn

∫
Rn

K(x, y)
[
L(v(x)− v(y))− L(u(x)− u(y))

]
(φ(x)− φ(y)) dxdy ≥ 0,

for any non-negative test function φ ∈ W s,p
0 (Rn\K). Hence, if we assume the hypotheses

on u and v and use them to prove the convergences in (3.10), we can follow the same

steps as Theorem 3.3 and obtain the result.

The next Corollary is a non-homogeneous version of the Comparison Principle that

we get from the previous Theorem.

Corollary 3.7. Let K be a compact set of Rn and let u, v ∈ C(Rn) ∩ W s,p
loc (Rn\K) be

bounded functions such that

Lu = f1 ≤ f2 = Lv in Rn\K

in the weak sense, where f1, f2 ∈ L1(Rn\U), for any open set U with K ⊂ U . Suppose

that sp ≥ n. If v ≥ u in K, then v ≥ u in Rn\K.

Proof. Since f1 and f2 satisfy the hypotheses of Corollary 3.2, we have that u and v

suit the conditions for the Gagliardo seminorm on Theorem 3.6, for any open set U with

K ⊂ U . Therefore, from Theorem 3.6, we get the result.

In particular, for the classical kernelK(x, y) = |x−y|−n−sp, the operator is invariant

under rotations by Theorem 1.9 and so, we have
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Corollary 3.8. Let R0 > 0 and u ∈ C(Rn) ∩W s,p
loc (Rn\BR0(0)) be a bounded solution of

(−∆)sp u = 0 in Rn\BR0(0).

In case sp ≥ n, if u is radially symmetric on BR0(0), then u is radially symmetric in Rn.

Proof. Considering any rotation T ∈ SO(n), we have that ũ := u ◦ T is also a bounded

solution in Rn\BR0(0). Since u is radially symmetric in BR0(0), ũ = u in BR0(0), then

the previous corollary gives ũ = u in Rn.
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et Appliquées. v. 101, p. 553-582, 2014.

47


