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ABSTRACT

Software Defined Radio is a programmable radio device that, when connected to a
computer or as an embedded solution, can transmit and receive data information using
radio waves. The programming features of the SDR and its RF bandwidth range ex-
tends the application possibility to several areas, including aviation, satellite, radar, and
mobile communication. SDR has drawn great attention to network service provision.
Acting as a multi-programmable air interface at the edge of wired network environments,
SDR can receive, decode and forward radio information, which is used to generate the
services. Examples of services including real-time flight tracker web pages, and sen-
sor monitoring data charts. However, to provide network services, SDR must integrate
into complex network environments where recent technologies, such as NFV, SDN, con-
tainerization and cloud computing, are applied. This thesis addresses the integration of
SDRs with containerization. It proposes an easy-to-deploy container-based architecture
to provide network services from SDR devices. Using different types of SDR devices
(USRP, LimeSDR and RTL-SDR), GNURadio platform and Docker Container, two use
cases of the proposed architecture are presented, demonstrating scenarios where ADS-
B and LoRa communication are implemented in order to provide services to end-users.
Evaluation of the proposed solution is performed comparing two models of service pro-
vision: with the proposed architecture (two levels of network isolation), and without the
architecture. The overhead time added to launch the services, the time response and com-
putational resource utilization are compared, showing that there is an overhead added by
the architecture which impacts on the system performance. The overhead increases with
the applied network isolation level. Conversely, the architecture converts the service func-
tional components into modular components, its application can be extended to different
RF projects and SDR types, and offers non-functional benefits such as, real-time capabil-
ity, network isolation, fine setting of communication parameters, and a set of control and
configuration features inherited from container virtualization platform.

Keywords: Software Defined Radio, Containerization, Virtualization, Automatic
Dependent Surveillance Broadcast.



RESUMO

Rádio Definido por Software (SDR) é um dispositivo de rádio programável que, conec-
tado a um computador ou como uma solução embarcada, pode transmitir e receber infor-
mações usando ondas de rádio. A característica de programabilidade do SDR e sua largura
de banda de rádio frequência (RF) estendem sua aplicação a diversas áreas que incluem
aviação, satélite, radar e dispositivos móveis. O emprego do SDR tem despertado grande
interesse na provisão de serviços de rede. Atuando como uma interface sem-fio multipro-
gramável na borda de redes cabeadas, o SDR é capaz de transmitir, receber e decodificar
informações de rádio. Estas informações são usadas para fornecer serviços, como por ex-
emplo uma página de internet contendo um mapa de rastreamento de aeronaves em tempo
real, e gráficos de monitoramento de sensores. No entanto, para ser usado para esta fi-
nalidade, o SDR deve integrar-se às correntes tecnologias dos ambientes de rede, como
NFV, SDN, containerização, e a computação em nuvem. Esta dissertação está focada na
integração do SDR com a technologia de containerização. É proposta uma arquitetura
para geração de serviços usando contâineres e o SDR como dispositivo de borda. Usando
diferentes modelos de SDRs (USRP, LimeSDR e RTL-SDR), a plataforma GNURadio e
Docker containers, dois cenários de aplicação da arquitetura são apresentados, nos quais
a comunicação ADS-B e LoRa são implementadas. A avaliação da solução proposta é
realizada comparando-se a geração de serviço com a arquitetura, (com dois níveis de iso-
lação de rede), e sem a arquitetura. O tempo de lançamento e de resposta dos serviços,
e a utilização dos recursos computacionais são comparados, mostrando que a arquitetura
tem impacto nesses fatores. Este impacto aumenta conforme o nível de isolação de rede
utilizado. Por outro lado a arquitetura aplica uma topologia que converte os componentes
funcionais do serviço em blocos modulares, tornando possível sua aplicação em difer-
entes projetos de RF, e oferece benefícios não funcionais, como a capacidade de prover
serviços em tempo real, emprego com diferentes modelos de SDR, e isolação de rede.
Além disso, a arquitetura adiciona uma série de características de controle herdadas da
tecnologia de virtualização.

Palavras-chave: Radio Definido por Software, Containerização, Virtualização,
Vigilância Dependente Automática por Radiodifusão.
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1 INTRODUCTION

Internet connectivity and service provision are growing fast. It is estimated that 66%
of the global population will have Internet access in 2023 and the number of devices
connected to Internet Protocol IP networks will be more than three times the global pop-
ulation, with the result of nearly 3.6 devices per capita (CISCO, 2020). To meet the ever-
increase of network utilization and service provisioning in this scenario, where services
are reflected in the form of real-time applications, data streaming and storage, a lot of
solutions have been implemented using Software Defined Systems (SDS) enabling tech-
nologies. These technologies include NFV, SDN, Containerization, Cloud/Edge comput-
ing, and Cognitive Radio (ZENGLIN et al., 2020). Following the hardware to software
trend, these solutions have brought a variety of options to DevOps1 practices, creating
flexibility but also enhancing dynamism and complexity of networks environments.

In these network environments, the applicability of Software Defined Radio (SDR)
in edge nodes takes great attention to provide Radio Frequency (RF) services as a multi-
programmable air-interface. Acting as an edge device, SDR can transmit and receive
radio signals, being responsible to convert the signal from RF to digital domain and vice-
versa. Once an RF signal is received and decoded at SDR, digital decoded frames could
be forwarded into the network in order to provide services. In this scenario, a service
can be defined as a software functionality, or a set of software functionalities, which are
used by clients for different purposes, according to (SOA-RAF, 2012). Examples of end-
to-end services provided from SDR are internet pages containing real-time flight tracker,
and sensor monitoring charts.

In the wireless landscape, SDR devices have gained considerable momentum. Due to
reconfiguration capabilities, SDR enables desired flexibility to deploy varied radio com-
munications projects, allowing DSP programming, faster prototype and deployment of RF
applications. The success of these devices is leveraged by its capacity to lead achieved
popularity, thanks to low-cost COTS devices such as RTL2832U (RTL-SDR), combined

1DevOps in this context can be interpreted as a set of practices intended to reduce the time between
committing a change to a system and applying this change into normal production, while ensuring high
quality (ERICH; AMRIT; DANEVA, 2017).
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with its component performance evolution and implementation facilities, allowing ease
deployment of Digital Signal Processing (DSP) projects in the communication domain.
With the remarkable programming features and their popularity, the SDR devices have ob-
tained great insertion in the industry, academia (prototyping and educational purposes),
and open source communities (e.g., GNURadio and GitHub). As a result, SDR emerges
from a variety of open-source RF applications in a wide range of areas that includes radar,
aviation, satellite, and mobile communication, besides emergent technologies such IoT,
5G and electric car, as well as Low-power Wide-area Networks (LPWAN) segment.

Despite the considerable momentum of SDR, integration to such complex and dy-
namic wired networks environments to provide services as an edge device, can result in a
difficult task; because it requires developer knowledge of radio communication protocols
and DSP to develop the data reception script, as well as base knowledge of SDS network
technologies involved to integrate them (MARTINS et al., 2020). Furthermore, SDR in-
tegration architectures to real-time service provision, for the most part, still remains not
virtualized and service-oriented, which do not explore all capabilities of SDR, such as the
flexibility to provide a wider variety of services.

To address the aforementioned issues, in this thesis, an easy-to-deploy architecture
to provide RF services based on container virtualization is proposed. Using a Universal
Software Radio Peripheral (USRP) 2932 as an SDR device, open-source GNURadio plat-
form to DSP programming, and Docker Container as virtualization solution, it has been
presented a proof-of-concept of the model demonstrating a scenario where Automatic
Dependent Surveillance Broadcast ADS-B, is implemented to provide real-time flight
and altitude track services. A second scenario explores Long Range (LoRa) modulation
technique to provide a wireless file transfer system as a service.

The proposed architecture evaluation performance is measured in the ADS-B service
provision case, in terms of resource utilization (under increasingly user requests condi-
tion), startup time overhead and response time of the solution when compared to the ser-
vice generated directly in the host machine, (i.e., without the containers). The results have
shown that the architecture brings non-functional benefits, such as ease of control, scal-
ability, SDR portability and network isolation, but with a cost in system performance. A
maximum overhead of 5.1% in CPU utilization was observed, 8.32s to start the services,
and 50.96ms for maximum request waiting time at the 99th percentile.

Being limited to the local scope, this work aims, through SDR function container-
ization, to provide a basis for more complex implementations involving the integration
of SDR with emerging technologies in SDS. Therefore, this thesis includes a discussion
about the applicability of the solution in network environments along with technologies
such as NFV, SDN and distributed systems.

This text is organized as follows. Chapter 2 introduces the main background concepts
involved. In Chapter 3, related work is cited and discussed. In Chapter 4 the proposed
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architecture is presented, and in Chapter 5 its stages of development are specified. Chapter
6 shows some features brought by the architecture implementation, and Chapter 7 shows
the comparative results and discussion. Finally, Chapter 8 presents the conclusions and
further improvements of this thesis.
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2 BACKGROUND

In this chapter, theoretical foundations and technical review of devices are presented.
Firstly, Section 2.1 introduces the SDR devices, showing SDR main features, device
types, and programming platform. Then, a brief conception of end-to-end service is
shown with some illustrated examples (Section 2.2). Next, in Section 2.3, the key vir-
tualization concept has been introduced. Finally, in Section 2.4, ADS-B communication
protocol and LoRa modulation technique used in testing scenarios were addressed.

2.1 Software Defined Radio

In a Software Defined Radio the main components, such as filters, mixers, detec-
tors, modulators, demodulators, traditionally implemented in hardware are instead imple-
mented by means of software.

A transceiver could be called a Software Radio (SR) if its communication functions
are implemented as programs running on a processor (SMITH, 1995). If an SR can sam-
ple its received signal, it can be considered an SDR. However, SDR concept is not new,
in the early 1980s a group of researchers at E-Systems Inc. have coined the term "soft-
ware radio" for the first time, with regard to a radio receiver which applies thousands of
adaptive filter taps, leading to interference cancellation and demodulation programming
on broadband signals. Afterwards, widely and notable SDR research was conducted by
Joseph Mitola III, with significant contributions to SDR implementation, including a deep
software defined radio architecture illustration and analysis in mathematical perspective
(MITOLA, 1999).

Nowadays, SDR is consolidated as an accessible and valuable alternative to RF projects
design, replacing traditional heterodyne radio architecture schemes. The main benefit in-
troduced by SDR is its flexibility achieved by device programming support. Thanks to
reduced cost alternatives and diversity of product types, SDR usage is in constant pro-
liferation, covering several domains including industrial and scientific communities, and
appearing as a promising contributor towards the development of cognitive radio (CR).
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2.1.1 SDR Basic Architecture and Operation

Each SDR design depends on the required performance and capabilities. Commonly,
some SDR solutions are designed to signal reception only, such as RTL-SDR. Other de-
vices have transmitting and receive capabilities and extended features, such as Multiple-
input and Multiple-output (MIMO) multiplexing, GPS disciplined oscillators (GPSDO)
and high processing capability. Examples of this type of device are LimeSDR and USRPs.

Figure 1 summarizes common architecture used in SDR devices, based on (KRISH-
NAN et al., 2017). The antenna is responsible to receive or transmit encoded information
in RF. The antenna is followed by an analog section called RF Front End. This section re-
ceives RF signals from the antenna and converts this signal in an Intermediate Frequency
(IF), or converts IF signal to a higher frequency signal in order to be transmitted by the
antenna in the transmission path. Analog to Digital or Digital to Analog signal conver-
sion are performed by ADC and DAC components. Digital Down Converter (DDC) and
Digital Up Converter (DUC) blocks are responsible for channelization and sample rate
conversion. Finally, the Digital Signal Processing Unit performs baseband signal process-
ing, (SINHA; VERMA; KUMAR, 2016), and could be programmed by an User Interface
Peripheral. Each SDR device has its own Application Programming Interfaces (APIs)
and/or drivers required to SDR programming, that must be installed on a host computer.

Figure 1 – SDR Architecture main blocks

Source: (KRISHNAN et al., 2017) modified by the autor

As a core of an SDR device, the Digital Signal Processing Unit performs a set of
operations, according to the loaded script. These operations can include encoding, decod-
ing, modulation, demodulation, timing synchronization, digital filtering, Automatic Gain
Control (AGC), signal amplification, etc. This unit is composed of one or more proces-
sors. Most used processor classes are: Application Specific Integrated Circuit (ASIC),
Field-programmable Gate Array (FPGA), Graphics Processing Units (GPUs), General
Purpose Processors (GPP) and Digital Signal Processor (DSP). These real-time signal
processing classes differ in several attributes such as processing speed, energy consump-
tion, programming language, etc., and there are many factors that influence their choice,
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for instance performance aspects (FETTE et al., 2009) and market availability (ADAMS,
2002).

2.1.2 SDR Types

In this thesis, three different types of SDR device are employed, the USRP, LimeSDR
and the low-cost RTL-SDR. Each one with its own particular hardware characteristics and
DSP performing features. Next, main features of these devices are presented.

USRP - Universal Software Radio Peripheral

One of the most commonly used SDR platforms is the Universal Software Radio Pe-
ripheral, or USRP. This SDR device is composed of two main components: a mother-
board, which contains an FPGA as DSP Unit, for high-speed signal processing, and a
daughterboard, which is an interchangeable component that covers different frequency
ranges. An illustration of an USRP device (USRP 2932 ©National Instruments) is pre-
sented in Figure 2.

Figure 2 – USRP 2932 ©National Instruments

Source: <https://www.yottavolt.com/shop/ni-usrp-29xx-series/>

USRP has a variety of applications, including defense and homeland security, wireless
research (CR, MIMO systems, spectrum occupancy), teaching and research (DSP, FPGA
design, communication systems). USRP uses an open-source API, the USRP Hardware
Drive (UHD). UHD is a user-space library that runs on a GPP and communicates with
and controls all the USRP device family (NI, 2020), providing compatibility with SDR
programming tools such as GNURadio. If the USRP does not have an embedded GPP
processor, it will use the host computer GPP, and then UHD must be installed in this host.
Main features of NI-USRP 2932 are presented in Table 1.
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Table 1 – Summary of SDR features: USRP 2932, RTL-SDR and LimeSDR

Features USRP 2932
RTL-SDR
(R820T)

LimeSDR

Channels
RX1/TX1,

RX2
RX1

RX1, RX2
TX1, TX2

Frequency
range (MHz)

400 - 4400 24 - 1766 0.1 - 3800

Bandwidth
Max.

20MHz (16 bit sample)
40MHz (8 bit sample)

2.4MHz 61.44MHz

Host
Communication

Ethernet
Gigabit

USB 2.0
USB 2.0
USB 3.0

Digital Chip FPGA
RTL2832U

R820T
FPRF

Controllable
Parameters

frequency, sample rate,
bandwidth, gains, IP address

frequency, sample rate,
bandwidth, gains

frequency, sample rate, serial
number. bandwidth, gains

Additional
Features

GPSDO Tracking Filter MIMO 2x2

RTL-SDR

RTL-SDR USB dongle is a low cost and largely used SDR device. Generic RTL-SDR
device is shown in Figure 3. This kind of SDR can be used for receiving live radio signals
using USB connection with a computer. The frequency range of reception dongles varies
according to selected device components, ranging from 500 KHz up to 2.2 GHz.

Figure 3 – RTL-SDR USB dongle

Source: <https://hackerwarehouse.com/product/rtlsdr/>

This device was originally designed as a Digital Video Broadcasting (DVB-T), it has
been verified the feasibility to turn the exclusive DVB-T tuner device into a wideband
software defined radio. The RTL-SDR architecture is based on two main components,
the RTL2832U chipset, which consists of an RF digital demodulator that performs ADC
conversion, and the tuner. The tuner is a chipset that acts as an RF Front End. Applica-
tion of RTL-SDR include Frequency Modulation (FM) radio receivers, tracking aircraft
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and maritime boat positions with ADS-B and Automatic Identification System (AIS) de-
coding, tracking and receiving meteorological weather balloon data, watching analogue
broadcast TV, etc. Highlighted features of R820T RTL-SDR are listed in Table 1.

LimeSDR

LimeSDR, presented in Figure 4, is considered a high-performance and low-power
SDR platform. The device is fully open source (board schematic/layout and software)
available through Myriad-RF. LimeSDR device application includes: radio astronomy,
RADAR, 2G to 4G cellular base station, media streaming, IoT gateway, tire pressure
monitoring systems, aviation transponders, among others.

Figure 4 – LimeSDR device

Source: <https://limemicro.com/products/boards/limesdr/>

LimeSDR uses a Field Programmable Radio Frequency (FPRF) chip, the Lime Mi-
crosystems LMS7002M transceiver. Highlighted features are listed in Table 1.

2.1.3 SDR Programming Platforms

In order to be able to program SDR devices with a DSP script and operate the de-
vice from a personal computer, there is a need for a complementary dedicated software
framework. This software framework will be in charge of all low level hardware com-
ponent interactions, and present an understandable interface whereby DSP script can be
drawn up. There are a list of SDR software frameworks options, as seen in (MACHADO-
FERANDEZ, 2015), some of the most common solutions used for academic research and
industry purposes are: Matlab Simulink/USRP ©MathWorks Inc., Labview ©National

Instruments and GNURadio Companion ©GNU Radio Project.
Once GNURadio is a free and open source radio ecosystem with active development

of DSP tools and widespread support in discussion groups, it was chosen as the software
platform to build this project. The following subsection presents a brief explanation about
this platform.
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GNURadio

GNURadio is a framework that provides block structures for processing signals for
implementation in radio software. It is designed for DSP programming having SDR com-
patibility. GNURadio is widely used for simulation and implementation of RF communi-
cation projects, with great reputation in academia, hobbyists and industry. It offers support
for research in wireless communication and a link to build real RF applications with SDR
devices. GNURadio is a collective construction framework which has a General Public
License (GPL) and can be used freely.

The basic element of GNURadio is the block structure. A block is a unit that performs
RF functionality. When installed, GNURadio comes with its own block library. This
standard library contains filters, modulators, error corrections, byte operators as well as
Fast Fourier Transform (FFT) sinks, stream conversion, USRP blocks, among others. A
block can have inputs and outputs. An output of a block can be connected to an input
of another block through arrows, with input and output type considerations. A flow of
connected blocks compose a flowgraph, which represents the DSP script. GNURadio
applies a modular flowgraph based approach to DSP.

Apart from the standard library block that comes with GNURadio installation, there
are the so-called out-of-tree modules (OOT). These modules are composed of one or a
bunch of blocks created by the GNURadio users. OOT modules allow additional func-
tionality alongside the main GNURadio standard library block. Blocks can be created in
python or C++ programming languages. A basic flowgraph and its output is shown in
Figure 5. This flowgraph (or DSP script) is composed by a signal source block that gen-
erates a cosine signal, a throttle block that imposes a sample rate to the data flow, and a
QT GUI Time sink block that outputs the cosine signal graph. Once a flowgraph is created
and compiled, a corresponding python file is generated. This python file also can be used
to run the DSP program.
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Figure 5 – GNURadio flowgraph example and its output

Source: <https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC>

modified by the author

GNURadio has standard and OOT blocks that represent the SDR devices. Those
blocks output row SDR baseband I/Q samples. Then, the SDR block output can be con-
nected and concatenated to other DSP blocks, which will process and decode the raw I/Q
samples. Figure 21 shows an USRP reception script example.

For use of other SDR types, such as LimeSDR and RTL-SDR, there are specific OOT
blocks created by the GNURadio community that can be installed and used similarly to
standard USRP blocks.

2.2 User application as a service

In this thesis, an end-to-end service can be interpreted as a final user application. It
can be a standalone application running only at the host computer, such as an FM or
DVB-T image viewer from SDR NOAA weather satellite signal reception, or it’s possible
to have a client-server base application such as a web page, containing ADS-B airplane
real-time tracker service, or maritime boat tracker system, for instance. The client-server
service allows client access through a network port using Hypertext Transfer Protocol
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(HTTP), therefore in the SDR context, the services are based on SDR data reception as
edge network devices. The SDR decoded data is then forwarded to an architecture that
will be able to process and create the service. Generally, the architecture provides data
manipulation, storage, and communication.

Figure 6 shows a functional illustration scheme to provide real-time services with SDR
as edge device. ADS-B, Lora and Narrowband Iot (NBIoT) radio signals are received
by an SDR device connected to a computer, (compounding the edge node), and then
forwarded to a network cluster. The network cluster may include a cloud computing node
and is responsible to create a link to the end users. These users will be able to access
final real-time services. The client-server service can be also generated at edge nodes as
a standalone application on the host computer.

Figure 6 – SDR end-to-end service generation chain

Source: the author

2.3 Virtualization

The process of running a virtual instance of a computer system in a layer abstracted
from the actual hardware is called virtualization. The virtualization process allows the
hardware elements such as processor, memory, storage of a host computer to be divided
into multiple virtual computer instances. Every virtual instance will be allocated above
the virtualized layer, as shown in Figure 7, where a comparison with traditional Operation
System (OS) layers and virtualization OS layers is presented. The virtualization process
provides new instances of virtual computers through hardware resource sharing. The most
known form of computing virtualization is the Virtual Machine (VM). VMs behave like
independent computers, although they run on a portion of the actual underlying computer
hardware, (IBM, 2019).
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Figure 7 – Traditional computer OS layers x virtualization OS layers

Source: the author

Today, virtualization is a process largely applied in computing. It is an important ele-
ment of Information Technology systems (IT) architecture, and it’s been also considered a
cloud computing foundation. Some highlight benefits brought by virtualization are listed
below:

• Resource sharing: allows multiple OS creation sharing the same hardware.

• Reduced capital and operating costs: replaces traditional hardware functions by
VMs.

• Reduce downtime: can easily replicate a virtualized service when it crashes, unlike
what happens with physical servers.

• Flexible control: it’s easier to manage a virtualized OS than a physical computer
once it’s written in software. Virtualized OSs have compatibility with software
managements scripts, and it allows dynamically resource allocation, (MALHO-
TRA; AGARWAL; JAISWAL, 2014).

Virtualization techniques

Basically there are three types of virtualization techniques: full virtualization, para-
virtualization and OS level virtualization (JAIN; CHOUDHARY, 2016). The first two
techniques apply a hypervisor, an abstracted software layer above the computer hardware,
that are responsible for creating and running the virtualized OS. In OS level virtualization
the host OS has virtualization capabilities itself and carries out the hypervisor function.
Container virtualization, also called containerization, is a type of OS level virtualization
that provides process isolation.

The software defined architecture presented by this thesis applies the container vir-
tualization method. The next subsection describes container virtualization taking it in
contrast with the well known Virtual Machine method.
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2.3.1 Containers

Container is a form of virtualization that uses the host OS to create isolated groups of
processes, also called virtualized process (COOK, 2017), and dependencies. A container
is composed of one or a set of processes that are organized separately from the system
(MARTINS et al., 2020). This separation (or isolation) is achieved at OS kernel level by
namespace process grouping. Figure 8 illustrates VM and container architectures.

Figure 8 – Virtual Machine and container virtualization architecture

Source: the author

Container architecture has a container engine that handles the container instantiat-
ing, bringing virtualization capability. Each container has itself the process, the binaries
and library files needed to generate the application. Examples of container engines are
OpenVZ, LXC and Docker container.

VM method has a hypervisor, also named Virtual Machine Monitor (VMM), placed
above the host hardware, or optionally above the host OS depending on hypervisor type.
The hypervisor instantiates the VMs as virtual devices. It generates for each VM an
isolated virtual guest OS. This virtual guest OS has its own process, binaries and library
files needed for the application, but each virtual guest OS runs as a single, resource-
intensive process on the host CPU (COOK, 2017). Examples of VM hypervisors are
VirtualBox, VMware and Microsoft Hyper-V.

The isolation principle of the two methods differs. Container virtualization is based
on namespace abstraction whereas VM virtualization method is based on virtual device
abstraction, (SU, 2020). Each method has its advantages and drawbacks, and the choice
depends on many design factors. Hybrid compositions are also possible.

Docker container engine was used in the proposed architecture. The following sub-
section contains a brief explanation of this tool.
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2.3.2 Docker container

Docker is a container engine that creates containerized applications. Basically, the
container creation process with Docker, involves two phases. Image creation and running
phases. The main components of docker are the image and container entities, listed below,
(COOK, 2017; KINNARY, 2018).

• Docker image: an image is a template that contains all information for creating the
container, i.e. the container foundation. This template consists in a read-only file,
called Dockerfile, which starts from a base OS image, for instance Ubuntu 18.04,
Alpine 3.12.0, Python 3, etc. On the top of this base image, the application stack
is composed by adding all needed packages and commands that will run inside the
container. Docker image can be seen as the final executable package that contains
everything needed for the container embedded application. It comprises the source
code, the required libraries, and any dependencies.

• Docker container: a container is an instance of a Docker image. When a docker
image is running in a host computer, a main process is spawned with its own names-
pace, this process is the docker container. The main difference between a Docker
image and a container consists in the presence of a thin layer known as the container
layer. In this layer, read and write commands can be performed. Any changes to the
filesystem of a container will be performed in the container layer while the lower
layers, which comprise the docker image, remain unchanged.

After the image creation, a docker run command can be used to run the container,
or Docker Compose tool can be applied to run multi-container applications. Using the
images created, Docker Compose will build, launch and link the containers to provide
the final application. Docker compose uses a definition file, written in YAML, called the
compose file, that specifies all the images and directives to run the containers. These
directives include connection ports, environment variables, restart policies, networking
specification, etc.

An important element of container applications is the Docker registry, used to store
images. These images can then be used as the basis for an application stack. The most
known Docker registry is Docker Hub. Docker Hub stores a lot of images created by the
docker community that can be downloaded and used for free. Apart from this, it is also
possible to make a local registry to store the images.

A container can communicate with others through a network. The main networking
modes explored by this thesis are described below.

Docker networking modes

Docker engine assigns a network interface for the containers when they are launched.
By default, all containers can communicate with each other. Alternatively, there are sev-
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eral network modes that can be configured, in order to determine how the container com-
munication with other containers and the external world will occur. Basically, the network
mode is specified by a network drive and network configuration properties. Between the
existent modes, three types of networks take great attention: host networking, user bridge

networking and overlay networking. Overlay networking is used to provide external ac-
cess to the containers and also provides multi-host access, for instance in docker Swarm.
This option is preferable when a service must be shared and offered in the external net-
work. This thesis is primarily focused on the local scope, then the networks modes of
interest are host networking and custom bridge networking:

• Host networking: in this mode, the container will share the host IP address and
network namespace. A container IP address is not allocated in this mode. The
service that runs inside the container will have the same capabilities as a service
running directly on the host (PALURU, 2019).

• Custom bridge network: in this mode, the container runs in a private network cre-
ated internally in the host. Each container has its own network namespace. A Linux
network namespace is an isolated copy of the network stack with its own properties,
such as routes, firewall rules, etc. The network namespace can be seen as a virtual
network barrier that encapsulates processes and isolates their networks connectivity
and resources from the other processes (ULUSOY, 2020). Once a custom bridge
network is instantiated for a group of containers, the docker daemon connects each
container to the custom bridge using a veth device pair. A veth pair is a virtual eth-
ernet device pair which acts as a tunnel between network namespaces, i.e. creating
a bridge between them and enabling communication (KERRISK, 2020). The con-
tainers that are connected in the same bridge network can communicate with each
other. Once they are in the same network the Docker Engine will create the neces-
sary configuration (i.e. internal interfaces, veth pairs, iptables rules etc.), to make
this connectivity possible. Finally, the custom bridge network can be connected to
the host ethernet interface. Figure 9 shows a network view, highlighting the net-
work namespace isolation of the host networking and custom bridge networking
modes, for two containers.

The main difference between the two network modes lies in network isolation. Cus-
tom bridges provide better isolation than host networking or default bridge networks,
because only the containers attached to the same custom bridge network are able to com-
municate. Even so, there are some situations where host mode networking can be useful,
for instance in performance optimization. Furthermore, because the host network does not
require network address translation (NAT), it is suitable when the container must handle
a large range of ports. Host networking is available only for Linux hosts.
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Figure 9 – Host (in left side) x custom bridge (right side) networking

Source: the author

In turn, custom bridge network (also called user-defined bridge network), can provide
automatic DNS resolution between containers, then the containers can communicate with
each other by name or alias. The containers of that network will expose all ports to each
other, but those ports are only accessible externally through the use of docker publish flag
-p. Other features include: container attachment/detachment and network configuration
on the fly, environment variables sharing with docker compose.

2.4 Communication protocols implemented: ADS-B and LoRaWAN

Due to the variety of information contained in ADS-B packets, and thus the possi-
bility of generating different services, the ADS-B service provision was chosen as the
focused implementation use case. All the evaluations are made on a scenario in which
ADS-B signals are transmitted and received with SDRs. However, with the perspective
of growth of applications involving the wireless LPWAN segment, the highest growth:
12% surpassing 10% of 5G (CISCO, 2020), a second use case that implements LoRa
modulation technique is briefly presented. The following subsections summarize these
communication techniques.

2.4.1 Automatic Dependent Surveillance-Broadcast ADS-B

Automatic Dependent Surveillance-Broadcast (ADS-B) is a surveillance technology
that incorporates ground and air equipment to provide Air Traffic Control (ATC), (FAA,
2012). ADS-B works by transmitting, regularly and frequently, data packets containing
information from the aircraft. Aircraft information data includes position on the sur-
face (latitude, longitude, altitude), identification code ICAO, speed, vertical rate, heading,
among other data. Latitude and longitude are provided by a precision Global Position-
ing System (GPS) source, and other information is provided by a collection of aircraft
sensors, as shown in Figure 10.
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ADS-B packets are sent automatically, without any request, within a maximum in-
terval of up to 0.5 seconds. The signal is received by antennas on the ground, and also
by any aircraft in their range. ADS-B principle is based on sending as many information
packets as possible that would be captured and decoded by the largest number of receivers
as possible (EUROCONTROL, 2008).

Figure 10 – ADS-B functional scheme

Source: (FAA, 2012)

The ADS-B system was designed for traffic surveillance and control, with a theoretical
range of 250-300 MN (approximately 450 km to 550 km), with the ground receiver, and
air-to-air surveillance (between aircraft in flight). For traffic surveillance purpose, ADS-
B ground stations receive ADS-B modulated signals, decode and redirect them to the
ATC control stations, responsible for presenting this data on the flight controller screen.
However, ADS-B data can be free received and decoded with a reception station. To set
up a reception station, SDR devices such as USRPs, RTL-SDR dongles and LimeSDR,
can be used. ADS-B data is modulated at a frequency of 1.09 GHz, using Pulse Position
Modulation (PPM), with 2 MHz bandwidth, and 1 Mbit/s bitrate. The packet consists of
a preamble of 8µs, followed by a data field, from 56µs to 112µs, and a Parity Check - PI
error verification, (EUROCAE, 2009).

Once the ADS-B data is decoded by an SDR device, this decoded data can be used to
serve different services. Examples of services are shown in Figures 11 and 12. Figure 11
presents a real-time aircraft tracker implemented with the Dump1090 program for RTL
SDR devices, (SANFILIPPO, 2013), which uses latitude, longitude, aircraft identification
and heading information.
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Figure 11 – ADS-B flight tracker with dump1090

Source: https://myscope.net/adb-s-flugradar/

Figure 12 presents a flight phase classifier using fuzzy logic and three information
fields: altitude, vertical rate and aircraft speed. This classifier determines if an aircraft
is in ground, climb, cruise or descent phase, at a given flight time. This figure shows 10
flights in the same time reference, from Santos Dummont (SDU) to Guarulhos (GRU)
airports, from 01 to 12 April 2019.

Figure 12 – Flight phase classifier with Fuzzy logic

Source: the author

2.4.2 Long Range (LoRa) modulation technique

LoRa is a proprietary modulation technique that applies a spread technique called
Chirp Spread Spectrum (CSS), designed to cover long ranges with low power consump-
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tion. LoRa is classified as a LPWAN network communication type, that is based on three
factors: long range: few kilometers (urban) up to 10 km in rural settings, low power:
power consumption optimized, generally devices using battery; and low cost: aiming at
reduce complexity of the hardware design, then lower its cost. Applications of LoRa tech-
nique include agriculture processing, animal and fleet tracking, air pollution monitoring,
etc.

CSS method consisting of sweeping a sinusoidal signal frequency in a defined band-
width (JOACHIN, 2020). Figure 13 shows a sine sweep signal example. A chirp is defined
by a spreading factor (SF ) that it uses and the bandwidth (Bw) that it covers. With these
two parameters, a symbol period is found Ts = 2SF

Bw
. To encode a symbol, the method

used by LoRa consists in adding a starting offset to the frequency sweep, Foffset. Then to
recover the integer value encoded in each chirp the method used consists in multiplying
each received chirp by the complex conjugate of the chirp encoding the value 0, which
corresponds to a down chirp. Finally, a Discrete Fourier Transform (DFT) is applied in
the dechirped symbol version in order to find the main frequency present, which is equal
to Foffset.

Figure 13 – Sine sweep signal example

Source:www.recordingblogs.com/wiki/sine-sweep

The LoRa packets are initiated with a header (preamble), composed by non-modulated
chirps, which has information for frame synchronization. Therefore, the header has trans-
mission detection symbols, frame synchronization symbols and frequency synchroniza-
tion symbols. In the encoding/decoding process of a message (e.g. codeword data bits),
LoRa has four main blocks that are presented in Figure 14.

In the encoding process, the whitening block is firstly applied in order to remove the
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DC-Bias1 thought a XOR operation in the data bits, with a pseudo random sequence.
This operation provides the advantage (compared with Manchester coding) of keeping
the same data rate, but on the other hand, the process doesn’t offer a guarantee that the
DC-bias will be removed, only a high probability of it happening. The Hamming en-
coding block is an error correction code that will correct errors, adding redundancy in
each codeword. The interleaving block spreads the symbols that constitute a codeword
between multiple LoRa symbols. It helps in error correction in the reception, because
when a symbol is transmitted it can be corrupted by noise or fading, which leads to mul-
tiple bit errors on demodulation. Once the same symbol generates those errors, they are
highly correlated, making more difficult the task of the error correction codes, (designed
to correct random errors). Then the interleaves break this correlation, spreading the errors
over multiple code words. This process increases error correction code effectiveness but
has the cost of increasing latency, once it is necessary to receive multiple symbols before
being able to recover the full codeword.

Figure 14 – Encoding/decoding process used by LoRa

Source: (JOACHIN, 2020)

Finally, the gray coding block maps a numeric symbol to a binary sequence, adding
one extra bit in the original numeric representation. Gray code is very useful once the data
is decoded, and is more likely to misinterpret an adjacent symbol than a random symbol
of the codeword. Gray code occurs in reverse order, but it holds its properties, then a
mistake leads only to one bit being wrong. In the LoRa decoding process, the reverse
encoding process is applied.

1DC-Bias is the average amplitude of the waveform. In some communications systems the aim is to
have DC-Bias equal to zero called (DC-balanced) (SCHOUHAMER IMMINK; PATROVICS, 1997), to
prevent bit errors when passing through circuits.
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3 RELATED WORK

In the focused migration of hardware to software in recent network architectures,
as well as to provide services in cloud environments, virtualization has proven to be a
key technology for flexibility and ease of service management. Nevertheless, when the
communication takes the path towards wireless communication, it reaches the radio ele-
ments such as SDR’s, as transmission/receiver device, and at this edge point, virtualiza-
tion schemes and its integration can become more complex, combining device diversity,
hardware and SDR implementation constraints.

This chapter aims to show a set of works that benchmarks the differences between
containerization and other virtualization technologies, as well as draws a clear picture of
the similar architectures that explore virtualization and SDR integration. The purpose is
to highlight the evaluation metric adopted by these solutions, and main differences when
compared to the solution proposed by this thesis.

3.1 Virtualization techniques

An overview of the enabling technologies for network reconfiguration, such as NFV,
SDN and SDR, are presented in (LIU et al., 2020), showing the potential to improve the
network’s flexibility with radio virtualization and network virtualization as an alternative
to scarce radio spectrum resources.

Once flexibility brought by virtualization is also intended for radio access technolo-
gies, some benchmarks of virtualization techniques have been performed at the network
edge, and have demonstrated that lightweight containerization has some benefits when
compared with VM or Kernel Virtual Machines (KVM). Applying a queue model to virtu-
alized radio access networks architectures, (GOPALASINGHAM et al., 2017) has shown
that container virtualization architecture outperforms VM architecture in inter-arrival time
and average waiting time as function of the number of virtual eNodeB launched. To
bring NFV to the edge of the network, (CZIVA; PEZAROS, 2017) proposes a low la-
tency container-based platform model to run and orchestrate containers. They argue that
a container-based virtualization scheme has not the heavy footprint of traditional or spe-
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cialized NFV implementation via hypervisors.
There are a lot of studies in literature that evaluate virtualization schemes. (LIN-

GAYAT; BADRE; GUPTA, 2018) compares the virtual machine and Docker container-
based hosts performance in terms of CPU performance, memory throughput, disk I/O,
load test, and operation speed measurement, observing that Docker containers overcome
VM performance in every test. (CHAE; LEE; LEE, 2017) executes a performance bench-
mark of container versus KVM, showing that Docker uses hardware resources such as
CPU, HDD, RAM faster and more efficiently than KVM. This paper also evaluates the
performance of both virtualization techniques in a web-server, showing that KVM CPU
utilization is higher than docker containers and its RAM memory usage, which is greater
3.6-4.7 times than containers.

Taking advantage of container facilities, such as easy of management, rapid deploy-
ment, scalability etc., the usage of this virtualization technology is widely adopted in a
broad range of network service, leveraged by cloud computing (Microsoft Azure, AWS
Lambda, Google Cloud, etc.), and industry production. In spite of significant momentum,
container virtualization is still considered a new technology, with limitations, shortcom-
ings and improvements to take into account. By sharing the host OS, containers don’t pro-
vide isolation as VMs, being more exposed to security issues. Furthermore, there is a lack
of tools for real-time container management (STRUHÁR et al., 2020), and also a need
for real-time communication effective mechanism among containers (MOGA; SIVAN-
THI; FRANKE, 2016). However, containers has great adoption in real-time applications
thanks to boot-up process (DUA; RAJA; KAKADIA, 2014), which takes much less time
than VMs.

3.2 SDR virtualization

(KIST et al., 2017) has shown that physical parts of the SDR can also be virtualized.
They propose Hydra, an SDR virtualization layer that creates virtual RF front-ends. Using
GNURadio blocks and applying FFTs and IFFTs in the signal, Hydra can slice the avail-
able radio spectrum of an SDR in multiple virtual RF front-ends that works as individual
TX/RX channels. Being developed as a hypervisor for mobile networks, Hydra acts split-
ting IQ signal samples from different virtual RF front-ends into a single transmit/receive
vector. In (KIST et al., 2018), the authors present a proof-of-concept which applies LTE
and NB-IoT protocols, compressing to transmit IQ samples of both protocols into a single
waveform. One of the evaluation metrics of this solution compares the overhead imposed
by Hydra in terms of CPU utilization using different IFFTs lengths.

In microservices provision context at wired networks, (MARTINS et al., 2020) pro-
posed an easy-to-use container-based architecture that provides network management us-
ing Netflow traffic collection. Applying a model based on container virtualization, this
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paper shows that a network service, (a Web-based client-server service using HTTP pro-
tocol), can be deployed together with traffic collection lightweight containers. This archi-
tecture doesn’t include radio access, but it is an example of how a lightweight container-
based architecture can be controlled by a virtualized layer, i.e. a control plane. The
evaluation of this solution analyses the overhead imposed by the architecture when im-
plementing the service, compared with the case where the service is implemented without
the architecture. Computational resources as RAM memory and CPU utilization in heavy
stress (i.e. increasingly user requests) are monitored.

(CARPIO; DELGADO; JUKAN, 2020) proposed an architecture to provide services
in the IoT context for cloud computing. This solution presents a benchmark study of
latency, resource utilization and scalability, from an end-to-end IoT service provided in
three scenarios: cloud-only, edge-only and edge-cloud. The architecture uses lightweight
containerization, embedding the IoT radio, (Raspberry Pi 3), in a docker container. The
event streaming platform Kafka is employed in data streaming and Firebase as an open
source cloud. This architecture is very similar to the proposed solution of this thesis,
which also uses lightweight containerization to embed the SDR radio and its DSP script.
But the main differences concern:

• The architecture scope purpose: presented solution aims to evaluate end-to-end
IoT cloud services, (wired network communication), this thesis aims to provide
end-to-end general radio services limited in edge scope (Web-based client-server
service in local network), including wireless communication, but also focusing in
how different services can be created using available decoded data.

• The data stream method: instead of Event Streaming Process (ESP), this thesis
applies an embeddable networking library ZeroMQ to speed up the data stream
between the containers.

• The use cases: the authors show an IoT use case, where the final service is accessed
by Json variables in the server. This thesis presents ADS-B (web page services) and
LoRa (file transfer service) use cases.

(AHMED; ALLEG; MARIE-MAGDELAINE, 2019) investigates the provision of
NFV in IoT systems in order to provide services in a more flexible and active way. For this
purpose, it presents a reference architecture, based on ETSI guideline for NFV reference
architecture framework (ETSI, 2013). The decoupling of hardware and software exposes
a new set of model, suited for IoT systems. This architecture creates lightweight con-
tainers as virtualized network functions (VNF) from IoT and links them to the Physical
Network Functions (PNF), applied at radio hardware. Then an IoT Service is represented
by a sequence of PNFs and VNFs instances. As a proof-of-concept, they present a case
of service implementation using a set of Raspberry Pi 3 model, acting as IoT devices.

In industrial context (TASCI; MELCHER; VERL, 2018) proposes a container-based
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architecture for real-time control applications, measuring the impact of running containers
in embedded devices. In the architecture, evaluation of round-trip time and latency of
container-to-container communication (TCP, UDP and IPC) are performed, showing that
real-time requirements can be achieved through kernel manipulation and fast network
library support implementation (ZeroMQ).

(IMRITH et al., 2020) present a container-based architecture to provide services from
IoT devices, considering security aspects. This architecture launches containers as in-
stances of security Intrusion Detection and Prevention Systems (IDPSs), that analyses
the traffic from IoT devices on a fog infrastructure. This infrastructure is emulated via a
Raspberry Pi-4, which has an eligible number of IDPS built-in containers. The evaluation
takes into account container resource utilization (RAM, CPU usage), dropped and alerted
container attack percentage. Besides the architecture, the paper provides a strategy of
orchestration for security services management in the edge node.

Table 2 summarizes the main architectures that apply virtualization, showing mainly
aspects and differences in comparison with this thesis.

Table 2 – Platform virtualization architectures

Authors Context Virtualized
elements

Contributions Main differences Plat-
form

KIST et al.
(2017, 2018)

Mobile
Networks

SDR RF
Front End

Hypervisor for SDR Front End
virtualization

- SDR RF front-end virtualization
- Use cases: LTE, NBIoT

USRP

IMRITH et al.
(2020) IoT RPi-4 Container-based architecture for security

services management at the edge
- RPi-4 virtualized as a security tool
- Use case: IoT traffic emulation

RPi-4

AHMED et al.
(2020) IoT VNFs for

IoT
Container-based architecture to provide

IoT services, based on ETSI NFV
- ETSI NFV based architecture
- Use case: IoT

RPi-3

CARPIO et al.
(2020)

IoT
(cloud)

RPi-3,
Application

Container-based architecture
to provide services from IoT devices

- Communication: Kafka
- Use case: IoT (cloud)

RPi-3

This thesis
(2021)

General
Radio

projects

SDR,
Application

Container-based architecture
to provide services from SDR devices

- Communication: ZeroMQ
- Use case: ADS-B, LoRa (local)

USRP
Lime
RTL
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4 PROPOSED ARCHITECTURE SOLUTION

In this chapter, the container-based proposed solution is presented. This solution takes
into account a client request of a service where an SDR device is used to receive data. It
is based on OOT GNURadio block (HOSTETTER, 2019). It was developed based on the
direct solution which consists in running the necessary scripts (python, java, GNURadio,
etc.) to provide an end-to-end service from an SDR device directly, without any container
architecture. This solution considers that the signal will face a sequence of treatment
stages, (or blocks), that performs signal or data processing. The implementation of these
stages for ADS-B use case is discussed in detail in Chapter 5.

Firstly, all the components of the OOT module (that has an airplane tracker service)
were embedded into containers. Then an architecture to manipulate and orchestrate the
containers was proposed, with the addition of a new container-based service, the airplane
altitude tracker. Once the container-based architecture is validated for ADS-B services,
the solution can then be generalized for other RF projects. Therefore, in a second scenario,
the architecture explores LoRa modulation technique to provide the services.

The proposed architecture applies container virtualization to embed the identified
stages and their functions. The architecture aims to achieve the container management
necessary to provide the service. It manages and orchestrates the container creating pro-
cess according to the client input. The architecture brings the possibility to create an
internal and isolated network between the receiver and application containers, or even
launch the containers in a host network.

In the scope of this work, the provision of ADS-B services is limited to real-time
tracker services, in this case, HyperText Markup Language (HTML) pages. For this first
proposition, it is limited to a local network, therefore the client can access the service
through a web browser, accessing a local HTTP server at a host computer port. The
main motivation to apply container virtualization is to take benefit of its technologies
features among which stands out their configuration flexibility, scalability and portability,
as discussed in Section 2.3.

Proposed solution, composed by three main blocks, is shown in Figure 15, illustrating
a scenario where ADS-B real-time services, (flight and altitude tracker) are provided. The
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architecture can provide a service thought fourth main blocks interaction steps. These
interactions are presented in the sequence diagram in Figure 16, and explained below:

Figure 15 – Proposed Solution

Source: the author

1. The client requests a service. In this step, the client sends a message to the Con-
tainer Manager requesting tracker and altitude services. This step is represented
by serviceReq(tracker, altitude) message in Figure 16. It is possible to specify a
host port to access each service. If it is not specified, the architecture will mount in
default ports, (5002 to tracker service and 5003 to altitude service).

2. The Container Manager, applied through a bash script, will require the necessary
images to the Image Registry block, (Docker Hub was used, but a local image reg-
istry can also be mounted). This step is represented by getImages(tracker, altitude)

message in Figure 16. For the illustrated example, the USRP RX container, tracker

and altitude container images are downloaded from the repository.
3. The Container Manager will require to the Container run Template block a run tem-

plate, (a docker-compose file, or a docker run CLI directive), for the corresponding
service. This step is represented by getTemplate(tracker, altitude, images) message
in Figure 16. This template corresponds to the container’s configuration setup, with
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network definition, start policies, environment variables, container run order, etc.
Examples of templates are show in APPENDIX A, B, C and D.

4. Finally, the Container Manager will run the obtained template which create the
containers. This step is represented by create messages in Figure 16. In ADS-B use
case, the containers are launched in the following order:

4.1 Receiver container, (RX in Figure 15).
4.2 Tracker container, (App1 in Figure 15).
4.3 Altitude container, (App2 in Figure 15).

Once the containers are correctly created, services can be accessed through a web
browser on the specified ports, (or default ports if not specified). The RX container is
responsible to receive and decode the data is the first container that should be launched,
because it provides de data to the application containers to generate their services. There-
fore, after starting the receiver container, the order of the application containers is not
critical and can be changeable.

Figure 16 – Sequence diagram of ADS-B service request

Source: the author

Besides the direct solution, i.e. the traditional method to provide the services, using
the proposed architecture topology presented, SDR based services can be generated by
different ways, which are related to the container network mode employed. Henceforth,
three modes of service provision are defined and listed below:

1. Direct solution: this is the traditional mode whereas the SDR programming plat-
form (GNURadio), as well as all the applications and dependencies needed to gen-
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erate the service, have to be in installed and run directly in the host machine.

2. Using the architecture host mode: containers are launched in host networking
mode, as explained in Section 2.3.2, this mode uses the containers to generate the
services sharing the host machine network. To facilitate the terminology, this mode
is called hereinafter as architecture host.

3. Using the architecture net mode: containers are launched in a custom bridge net-
work, i.e. an isolated container network, as explained in Section 2.3.2. To facilitate
the terminology, this mode is called hereinafter as architecture net.

The architecture presented explores a containerized solution to generate the service.
In this case, all software components needed to provide an end-to-end service from SDR
devices are embedded in the containers. The containers are the only components needed
to generate these services. Once the containers are created and validated, the architecture
manages and orchestrates the service deployment for a client request.

In order to implement a container-based architecture to provide end-to-end services
using SDR devices, some questions arise. These questions, listed below, reflect the main
difficulties in carrying out this work:

• How to embed SDR applications into containers? What functionality each con-
tainer will perform in the end-to-end service provision chain? How to define the
communication system between the containers and which data will be shared be-
tween them?

• How to make the transition between direct and container implementation of DSP
script keeping the possibility of setting the RF communication parameters, (such as
gains, frequency and threshold adjustments, etc.)?

• And finally, once the containerization is performed, how to define the architecture
topology in a primary local implementation, considering that this implementation
can serve as the basis for more complex implementation such as distributed systems,
in an external network context, where the containers collaborate to generate the final
service.

The next chapter will show how these questions can be answered with the architecture
implementation in the ADS-B service provision use case.

4.1 Proposed architecture and distributed systems integration

A distributed system is a system where multiple components (located at different
machines) communicate and coordinate actions to fulfill a goal. Actually a lot of web
services involve distributed systems, such as Amazon platforms, Google Search engine,
Netflix, electronic bank services, gaming, etc. When a service is the goal, the distributed
system appears as a single coherent system to the end-user.
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A distributed system is composed by modular elements called nodes. A node can be a
hardware, a software, a container, or any other element that have memory, and which can
connect and communicate through the network. Highlight characteristics of distributed
systems are: the nodes run asynchronously and concurrently, the nodes are independent,
i.e. all components fail independently of each other.

Provide a service using a distributed system can be an attractive solution once it can
bring some positive aspects, such as scalability: a node is independent then it is easy to
add additional nodes to create new functionality; Reliability: most of distributed systems
are fault-tolerant, it means that if a problem occurs with a node another node will be
launched to replace the failed node, then the nodes will still work together and individual
node fails are usually transparent to the end-user service; Performance: in distributed
systems workloads can be broken down and distributed to multiple nodes, (which can
be run on different machines), increasing efficiency when compared to a non-distributed
system.

Examples of SDR integration with distributed systems are ADS-B tracker services,
such as FlightAware© and FlightRadar24©. The live worldwide airplane tracker service
is a collection of airplanes position, that are decoded by multiples SDR-based reception
stations. These stations compose the distributed network and continuously send decoded
information to feed a central server.

The container-based architecture is not primary focused on distributed systems in-
tegration, but further applications can explore this possibility. To make the containers
applicable as a distributed system nodes, the following considerations should be taken
into account:

• The local architecture scope must be changed to an external scope. In this case, the
containers will be launched in different machines and the function performed by the
Container Manager must be replaced by another container orchestration tool, such
as Swarm and Kubernets.

• Create reliable containers with their own health check and fault-tolerance systems.
The services created by the architecture has services verifier to assert end-user ser-
vice availability. This mechanism is described in detail in Section 5.4. Basically,
this method exchange messages between the containers and the Container Manager

block. These messages are added in step 4 of architecture interaction steps (shown
in figures 15 and 16). Applying this message-based method brings simplicity (de-
sired for this first architecture implementation) but as a consequence it turns the
architecture integration with distributed systems unfeasible, since the verification
of the service requires interaction between the container and the administrator, (it is
not performed by the container itself). Furthermore, a fault detection system is not
implemented. As alternatives for further improvements, Docker container engine
as well as Swarm container health check and fault detection mechanisms can be
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explored instead of the presented service verifiers.

4.2 Proposed architecture, NFV and SDN technology integration

Following the hardware to software trend, the adoption and exploitation of softwariza-
tion technologies such as NFV and SDN is becoming increasingly common in network
environments.

Traditionally NFV is structured according to a NFV Infrastructure NFVI model, which
in practice is usually based on monolithic VM and the use of a hypervisor. However,
Linux containers are gaining ground in NFV implementation. Thanks to their lightness
of resource utilization, containers can provide elasticity at runtime to facilitate the auto-
scaling of VNFs. In addition, containers don’t need a hypervisor, and management tools
applied to clusters and distributed systems, such as kubernets, bring attractive functions
for the development of container based VNFs. These functions include container self-
healing, auto replacement, continuous monitoring and restart policies. In the light of
the growing implementation of container-based VNFs, the industry has sought to reach a
consensus of a framework for this implementation. Recently ETSI has published the first
normative specification for NFV on “Cloud-native VNFs and Container Infrastructure
management”, (ETSI, 2020), the first set of Cloud-Native VNF orchestration specifica-
tions. This effort demonstrates the container potential and insertion in NFV development.

In turn, SDN also applies resource abstraction, but it is focused on the separation of
control and data plane of network communication. The control plane controls how data
packets are forwarded, selecting which packet will be sent and, applying all necessary
functions and process, it determines which path will be used to send the packet. Some
network process, such as implementing the router network protocol, creating the routing
tables, for instance, are considered part of control plane. In contrast, the data plane is a
low level plane that is responsible for moving packets from source to destination, based
on the information provided by the control plane. There is also a great effort in the im-
plementation and development of SDN with container technology. Service providers are
focusing on the integration of container and SDN to generate application and microser-
vices in distributed systems.

On the other hand, container implementation in the context of NFV and SDN is still
in maturity stage and presents several challenges to be explored. The main bottlenecks
are the well known security (isolation) and OS limitation issues.

The common point of the technologies presented and the proposed architecture con-
sists in the convergence of hardware abstraction and virtualization in network environ-
ments. These technologies, as well as cloud computing and cognitive radio, are been
considered key enablers for the promising software-defined systems in information tech-
nology. The hardware abstraction proposed by SDS aims to bring management facilities
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and flexibility in service provision.
This work has a limited scope, presenting an architecture for SDRs integration with

network environments to provide end-to-end services. However, it demonstrates a pos-
sible method for SDR function containerization, while preserving the radio parameters
configuration option. In accordance with SDS, the architecture can be considered as a
start point for further implementation with NFV and SDN technologies in distributed sys-
tems.
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5 IMPLEMENTING THE ARCHITECTURE

In order to implement the architecture with the ADS-B use case, and provide tracker

and altitude services, an implementation sequence of four project phases was defined, as
shown in Figure 17.

Figure 17 – Implementation phases for ADS-B service provision

Source: the author

The first phase consists in a mapping and container creation phase. Mapping step de-
couple the solution in modular blocks, pointing out their inputs and outputs, and the con-
tainer creation step, embedding these blocks into containers. After the container creation,
in order to be able to generate and transmit ADS-B data, a data encoder was created in
phase 2. This encoder was validated with a simulation DSP script. After that, in phase 3,
the ADS-B data was transmitted and received in an experimental setup. The transmission
and reception of ADS-B data is validated with the generation of the services. Finally, in
phase 4, architecture networking options were created, and service verifiers implemented
to ensure the service availability. After conclude these implementation phases, sections
5.1 to 5.4, the architecture is validated through visual inspection of the services, in Section
5.5.

5.1 Mapping and container creation phase

The modular blocks resulting from the mapping step, and the container creation, are
explained as follows.
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Mapping signal path blocks

First and foremost two stages were identified in the signal path: the reception and
decoding stage and the application stage, as seen in the Figure 18. In general terms, the
input of the reception and decoding stage is the modulated signal, being represented by
the SDR and the DSP decoding script, whereas its output is the decoded data stream. The
decoded data stream is the input of the application stage, which generates as output, the
final service. The service output depends on the client request.

Figure 18 – Signal path stages for service provision with SDRs

Source: the author

Figure 18 presents the main stages of the end-to-end service chain. A deep-picture
of the signal path stages with internal blocks is given in Figure 19, with an ADS-B use
case. This case shows the example of airplane tracker service, generated from the ADS-B
airplane signal reception from the SDR. The reception/decoding block is implemented
with a GNURadio script, based on (HOSTETTER, 2019) out-of-tree GNURadio project.

Figure 19 – Signal path stages for ADS-B service provision with USRP

Source: the author

In the above scheme from Figure 19, the reception/decoding, and application stages
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have internal blocks that perform operation in the streaming data. These blocks and oper-
ations are briefly summarized below:

Receiving/decoding stage: composed by the DSP GNURadio flowgraph.

1. USRP Receiver: this block represents the SDR in use, in this case the USRP re-
ceiver. The output of this block consists of I/Q digital samples in complex format.

2. Complex to Mag.: ADS-B is modulated with PPM which has non-coherent recep-
tion, the phase component is not used in reception. Then this block selects only the
real component (called In-phase component I), of the complex data signal stream.

3. ADS-B Framer: identifies the start and end of an ADS-B information packet, at
a level of symbols, add tags and forward the packets to the ADS-B Demodulator
block.

4. ADS-B Demod.: the demodulator receives the symbolic version of the packet and
extracts its binary version.

5. ADS-B Decoder: working at a bit level, this block decodes the whole ADS-B packet
and stream the aircraft information data: ICAO code, callsign, latitude, longitude,
altitude, vertical rate, velocity, heading, timestamp and the number of messages
received by the aircraft.

6. ZMQ PUB: this block implements a communication socket, being responsible for
forwarding the decoded information to a specific IP:PORT address using TCP pro-
tocol. It’s called ZMQ PUB, abbreviation for publisher. Therefore, this block
will establish a communication channel allowing aircraft information data to be
retrieved at the IP:PORT pair specified.

Application: the application is responsible to process the decoded data and offer the
final service. This topology presents a REST (representational state transfer) web page
API. The following blocks are used:

1. Python ZMQ Sub: a python script that establishes a subscriber. It receives and
transfers the aircraft information to the javascript file. This script also enables the
HTTP server. Then the client is able to follow the service, at the address specified,
(e.g. http://localhost:5002).

2. Java Script: the javascript file is responsible for manipulating the objects created
by the HTML page. This block triggs the actions in the HTML page. Then, once
the HTML page is created, the javascript is the means by which it is possible to
interact with it.

3. HTML: generates the page static visual elements (i.e. the objects).

By introducing the main stages in the signal path, and through the analysis of the
presented example, some notes about the topology of the direct solution are highlighted.
The choice of the SDR device only affects the first block in the DSP script, once the
SDR block outputs I/Q complex samples. Therefore, it is possible to switch SDR device
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without affect the block chain; to implement another RF project the DSP script can be
replaced and adapted. Finally, once the service is verified and validated, it is possible to
transfer its functionality to the containers.

With these remarks, a general block scheme can be drafted for the signal stages, as
seen in Figure 20. This view generalizes the functions. Pointing out their inputs and out-
puts. SDR receiver block receives the modulated signal, extracting its I/Q digital samples.
After processing the I/Q samples, the signal processing blocks output the decoded data,
which is transmitted from COM. TX to the COM RX block (using IP:PORT pair 1). Fi-
nally, the application blocks will process the decoded data and generate the final service
at IP:PORT pair 2. Based on this block’s topology, two kinds of containers are proposed:
a receiver container (RX CONTAINER), for reception/decoding, and an application con-
tainer (APP CONTAINER), which will perform the application stage functions.

Figure 20 – General block stages for service ADS-B service provision

Source: the author

Container creation

Once the communication path is mapped, the container creation was started for the two
container types. The process of the receiver container and application container creation
for ADS-B service provision, have followed the image creation and container running
steps, cited in subsection 2.3.2. For this use case, a receiver container and two application
containers were developed: a real-time flight tracker, henceforth called just tracker con-
tainer, and a real-time altitude tracker, henceforth called altitude container, that shows an
altitude graph of an aircraft. The container creation process is briefly described below:

Receiver container: image creation adds GNURadio framework, gr-ADSB OOT mod-
ule, and the GNURadio flowgraph as DSP reception script. To make the main RF param-
eters, (SDR RX gain, USRP address, and threshold level), available to be configured at
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container runtime an environment variable assignment technique 1 was applied.
Figure 21 presents the DSP script which was passed on to the receiver container.

Figure 21 – GNURadio DSP reception script for ADS-B

Source: the author

Application container: image creation for the tracker and altitude containers adds
the necessary blocks to generate the service from the decoded data. (python, javascript,
HTML file). Figures 22 and 23 show examples of application block files for ADS-B
tracker and altitude services, respectively.

1An environment variable is a variable whose value is set outside some program. Environment variables
are stored in the system, being composed by a name/value pair. This name/value pair is retrieved and
accessed by a program which aims to use its value.
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Figure 22 – Application files embed on to the tracker container

Source: the author

Figure 23 – Application files embed on to the altitude container

Source: the author

5.2 Creating and validating ADS-B data encoder

The architecture focuses service generation trough data reception. Nonetheless, to
receive ADS-B data, it was necessary to generate an ADS-B transmitter. The transmitter is
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composed by a GNURadio DSP script that reads airplane dummy data (I/Q samples from
a bin file) and sends it through an USRP. The transmitter creation helps to standardize the
evaluation tests, creating and sending continuously an aircraft data set. The transmitter
also helps to avoid being influenced by ADS-B signal scarcity, in the case of real aircraft
reception. To generate the bin files for the ADS-B transmitter, an encoder was created,
and validated by a simulation script using GNURadio.

Creating ADS-B data encoder

Initially an OOT GNURadio block developed in an earlier project, that encoded two
static airplanes (lat, lon) positions was tested for ADS-B transmission, (MACHADO,
2020). After that, in order to control the number of airplanes created and vary their
positions in the map, creating routes as real aircraft, a tailored ADS-B encoder version
was created. The encoder creates and stores the I/Q samples in a bin file, later used in
SDR ADS-B transmission.

The encoder creates routes, a set of lat, lon points, that each aircraft will travel until
reaches the final destination, a reference lat, lon pair point. Then as input, the encoder
receives four entries: a lat, lon pair for the reference point, the number of airplanes (that
will be distributed in a circle), the initial distance from the airplanes to the reference point,
(i.e. the radius of the circle), and the number of lat, lon pairs points that each aircraft will
travel until arrive at the reference point. Figure 24 shows the lat, lon pair points generated
for a number of 10 "dummy" airplanes, with a reference point at 40.4218,−3.7132, (near
to Madrid), with a trajectory of 10km covered by 20 points per aircraft.

Figure 24 – Trajectory generation for 10 airplanes by encoder ADS-B

Source: the author
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Using haversine formula and bearing angle information, the encoder calculates the
lat, lon pair points for the number of aircraft specified and generates the rest of aircraft
information fields: altitude, heading, ICAO identifier, vertical rate, speed and callsign 2.

Validating ADS-B data encoder

To evaluate the encoder and also to check the decoding process, a simulation GNU-
Radio script shown in Figure 26 was implemented.

The bin file containing 10 dummy aircraft data is loaded in a file source block. The bits
of this file are extracted with a sample rate of 2Msamples/sec and then unpacket 8 by 8
bits. The following decoding block sequence is the same presented in Section 5.1, Figure
19. Running this GNURadio script and the tracker service (with direct solution) has
produced the following service output, presented in Figure 25. The red trace represents
in the map the route path that the aircraft have already covered.

The I/Q data from the binary file is continuously streamed, which gives movement
to the dummy airplanes like real airplane flights. By inspecting the visual results, the
encoder was considered validated.

Figure 25 – Tracker service using GNURadio simulation script

Source: the author

2a callsign is a group of alphanumeric characters that is used to identify an aircraft in air-to-ground
communications. Example:VNN980, (KUMAR; DEREMER; MARSHALL, 2005).
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Figure 26 – GNURadio simulation script

Source: the author
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5.3 Transmitting and receiving ADS-B data with USRP

Once the simulation script has validated the ADS-B encoder, the next step concerns
the transmission of ADS-B packets with the USRP device using the containers created.
It used a channel of USRP for ADS-B transmission and another for reception, both di-
rectly connected by an −30 dB attenuation cable, as shown in 27. The direct connection
between the transmitting and receiving channel was choose by the following reasons:

• To avoid ADS-B data scarcity. The ADS-B packets received in a region depends on
the airplane traffic of this region.

• To standardize (as well as possible) the communication between the channels, and
then be able to perform benchmark tests using the architecture.

• To avoid undesired ADS-B data transmission. Depending on transmitted power, the
"dummy" packets could be received by control towers and airplanes in the vicinity,
which is clearly not the objective and should be avoided.

Once the USRP 2932 has full duplex capability, for transmit/receive simultaneously,
the receiver block presented in Figure 21 was combined with the transmission part of
the simulation script shown in Figure 26, resulting in receiver and transmitter stages in a
single GNURadio script, as seen in Figure 28.

Figure 27 – Experiment setup: transmitting/receiving ADS-B signals

Source: the author

In this case, for the receiver container instead of using the receiver GNURadio script a
receiver/transmitter GNURadio script was added, with the possibility to set the transmitter
parameters, such as transmission gain and TX Address. The setup for this implementa-
tion, which is also used in the architecture evaluation, is shown in Figure 27. It connects a
notebook to the USRP 2932 through a switch with gigabit Ethernet capability. The USRP
TX channel is connected directly to the RX channel through the attenuation cable 28.
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Figure 28 – GNURadio script for ADS-B transmit/receive with an USRP

Source: the author
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To implement a service from SDR, in practice, the DSP script generally will pass by
a manual tuning stage, where the adjustment of receiver main parameters, such as gain,
signal threshold, SDR channel address, take place. It can be achieved by adding two
DSP scripts in the receiver container, one for tuning the parameters with a GUI mode,
and another, which will run a final script with fine-tuned parameter values. The choice of
which script to run can be made using main container command substitution at runtime.

After the parameter setting procedure, the final values are shown in the Table 3.

Table 3 – SDR configuration parameters TX and RX

Receiver Transmitter
rx-address 198.162.1.100 tx-address 198.162.1.100

rx-gain (dB) 40 tx-gain (dB) 5
threshold (V) 0.025 tx-amp (numerical)* 0.030

* tx-amp is a numerical value used to fine-tunning TX power.

Running the receiver (now with also transmitting capability), tracker and altitude

containers, with the setup presented in Table 3, has produced the tracker and altitude

services, shown in Figures 29. In this verification, the ADS-B data are created from a bin
file generating 30 dummy aircraft. Those aircraft are moving towards the reference point
at lat, lon = 40.4218,−3.7132.

Figure 29 – Aircraft tracker service generated at port 5002

Source: the author
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Once the ADS-B encoder creates random altitudes for the aircraft, their paths do not
follow a real trajectory, as seen in the Figure 30, for altitude service of aircraft identified
by ICAO code 3816ba,

Figure 30 – Aircraft altitude service generated at port 5003

Source: the author

These results show that, alternatively to the direct solution, the container-based so-
lution is a viable option to generate end-to-end services from the SDR. Once it was im-
plemented by CLI commands, the main difference with the architecture implementation
consist in automation. The architecture automatically orchestrates the service generation
and verification, for a client request. The next section will present two networking modes
implemented by the architecture and the services verifiers.

5.4 Creating architecture networking modes and service verifiers

Once the receiver and application containers for ADS-B end-to-end services genera-
tion were already developed and checked out, two network mode options from the archi-
tecture were created. In addition, to guaranteeing the service provision to the end user,
service verifiers were created.

Creating networking modes

These modes are selected through run templates (at Container Run Template block),
the choice of which template will be used for generating a service is taken in the Container
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Manager, in Figure 15, according to the service and network isolation required. These
architecture modes are explained below:

• Architecture host: in this mode, the containers share the same network namespace
from the host machine without any network isolation. The APPENDIX A presents
a docker-compose template that runs the architecture in this mode. Application
containers were developed with a variable called HOST_MODE, that when set to
true will specify this mode. Output ports can be also specified. Default values are
tracker service output in host port 5002, and altitude service output in host port
5003.

• Architecture net: this mode creates a custom bridge network called backend for the
container communication. A docker-compose template used to run this mode is
presented in APPENDIX B. Each container has its own network namespace, ns1,
ns2 and ns3, isolated from the host namespace, as seen in Figure 31. The subnet
backend bridge network has the address 168.1.0.1/24, created with default docker
driver. The containers have their IP assigned to this network and are connected
through veth pairs, being visible and able to communicate to each other. The back-

end network bridge is then connected to the host interface (eth0:192.168.1.104).
Tracker container exposes the service output at its port 5002, and altitude container
exposes the service output at its port 5003. Then the tracker and altitude services
are published at host port 5002 and 5003, respectively, where the client can access
the service. Both containers output ports and host publish ports can be configured
in the template files.
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Figure 31 – Architecture net mode namespace details

Source: the author

Creating service verifiers

When a container runs, there is no guarantee that its function is actually being ex-
ecuted as expected. For instance, when the receiver container is launched sometimes
internal USRP errors occur and its expected output, (decoded ADS-B data), is not pro-
duced. To assure that a service is effectively working, and also to standardize the startup
test (discussed in Section 7.1), some service verifiers were created. The verifiers are man-
aged by the Container manager block, and can be applied individually, (for instance to
check if just the receiver is producing its output as expected), or for the complete container
implementation, i.e. receiver plus application containers.

Possibly, there is no consensus on which point defines that a service was correctly cre-
ated, but some definitions could be made. For ADS-B service generation, it was defined
that the receiver container is executing its function when an "ICAO" string is printed at
the container terminal. It means that the first decode packet was received. For the service
containers, it was considered that the service was launched correctly when the application
containers (HTTP servers) answered a connection HTTP request.

Both receiver and application containers, as well as the complete end-to-end service,
(receiver plus application containers), verifiers were implemented through bash files by
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the Container Manager block, following the flowchart presented in Figure 32.

Figure 32 – Flowchart for receiver/application verifiers

Source: the author

Consider the case that the complete solution (receiver plus application) will be ver-
ified. It starts by the receiver verifier flowgraph, the first step consists in running the
python script (direct solution) or the receiver container (in host or network modes). Then
a message containing "ICAO” is expected at the terminal (host machine terminal or con-
tainer terminal). If any "ICAO" message is received and a timeout is reached, then the
python script or container is running again. It’s also possible to set a maximum number
of attempts. If the "ICAO" code is received, then the application flowchart starts. In the
first step the tracker and altitude python scripts or container will be running, until a "PIN"
message, (a server debug terminal output), which indicates that the server was built, is
received. Then the Container Manager block will send HTTP connection requests to the
services output ports (default values 5002 and 5003) and wait until a "Client Connected
message" from both services is received. At this point, the complete solution is considered
checked out.

The interactions between the Container Manager block, receiver and application con-
tainers or scripts, with service verifiers are shown in the diagram presented in Figure 33,
considering the steps from container implementation (step 4) onward.
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Figure 33 – Block interaction with service verifiers

Source: the author

5.5 Validating the architecture

Finally, after proceeding with the implementation steps, the architecture implemen-
tation for ADS-B service is validated over tracker and altitude services through visual
inspection, as seen in figures 34 and 35, for architecture host and architecture net modes,
respectively.
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Figure 34 – Architecture host mode validation

Source: the author

Figure 35 – Architecture net mode validation

Source: the author
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6 EXPLORING ARCHITECTURE FEATURES

Once the architecture is validated for ADS-B use case, in this chapter some features
resulting from the architecture implementation are highlighted. In Section 6.1 the imple-
mentation of the architecture with a different radio project is explored, with an example
of service using LoRa modulation technique. The second feature demonstrates container
reusability and the architecture utilization with different SDR devices types. Finally, scal-
ability of the services are tested and demonstrated in Section 6.3.

6.1 Implementing LoRa service

To demonstrate architecture flexibility to provide different services, the LoRa mod-
ulation technique was also implemented. The service consists in data reception of text
files, using gr-LoRa GNURadio OOT module (KNIGHT, 2017). This module and the
GNURadio DSP script are added to the top layer of a generic RX container. The RX
container as well as its run template are then stored in the Image and Container Registry

blocks, (shown in Figure 15), respectively. Finally, by the same token as ADS-B service
provision, the Container Manager block orchestrates the service implementation.

LoRa transmitter consists of an USRP 2932. For reception, LimeSDR, RTL-SDR and
other USRP 2932 SDRs were used. The setup for the three communication cases are
presented in Figure 36.
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Figure 36 – Communication setup for LoRa/ADS-B services

Source: the author

The main blocks of GNURadio DSP script used for the three communication cases
are presented in Figure 37. It is possible to receive the data with different SDR de-
vices, changing the SDR receiver block and adjusting its communication parameters. The
docker template used for LoRa reception with LimeSDR is presented in APPENDIX C.

Running the service, a helloword.txt text file containing two lines with the message
"hello world", as well as computer arts text files, dog.txt and slug.txt, are sent by the
LoRa transmitter to the RTL-SDR, LimeSDR and USRP receivers, respectively. Using
the architecture host mode the data is recovered on the receiver side, (notebook 2), at port
52002, through a Netcat Linux command. The files received are presented in Figure 38.
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Figure 37 – GNURadio DSP script implemented with SDR receivers

Source: the author

Figure 38 – Text files received with LoRa communication

Source: the author
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The results show that the architecture can be applied to different radio projects through
the selection of the DSP reception script used by the receiver container. In this example,
the LoRa modulation technique was implemented and the communication was verified
for the aforementioned SDR devices.

6.2 ADS-B services with different SDR devices

Architecture flexibility for a variety of SDR devices can also be demonstrated to the
ADS-B services. This test uses the same LoRa service setup presented in Figure 36,
to generate ADS-B tracker and altitude services from RTL-SDR, LimeSDR and USRP
SDRs. In the signal reception, the GNURadio receiver script presented in Figure 21, has
been applied, changing the SDR receiver block and adjusting its respective communica-
tion parameters. The architecture net is applied and the receiver and application contain-
ers launched to generate the service. Then the final visual results obtained (tracker and
altitude services), are shown in figures 39, 40 and 41, for RTL-SDR, LimeSDR and USRP
reception cases. APPENDIX D presents the docker template file used to launch ADS-B
tracker and altitude services with RTL-SDR.

The figures 39, 40 and 41, evince the tracker and altitude services for an aircraft
identified as ICAO 3baaff, at a given instant of time.

Figure 39 – ADS-B tracker and altitude services with RTL-SDR

Source: the author
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Figure 40 – ADS-B tracker and altitude services with LimeSDR

Source: the author

The results show that the proposed architecture achieves modularity of communica-
tion blocks, by decoupling receiver and application services into independent containers,
and SDR flexibility, once with few changes in the reception script, it is possible to apply
the architecture to provide services from different SDR devices.

Figure 41 – ADS-B tracker and altitude services with USRP

Source: the author
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6.3 Reproducing the services

One of the benefits brought by the implementation of containers with the architecture
is the ease of reproducing the services. In order to check this feature, a simple test was
implemented. This test evaluates the free RAM memory for an increasing number of
services launched. An illustration of service reproducing with output ports 5002 to 5007
is shown if Figure 42.

Figure 42 – Tracker reproducing process output example

Source: the author

Using the USRP with attenuation cable between TX and RX, the setup presented in
Figure 27, A notebook with 7.45 GB of RAM, the receiver container was launched in
architecture net mode, and the tracker service (HTTP server) was reproduced until the
system reaches its limit, (in terms of free RAM memory). The results for this evaluation
is presented in Figure 43, where free RAM memory is measured in Megabytes (MB).
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Figure 43 – Free RAM memory x number of tracker services

Source: the author

The system reaches its limit with 80 service containers, starting from 5085MB of
free memory with 1 tracker service, and arriving at 132MB with 80 simultaneous tracker

services. In the linear area of the graph (1-67 services), the decreasing rate of free memory
has the mean of −73.74MB per tracker service. It was applied with a bash script that
can be implemented and automated by the Container Manager. Other implementations
options are also possible, such as docker run command, docker-compose files, as well as
containers orchestration tools (e.g. docker Swarm and Kubernets). It is noted that the
system resources bound the number of services that can be generated. This evaluation
helps to clarify how it is possible to take advantage of the ease of reproducing services
using containers.
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7 EVALUATION

The main objective of the evaluation is to compare the performance of the proposed
solution using the containerized architecture with the direct solution in end-to-end service
generation from SDR devices. Therefore, the overhead in terms of resource utilization,
start up time, and server response time, is verified. For this purpose, the aforementioned
three modes of use: 1. direct solution; 2. with the container in host networking mode -
architecture host; and 3. with the containers in an internal custom bridge network - ar-

chitecture net, are evaluated and compared for the ADS-B use case. For this investigation
(all tests), the setup presented in Section 5.3, shown in Figure 27, was applied. This setup
considers the USRP as an SDR device with a transmission channel connected directly to
the receiver channel, by an −30dB attenuation cable. The following tests were evaluated:

• Startup time test: compares the startup time to launching the services, or individual
containers/scripts.

• Resource utilization test: this test compares the CPU and RAM memory utilization
to provide the services under stressed conditions (increasing the number of HTTP
client requests).

• Response time test: this test compares the waiting time request response for the
services, under an HTTP request overflow.

Following, the sections 7.1, 7.2 and 7.3 present the test results and discussion.

7.1 Startup time test

The startup time test evaluates the time in seconds, necessary to run individually a
container/python script, or the complete sequence of containers that generate the ADS-B
end-to-end service.

Statistical design of the experiment

Following guidelines to designing experiments (MONTGOMERY, 2013), the Anal-
ysis of variance (ANOVA) method is initially applied to check out, by a hypothesis test,
if the startup time means of the three groups of solution, (direct, architecture host and
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architecture net) differ. Once this first study is conducted, respecting the ANOVA method
premises, more specific parametric mean tests, (such as Tukey, Fisher, etc.), can be ap-
plied to group and evaluate the mean confidence intervals (CI) of the three solutions.

To apply the ANOVA method, the randomization principle (MONTGOMERY, 2013)
was adopted, thus a complete randomized matrix was generated determining the repetition
test order, an example of randomized matrix is presented in Figure 44. The startup time

test is characterized as single-factor experiment (factor=solution type), with 3 levels (or
treatments: direct, architecture host and architecture net), being the response variable the
startup time, measured in seconds. It was firstly defined to investigate the results for a
number of observations per level N = 100, (i.e. balanced data).

Figure 44 – Experimental Randomized matrix and order table

Source: the author

The ANOVA power and sample size analysis for the receiver startup time test, has
shown that with N = 100, the statistical power1 is 85% to detect a mean difference of
0.274s at treatment levels. This difference is considered appropriate because the minimum
mean difference between treatment levels observed in the startup time tests were greater
than 1s. Therefore, the following hypotheses were checked: H0 : µ1 = µ2 = µ3 no
differences in treatment means, against the alternative H1 : some means are different. For
the receiver, the results of the ANOVA procedure, with P − V alue approach, and 95

percent confidence interval, (significance α = 0.05), are summarized in Table 4.

1The statistic power of a hypothesis test is a very important measure, it relies on the probability of not
making a type II error, i.e. when a false hypothesis is not rejected being it false.
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Table 4 – ANOVA for the receiver startup time test

Source of variation
Sum of
Squares

Degrees of
Freedom

Mean
Square

F0 P-Value

Solution Type 471.1 2 235.55 691.25 0.00

Error 101.2 297 0.34

Total 572.3 299

Where F0 is the Solution Type mean square divided by the Error mean square. The
P − V alue = 0.00, (P − V alue < 0.05), tells that F0 value is significant, in this case H0

is rejected, and then it is concluded that the treatment means differ, that is, the solution
type significantly affects the mean startup time.

However, to assure that the ANOVA test is applicable, in spite of the primary re-
sults, the procedure premises should be verified. The ANOVA procedure considers that
the model errors are independently and normally distributed random variables with mean
zero and variance σ2. Then the variance σ2 is assumed to be constant for all treatments of
the factor. To check these premises, and validate the ANOVA model performed, the resid-
ual error can be evaluated. A residual, performed by Minitab© software, is the difference
between an observed value and its corresponding fitted value. In turn, the fitted values for
the model, (e.g. represented by the red straight line in Figure 47), are calculated using
the regression equation and variable settings. The error independence was checked by
residual versus order plot, shown in Figure 45. The random behavior of residual error in-
dicates that there is no evidence that this premise was violated. In contrast, the histogram
of residuals, presented in Figure 46, infers that the shape of residuals do not follow a
normal distribution. To verify if the residual error distribution is normally shaped a Ryan-
Joiner test was conducted, resulting in violation (P − V alue < 0.05, i.e. reject H0, the
data do not follow a normal distribution), as seen in Figure 47. The treatment constant
variance premise was also checked by Levene’s Test, (resulting in P − V alue = 0.021),
also indicating a premise violation. Thus, it is concluded that the ANOVA procedure is
not applicable for the data analysis, once its premises were not respected.
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Figure 45 – Residual error x observation order for receiver

Source: the author

Figure 46 – Histogram of residuals for receiver startup time test

Source: the author

It is evidenced in the normality probability plot of residual, Ryan-join test, Figure
47, that the model does not fit the data around the red straight line as expected when the
residual follows a normal distribution.
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Figure 47 – Normality probability plot of residual receiver startup time test

Source: the author

Apart from the receiver startup time test, the violation of normality distribution of
residuals premise for all startup time tests was observed, even with increasing the sample
size from N = 100 to N = 400, in a new receiver+tracker+altitude test attempt. Figure
48 presents the residual error versus observation order for receiver+tracker+altitude test
withN = 400. The random distribution of the residual indicates an independent behavior,
but there are the presence of some residuals that have abnormal distance from other values
in the random sample population, which can contribute to the non-normal distribution of
the population.

Figure 48 – Residual error x observation order for rec.+tracker+altitude

Source: the author
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None of the startup time tests conducted have fulfilled the premises for the paramet-
ric statistical analysis. As alternative to a parametric model some solutions that include
Generalized Linear Models (GLM), non-parametric and transformation models can be
applied, once these models allow that the residual error from the response variable fol-
lows a distribution other than a normal distribution. For complexity reasons, once the
interpretations of results may be less convenient if a transformation is applied, it was de-
cided to use a nonparametric rank basis model, and thus compare the median instead of
mean value. Among nonparametrics hypothesis tests, Kruskal-Wallis test can be used to
compare two or more medians of groups when the groups have similarly shaped distri-
butions. Observing the treatment distributions (applying an equal variance Levene’s test)
this premise was not noticed. Instead, the Mood’s Median Test was applied. This test de-
termines whether the median of two or more groups differ, not implying that the group’s
distribution have similar shape. The results for the receiver startup time test applying
Mood’s Median Test are shown in Table 5. For all tests, the P − V alue has resulted in
P < 0.05 (P − V alue = 0.00), indicating that H0 is rejected and thus the treatment
medians differ.

Table 5 – Mood’s Median Test for the receiver startup time test

Solution
Type

Median(s) N ≤ overall median N > overall median Q3 - Q1 95% CI

direct 6.53 97 3 0.097 (6.53;6.54)

arch_host 7.73 53 47 0.287 (7.68;7.81)

arch_net 9.41 0 100 0.420 (9.39;9.47)

Overall 7.74

Mood’s median test uses chi-square statistics, in conjunction with the chi-square dis-
tribution, to calculate the P −V alue. The test performs the overall median value and then
ranks the observations above and below this value. The interquartile range (Q3 − Q1)
measures the dispersion of data in each group. The range is the distance between the
75th percentile (Q3) and the 25th percentile (Q1). The test considers three premises: the
data distribution is not normal; the test is applied for small number of observations N <
20 or the data is better represented by median values (the latter was considered in the
evaluation); and finally, the response variable must be continuous.

Table 6 summarizes the Mood’s Median Test results for all implementations. The
mean, median and median CI (95%) are presented, as well as the sample size, N , for
each implementation. Increasing the sample size, from N = 100 to N = 400 for the
receiver+tracker+altitude implementation, decreases the median 95% CI values range,
(for direct solution from 0.15 to 0.08, architecture host from 0.20 to 0.09 and architecture

net from 0.25 to 0.14 seconds.
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Table 6 – Mood’s Median Test for all containers/scripts - startup time test

Container/script
Solution

Type
N Mean(s) Median(s) Median 95%CI

Receiver

direct 100 6.63 6.53 (6.53;6.54)

arch_host 100 7.89 7.73 (7.68;7.81)

arch_net 100 9.69 9.41 (9.39;9.47)

Tracker

direct 100 6.76 6.72 (6.66;6.76)

arch_host 100 7.52 7.45 (7.38;7.54)

arch_net 100 10.88 10.75 (10.68;10.90)

Altitude

direct 100 6.81 6.66 (6.59;6.73)

arch_host 100 7.45 7.39 (7.30;7.48)

arch_net 100 10.83 10.71 (10.54;10.87)

Receiver+Tracker

direct 100 13.70 13.44 (13.32;13.37)

arch_host 100 16.30 15.78 (15.60;16.05)

arch_net 100 20.82 20.56 (20.33;20.78)

Receiver+Altitude

direct 100 13.26 13.19 (13.16;13.24)

arch_host 100 15.64 15.60 (15.50;15.62)

arch_net 100 20.06 19.96 (19.91;20.01)

Receiver+Tracker+Altitude

direct 100 15.78 15.66 (15.59;15.74)

arch_host 100 18.28 18.18 (18.10;18.30)

arch_net 100 24.10 24.04 (23.91;24.16)

Receiver+Tracker+Altitude

direct 400 15.76 15.67 (15.63;15.71)

arch_host 400 18.19 18.12 (18.09;18.18)

arch_net 400 24.06 24.02 (23.95;24.09)

The individual results for the receiver, tracker, altitude, and receiver+tracker+altitude

(N = 100 and N = 400) tests, are presented in the figures 49, 50, 51, 52 and 53, respec-
tively. Figure 49 shows startup time observations for the receiver considering the three
solution modes. In this case, the median of architecture host is 1.20s and architecture
host of 2.88s, when greater than the direct solution median.
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Figure 49 – Deploy time overhead for the receiver

Source: the author

Look into individual startup time test results for tracker and altitude containers/script,
showing in Figure 50 and 51 respectively, it has been observed that the tracker container
when used in architecture host mode, exceeds 0.73s, and 4.03s in architecture net mode
the direct solution median. Similar results are observed for altitude container which ex-
ceeds 0.73s the direct solution in architecture host mode, and 4.05s in architecture net

mode.

Figure 50 – Startup time test for the tracker

Source: the author
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Figure 51 – Startup time test for the altitude

Source: the author

For N = 400 observations, examining the startup time test for the complete solu-
tion, receiver+tracker+altitude, Figure 53 the median value of the architecture host and
architecture net exceeds 2.47s and 8.35s respectively, the direct solution median. With
N = 100 the median of architecture host and architecture net surpass the direct solution

median in 2.52s and 8.38s, showing that in terms of median, There weren’t significant
differences increasing the number of observation from N = 100 to N = 400.

Figure 52 – Startup time test for the receiver+tracker+altitude with N=100

Source: the author
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Figure 53 – Startup time test for the receiver+tracker+altitude with N=400

Source: the author

The overall results of the startup time test in terms of median values, including the
individual results presented above, as well as the complete solution (Rec.+Tra.+Alt) and
compositions, (Rec.+Tra and Rec.+Alt), are shown in Figure 54.

Figure 54 – Startup time test overall results - median values

Source: the author

The long delay of the startup time test, (that, for instance, comes from around 15s
to around 24s for the complete solution), is related to the checker implementation. The
verifier could be seen as an essential functionality which asserts the proper operation of
the container or script in each observation. Thus, the test takes into account the whole
time spent by the verifier interactions, presented by the flowchart in Figure 32.
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Finally, to summarize the startup time differences between using the architecture and
the direct solution, the Table 7 and Figure 55 are presented.

Table 7 – Summary overhead time added by architecture modes - median

Container architecture host (s) architecture net (s)

Receiver 1.20 2.88

Tracker 0.73 4.03

Altitude 0.73 4.05

Rec.+Tra. 2.33 7.12

Rec.+Alt. 2.40 6.77

Rec.+Tra.+Alt (N = 100) 2.52 8.38

Rec.+Tra.+Alt (N = 400) 2.47 8.35

Figure 55 – Overhead median time add by the architecture, N=100

Source: the author

Observing the results, Table 7 and Figure 55, it is noticed that the greatest startup time
differences between using the architecture and direct solution is observed for the complete
solution. Maximum median value for architecture host is 2.52s and 8.38s for architec-

ture net, showing that the architecture net exceeds more than three times the architecture

host when compared with direct solution. For individual container evaluation, the maxi-
mum time difference value was 1.20s for architecture host and 4.05s for architecture net,
ascertained to receiver and altitude containers respectively.

As a consequence of the custom network creation, it is noted that the architecture

net adds more overhead time than the architecture host. The backend network must be
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launched before the containers, so that they can be attached to it. When attached to the
network, each container will receive extra configuration, such as IP address and names-
pace assignment, demanding more time when compared with host networking.

In conclusion, after the statistical analysis of startup time test, it was verified that
applying the architecture adds overhead time at startup of the solution. This overhead
needs to be considered in light of architecture implementation, but, conversely, it must
be noticed that the time for deployment is a one-time cost for the user, as discussed in
(MARTINS et al., 2020).

7.2 Resource utilization test

Resource utilization overhead was evaluated in terms of CPU processing and RAM
memory. Using an Intel® CoreTM i7-4510U CPU @2.00GHz, with 4 physical cores and
8 GB of RAM (7.45 GB available).

In this test the computational resources are measured, in percentage (0 − 100%) of
total values, for an increasing number of concurrent clients that send HTTP requests for
the tracker and altitude services.

The start point for this test is to define the metrical criteria. Considering that some
HTTP benchmarking tools (siege, wrk2, ab) were applied, the constraints of these tools
implies that the test must be sequential and not randomized by solution type, (different
from what was executed with the startup time test). Then a randomized matrix of solution
type measures is not feasible, and a parametric model, such as ANOVA, cannot be applied
once it is not possible to assure the residual error independent premise. The metrical
criteria chosen is then based on the similar work (CARPIO; DELGADO; JUKAN, 2020),
which relies on increases the number of concurrent clients C, by 10 levels (e.g. C = 100,
C = 200,..., C = 1000), and make at least 1000 measures for level, evaluating the
mean and maximum, minimum values. The main metrical difference in this thesis, just
as (MARTINS et al., 2020), concerns the number of clients, that increases from 0 to 250
(respecting the boundaries of Linux Apache server), in a step of 25 clients. For each step,
N = 1000 measures were then performed, one measure for every second, and then the
average of the N measures was computed. The interval between the request of a client
is set to a constant value 1s, once the test benchmarks the performance of the solution
modes and then a constant interval is preferred instead of random.

The results for the receiver CPU resource utilization, for the direct solution, architec-

ture host and architecture net, are shown in Figure 56. Each level value [C, CPU [%]],
corresponds to the mean of N = 1000 measures.
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Figure 56 – CPU utilization for the receiver

Source: the author

The results for the tracker and altitude services CPU utilization resource utilization,
for the direct solution, architecture host and architecture net, are shown in figure 56 and
57.

Figure 57 – CPU utilization for the applications

Source: the author

The CPU results, figures 56 and 57, show the differences between mean resource
usage for each solution mode over an increase of 0 to 250 concurrent clients, and evince
that the architecture net mode consume more CPU slices than architecture host mode,
and both architecture modes consume more CPU slices than direct solution. The overall
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CPU average values, consider all client levels, are presented in Figure 58.

Figure 58 – Receiver, tracker and altitude CPU utilization average

Source: the author

Looking at the average results for the receiver CPU utilization, it is found the values
43.3%, 46,6% and 48.4%, for the direct solution, architecture host and architecture net,
respectively. These results demonstrate that the CPU consumption increases according
to network isolating level, which indicates that architecture adds an overhead in CPU
resource consumption. Despite the CPU utilization value of at C = 25 clients with ar-

chitecture net mode, it is expected to be near to a constant CPU utilization value with
an increasing number of clients. Hence the receiver CPU utilization should not be sig-
nificantly interfered by client requests, and these requests are directed to the application
containers. For the application container results, Figure 57, the solution modes results do
not follow any exponential or linear behavior with the increasing number of the clients.
This behavior can be an indicator that, for the given experiment setup, (i.e. each client
added to make a request with a 1s interval), the application servers can handle the requests.

The Table 8 sum up the overhead CPU results of the architecture, compared to direct
solution.

Table 8 – Summary of CPU overhead added by architecture - mean values

Container architecture host (%) architecture net (%)

Receiver 3.3 5.1
Tracker 0.8 2.0
Altitude 0.9 2.0



85

The table 8 shows that the overhead of receiver CPU utilization for the architecture

host is 3.3% and for architecture net 5.1%, and for the application CPU utilization, the
architecture host adds 0.8% and 0.9%, for the tracker and altitude services respectively,
whereas the architecture net adds 2.0% for both services. The results show that there is a
CPU cost to implement the architecture, and that this cost also increases with respect to
the network implementation. The greater values correspond to receiver implementation of
the architecture. In contrast, due to the architecture design, it is expected that the receiver
CPU utilization remains constant, scaling the services. A complete scaling test is planned
to evaluate this situation in further improvements.

Overall RAM memory utilization results, (mean values for all clients levels), for the
three solution modes, are shown in Figure 59.

Figure 59 – Receiver, tracker and altitude RAM utilization average

Source: the author

The Table 9 sum up the overall differences of RAM memory utilization between ar-
chitecture modes and direct solution.

Table 9 – Summary of RAM overhead of the architecture - mean values

Container architecture host (%) architecture net (%)

Receiver -0.2 -0.2
Tracker -0.3 -0.3
Altitude -0.2 -0.2

It was observed a slight decrease of memory utilization mean, applying the architec-
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ture, (of −0.2% receiver and altitude, and −0.3% for the tracker). Further analysis could
be conducted to check the memory consumption in detail with other tests.

7.3 Response time test

One of the metrics to evaluate web pages performances use the percentile of request
waiting response time. The percentile represents a time value where a certain percentage
of scores fall below that value. For instance, if the 50th percentile of a set of requests
is equal to 30ms, it means that 50% of the requests will experience a delay of 30ms or
less. The response time test aims to evaluate the response time of the services under an
overflow of HTTP requests. The test has two configuration options:

• the number of concurrent clients: C, that also represents the number of requests to
be made at once.

• and the total number of requests: NR.

Considering that a certain number of clients C will do a number of requestsNR to the
HTTP web page, the test works as follows: at the time zero, a group of C requests will
be done by the clients. The next C request will be done as soon as the first group receives
their responses, until that the accumulated number of requests reaches NR. For instance,
for C = 10 clients and NR = 1000 requests, at the time zero of the test, 10 requests will
be done at once. When that 10 initial requests are answered, more 10 requests will be
done, and so on, until the accumulated number of requests reaches the total NR = 1000

value.
The first test evaluates the response for the solution types, direct solution, architec-

turehost and architecture net, for C = 10, C = 40, C = 70, and NR = 1000 requests.
Both tracker and altitude services are evaluated. The results are shown in figures 60 and
61, respectively.
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Figure 60 – Request waiting time x percentile, tracker service

Source: the author

Figure 61 – Request waiting time x percentile, altitude service

Source: the author

Observing the response time test results presented in figures 60 and 61, it is veri-
fied that increasing the number of the clients, the request waiting for the solution time
increases. Even though observing the data variability, it is not possible to compare the
values directly, with just one measure. Then, in order to be able to compare the mea-
suring values of the response time test, an experiment plan was conducted including a
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statistical analysis. The strategy consists of taking some reference percentile values as
reference (10th, 25th, 50th, 75th, 90th and 99th were chosen), and make a number of
measures for each one of them. Therefore, it is possible to proceed with a statistical anal-
ysis of the results. To simplify the analysis, it was also defined to verify the percentile
for one of the applications, the tracker, then the simulated client requests target address
http://localhost:5002/.

Statistical design of the experiment

Likewise the startup time test, the guidelines to designing experiments (MONTGOMERY,
2013), for the ANOVA was adopted. The response time test is a single-factor experiment
(factor = solution type), with 3 levels (or treatments: direct, architecture host and archi-

tecture net). The response is the request waiting time, in milliseconds (ms), by percentile
levels: 10th, 25th, 50th, 75th, 90th and 99th. Adopting the randomization principle, a
complete randomized matrix was generated determining the repetition test order, for an
initial number of observations N = 50. The number of clients was defined to a fixed
value, C = 10 and the total number of requests NR = 1000.

The results for percentile levels 25th, 75th and 99th are shown in figures 62, 67 and
64, respectively.

Figure 62 – Request waiting time at 25th percentile, N=50, C=10, NR=1000

Source: the author
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Figure 63 – Request waiting time at 75th percentile, N=50, C=10, NR=1000

Source: the author

Figure 64 – Request waiting time at 99th percentile, N=50, C=10, NR=1000

Source: the author

Observing the request waiting time, it can be noticed the great variability of the data
for N = 50. Nevertheless, a first examination was carried out. In order to be able to
apply the ANOVA method, supposing a normal residual error distribution, the procedure
premises were checked. In addition, to verify if the number of the observations is ad-
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equate, the statistical power for ANOVA model with N = 50 was also evaluated. The
following tests were performed, for confidence intervals of 85%CI and 95%CI , to check
ANOVA assumptions:

• Ryan-Joiner Test: to evaluate normality distribution of the residual error.
• Levene’s Test: to evaluate the equal variance of the treatments

Once a randomized experimental matrix was applied in observation order, the residual
error independent premise was checked, observing the random behavior of the residual

error x observation order plot. Table 10 summarizes the obtained results.

Table 10 – Summary of ANOVA premise check and statistical power N = 50

Percentile
CI
(%)

ANOVA
P-value

Normality
P-value∗

Equal
Variances
P-value∗

Errors
Indepen-

dent

Max.Dif.
Mean
(ms)

Power
(%)

N

10th
85 0.00 < 0.010 0.984 ok 0.64 0.85 50

95 0.00 < 0.010 0.984 ok 0.77 0.85 50

25th
85 0.00 < 0.010 0.977 ok 0.87 0.85 50

95 0.00 < 0.010 0.977 ok 1.04 0.85 50

50th
85 0.00 < 0.010 0.744 ok 1.49 0.85 50

95 0.00 < 0.010 0.744 ok 1.79 0.85 50

75th
85 0.00 < 0.010 0.003 ok 3.19 0.85 50

95 0.00 < 0.010 0.003 ok 3.84 0.85 50

90th
85 0.00 < 0.010 0.353 ok 4.05 0.85 50

95 0.00 < 0.010 0.353 ok 4.86 0.85 50

99th
85 0.00 < 0.010 0.001 ok 9.18 0.85 50

95 0.00 0.05 0.001 ok 11.03 0.85 50

∗ The gray cells indicate test violation

Observing the results of the ANOVA premise check and statistical power for N = 50,
in Table 10, it is seen that none of the tests has pass in the normal distribution of residual
error, then the ANOVA method is not applicable for N = 50. It was tried to increase
the number of observations to N = 150, decrease the confidence levels to 80%CI and
95%CI , and then recheck the premises for the ANOVA method. The results are shown in
Table 11. The statistical power obtained values, (85%), proved to be acceptable to detect
differences between observed means, in all tests with N = 50 and N = 150. However,
the ANOVA test results are inapplicable once the distribution of the error is not normal.

As it was done in startup time test, the nonparametric Mood’s Median Test was ap-
plied. The results are presented in Table 12.
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Table 11 – Summary of ANOVA premise check and statistical power N = 150

Percentile
CI
(%)

ANOVA
P-value

Normality
P-value∗

Equal
Variances
P-value∗

Errors
Indepen-

dent

Max.Dif.
Mean
(ms)

Power
(%)

N

10th
80 0.00 0.010 0.552 ok 0.34 0.85 150

90 0.00 0.010 0.552 ok 0.39 0.85 150

25th
80 0.00 0.010 0.780 ok 0.45 0.85 150

90 0.00 0.010 0.780 ok 0.52 0.85 150

50th
80 0.00 0.010 0.273 ok 0.75 0.85 150

90 0.00 0.010 0.273 ok 0.82 0.85 150

75th
80 0.00 0.010 0.000 ok 1.47 0.85 150

90 0.00 0.010 0.000 ok 1.69 0.85 150

90th
80 0.00 0.010 0.000 ok 1.98 0.85 150

90 0.00 0.010 0.000 ok 2.28 0.85 150

99th
80 0.00 0.010 0.000 ok 5.12 0.85 150

90 0.00 0.05 0.000 ok 5.90 0.85 150

∗ The gray cells indicates test violation

Table 12 – Mood’s Median Test percentiles for treatments - response time test

Percentile
Solution

Type
N Mean(s) Median(s) Median 95%CI

10th
direct 150 34.66 34.49 (34.32; 34.76)

arch_host 150 43.01 42.99 (42.89; 43.17)

arch_net 150 49.54 49.71 (49.57; 49.86)

25th
direct 150 37.44 37.10 (36.99; 37.29)

arch_host 150 46.01 46.06 (45.78; 46.23)

arch_net 150 52.28 52.40 (52.15; 52.53)

50th
direct 150 41.77 41.10 (40.86; 41.40)

arch_host 150 51.91 51.77 (51.35; 52.44)

arch_net 150 58.37 58.50 (58.29; 58.88)

75th
direct 150 47.52 46.18 (45.42; 47.29)

arch_host 150 60.03 59.80 (59.12; 60.64)

arch_net 150 70.15 69.06 (68.09; 70.35)

90th
direct 150 56.36 57.42 (56.23; 58.44)

arch_host 150 71.73 72.24 (71.36; 72.91)

arch_net 150 92.62 95.38 (93.53; 96.51)

99th
direct 150 94.84 93.49 (90.12; 96.23)

arch_host 150 112.07 112.66 (109.89; 113.81)

arch_net 150 143.72 144.44 (136.90; 148.74)
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The results obtained at the considered percentile levels are presented in figures 65 to
70.

Figure 65 – Request waiting time at 10th percentile, N=150, C=10, NR=1000

Source: the author

Figure 66 – Request waiting time at 25th percentile, N=150, C=10, NR=1000

Source: the author



93

Figure 67 – Request waiting time at 50th percentile, N=150, C=10, NR=1000

Source: the author

Figure 68 – Request waiting time at 75th percentile, N=150, C=10, NR=1000

Source: the author
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Figure 69 – Request waiting time at 90th percentile, N=150, C=10, NR=1000

Source: the author

Figure 70 – Request waiting time at 99th percentile, N=150, C=10, NR=1000

Source: the author

Figure 71, Table 13 and Figure 72 summarize the results for the three solution modes
found in the response time test, in terms of median values of request waiting time.
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Figure 71 – Response time test overall results - median values

Source: the author

Figure 72 – Overhead time (ms) added by architecture - median values, N=150

Source: the author
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Table 13 – Summary of overhead time (ms) added by architecture

Percentile architecture host (ms) architecture net (ms)

10th 8.50 15.22

25th 8.96 15.30

50th 10.67 17.40

75th 13.61 22.88

90th 14.82 37.96

99th 19.17 50.96

The request waiting time for each percentile is a median value ms, that represents an
estimate of the limit value of waiting time at the level. It is observed that the architecture
has a cost in terms of response time. This cost comes from 8.50ms greater than direct
solution, to 19.17ms with architecture host, and from 15.22ms to 50.96ms with archi-

tecture net. At 50th percentile level, the overhead is around 10.67ms and 17.4ms for the
architecture host and architecture net, respectively. It means that, at the 50th% percentile
is possible that a client requests experiences a delay until 17.4ms greater than direct solu-

tion, using the architecture with isolated network, or 10.67ms greater the direct solution,
using the architecture with low level of isolation, in mode host.

The results show that the higher the percentile, the greater the parameters of dispersion
of the data, as seen in the 99th percentile.

In the initial test proposition, a verification of ANOVA implementation was con-
ducted, but the data proved to have a nonparametric characteristic, and then the study
was driven to the rank test. In further investigation, it is planned to verify the request
response time by controlling the request rate. However, the response time test proposed
in this thesis has its relevance as an initial step in terms of overhead investigation of re-
sponse time. Further investigation must be led, with other strategies, which can focus on
the higher percentiles levels.
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8 CONCLUSION AND FURTHER IMPROVEMENTS

Finally, this chapter presents the conclusions of this work and points out further im-
provements that can be addressed in next implementations.

Conclusion

This thesis has presented a container-based architecture to provide end-to-end services
from SDR devices. The architecture presents a possible topology for container storage,
orchestration, and management that integrates SDR devices into network environments.
Therefore, the proposed solution can be useful to automate network SDR service provi-
sion and to integrate SDRs with network environments that apply software defined tech-
nologies. The architectural design key relies on mapping the signal path processes to
functional blocks, and then providing the blocks’ operation through containers. As use
cases, ADS-B and LoRa service generation were implemented, and an example of how
to add functionalities to the architecture is shown, through the application of service ver-
ifiers.

The results show that the architecture implementation brings benefits and drawbacks.
The benefits are concentrated in non-functional features, while the drawbacks were ver-
ified on system performance degradation, with an overhead introduced. The following
non-functional features are enabled by the architecture:

Real-time capability: demonstrated by real-time airplane tracker services.
Control and management: by the architecture templates, which act as a top level con-

trol plane, it was shown the possibility to control low-level signal processing and com-
munication parameters, much required in these RF structures. Moreover, the containers
managed by the architecture inherit the control features of the Docker virtualization plat-
form, such as: container restart policies, limitation of available resources (CPU quota,
memory limit), volume sharing and networking options, etc.

Reusability and reproducibility: through the modularization of the service provision
in functional blocks, and the inter-container communication system proposed, it is pos-
sible to reuse the created containers, and reproduce the services. A reproducibility test
was presented where 80 aircraft tracking services (HTTP servers) were launched, using
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incoming data from a unique receiver container.
Flexibility and portability: through separating domain logic of DSP script from I/Q

digital samples output of SDR platforms, it was possible to demonstrate the applicability
of the architecture for different SDR devices types (LimeSDR, RTL-SDR and USRP).
These devices were used to provide LoRa and ADS-B services, showing, in addition, that
the architecture can also embrace generic RF projects.

Network isolation: in a local scope, two modes of implementing the architecture were
presented with different isolation levels in terms of host namespaces. The cost and benefit
of each mode were highlighted.

In contrast with the non-functional features added by the architecture, the remarkable
drawbacks were verified in terms of overhead, when compared with direct solution. Using
the architecture with host networking, architecture host, and custom bridge networking
architecture net, modes for ADS-B service generation use case, the final overhead results
are summarized as follows:

Startup time: it was observed an overhead maximum in startup time of 0.73s with
architecture host, and 4.05s with architecture net to launch individual containers, and
2.47s and 8.35s for launch the complete solution (three containers).

Resource utilization: it was observed an overhead maximum in CPU utilization of
3.3% and 5.1% for the receiver container, and 0.9% and 2.0% for the application contain-
ers, with architecture host and architecture net modes, respectively.

Response time: analyzing the average request waiting time for the tracker service it
was observed overhead, (delay), added by the architecture of 8.50ms and 15.22ms at the
10th percentile, 10.67ms and 17.40ms at 50th percentile, and 19.17ms and 50.96ms at
the 99th percentile.

The overall results have pointed out the trade-offs between the architecture implemen-
tation modes and the direct solution in a local scope. Taking into account the extent of the
topic discussed, and with the delimitation coverage defined for containerized SDR ser-
vice provision, it was considered that this thesis has fulfilled the expectations, paving the
way for further implementations that can use the presented topology and the containerized
method as modular components of network environments.

Further improvements

Further improvements are related to the integration of this architecture with software
defined technologies, such as NFV and SDN, and microservice implementation in dis-
tributed systems.

To make the implementation of this architecture applicable for distributed systems,
a main modification have to be performed, as discussed in Section 4.1. Instead of use
service verifiers to assert end-user service provision, the container health-check and con-
tinuous monitoring tools (available on the containerization platform) can be explored.
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Once this modification is considered, it is possible to explore the architecture in an ex-
ternal network scope with multiple hosts. For this purpose, container management tools,
such as Swarm and Kubernets, can be used. Therefore, the containers can become inde-
pendent nodes, (once the communication with the Container Manager Block at startup is
broken), and their coordination and collaboration in the provision of the service can be
investigated.

Once the architecture is applicable for distributed systems, it is possible to extend the
tests from a local scope to a microservice scope. Thus, a comparison of trade-offs between
enabling non-functional features and performance degradation in distributed systems can
be performed. Furthermore, besides reproducibility test, (as the one performed in Section
6.3), the container scalability becomes an interesting evaluation, once it can highlight
features such as elasticity and resilience of the architecture components.

As seen in Section 4.2, an interesting subject for further research is the integration of
the architecture with technologies such as SDN and NFV in network environments. In
these environments, the proposed architecture introduces an edge element into play, the
virtualized SDR. In this scenario, several research possibilities can be explored. On NFV
context, for instance, the VNF placement problem takes another perspective with the in-
sertion of edge containers that have virtualized SDRs. Due to hardware dependency, the
SDR virtualized node could not be moved through the network, being a static element on
the service chain. However, node collaboration strategies can be investigated, using mul-
tiple SDR and available nodes, in order to define a suitable configuration for the service
provision.
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APPENDIX A ARCHITECTURE HOST TEMPLATE ADS-
B USRP

This file consist in the Docker-compose template applied with architecture host mode
using USRP SDR for ADS-B tracker and altitude service provision.
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APPENDIX B ARCHITECTURE NET TEMPLATE ADS-B
USRP

This file consist in the Docker-compose template applied with architecture net mode
using USRP SDR for ADS-B tracker and altitude service provision.
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APPENDIX C ARCHITECTURE HOST TEMPLATE LORA
LIMESDR

This file consist in the Docker-compose template applied with architecture host mode
using LimeSDR for LoRa file transfer service provision.
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APPENDIX D ARCHITECTURE NET TEMPLATE ADS-B
RTL-SDR

This file consist in the Docker-compose template applied with architecture host mode
using RTL-SDR for LoRa file transfer service provision.
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