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Probing the reciprocal lattice associated with a
triangular slit to determine the orbital angular
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The orbital angular momentum conservation of light reveals different diffraction patterns univocally dependent
on the topological charge of the incident light beam when passing through a triangular aperture. It is demonstrated
that these patterns, which are accessed by observing the far-field measurement of the diffracted light, can also be
obtained using few photon sources. In order to explain the observed patterns, we introduce an analogy of this
optical phenomenon with the study of diffraction for the characterization of the crystal structure of solids. We
demonstrate that the finite pattern can be associated with the reciprocal lattice obtained from the direct lattice gen-
erated by the primitive vectors composing any two of the sides of the equilateral triangular slit responsible for the
diffraction. Using the relation that exists between the direct and reciprocal lattices, we provide a conclusive explana-
tion as to why the diffraction pattern of the main maxima is finite. This can shed a new light on the investigation of
crystallographic systems. © 2020 Optical Society of America

https://doi.org/10.1364/AO.394745

1. INTRODUCTION

Photons are the main information carriers in quantum optics.
In fact, single and entangled photons have played an important
role in the development of quantum computation and quan-
tum information technologies [1]. Quantum bits (qubits) of
information can be encoded in different degrees of freedom
such as, for instance, the single-photon energy, polarization,
linear momentum, and orbital angular momentum (OAM)
state. Recently, the OAM degree of freedom of the photon
has received a lot of attention for providing a discrete high-
dimensional quantum space [2,3]. It has been demonstrated
that this new degree of freedom allows the preparation of sin-
gle and entangled photons in a superposition of n orthogonal
quantum states (i.e., qudits instead of qubits) [4–7]. As a conse-
quence, a single photon can carry a big amount of information

encoded on its OAM state. In this regard, the study of a photon’s
OAM has provided novel counterintuitive examples on the rela-
tionship between the quantum and the classical regime [8,9]. In
this form, it is essential to develop ways of measuring the OAM
states of light from both the quantum and classical regimes.

There are already several methods to determine the OAM of
light with many photons in the same mode. Usually, the beam’s
OAM is experimentally determined by interfering the beam
possessing OAM with a reference plane wave [10] or with its
mirror image [11]. More recently, new techniques for obtaining
the OAM state have been reported. Some of them are related
with a direct measurement of the wavefront of the beam [12],
and the interference with a double slit [13]. The relationship
between OAM states and diffraction through triangular aper-
tures has been studied and has become very popular among
experimentalists [14–17].
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An important issue in quantum communication processing
relies on the ability of measuring a quantum state. An efficient,
precise, and easy technique to determine OAM eigenstates
for any value of m is still challenging. In some experiments, an
arrangement of holograms, single-mode fibers, and a single-
photon counting module detector has been used to determine
the OAM state [5–8]. A Laguerre–Gaussian (LGm,p ) mode
can be transformed into a Gaussian mode by using holographic
techniques. Note that for each measurement of a specific OAM
quantum state, it is necessary to have an appropriate hologram,
limiting this method to measuring only one particular state.
A more complex hologram can be projected for sorting OAM
modes [18,19]. In this context, the development of accurate
techniques to measure high-order states of the OAM of a single
photon is an important issue that must be strongly investi-
gated due to the importance of their applications for quantum
information processing.

In this paper, we present a connection between the diffraction
phenomena of photons endowed with OAM and the formation
of an optical lattice in the far-field plane. The same diffraction
pattern is also obtained in the regime of a classical optical field
carrying OAM. The physical description of this phenome-
non is formulated with basis on the study of crystal structures
in the theory of solid-state physics. Specifically, this far-field
diffraction pattern is associated to the reciprocal lattice of a
direct lattice, whose primitive vectors represent the sides of the
triangular slit used to produce the diffraction pattern. Due to the
OAM conservation, only finite reciprocal lattices are exhibited
allowing the determination of the OAM state of the photons.

2. FINITE DIFFRACTION LATTICE

To start this section, we describe the quantum state of pho-
tons in terms of the OAM spatial modes. In the paraxial
approximation, the LGm,p modes constitute a complete
infinite-dimensional basis. Alternatively, it has been demon-
strated that the LGm,p modes can be identified as the eigenstates
of a quantum OAM operator possessing eigenvalues m~
[20,21], i.e., L z|m, p〉 =m~|m, p〉,where |m, p〉 represents
the photon state prepared in the LGm,p mode. Such LGm,p

modes are characterized by two integer numbers p and m, where
p represents the radial mode and m determines the dependence
of the modes with the azimuthal phase in the form exp(imϕ),
being also referred to as the topological charge. This term is
what defines an optical vortex that is the one associated to the
OAM of the photon. Let us now discuss the OAM of a beam
and the resulting diffraction pattern by a triangular thin slit
aperture using some elements from the classical perspective for
this problem and its relation to diffraction by crystals.

It is well known that the total angular momentum density of
an optical beam is given by

j= r⊥ × p, (1)

where p is the linear momentum density vector given by
p= ε0E× B, and r⊥ is the transverse coordinate at the aperture
plane. E and B are the electric and magnetic fields, respectively,
and ε0 is the vacuum permittivity. Considering the situation
sketched in Fig. 1(a), it is easy to see that the OAM density
z component can be written as jz = r⊥ pφ , where pφ is the

Fig. 1. (a) Schematic representation of diffraction of a vortex light
beam by an equilateral triangular slit. (b) Definition of the direct
and reciprocal lattice vectors corresponding to a triangular lattice.
(c) Triangular lattice formed with photons with m = 3 of topological
charge.

azimuthal component of the linear momentum. For such an
incident beam, the OAM per photon is given by jz =m~, and
the local transverse linear momentum is pφ = ~k⊥, where k⊥ is
the transverse wavevector of the light beam, which defines the
transverse wavelength λ⊥ at a given plane perpendicular to the z
axis, and ~ is the reduced Planck’s constant. By elimination of ~
from these two equations, we get r⊥k⊥ =m. For convenience,
we define the normalized variable r⊥ = r ′

⊥
/2π to get

k⊥r ′
⊥
= 2πm. (2)

This relation is satisfied for any light beam with OAM, and its
relevance will be clear below.

In order to understand the diffraction pattern of single pho-
tons by a triangular slit, we resource to the theory of diffraction
by crystals. For this purpose, we will consider the equilateral
triangular slit as a unit cell of a two-dimensional Bravais triangu-
lar lattice defined by the vectors a1 and a2 such that |a1| = |a2|.
The corresponding reciprocal lattice is created with the vectors
b1 and b2 that satisfy the condition ai · bj = 2πδi j , where δi j

is the Kronecker’s delta [22]. This condition implies that the
direct lattice and the reciprocal lattice are formed by mutually
orthogonal vectors as shown in Fig. 1(b).

Any point in the direct lattice space is represented by
r′
⊥
= u1a1 + u2a2, and the points in the reciprocal space are

characterized by the set of vectors k⊥ = v1b1 + v2b2, where
the coefficients ui and v j are integer numbers. Since r′

⊥
is in the

Bravais lattice and k⊥ belongs to the reciprocal lattice, we have
the Laue condition [22]

exp(ik⊥ · r′⊥)= 1, (3)

implying that the dot product in the argument is an integer
multiple of 2π . this is k⊥ · r′⊥ = 2πη, where η can be any
integer number. Explicitly, Eq. (3) becomes

u1v1 + u2v2 = η (4)
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The direct lattice under investigation is only comprised of one
single cell with the vectors a1 and a2; therefore, either of the
coefficients u1 can be equal to 0 or 1 to define the vertices of
the Bravais triangular unit cell. Recalling that the modulus of
the product of the vectors r′

⊥
and k⊥ are related to the beam

topological charge m by Eq. (2) and assuming, without loss of
generality, that u1 = u2 = 1 in Eq. (4), we obtain

v1 + v2 =m, (5)

which sets the limit of the maximum value that cannot take the
integer η such that Eq. (3) be satisfied. Thus, each of the v j is
restricted to have values from 0 to m in such a way that their
sum does not exceed the maximum value of m (note that if m
is negative, so also must be the v j up to the minumum value of
−|m|). The resulting diffraction pattern is then governed by the
Laue condition, which states that constructive interference will
occur whenever the change in wavevector k⊥ = v1b1 + v2b2

is a vector of the reciprocal lattice. In this way, the diffraction
pattern must reveal the corresponding part of the reciprocal
lattice associated with the topological charge m.

Since the sum in Eq. (5) is restricted to the value of m, then
the reciprocal Bravais lattice is finite. By increasing the value of
m, new portions of the reciprocal lattice should be unveiled. In
Fig. 1(c), we can see an example where the construction of the
reciprocal Bravais lattice is shown for an equilateral triangular
unit cell for m = 3. Note that the reciprocal vectors also define
the orientation of the triangular diffraction pattern. One final
remark is that the analysis has been done for a vortex wavefront,
disregarding the amplitude of the light beam. The theory devel-
oped above will be satisfied for vortex beams whose intensity
is approximated by the simplest representation of a vortex,
namely, (x ± i y )m = r me imφ . For light beams like Laguerre–
Gauss beams or Bessel beams, this occurs when the triangular slit
aperture is centered inside the first ring of their intensity pattern,
at most circumscribed.

3. RESULTS

Let us consider the diffraction problem where photons endowed
with OAM are scattered by an equilateral triangular slit forming
a diffraction pattern at the Fourier plane. The photodetection
rate N(ρ), transmitted by the triangular slit to a very small
detector located at the Fourier plane, is proportional to the
second-order correlation function of the field [23]

N(ρ)∝
〈
Ê−T (ρ)Ê

+

T (ρ)
〉
, (6)

where Ê−T (ρ) and Ê+T (ρ) are the negative and positive fre-
quency components, respectively, of the electric field operator
measured at the Fourier plane, and ρ is the transverse position
vector at the detector plane.

The electrical field operator is obtained by making an analogy
with the classical calculation of the electric field transmitted
through an object when the angular spectrum is known [24].
The transmitted electrical field operator at the Fourier plane is
written as

Ê+T (ρ)∝
∫

dqâ(q)1(q)e iq·ρ (7)

In this equation, the operator â(q) annihilates a photon with
a transverse wavevector q, and 1(q) is the Fourier transform
of the transmission function that represents the object; in our
case the equilateral triangular slit. The operators Ê−T (ρ) and
Ê+T (ρ) contain all information about the presence of the optical
elements in the path of the propagation from the slit to the
detector.

Following along the lines of Ref. [25], and restricting to the
OAM contribution only, i.e., neglecting the spin contribution,
the state of a photon in a light beam propagating according to
the paraxial wave equation can be expressed as

|ψ〉 =

∫
dρϑm,p(ρ) |ρ〉. (8)

This equation represents a single-photon state in the paraxial
mode with indices m and p , and ϑm,p(ρ) corresponds to the
transverse spatial wave function.

It is convenient to express the paraxial function ϑm,p(ρ) in
terms of its angular spectrum νm,p(q) via the Fourier transform

ϑm,p(ρ)∝

∫
dqνm,p(q)e iq·ρ (9)

By manipulating the equations above, we obtain

N(ρ)∝

∣∣∣∣∫ dqνm,p(q)1(q)e iq·ρ

∣∣∣∣2. (10)

This equation allows us to numerically calculate the probabil-
ity distribution at the Fourier plane of a single photon prepared
in an OAM state. This result corresponds to the far-field diffrac-
tion pattern of the photons in the LGm,p mode scattered by
an equilateral triangular slit. This probability distribution has
a triangular pattern as shown in Fig. 2. It is important to call
attention to the fact that this pattern, which is formed after
many detections of the photons, also corresponds the diffraction
pattern formed by a classical optical field prepared and submit-
ted to similar conditions. The present results were obtained
by evaluating Eq. (10) for m ranging from 1 to 6 , with p = 0.
Interesting enough, from these patterns we can observe a direct
relationship between the number of maxima that shows up
at each diffraction pattern with its corresponding value of m.
Note that each side of the triangular diffraction patterns has
m + 1 bright spots. We can observe that the value of m is directly
related to the number of interference maxima along the external
side of each triangular diffraction pattern. Indeed, the topo-
logical charge of the measured mode is m = N − 1, where N is
the number of maxima along any of the sides of the triangular
pattern.

From a crystallography viewpoint, a similar diffraction prob-
lem appears when an x-ray beam illuminates, for example, a
two-dimensional crystal structure. An integral similar to that
shown in Eq. (10) is used to determine the scattered wave ampli-
tude of x rays [26], establishing a relation between the vectors in
the direct and reciprocal spaces. In this case,1(q) has the mean-
ing of the Fourier transform of the electron number density
function and q corresponds to the reciprocal lattice vectors. The
similarity between these integrals leads us to make an analogy
between the present case of the diffraction of photons endowed
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Fig. 2. Probability distribution at the Fourier plane formed after
the detection of many photons. Numerical solution of Eq. (10) using
Laguerre–Gauss modes diffracted by the equilateral triangular slit. The
values of m are (a) m = 1, (b) m = 2, (c) m = 3, (d) m = 4, (e) m = 5,
and (f ) m = 6.

Fig. 3. Effect of the change of the sign of m using Bessel modes in
Eq. (10). The topological charges are (a) m = 3 and (b) m =−3.

with OAM by an aperture and the ideas from crystallography
theory.

Calvo et al. [27], following the formalism of Ref. [25],
pointed out that even though it has been carried out the paraxial
quantization description using the LGm,p modes, other paraxial
modes or even nonparaxial modes could be used as well. In
this regards, we notice that Eq. (10) also supports high orders
of Bessel modes, other families of modes that can be used to
describe a light beam possessing OAM. Bessel modes are exact
solution of the Helmohltz equation [28]. Figure 3 illustrates the
probability distribution for m = 3 and m =−3 using Bessel
modes. In this case, due to the well-known multi-ring structure
of Bessel modes, the configuration we used was such that the
smallest ring completely illuminates the triangular slit. We
observe that by changing the sign of m, the orientation of the
diffraction pattern also changes and therefore allows the deter-
mination of the sign of the photon OAM in a practical way. In
comparing Fig. 2(c), using the LGm,p modes, with Fig. 3(a),
using Bessel modes, no significant difference is observed. This
fact implies that the diffraction pattern depends only on the
photon OAM and it is basically independent of the radial ampli-
tude distribution. Therefore, the method presented in this paper
to measure the photon OAM is quite general and can be used for
any OAM mode.

The experimental setup is sketched in Fig. 4. An Argon
laser operating at 514 nm illuminates a computer-generated

Fig. 4. Sketch of the experimental setup. The light from an argon
laser acquires a specific OAM state after passing through a computer-
generated hologram, before having its intensity strongly attenuated.
The photons of this optical field illuminates the triangular slit before
being detected, after which a lens and a single-mode fiber (SMF) are
used for the measurement to materialize in the far-field diffraction
limit.

hologram to produce high-order LGm,p beams [29]. Using
a pinhole, we select a well-defined LGm,p mode with m = 3
and p = 0. To reach the single-photon level, we used the same
approach as that described in Ref. [30]; the power of this par-
ticular mode was strongly attenuated to produce an optical
flux with a maximum of approximately 1500 photons/s. We
have also selected a LGm,p mode with m =−3 and p = 0. An
equilateral triangular slit with side and slit length of 3.51 mm
and 0.4 mm, respectively, was placed in the photon’s path. A lens
with 300 mm of focal length was placed after the triangular slit
to generate the far-field diffraction pattern at the focal plane,
where the scattered photons were collected by a single-mode
fiber (SMF). The scattered patterns were obtained by scanning
the fiber tip and recording the single-photon counts (Perkin
Elmer SPCM—AQR). In some measurements, the mirror just
before the triangular slit was replaced by a pentaprism to change
the sign of m [29].

Figure 5 shows the experimental [(a), (b)] and the theoretical
[(c), (d)] results of the far-field diffraction patterns for a single
mode of the LG beam after many photons have been recorded.
The far-field diffraction patterns were measured by scanning
a monomode fiber tip in a matrix 6× 6 mm. The maximum
number of single counts per second was approximately 1500.
By counting the number N, we can determine in which OAM
state the photon was supposed to be. In our case, we have N = 4,
which implies m = 3, in agreement with the OAM state of the
photons diffracted. For m =−3, the orientation of the interfer-
ence pattern changes as shown in Fig. 2(b). Furthermore, this
approach also allows us to understand the probability distribu-
tion at the Fourier plane of a single photon prepared in a OAM
state for m < 0. We can understand this result by noting that
m < 0 implies ν1 < 0 and ν2 < 0 in Eq. (5); therefore, the orien-
tation of the reciprocal lattice should change as well. As we can
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Fig. 5. Experimental results of the measurements of the light
OAM in the after the measurement of several photons for (a) m = 3
and (b) m =−3; (c) and (d) show the edited images to evidence the
contrast of the patterns shown in (a) and (b), respectively.

observe in Fig. 5, the experimental results are in good agreement
with the theory.

The method presented here works for determining any OAM
mode corresponding to different values of m. For each value of
m, we have a different probability distribution, thus allowing us
to precisely determine the photon’s OAM. In fact, this method
is very simple to be implemented, and the results are obtained
in a direct way without the necessity to change the experimen-
tal setup for different values of m [14,17]. It is worthwhile to
mention that probability distributions similar to the ones shown
here can also be generated by an equilateral triangular aperture
[15]. However, the diffraction pattern is better defined using
the equilateral triangular slit because only the photons with the
wavevectors defined by the slit width contribute to the recip-
rocal lattice formation, resulting in a better resolution between
the consecutive maxima. Even though there is a relationship
between the value of m and the profile of the diffraction pattern
[27–34], due to the symmetry properties, the equilateral triangle
is the only configuration that produces diffraction patterns that
allow us to determine in an unambiguous way both the value
and the signal of m. It is important to point out the expected
behavior of the present experiment studied here for the case of
photons with fractional and mixed OAM states. In the first case,
since the helical wavefront characterizing the longitudinal phase
profile is unstable [35], we do not expect a stationary diffraction
pattern. In the second case, each photon has a set of classical
probabilities of being measured in different OAM states, which
renders an overlap of the corresponding diffraction patterns
each with different intensities.

4. CONCLUSIONS

In conclusion, we theoretically and experimentally demon-
strated the generation of finite optical lattices by means of the
diffraction of light carrying OAM through an equilateral tri-
angular slit. We established an analogy of this problem with

that of diffraction in solid-state physics, where important appli-
cations may arise from this idea. The obtained optical lattices
correspond to specific regions, constrained by the topological
charge of the incident photons, of the reciprocal lattice associ-
ated with a Bravais lattice, whose unit cell shape is triangular.
The present ideas may also apply to other slit shapes like the
square slit. The present findings addressing optical lattices may
give rise to an alternative method of investigating the structure
of solid crystals, once we they provide an enlarged version of
these atomic complex systems, enabling a visual perspective.
Although we have used the LG modes, the present results can
also be applied to other families of beams endowed with OAM-
like Bessel beams. A generalization of our results to periodic
structures like atomic, photonic, and plasmonic crystals and
even to quasi-crystal structures could reveal unsuspected facets
of the diffraction of photons carrying high-order OAM. It also
adds a new puzzle to the quantum Young’s double slit exper-
iment using vortical single-photon sources or particles like
electrons, neutral atoms, even complex fullerene molecules
considering three slits arranged in a triangular shape.
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