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Abstract

Human activities have been changing the global biogeographic patterns by the introductions

of invasive species. For reptiles, the invasion rate increase of non-native species is remark-

ably related to the pet trade, especially for freshwater turtles. Here we estimated the inva-

sive potential of the South American turtle Trachemys dorbigni in the Americas using a

combination of climatic and human activity variables. We built species distribution models

based on data from the native and invasive ranges, using the ensemble model from five dif-

ferent algorithms (GAM, MAXENT, BRT, RF and GBM). We compared the two models’ per-

formance and predictions, one calibrated with only climatic variables (climate-driven), and

the second also included a descriptive variable of human activity (climate plus human-

driven). Suitable areas for T. dorbigni covered occurrence areas of its congeners and highly

diversified ecoregions, such as the eastern USA, the islands of Central America, and the

south eastern and eastern Brazilian coast. Our results indicate that human activities allow T.

dorbigni to establish populations outside of its original climatic niche. Including human activ-

ity variables proved fundamental to refining the results to identify more susceptible areas to

invasion and to allow the efficient targeting of prevention measures. Finally, we suggested a

set of actions to prevent T. dorbigni becoming a highly impacting species in the areas identi-

fied as more prone to its invasion.

Introduction

Human activities continuously change the global biogeographic patterns through the establish-

ment of introduction pathways of non-native species, increasing biotic exchange rate [1, 2]. As

a consequence, biological invasions are among the main threats to biodiversity [3]. Increased

numbers of invasive species are associated with the increasing number of individuals intro-

duced and introduction events (the propagule pressure; [4, 5]). Biological invasion theory

deals with the invasion process as a multistage continuum, where a high propagule pressure is
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essential for the successful establishment and maintenance of small populations during the

early stages of invasion (sensu [6]). This high propagule pressure allows a continuous gene

flow even in nonsuitable areas and, therefore, increases the probability of adaptation [7]. Spe-

cifically in the pet trade, the continuous release of individuals into nature reduces the reliance

on reproductive success for long-term population maintenance, which increases the chances

of establishment. The number of invasive species introduced by the legal and illegal pet trade

has increased over the last decades worldwide, influenced by commercial expansion through

online commerce, and especially in social networks [8–10]. New invasions are expected to con-

tinually emerge in the next years due to a lag phase, when species remain with few individuals

in the introduction area for a long time before becoming invasive [11, 12]. Therefore, initia-

tives to identify the most prone areas to invasion before these nonindigenous species become

invasive are critical for conserving native populations and planning for the prevention and

management of invasive species.

Both biotic (e.g., competition, facilitation, vegetation cover) and abiotic (e.g., temperature,

humidity) filters also influence the successful establishment of an invader species [13]. These

environmental constraints are often associated with physiological limitations and demands for

suitable sites for reproduction. Despite the general lack of detailed ecological data for most

invasive populations, a general macroecological approach using spatial statistical models can

provide important information from the available biotic and abiotic data (e.g., [14–17]. Species

distribution modelling (SDM) is a commonly used tool to estimate suitable areas for nonindig-

enous species. SDMs assist in risk assessment by identifying areas prone to invasions and pro-

vides valuable information for mitigation measures ([18, 19]. These models can be used in a

more comprehensive approach by including other environmental variables, such as vegetation

cover, invasive species introduction events, or transport pressure (see [15]). For invasive spe-

cies modelling, the inclusion of variables that quantify human activity in SDM improves

model estimation power [20, 21]. For example, exotic pet introduction depends on their

release into the environment; thus, propagule pressure for these animals should be higher in

large urban centres and their surroundings, and closer to residences [22, 23]. As a result, the

inclusion of human activity measures in the SDM allows combining the probability of intro-

duction or release (and accessibility) with climatic suitability of habitat [24, 25] to provide

more realistic scenarios.

In this study, we used SDMs to understand the invasive risk of a South American freshwater

turtle, Trachemys dorbigni (Duméril and Bibron, 1835), within the Americas. This species is

native to southern Brazil, Uruguay and northern Argentina [26, 27], inhabiting different

aquatic environments with abundant vegetation (lakes, slow-flowing rivers, ponds, and wet-

lands), and urban areas [28, 29]. Due to pet release, T. dorbigni was introduced in areas outside

of its native distribution, becoming invasive at some locations in north-eastern and south-east-

ern Brazil. However, its population impacts are still poorly known [30, 31]. This study is the

first approach on its potential for invasion, providing information to prevent future impacts

on potential invaded communities and freshwater ecosystems, since one of its congener (Tra-
chemys scripta; Thunberg in Schoepff, 1792) figures as a top-100 worst invasive species of the

world. Banning T. scripta trade in Europe and in some South American countries [32–34]

increased pressure upon other species of freshwater turtles [34], including our targeted species.

Indeed, egg and new-born removal for the pet trade is the main threat within its native area,

together with water pollution and road kills [35]. Here we combine two sets of variables to

model habitat suitability for Trachemys dorbigni in the Americas, one including only climatic

(abiotic) variables and the second including a human activity index; this allowed us to: (1)

identify which areas are more prone to T. dorbigni invasion, and (2) to analyse human activity

as a major driver of increased environmental suitability for this species.
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Methods

Species occurrence data

We compiled occurrence records of Trachemys dorbigni in its native range and invaded areas

from the global biodiversity information facility (GBIF; [36]), the VertNet data portal (www.

vertnet.org), Hórus Institute [37], and peer-reviewed published articles (S1 Appendix). Our

data set included the largest number of occurrence records with a minimal pairwise distance

of 10 Km to prevent sampling bias [38], using the randomisation function from ‘spThin’ R

package [39]. The final dataset contained 56 occurrence records of T. dorbigni within its native

range, plus 15 invasive population records. Because the species is freshwater-dependent, pres-

ence records are geographically biased towards rivers and lakes.

Climatic variables and measures of human activity

We included the 19 bioclimatic variables from CHELSA [40] and two topographic variables

(elevation and slope) derived from the Hydro-1K global digital elevation model [41]. Since we

were explicitly interested in how human activity influences the invasion potential of T. dor-
bigni, we included the global human influence index (HII; [42]) as a second data set, contain-

ing bioclimatic, topographic, and human influence variables. HII is built up from nine global

data layers including three main anthropogenic pressure sources [42], human population

(density), land use and infrastructure (e.g., land cover), and human accessibility (e.g., roads).

All layers had a spatial resolution of 5 arc-minutes (approximately 10 Km x 10 Km at the

equator).

To prevent multicollinearity, we selected the two sets of variables with the lowest correla-

tion values based on the variance inflation factor (VIF) using the ‘fmsb’ R package [43]. VIF is

an effective approach for multicollinearity assessment for more than two independent vari-

ables at a time; the higher the VIF value, the higher the collinearity between the related vari-

ables [44]. We only selected the bioclimatic variables below the critical threshold of five:

isothermality (bio 3), temperature annual range (bio 7), mean temperature of the wettest quar-

ter (bio 8), mean temperature of the warmest quarter (bio 10), and precipitation seasonality

(bio 15). Therefore, one predictor dataset comprised only the climatic variables selected by

VIF, and other combined the climatic variables and the human influence index.

Species distribution models

We calibrated two SDM sets for T. dorbigni: one set using only climate variables (climate-

driven; CD) with both native and invasive occurences, and another set including human-

related variables (climate plus human-driven; CHD), using only invasive occurrences. To

assess the role of anthropogenic activities on the environmental suitability and the invasive

potential of T. dorbigni, we jointly used native and invasive occurrences. We believe joining

occurrences would improve its fundamental niche characterization, comparing to models with

native occurrences only [18]. Likewise, we run CHD models with invaded occurrences only to

incorporate anthropogenic effects on the release and/or escape of exotic species. Human activ-

ity may produce an opposite effect on the native area, negatively impacting the species instead

of allow its expansion [45, 46]. We projected the mean resulting models (CD and CHD mod-

els) into wider-ranged layers (the Americas) to identify the most suitable areas for population

establishment. We assumed that higher-valued suitability areas were more prone to successful

invasions.

We identified the areas with higher invasive potential for the turtle using the ensemble

model from five different algorithms (GAM, MAXENT, BRT, RF and GBM) through the
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‘biomod2’ R package [47]. Ensemble models can provide more robust predictions for potential

distributions of invasive species, where species-environment relationships are difficult to

determine [48, 49]. Ensemble distribution maps highlight areas of agreement among different

models predictions, reducing areas of uncertainty for individual models [50, 51].Because these

algorithms require presence and absence records, and absence records are usually either

unavailable or unreliable, we replaced them by pseudo-absence occurrence sets [52]. We gen-

erated a random sample set of pseudo-absences proportional to the number of presences [53]

with three replicates within the study area. We set equal prevalence weight for both presence

and pseudo-absence groups (0.5; [54]) to prevent model overfitting and to produce a more

accurate prediction for potential invasions [53, 55–57].

For model evaluation, we randomly divided the data set into 80% for calibration and 20%

for validation. We repeated this procedure 10 times using 10 random data set splits, totalling

100 models for each type of model (CD and CHD). To evaluate model-fitting, we used the true

skill statistic (TSS). TSS is a precision-dependent measure, insensitive to prevalence [58]. To

build a consensus prediction, we only included higher-performance models in the ensemble

forecasting (TSS >0.7; [59]). We compared the TSS values of the CD and CHD models using

Wilcoxon’s statistics to verify if the different sets of variables affected the performance of the

models. Final outputs were two continuous suitability layers comprising the mean ensemble of

the best predictions for each model type (CD and CHD), both projected in the Americas. Con-

tinuous predictions were converted into binary maps by using a threshold value which maxi-

mized both sensitivity and specificity to show the differences and convergences between each

model.Unlike most studies with invasive species, here we prioritised maximising specificity

(the proportion of absences correctly predicted) in defining model parameters; that is, we

chose predictions with higher specificities to reduce the number of false positives (true

absences predicted as presence; [53]). The ensemble distribution maps represent only the areas

with the greatest potential to be suitable for T.dorbigni.

Results

As expected, in the climate plus human-driven model (CHD) suitable areas coincided with

areas in which the Trachemys dorbigni is invasive (Fig 1). Using the ensemble approach, the

climate-driven model (CD) identified suitable areas for T. dorbigni in north-central Argentina

along the Rio Negro drainage basin, eastern USA, and the Great Basin in the USA (sensu [60]),

in addition to their natural range (Fig 1A). These ecoregions are typically arid and temperate,

presenting independent river systems and drainage basins [61, 62]. Other smaller areas of dry

and moist forests in the south-eastern and eastern Brazilian coast, northern Andean region,

Caribbean islands, Central America, and parts of Chile were identified by the CHD model (Fig

1B). A comparison between the distributions predicted by both models (CD and CHD) can be

found in Fig 1C.

TSS values for ensemble models are 0.87 for CD model and 0.99 for CHD model, which is

considered a good performance (Fig 2). However, the CHD model differed significantly from

CD, with higher TSS (Wilcoxon rank-sum test on TSS (W = 16145, p = 2.895e-11). Therefore,

our results from both models comprised good predictions on habitat suitability for the species,

but the CHD model performed better according to model evaluation metrics.

Discussion

The CHD model outperformed the CD model at predicting known invaded areas, and in

model precision. This suggests that human-driven environmental modifications allow T. dor-
bigni to establish populations outside its original climatic niche. Although the successful
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establishment is influenced by propagule pressure and abiotic and biotic characteristics of the

invaded area, the magnitude and extent of the effect of each factor are often modified by

human activity [13]. Human activity increases the likelihood of population establishment, by

increasing genetic diversity and the chances of adaptation through the constant release of pets

(see [7]). At the same time, environmental modification creates favourable environments (e.g.,

increased local temperature, lack of vegetation cover) and facilitates the occupation of empty

niches by non-native species [63, 64]. Therefore, if human activity at the site is high enough, it

may favor the establishment of exotic species in areas outside the appropriate climatic range.

Population establishment of invasive species in unfavourable climatic regions is not an uncom-

mon event; for example, introduced populations of T. scripta in Italy usually survive in habitats

where bioclimatic conditions are unfavourable to reproduction [65]. This may be the case for

populations of T. dorbigni inhabiting areas outside of their suitable range, since most of their

invasion sites are deforested areas within the Brazilian Atlantic Forest domain, where invasion

risks and propagule pressure are higher, due to the influence of the 72% (ca. 145 million) of

the human population Brazilian living within its domain [66]. Almost all of the sites invaded

by T. dorbigni are located in the Atlantic Forest region and were all correctly predicted by the

CHD model.

Suitable areas for T. dorbigni also agreed with the distribution of T. scripta in North Amer-

ica, as well as the distribution of other slider turtles (Trachemys sp.) in Central and South

America, especially T. stejnegeri, T. decussata, T. terrapen and T. venusta (S1 Fig). These results

suggest that Trachemys species occupy similar habitats and share characteristics of life history

[67]; this is especially worrying for the maintenance of native congener populations, mainly

because non-native reptiles are overall more likely to successfully establish where congeners

are present [67]. According to Darwin’s preadaptation hypothesis, the presence of congeners

Fig 1. The resulting suitability areas for the successful establishment of T. dorbigni in the Americas. (A) climate-only model (CD); (B): climate + human activity

model (CHD); (C) comparison of predicted distributions in the CD and CHD models; light blue areas show where the CHD model predicts species presence, while dark

blue areas areas show where the CD model predicts species presence. Areas in green indicate coincidence in model predictions. Map images hosting provided by the

Center for Spatial Sciences at the university of California, Davis.

https://doi.org/10.1371/journal.pone.0259626.g001
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indicates that resource availability and physiological tolerances are compatible with local con-

ditions [68]. However, the relationship between congener presence and the successful invasion

of turtles on a global scale has not yet been demonstrated [69]. Further analyses on a smaller

scale (regional and local) may clarify the importance of congeners in the success of invasive

slider turtles. In contrast, the impacts of introducing non-native slider turtles are known and

include changes in behaviour and distribution of native turtle populations by biotic interac-

tions, disease spread, and hybridisation [70, 71]. Hybridisation cases involving Trachemys spe-

cies are already observed [71, 72] suggesting the lack of physiological barriers between species.

In a successful invasion scenario of T. dorbigni in congener areas, the phylogenetic proximity

between Trachemys species suggests that their hybridisation could occur [73, 74]. In addition,

sliders are considered highly competitive and aggressive turtles in their interactions [75, 76].

Competition for food, and nesting and basking sites displaces native turtle species from the

most suitable places for thermoregulation and where resources are most profitable [75, 77].

Competitive displacement, together with hybridisation, can alter population structure and

endanger the survival of native populations, decreasing reproductive success, and increasing

mortality rates [70, 78].

Given the stochastic nature of each invasion and the uncertainties related to the introduc-

tion of new propagules, to precisely predict which areas are most at risk becomes a challenge.

Although climatic variables are important, especially for ectothermic species, they alone are

not enough to describe invasive species distribution [79]. The occurrence of T. dorbigni can be

also limited by other factors besides thermal tolerance [80]. As freshwater invaders, these

Fig 2. TSS values for the climate-driven model and combined model (climate and human activity index).

https://doi.org/10.1371/journal.pone.0259626.g002
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organisms are more prone to occupy large areas by using water body networks for dispersal,

together with the known pet introduction pathways. The accessibility to other lakes, ponds,

and rivers may be key for the spread of this species, and difficulties for dispersal process

include habitats split by dams and roads, for example. In this sense, alternative models run

with the freshwater environmental database and other variables associated with the presence

of water can refine future models and improve predictions by including due inclusion of likely

dispersal routes for aquatic invaders [45]. Furthermore, it is likely that its occurrence is also

limited by density-dependent factors (e.g., intraspecific competition, density, mortality rates)

which reduces the need of individuals to disperse. Therefore, local abiotic and biotic patterns

also exert pressure on the establishment and dispersion of T. dorbigni, and should be consid-

ered in future plans to contain and prevent invasion of the species.

Here we used species distribution models not only to identify areas more prone to T. dor-
bigni invasion, and which variables would explain better the suitability, but also to understand

the role of human activities on the invasion process. Our results comply with previous studies

highlighting the importance of including human activities as variables in SDMs to improve

model predictions of invasive species, especially freshwater turtles [65, 79, 81, 82]. Because

human activity is highly influential in the invasion process, we believe that even when calibrat-

ing models that account for the interaction between species (e.g., JSDM, Joint Species Distribu-

tion Model), the human variable should enhance the prediction power of invasion-prone

areas. However, it is important to highlight that the SDMs consider that the species would be

able to reach all areas equally and that the conditions will remain the same offered in the con-

struction of the model. Thus, changes in parameters (e.g., changes in accessibility or vegetation

cover) may affect these projections and, therefore, the interpretation of these results must con-

sider such limitations.

In a nutshell, T. dorbigni invasiveness is driven by both climatic features and human activi-

ties. Our study generated important information to employ in direct conservation efforts at

specific geographic areas in the Americas, since the habitat suitability for T. dorbigni includes

the occurrence areas of its congeners and highly diverse ecoregions with great importance for

conservation. Therefore, we believe the most imperative actions to prevent T. dorbigni from

becoming a highly impacting non-native species within prone-invasive areas are: 1) limit or

even ban commercial trade. Alternatively, all breeders and shops must implant a subcutaneous

microchip for identification of the turtle, and the commercial establishment should register

the owner in a country and/or worldwide database of non-native species. 2) Authorities and

governments to set high fines for those who release individuals, and establish inspection activ-

ity on pet breeders and shops. 3) To promote citizen science programs to increase invasive spe-

cies monitoring areas, including a user-friendly database to report findings and data. The

threat of invasive species can only be mitigated by the close cooperation of the triad of scien-

tists, civil society, and policymakers.

Supporting information

S1 Fig. Native distribution of the Trachemys genus in the Americas. Black polygon: geo-

graphical distribution of T. dorbigni. Red polygons:1- T. scripta; 2- T. venusta; 3- T. decussata;

4- T. gaigeae; 5- T. grayi; 6- T. nebulosa; 7- T. ornata; 8- T. stejnegeri; 9- T. taylori; 10- T. terra-
pen; 11- T. yaquia; 12- T. adiutrix. Modified from Fritz (2012). Map images hosting provided

by the Center for Spatial Sciences at the university of California, Davis. CD: climate-only

model, CHD: climate + human activity model.
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bined (climate + human activity; CHD) models for Trachemys dorbigni. Variables:

bio3 = isothermality; bio7 = temperature annual range; bio8 = mean temperature of wettest

quarter; bio10 = mean temperature of warmest quarter; bio15 = precipitation seasonality;

HII = human influence index.
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