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ABSTRACT
In this paper, we propose the use of a conditional nonparametric robust estimator to
evaluate countries responses to the outburst of COVID-19 pandemic. We collect data
for 105 countries (comprehending the initial period of pandemic through the end of
may/2021), with variables regarding the death toll, economic indicators, demographic
characteristics and non-pharmaceutical interventions. We create a novel framework for
estimating efficiency of countries responses in more general terms than simply evaluating
healthcare system performance. We use two distinct well-known second-stage approaches:
regressing the conditional efficiency scores on the environmental variables, in order to
compute measures of managerial efficiency to rank responses; and regressing the ratio
of conditional and unconditional scores on conditioning factors, seeking to explore the
relationship between non-pharmaceutical interventions and the estimated efficiencies. Our
results indicate which countries and regions stood out for presenting efficient/inefficient
responses and point to a negative relationship between the variables median age, average
stringency index and average retail and recreation visitors change and efficiency estimates.

Keywords: COVID-19 response. Efficiency analysis. Nonparametric methods.



RESUMO
O objetivo deste trabalho é propor a aplicação de um estimador não paramétrico para
avaliar a eficiência das respostas dos países à eclosão da pandemia de COVID-19. São
coletados dados de 105 países (compreendendo o período inicial da pandemia até o final de
maio de 2021), com variáveis que englobam o número de mortos, indicadores econômicos,
características demográficas e intervenções não farmacológicas. Ao longo do texto são
apresentadas as premissas utilizadas, que constituem um arcabouço inovador para estimar
eficiência das respostas em termos mais gerais do que a simples avaliação da atuação
do sistema de saúde. São implementadas duas técnicas de estimação em dois estágios,
amplamente utilizadas na literatura: regressão dos scores de eficiência estimados contra
as variáveis ambientais, com o objetivo de mensurar a eficiência gerencial e ranquear as
respostas dos países; e uma regressão das razões dos scores condicionais e não condicionais
contra os fatores condicionantes, buscando explorar a relação entre as medidas não
farmacológicas e as estimativas de eficiência. Os resultados indicam quais países e regiões
se destacaram, apresentando respostas mais eficientes/ineficientes, bem como apontam para
uma relação negativo que as variáveis idade mediana, índice médio de restrição e alteração
média no número de visitantes em lojas e locais recreativos tiveram nas estimativas de
eficiência.

Palavras-chave: Respostas ao COVID-19. Análise de eficiência. Métodos não paramétri-
cos.



LISTA DE ILUSTRAÇÕES

Figura 1 – Second stage regression: effect of median age on conditional efficiencies 31
Figura 2 – Analysis of managerial efficiencies . . . . . . . . . . . . . . . . . . . . . 34
Figura 3 – Partial plots (z1 = median age, z2 = stringency index, z3 = retail and

recreation visitors change) . . . . . . . . . . . . . . . . . . . . . . . . . 35



LISTA DE TABELAS

Tabela 1 – Output, Inputs and Environmental Factors . . . . . . . . . . . . . . . 28
Tabela 2 – Bandwidth selection (model: z = (z1, z2, z3)) . . . . . . . . . . . . . . . 29
Tabela 3 – Descriptive analysis for countries with λ̂(x, y) > 1 . . . . . . . . . . . . 29
Tabela 4 – Descriptive analysis for countries with λ̂(x, y) = 1 . . . . . . . . . . . . 30
Tabela 5 – Descriptive analysis for countries with λ̂(x, y) < 1 . . . . . . . . . . . . 30
Tabela 6 – Ranking countries responses by ε̂, the managerial efficiency estimates

(most efficient response first) . . . . . . . . . . . . . . . . . . . . . . . 32
Tabela 7 – Ranking countries responses by ε̂, the managerial efficiency estimates

(most efficient response first) . . . . . . . . . . . . . . . . . . . . . . . 33
Tabela 8 – Descriptive analysis of ratios R̂z (model: z = (z1, z2, z3)) . . . . . . . . 34
Tabela 9 – Nonparametric significance test (model: z = (z1, z2, z3)) . . . . . . . . . 35
Tabela 10 – Managerial efficiency estimates (ε̂) distributions, by world regions . . . 39



LISTA DE ABREVIATURAS E SIGLAS

CDF Cumulative Distribution Function

DEA Data Envelopment Analysis

DGP Data Generating Process

DMU Decision Making Unit

FDH Free Disposal Hull

GDP Gross Domestic Product

GGD General Government Debt

IMF International Monetary Fund

NCD Non Communicable Diseases

OWID Our World in Data

UN United Nations

WEO World Economic Outlook



SUMÁRIO

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 EFFICIENCY ESTIMATION . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Mathematical and Economic Aspects . . . . . . . . . . . . . . . . . . 13
2.2 Statistical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Nonparametric Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Full Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Partial Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Conditional Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Explaining Inefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5 Ranking DMUs under heterogeneous conditions . . . . . . . . . . . . . . . 24

3 COVID-19 RESPONSES OVER COUNTRIES . . . . . . . . . . . . 25
3.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Estimation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Ranking responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Evaluating the relationship between efficiency and non-pharmaceutical inter-

ventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Considerations about the estimation . . . . . . . . . . . . . . . . . . . 38

5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . 41

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



11

1 INTRODUCTION

Since the seminal work of Koopmans (1951) and Debreu (1951), which established
the beginning of a literature commonly known as production efficiency analysis, several
improvements emerged towards the construction of better estimators for the efficiency of
decision making units (DMU) in a particular sample. In general, what every developed
estimator has in common is the origin on microeconomic theory framework, regarding
the assumptions securing the existence of a transformation frontier for the production
set of a given economic process. This frontier is sometimes simply referred to as efficient
frontier. The referred estimators are based on the idea of measuring distance between
observed production (output) of each decision unit and an estimate of the maximum feasible
production, given the observed amount of inputs and the existent technology (assumed to
be described by the efficient frontier). If a production function can be analytically defined
to represent the efficient frontier, relating a quantity x (input) to a quantity y (output),
the efficiency (or inefficiency) of a DMU is straightforwardly obtained by some measure of
geometric distance between observed production and the given function. Most frequent
are the cases, however, when the researcher does not know an analytic function relating
inputs and outputs. Rather, the empirical problem is given not only by trying to estimate
an efficiency score for a DMU, but also by the attempt to estimate the maximum feasible
production itself, evaluating an observable sample of DMUs.

Notwithstanding the fact that this framework is applied mainly for analyzing
efficiency in formal production processes, primarily understood as transformation of factors
like labor and capital into tangible goods and services, it is also common to find papers
where researchers establish relations between different variables to measure efficiency or
to find out what explains efficiency in much more abstract applications. Some examples
(on which the present work vastly uphold) include measuring efficiency of police on crime
clear-ups (NEPOMUCENO et al., 2020), explaining students performance in heterogeneous
environments (WITTE; KORTELAINEN, 2013), explaining banks efficiency under different
regulatory conditions (MINVIEL; BOUHENI, 2021), evaluating the impact of market risks
on mutual funds performance (BĂDIN; DARAIO; SIMAR, 2014) or even exploring factors
that affect the level of happiness across countries (CORDERO; SALINAS-JIMÉNEZ;
SALINAS-JIMÉNEZ, 2017).

All those cited applications have in common the use of a nonparametric framework
that evolved from traditional efficiency scores estimation, trying to explain how efficiency
is affected by external factors, and not only by direct managerial skills (DARAIO; SIMAR,
2005). These factors are often called environmental variables and a very important contri-
bution of this developed framework is that it allows researchers to rank DMUs taking into
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account the fact that sometimes they are exposed to very heterogeneous environments
that may influence their results in terms of efficiency, or even alter the production frontier
itself (BĂDIN; DARAIO; SIMAR, 2012). This methodology also allows one to consider
specific actions that DMUs take as possibly explaining the level of efficiency and test
whether and how it is related to the estimated efficiency scores. As an example, imagine a
scenario where firms produce bread using some known inputs as grain, water etc., and
have a wide range of production mechanisms to choose. Also, assume it is not possible to
completely describe what production process each firm is using, so that the bare estimation
of efficiency scores won’t say much about what is the most efficient way to transform inputs
into outputs. Even in this case, using the methodology described later in this paper, the
researcher might be able to find out and test if some measurable indicators (say minutes
in the oven, or the order of adding the ingredients) brings a higher level of efficiency, by
considering this indicators as environmental variables.

Clearly though, the name environmental variable here loses some of its meaning,
since actions took by a DMU manager are definitely not external factors. Ergo, in this
framework, we could think of them as simply conditioning factors, which allow us to
estimate conditional efficiency scores. This conditional scores can be roughly understood
as the level of efficiency a DMU attains when operating under certain conditions (be those
conditions actual external variables like climate, or just a choice of production process,
like in the example above). The objective here is to present the existent nonparametric
framework for robust conditional frontier estimation and contribute to the literature on
COVID-19 responses by trying to measure what countries were most efficient on combating
the outburst of cases and at what extent demographic characteristics (or the policies
adopted by civil society and governments) can help explain the estimated efficiency levels.

The innovation of the proposed application is the fact we do not use traditional
inputs for healthcare efficiency analysis, such as hospital infrastructure and number of
medical staff. Because we want to evaluate the response of countries in terms of controlling
death rates as well as not imposing a big socioeconomic cost on population, the proposed
input variables are proxies for the economic impact of the pandemic. In a way, we can see
this choice of variables as representing our attempt to measure which countries controlled
deaths with minimal economic impacts (or using less economic downturn). The rest of this
text is organized as follows. Chapter 2 presents the whole framework for nonparametric
efficiency analysis and explains the choice for the specific methodology used for the
proposed application. Chapter 3 presents the database and some descriptive analysis,
alongside an explanation for the choice of input, output and environmental variables as
well as the results for the proposed models. Finally, Chapter 4 brings discussion about the
results, propose an effective rank for efficiency on combating the pandemic and outlines a
possible explanation for what the data showed.
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2 EFFICIENCY ESTIMATION

Following the work of Koopmans (1951) and Debreu (1951), Farrell (1957) esta-
blished the first attempt to estimate a production frontier from a set of data containing
input usage and results from agricultural production across US states. His model is based
on the estimation of technical efficiency in terms of a efficiency score, derived directly from
the definition of production frontier - see Equations (2.4) and (2.6). The first part of this
Chapter follows basically the presentation from Simar e Wilson (2013) and is important
to introduce notation, necessary assumptions and the definitions to be used in the rest
of the text. The second part ends up describing the robust conditional order-m frontier
estimator, which will be used in the proposed application.

2.1 MATHEMATICAL AND ECONOMIC ASPECTS
A productive process can be described as any combination of production factors

(land, labor, capital, etc.) to be utilized in obtaining a final product (or output). This
definition is intrinsically linked to the interpretation of economic science as the study of
scarce resource allocation to meet relatively unlimited needs and desires of individuals
and agents. Also, it is closely connected to the common understanding that individuals
organize in firms (here DMUs) to avoid transaction costs, as firstly explored by Coase
(1937), and intend to produce goods and services in the most efficient way, limited to
existent technology. One consequence of the development of economic science, however, is
that it can easily be adapted to analyze a major part of problems in social sciences, nohow
being confined to those commonly known as economic problems (LAZEAR, 2000). In this
sense, the interpretation given in the present work for terms like productive process, or
even decision making units is not restricted to the customary understanding relating it to
firms or corporations, which means the methodology herein presented can be applied to a
vast scale of diverse and subjective problems of social life. The definitions and assumptions
presented will be rigorous in terms of notation, but mostly abstract with regards to the
economic approach. The first notion to be established is that any production process (i.e.
transformation of inputs into outputs) is limited to a feasible set, which describes the
existent technology.

Let x ∈ Rp
+ and y ∈ Rq

+, denote the vectors with quantities of p inputs and q

outputs, and let
Ψ = {(x, y) | x can produce y}. (2.1)

We have that Ψ is the set of all possible combinations of x and y such that the
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quantities y of outputs can be produced using quantities x of inputs. The following
assumptions derive directly from classic microeconomic formulation (SHEPHARD, 2015).

Assumption 1: Ψ is closed.

Assumption 2: No Free Lunch: (x = 0) ∧ (y > 0)⇒ (x, y) /∈ Ψ.

Assumption 3: Free Disposability: (x, y) ∈ Ψ⇒ (x′, y′) ∈ Ψ if (x′ ≥ x ∧ y′ ≤ y).

Particularly important to efficiency measurement in empirical problems is As-
sumption 1, because it guarantees the existence of a subset of Ψ called efficient, for if the
production of a DMU is contained in this subset, it is said to produce the given y using
the least feasible x, or, for another point of view, with a given x, it produces the maximum
y feasible. This subset is clearly given by the upper boundary of Ψ and is formally defined
as

Ψδ = {(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ ∀γ ∈ (1,∞)}. (2.2)

As described before, the set Ψδ is called production frontier and sometimes simply
technology, because it completely defines the existent technology capable of transforming
inputs into outputs. Another way of visualizing Ψδ is by noting it is the intersection
between Ψ and cl(Ψc). It is said that DMUs whose production processes are in the interior
of Ψ are technically inefficient, whilst those who operate on Ψδ are technically efficient.
The feasible set Ψ can also be described by its level sets, as below, representing the input
amount needed to produce a fixed y (i.e. the set of all x capable of producing y):

X (y) = {x ∈ Rp
+ | (x, y) ∈ Ψ}. (2.3)

The boundary set, with this notation, is defined as

X δ(y) = {x | x ∈ X (y), θx /∈ X (y),∀θ ∈ (0, 1)}. (2.4)

Note that this is the definition regarding what the literature commonly refer to as
input-oriented approach. Another way to define Ψ and its boundary is using the so-called
output-oriented approach. The feasible set, then, is given by

Y(x) = {y ∈ Rq
+ | (x, y) ∈ Ψ}, (2.5)

and the boundary

Yδ(x) = {y | y ∈ Y(x), λy /∈ Y(x), ∀λ ∈ (1,∞)}. (2.6)

Equations (2.4) and (2.6) represent, by and large, the object of study of empirical
papers seeking to measure and identify technical efficiency of DMUs. More specifically,
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the input-oriented Debreu-Farrell technical efficiency score is given by

θ((x, y) | Ψ) = inf(θ | (θx, y) ∈ Ψ)

= inf(θ | θx ∈ X (y)).
(2.7)

Given a vector of output y and a vector x of inputs (representing a DMU), the
efficient consumption of inputs is given by

xδ = θ((x, y) | Ψ) · x, (2.8)

which is the projection of (x, y) on the efficient frontier Ψδ along the ray x and orthogonal
to y. Made simple, for a given (x, y) ∈ Ψ, θ((x, y) | Ψ) represents the proportional
reduction on inputs x for which it is still feasible to produce y. Conversely, it can be seen
as the necessary reduction on x such that the DMU becomes efficient. By construction,
∀(x, y) ∈ Ψ, θ((x, y) | Ψ) ∈ (0, 1] and a DMU represented by (x, y) is efficient if and only
if θ((x, y) | Ψ) = 1. Similarly, the output-oriented Debreu-Farrell technical efficiency score
is given by

λ((x, y) | Ψ) = sup(λ | (x, λy) ∈ Ψ)

= sup(λ | λy ∈ Y(x)).
(2.9)

Now, λ((x, y) represents the proportional raise on production level (output y) such
that a DMU becomes efficient. Again, by construction ∀(x, y) ∈ Ψ, λ((x, y) | Ψ) ∈ [1,∞)
and (x, y) is efficient if and only if λ((x, y) | Ψ) = 1. Given a quantity x of inputs, and a
quantity y of outputs, the efficient level of production is given by

yδ = λ((x, y) | Ψ) · y, (2.10)

which is the projection of (x, y) on the efficient frontier Ψδ along the ray y and orthogonal
to x.

2.2 STATISTICAL ASPECTS
Apart from the economic aspects and mathematical definitions, it is still necessary

to point some considerations about the statistical characteristics of frontier estimators. In
a conventional empirical problem, the only available information is given by the sample

An = {(Xi, Yi), i = 1, . . . , n}, (2.11)

which contains the input consumption and production levels of a set of n DMUs. From this
sample, the development of any efficient frontier estimator should be grounded on answers
to a couple of basic questions about consistence, bias and asymptotic properties. This
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answers, however, depend on establishing a formal statistical model. Simar e Wilson (2013)
state that a model is composed by two different parts: (a) a probabilistic model, including
the assumptions made about the production set Ψ and the distribution of (Xi, Yi); and
(b) a description of how the sample is obtained, following the probabilistic model.

In general, the statistical model provides a theoretical description regarding the
mechanism supporting the generation of a sample An, being sometimes called data gene-
rating process (DGP). One of the prime characteristics distinguishing different statistical
models used for technical frontier estimation is the set of assumptions about the distribu-
tion of deviations from the frontier. In that sense, there is a large spectrum of models,
ranging from fully parametric approach, which assumes a given form for the distribution
function of deviations from the efficient frontier, to completely nonparametric approach,
which assumes no parametric forms for the distribution function. As expected, parametric
models are generally used when researcher has good information about the distribution
of deviations from technical efficiency. In those cases, the sample is handled in order to
estimate parameters of a given distribution function, completely describing the DGP. Fully
parametric models have the advantage of allowing deviations from the frontier to be caused
by stochastic noise, and not only by technical inefficiency, this tends to make estimators
less sensitive to outliers. Thus, within a fully parametric framework, it is also possible to
observe DMUs ranging outside the feasible production set Ψ, mainly as a consequence of
sampling failures.

On the other side, there are fully nonparametric estimators, with the advantage
that they assume no restrictive functional forms for any features of the model. This allows
for flexibility on estimation and enhance what the data (sample) itself has to say about
the production process. In some applications (like the one proposed in this paper), this
characteristic is rather important because assuming functional forms for the DGP is often
harmful when the assumptions are not properly tested and verified (which is a hard task
to complete in abstract settings). The cost for this flexibility, however, is that all pairs
(Xi, Yi) must be considered as technically feasible. In other words, the hypothesis here is
that all observations of the sample are iid from a population of DMUs whose input and
output vectors are distributed in the interior of Ψ, following some probability distribution
characterized by a density f(x, y) or cumulative distribution function (CDF) given by
F (x, y) = P (X ≤ x, Y ≤ y), with the property

P ((Xi, Yi) ∈ Ψ) = 1. (2.12)

The literature for technical efficiency often attribute to parametric models the name
stochastic approach, since they are associated with the inclusion of stochastic errors allowing
for violation of condition (2.12). Nonparametric models, on the other hand, are said to be
part of the deterministic approach, because they respect condition (2.12), commonly known
as deterministic hypothesis (KUMBHAKAR et al., 2007). This terminology, however, has
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been loosing significance since there are important developments within the literature of
nonparametric estimators allowing for violation of (2.12), as, for example, in the work
of Kumbhakar et al. (2007). Besides, Simar e Wilson (2013) state that this names can
be confusing, because in both approaches the frontier itself is a priori unknown (thus,
not determined), which is exactly what creates the necessity for estimation. As argued
before, mainly because of the characteristics of the empirical problem to be dealt with, the
presentation will now be narrowed to nonparametric estimators. Also, following this last
observations, the remaining of this text will focus on the fact that they are nonparametric
at the expense of the term deterministic.

2.3 NONPARAMETRIC ESTIMATORS
Adding to the three assumptions presented in Section 2.1, Kneip, Simar e Wilson

(2008) state other three assumptions necessary for the construction of nonparametric
estimators. The authors main goal is to derive the asymptotic distribution of estimators
based on classical linear programming methods. For now, those assumptions will be adapted
to complete the construction of a DGP commonly used in the literature to introduce Data
Envelopment Analysis (DEA) and Free Disposal Hull (FDH ) estimators.

Assumption 4: The n observations from An are realizations of iid random variables
over Ψ.

Assumption 5: (a) The (Xi, Yi) have joint probability density function f and compact
support D ⊂ Ψ; (b) f is continuous in D; and (c) f(θ(x, y)x, y) > 0, ∀(x, y) ∈ D.

Assumption 6: The functions θ(x, y) and λ(x, y) are twice continuously differentiable
for all (x, y) ∈ D.

Note that Assumption 5 (c) is particularly important, for it states that the
probability of observing DMUs operating inside any open ball containing points of the
frontier set Ψδ is strictly positive.

2.3.1 Full Frontier

The most general nonparametric estimator was formally introduced by Deprins e
Simar (1984) as a direct application of Assumptions 1-6 for a given sample. Its name:
Free Disposal Hull derives specifically from Assumption 3 which guarantees the technical
possibility of wasting resources (inputs) on any productive process, i.e. any DMU is capable
of producing less with the same amount of inputs. The estimator Ψ̂FDH is given by the set
of points (x, y) ∈ Rp+q

+ such that a DMU operating at (x, y) would be wasting resources
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when compared to at least one of the DMUs in sample An. In other words, (x, y) is said
to be dominated by at least one DMU. The formal definition is given by

Ψ̂FDH = {(x, y) ∈ Rp+q
+ | x ≥ Xi, y ≤ Yi, (Xi, Yi) ∈ An}

=
⋃

(Xi,Yi)∈An

{(x, y) ∈ Rp+q
+ | x ≥ Xi, y ≤ Yi}. (2.13)

As pointed by Simar e Wilson (2008), the nonparametric estimator for the efficiency
score of a point (x, y) is obtained through the substitution of Ψ by Ψ̂FDH in Equations
(2.7) or (2.9), depending on the approach (input-oriented or output-oriented). On practical
problems, the estimates (for the input-oriented approach) can be computed following two
simple steps: (a) identify the set D of points dominating (x, y):

D(x, y) = {i | (Xi, Yi) ∈ An, Xi ≤ x, Yi ≥ y}, (2.14)

and (b) calculate

θ̂FDH(x, y) = min
i∈D(x,y)

max
j=1,...,p

(
Xj
i

xj

)
, (2.15)

where xj denotes the jth element of vector x. A major drawback of the most general
FDH efficiency score estimator θ̂FDH(x, y), as stated before, is the fact that it necessarily
envelops the whole sample An, being this the reason it is said to be part of a class of full
frontier estimators. Practically speaking, this brings some difficulties for the empirical
researcher, regarding a high sensitivity of the estimator to presence of outliers. One solution
for this problem was handled by Cazals, Florens e Simar (2002), who presented a new class
of nonparametric frontier estimators that became known as partial frontier estimators.

2.3.2 Partial Frontier

For the presentation of partial frontier estimators, it is convenient to describe the
DGP in a pure probabilistic formulation, putting aside for a moment the definition of
production set, given in (2.13). This notation was first introduced by Cazals, Florens e
Simar (2002) and its basic idea is that the pdf given in Assumption 5 can be completely
characterized by the following probability function

HXY (x, y) = P (X ≤ x, Y ≥ y). (2.16)

It is important to notice this function is not a common distribution function, since
it uses cumulative form for x and the survival form for y. Summarizing, three interesting
properties arise from (2.16).

a) HXY (x, y) represents the probability of a unit operating at (x, y) being dominated,
i.e. the probability that at least one other unit exists producing more or the same as
y, and using x or less inputs.
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b) HXY (x, y) is non-decreasing in x and non-increasing in y.

c) The support of HXY is exactly the set Ψ, i.e. HXY (x, y) = 0,∀(x, y) /∈ Ψ.

From the definition of conditional probability, one can write

HXY (x, y) = P (Y ≥ y | X ≤ x) · P (X ≤ x)

= SY |X(y|x) · FX(x),
(2.17)

where SY |X(y|x) = P (Y ≥ y | X ≤ x) denotes the conditional survival function. Since the
support is Ψ and it is free-disposal, the frontier Ψδ can be completely defined in terms of
the conditional distributions given above (DARAIO; SIMAR, 2007). In the output-oriented
approach (the one to be used in our application), we have the efficiency score being defined
as

λ(x, y) = sup{λ′ | SY |X(λ′y | x) > 0}

= sup{λ′ | HXY (x, λ′y) > 0}.
(2.18)

It is interesting the interpretation within this framework: the score represents
the proportional increase in output necessary for a DMU operating at (x, y) to reach
zero probability of being dominated by some other. When dealing with this approach in
practical problems of estimation, it is necessary to rewrite Equation (2.18), replacing the
true HXY (x, y) by the empirical distribution ĤXY,n(x, y), which is given by

ĤXY,n(x, y) = 1
n

n∑
i=1

I(Xi ≤ x, Yi ≥ y). (2.19)

For any point (x, y) ∈ Rp+q
+ , ĤXY,n(x, y) is simply the proportion of points in the

sample An dominating (x, y). Deriving out of ĤXY,n(x, y), one can also define F̂X|Y,n(x | y)
and ŜX|Y,n(y | x), as

F̂X(x) = ĤXY,n(x, 0), (2.20)

and
ŜY |X,n(y|x) = ĤXY,n(x, y)

ĤXY,n(x, 0)
. (2.21)

Since the definitions given in Equations (2.9) and (2.18) coincide in theory, the Debreu-
Farrell technical efficiency score can be estimated by plugging-in the above empirical
correspondents of SY |X(λ′y | x) or HXY (x, λ′y) in (2.18). This approach is commonly
known as plug-in principle and it is also used when developing robust estimators for
the efficient frontier, as we intend to show next. The basic intuition for partial frontier
estimators is that they don’t envelop the whole sample, being, thus, less susceptible to
changing significantly in the presence of outliers. As described by Simar e Wilson (2013),
there are two widely used class of partial frontier estimators: (a) order-m estimators; and
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(b) α-quantile estimators, where the frontier will be seen as a α-quantile frontier, similarly
to what we see in traditional quantile-regression. In practice, α-quantile estimators are
given by substituting the zero in (2.18), with (1− α), for some α ∈ [0, 1] (generally small).

Although rather different in nature, both estimators have similar properties, often
yielding very alike results. Also, both had their consistency proved (CAZALS; FLORENS;
SIMAR, 2002) (DAOUIA; SIMAR, 2007) and asymptotic properties described (CAZALS;
FLORENS; SIMAR, 2002) (DARAIO; SIMAR, 2006). Daouia e Gijbels (2011) provide
a theoretical background for comparison of both estimators and conclude none of them
can be claimed to be preferable in all contexts. Nevertheless, in their specific tests, they
found order-m estimators to be more efficient in terms of statistical properties. Given
these considerations, and as an attempt to simplify presentation, we limit our framework
to the use of order-m estimators, to be introduced in detail. As seen in Equation (2.18),
the efficiency score can be completely characterized by SY |X(y | x), which evaluates the
behavior of DMUs using less inputs than x. Total frontier, within this framework, can
be understood as the representation of the maximum possible output level for all units
using x. This concept, following Simar e Wilson (2008), is rather extreme and somehow
detached from any real world problems. Order-m estimators are defined to be estimators
of an expected frontier, in the sense that any point (x, y) will be evaluated against the
expected maximum y for m randomly chosen units, all operating with a level of input less
then or equal to x. The first thing to be noted is that as m→∞, the order-m estimator
coincide with the full frontier estimator, as presented above. As instructively pointed by
Witte e Kortelainen (2013), the idea is to draw a sectional frontier depending on a random
set of m units which consume maximally x resources. Taking the expectation of this less
extreme benchmark, the order-m efficiency score λm(x, y) is obtained. Cazals, Florens e
Simar (2002) derived a closed form for this expectation, depending only on SY |X(y | x),
which by plug-in principle can be practically computed using the empirical ŜY |X,n(y|x):

λ̂m,n(x, y) =
∫ ∞

0
[1− (1− ŜY |X,n(uy|x))m]du. (2.22)

Fortunately, this estimator involves the calculation of a univariate integral, which
is easily implemented with numerical methods, and even for large p and q, the estimates
λ̂m,n(x, y) are easily computed (CAZALS; FLORENS; SIMAR, 2002).

2.3.3 Conditional Frontier

A classical research problem within the literature of technical efficiency is the
attempt to explain inefficiency using a set of variables to be called environmental factors.
The empirical approach investigates relationships between the estimated efficiency scores
and these external factors and the problem of explaining inefficiency is mainly important
for two different reasons: (a) accounting for heterogeneity in the conditions surrounding the
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sample DMUs, an issue that arises when one needs to rank or compare DMUs by estimating
individual efficiency scores; and (b) actually make an attempt to determine what factors
help to explain inefficiency in terms of high input usage or low output production. For this
last matter, the researcher usually has a set of observable and separable factors that can
be thought to be impacting the level of efficiency, and wants to test global interactions
between these factors and the estimated scores.

The simplest procedures are given by merely augmenting the basic statistical model
introduced earlier by treating the r environmental factors Z as free disposal inputs or
outputs that contribute to defining the attainable set Ψ ⊂ Rp+q

+ ×Rr, or simply regressing
the unconditional efficiency scores for different DMUs, using (for instance) the scores
defined in (2.22), against Z (SIMAR; WILSON, 2013). Both approaches have one or
a couple of serious problems, carefully exposed by Simar e Wilson (2013) and lucidly
summarized by Witte e Kortelainen (2013).

a) The effect of environmental factors is required to be monotone in the production
process;

b) The researcher has to know a priori whether the variables will be treated as outputs
or inputs, which is equivalent (as will be seen later) to determining if they have
positive or negative impact on the production process; and

c) For the model to be well defined in terms of statistical and economic meaning, it is
necessary to assume the so called separability condition.

This last problem, regarding the separability condition deserves to be explored in
some more detail: the separability condition states the feasible production set Ψ is not
affected by Z. In a sense, it states that Z affects only the distribution of inefficiencies, but
the attainable maximum production (the efficient frontier) is the same for every DMU,
despite any heterogeneous Z conditions they are exposed to. An easy way to interpret this
is by noting

Ψ = ∪z∈ZΨ(z) ⊂ Rp+q
+ , (2.23)

where Z ⊆ Rr is the support of Z, and

Ψ(z) = {(X, Y ) | Z = z,X can produce Y }. (2.24)

Hence, only if Ψ(z) = Ψ,∀z ∈ Z, we have the separability condition satisfied.
When this is not satisfied, though, it is kind of straightforward to notice any unconditional
estimator (i.e. one that does not consider different conditions for different DMUs) will be
deprived of economic meaning, once the attainable frontier is not the same for different
DMUs. Practically speaking, one cannot effectively compare production processes between
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firms, being, thus, unable to estimate trustworthy efficiency scores. That is basically why
two-stage approaches that involve regressing unconditional efficiency scores to external
factors can only have meaning if this condition is satisfied (SIMAR; WILSON, 2011).
Ultimately, deciding whether the separability condition holds is an empirical issue, and it is
often the case where it does not hold. Although some recent developments have been made
in the direction of testing the condition, it is also possible to use conditional efficiency
estimators, which does not depend on it. Using the probabilistic approach presented
above, Daraio e Simar (2005) proposed a completely nonparametric estimator, which is
an extension of the order-m frontier estimator. Within this framework, environmental
variables are included in the model by conditioning SY |X(y | x) also to Z = z, defining a
new conditional survival function

SY |X,Z(y | x, z) = P (Y ≥ y|X ≤ x, Z = z), (2.25)

with support given by the production technology when Z = z, or Ψ(z). Using again the
plug-in principle, we have that a robust order-m conditional estimator can be expressed
by

λ̂m,n(x, y|z) =
∫ ∞

0
[1− (1− ŜY |X,Z,n(uy|x, z))m]du. (2.26)

Here, the practical estimation problem for λ̂m,n(x, y|z) is considerably more com-
plicated, since it is necessary to apply smoothing techniques due to the equality constraint
Z = z. Cazals, Florens e Simar (2002) show the empirical analog to SY |X,Z(y | x, z) is
given by

ŜY |X,Z;n(x|y, z) =
∑n
i=1 I(Xi ≤ x, Yi ≥ y)K

(
z−Zi

h

)
∑n
i=1 I(Xi ≤ x)K

(
z−Zi

h

) . (2.27)

As widely spread in the literature, K(·) is a kernel function with compact support
and h is a bandwidth vector selected using some choice method (CAZALS; FLORENS;
SIMAR, 2002) (DARAIO; SIMAR, 2005) (WITTE; KORTELAINEN, 2013) (BĂDIN;
DARAIO; SIMAR, 2012) (CORDERO; SALINAS-JIMÉNEZ; SALINAS-JIMÉNEZ, 2017)
(MINVIEL; BOUHENI, 2021).

2.3.4 Explaining Inefficiency

After estimating an efficiency score which acknowledge for the existence of hete-
rogeneous conditions among different DMUs, we apply a widespread methodology for
evaluating how environmental factors are related to the efficiency of DMUs. Summarized
by Daraio e Simar (2007), this methodology is given by a nonparametric regression of
the estimated ratio between conditional and unconditional efficiency measures on the
environmental factors Z. This ratio is given by

R̂z = λ̂m,n(x, y|z)
λ̂m,n(x, y)

. (2.28)
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Daraio e Simar (2005) propose the use of a smooth nonparametric kernel regression
to estimate the model as R̂z = f̂(Zi) + εi. This approach is widely applied in empirical
papers and allow the researcher to detect positive, negative, neutral or even non-monotonic
effects of environmental factors on the production process (WITTE; KORTELAINEN,
2013) (BĂDIN; DARAIO; SIMAR, 2014) (MINVIEL; BOUHENI, 2021) (CORDERO;
SALINAS-JIMÉNEZ; SALINAS-JIMÉNEZ, 2017). To understand the intuition on why
evaluating this regression can help explain how environmental variables are linked to
efficiency, we first need to remind that, since we are working under an output-oriented
approach, larger efficiency scores means lower efficiency. Adapting the presentation given
by Simar e Wilson (2013), consider two different scenarios:

(a) If Z is favorable to the production process, it can be seen as acting like an extra
input, enhancing production. In this case, for larger values of z, λ̂m,n(x, y|z) is
larger than λ̂m,n(x, y) (the firm operating at (x, y) is seen as less efficient when
conditioning to Z = z). This happens because when estimating λ̂m,n(x, y), firms
operating under large values of z will have an unfair advantage over those operating
under small values of z. On the other hand, when estimating λ̂m,n(x, y|z), this unfair
advantage will be controlled for, and the firms operating under large values of z will
not anymore be seen as that much efficient. As a consequence, the ratios (2.28) will
increase as z increases.

(b) Whenever Z is unfavorable, it can be seen as acting like an unavoidable output that
adds no value to production, or simply as a condition aggravating inefficiencies within
the production process. In this case, for smaller values of z, λ̂m,n(x, y|z) is greater
than λ̂m,n(x, y) (the firm operating at (x, y) is seen as less efficient when conditioning
to Z = z). This happens because when estimating λ̂m,n(x, y), firms operating under
small values of z will have an unfair advantage over the ones operating under large
values of z. When estimating λ̂m,n(x, y|z), though, this unfair advantage will be
controlled for, and the firms operating under small values of z will not anymore be
seen as that much efficient. As a consequence, the ratios (2.28) will decrease as z
increases.

For final clarification, we examine an example from our proposed application: since
COVID-19 is commonly known to be more severe (deadly) for elderly people, we expect
the environmental variable defined as the median age of population to be considered
unfavorable to our production process. If that is indeed the case, countries operating under
small values for median age have an advantage over other countries when estimating
efficiency. But then, these countries will present smaller λ̂m,n(x, y) when compared to
the conditional estimator λ̂m,n(x, y|z), because for this last one the advantage is being
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controlled for. Summing up, we expect to see a decreasing relationship between the ratios
(2.28) and the proposed variable median age.

2.3.5 Ranking DMUs under heterogeneous conditions

In general terms, the methodology described in Section 2.3.4 serves for evaluating
the relationship between efficiency and the conditioning variables Z on the estimated
ratios defined in (2.28), which can, ultimately, lead us to infer whether a factor has positive
or negative impact on the production process. In our COVID-19 responses efficiency
analysis, however, we are also interested in ranking countries responses from the most
efficient to the least. To do so, we still make use of conditional efficiency estimates, but
applying the second-stage approach proposed by Bădin, Daraio e Simar (2012). At first,
we need to establish the concept of managerial efficiency as a measure of the ability of
managers to allocate resources effectively, removing the effects of environmental factors
(MINVIEL; BOUHENI, 2021). Here, as we did for most of the text, we generalize the terms
managers and resource allocation, for our abstract purpose. As proposed by Bădin, Daraio
e Simar (2012), we analyze the average effect of λ(x, y|z) as a function of Z, regressing the
conditional scores (and not the ratios, as we did before) on the environmental variables.
Naturally, we can get results for a model specified as

λ(X, Y |Z) = µ(z) + σ(z)ε, (2.29)

where µ(z) = E(λ(X, Y |Z)|z) and σ(z) = V(λ(X, Y |Z)|z). Within this model and using
the conditional efficiency scores estimated as first stage, we can construct an estimate for
managerial efficiency as

ε̂ = λ̂(x, y|z)− µ̂(z)
σ̂(z) , (2.30)

by applying some common nonparametric regression procedure to estimate µ̂(z) and
σ̂(z). This estimated ε̂ is viewed as the unexplained part of conditional efficiency, being
interpreted as a pure efficiency measure of the unit operating at (x, y). In simple words, ε̂
are good measures to compare DMUs after removing the effect of heterogeneous conditions,
so we use them to effectively rank countries responses.
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3 COVID-19 RESPONSES OVER COUN-
TRIES

Since the outburst of COVID-19 cases around the world, debate over what causes
different impacts in different countries and which set of policies is optimal to prevent
deaths, cases and other indirect (mainly socioeconomic) setbacks spread just as fast as
the statistics kept showing us how damaging this virus is. Following the necessity of
understanding dynamics of the pandemic, a massive amount of papers related to the topic
materialized (CAMPOS et al., 2021). For a more robust literature review on every topic
related to the spread of the virus, heterogeneous impacts, medical, social and economic
consequences of the pandemic and even policy recommendations, we point to the works of
Brodeur et al. (2021), Susskind e Vines (2020), as well as Padhan e Prabheesh (2021). As
for other papers using similar methodology to the one proposed here, applied to COVID-19
framework, we found mostly applications for assessing efficiency of healthcare systems in
a strict sense of using the available healthcare structure as input variables (number of
medical doctors, nurses, hospital beds, or health expenditure in general) and recovery or
death rates as outputs (BREITENBACH; NGOBENI; AYE, 2021), (HAMZAH; YU; SEE,
2021).

This is highly expected, since healthcare system and hospital efficiency evaluation is
one of the most popular areas of application for FDH and DEA methods (LIU et al., 2013),
and the mentioned variables are a very common choice for inputs and outputs. The novelty
of this work, thus, lies on the fact that we propose a more abstract and general application
to evaluate the responses of countries. The main objective is to determine how well each
country dealt with the pandemic crisis in terms of reducing the death toll and preventing
well-being loss. Given the lack of options for well established pharmaceutical treatment
or vaccines (at least during 2020), governments and civil societies had to put their best
efforts to avoid death escalation using so-called non-pharmaceutical interventions. These
policies, however, usually implied a huge downturn in economic activity, which notably
came associated with some extent of well-being loss, or (for a major part of countries)
a record increase in debt levels. Because we want to measure efficiency in these general
terms, i.e., trying to answer what countries suffered less from COVID-19 deaths, managing
not to impose so big of a cost on its population, expressed by deteriorating socioeconomic
indicators, it makes sense to use an abstract approach, and a nonparametric estimator to
find efficiency scores.

Besides the extent of non-pharmaceutical interventions, some demographic charac-
teristics (specially the age of population) are said to be determinants of good responses. To
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control for heterogeneous settings, we propose the use of a robust nonparametric conditional
frontier estimator to find efficiency scores for 105 evaluated countries, taking into account
the fact that each of them had different demographic structures affecting their performance
on fighting COVID-19. The inclusion of environmental factors, hence, serves two purposes:
(a) effectively rank countries and compare responses, considering heterogeneous settings,
using the methodology presented in Section 2.3.5; and (b) highlight the extent at which the
restriction policies seemed to be effective on combating the burden of the virus. For this
second objective, we aim to assess if the most practiced non-pharmaceutical interventions
(restrictions and lockdown policies) are positively correlated with the general efficiency
scores for different countries, using the methodology from Section 2.3.4.

3.1 DATABASE
Accounting for what was just exposed, our choice for output, input and environ-

mental variables goes as follows. The output is the number of deaths caused by COVID-19
per million people. As for most of proposed variables, the numbers come from COVID-19
database maintained by the initiative Our World in Data (OWID) (RITCHIE et al., 2020).
Since deaths per million is clearly an undesirable output, we adjust it by applying a linear
decreasing transformation, as proposed by Seiford e Zhu (2002). Specifically, we apply the
following transformation

y?i = (ȳ − yi)−min
i≤n
{ȳ − yi}+ 100, i ∈ {1, . . . , n}, (3.1)

where yi represents total deaths per million for country i, y?i is the final output variable
for country i, and ȳ = n−1∑n

i=1 yi. Applying this transformation, we end up with a set
where the country with largest number for deaths per million, say country i, has y?i = 100,
and y?j ≥ y?k ⇐⇒ yj ≤ yk.

For input variables, we propose the use of IMF World Economic Outlook Database
(WEO), comparing end of 2021 projections from October 2019 edition (the last one
before the outburst of cases) and April 2021 edition (more than a year after the first
cases were recorded in most countries). The idea is to quantify how projections for Gross
Domestic Product (GDP) and General Government Gross Debt (GGD) were affected by
the pandemic. Aware of possible fragility in some cases, using difference in projections for
the end of 2021, before and after the pandemic, we attempt to capture the differential
effect of COVID-19 crisis on economic activity and indebtedness. Although one can argue
this choice is not the most precise for evaluating impact on economic outcome - we could
point, for example, to a growing research agenda using difference-in-difference designs
to estimate causal effects (LECHNER, 2011) - it is convenient for our analysis because
we need indicators for the largest possible number of countries. As we see, even though
it wouldn’t serve for a detailed assessment on causality, changes in IMF projections can
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be considered good proxies of how each country economic indicators responded to the
pandemic. This choice for input variables comes in line with the objective presented earlier:
estimate which countries suffered less from COVID-19 deaths, managing not to impose
so big of a cost on its population, expressed by deteriorating socioeconomic indicators.
On this abstract application for efficient frontier estimation, input usage can be seen as
the managing not to impose so big of a cost on its population part. In other words, our
measurement tends to point as most efficient the countries which presented least deaths
per million statistics, using less economic downturn or debt increase. Formally, making
use of WEO subject codes, we define

x1 =
(
PPPGDP 2021

apr2021 − PPPGDP 2021
oct2019

PPPGDP 2021
oct2019

)
· 100, (3.2)

where PPPGDP y
my is the purchasing power parity GDP projected by IMF in the my

edition of WEO for the end of year y, and

x2 =
(
GGXWDG2021

apr2021 −GGXWDG2021
oct2019

NGDP 2021
oct2019

)
· 100, (3.3)

where NGDP represents GDP at current prices expressed in national currency units and
GGXWDG represents GGD expressed in national currency units. Indexation follows the
same logic as for x1, and details about the methodology are available on IMF website.
Note that, on defining x2, we are interested in the size of debt (GGD) compared to GDP,
but we don’t want to capture the effect of GDP projection changes, since x1 is meant to
do that. Hence, we maintain GDP projection fixed in oct2019 as denominator.

As defined, x1 and x2 express merely percentage changes in predictions for GDP
and GGD. Since we are interested in economic downturn to be considered as input usage,
we need both x variables to be such that higher values represent higher economic struggle
(higher x1 has to denote more negative GDP variation and higher x2 has to denote
increasing debt levels). To achieve this, and transforming such that there are no negative
values, we define

x?1i = (x̄1 − x1i)−min
i≤n
{x̄1 − x1i}+ 100, i ∈ {1, . . . , n}, (3.4)

and
x?2i = (x2i − x̄2)−min

i≤n
{x2i − x̄2}+ 100, i ∈ {1, . . . , n}, (3.5)

which are the final inputs to be used in estimation.

For the environmental factors we propose the use of variables collected from OWID
database: (z1) median age of population (UN projection for 2020), expressed in years;
(z2) government response stringency index (composite measure based on nine indicators
including school and workplace closures, as well as travel bans, scaled to a value from 0
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Tabela 1 – Output, Inputs and Environmental Factors

N Mean St. Dev. Min Pctl(25) Pctl(75) Max
y 105 781.272 797.196 5.392 69.680 1,287.902 3,077.839
x1 105 −7.271 11.946 −48.131 −13.796 −0.160 22.375
x2 105 9.053 7.731 −2.359 4.014 12.581 46.043
z1 105 32.843 9.238 16.400 25.400 41.800 48.200
z2 105 60.814 10.598 34.043 53.464 68.519 84.870
z3 105 −24.634 12.547 −51.211 −33.693 −15.756 10.024

Fonte: Elaboração própria.

to 100, where 100 = strictest response); and (z3) retail and recreation number of visitors
change, measured by Google in its COVID-19 Community Mobility Reports, expressed in
percentage change when compared to baseline days (the median value for the 5-week period
from January 3 to February 6, 2020)1. Variable z1 is the one used for ranking countries
(applying the methodology from Section 2.3.5), since it is seen as the main environmental
factor impacting COVID-19 hits severity. Variables z2 and z3, which summarize the average
extent of non-pharmaceutical interventions, are added to the specification in order to
apply the methodology presented in Section 2.3.4 and evaluate the relationship between
efficiency and these policies. Actually, for z2 and z3, OWID and Google provide daily
information, so we use the average number for the sample of days, meaning that we are
considering how strict (and effectively adopted by citizens) restriction policies were on
average during the evaluated period (from 2020/03/01 to 2021/05/31). For more details
about these three variables, we point to OWID COVID-19 website. To summarize the
distribution of the proposed variables, a descriptive analysis is set in Table 1. The sample
size of 105 countries was reached after gathering information on every proposed variable
and filtering them by number of cases of COVID-19 per million greater than 500.

3.2 ESTIMATION DETAILS
The fact that our application is fairly abstract immediately suggests the use of a

nonparametric estimator, as proposed in previous Sections. More specifically, we propose
the use of a conditional order-m efficiency estimator, which does not require any parametric
assumptions that could be over-restrictive for our framework. To choose the size of m, we
follow a widely used methodology where m is set to be the value for which the number of
super-efficient (λ̂m < 1) observations decreases smoothly (DARAIO; SIMAR, 2007). After
this analysis, our choice for m is 20.

Now for the smoothing of Z, it is necessary that we use a kernel with compact
support given by {z : |z| ≤ 1}, since for unbounded support kernels (like the gaussian
kernel) the estimates will be unable to detect any influence of environmental variables
1 For the application, we actually use negative values of the true variable. It helps on interpretation of

results (larger values represent stricter responses) and does not affect efficiency estimates.
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Tabela 2 – Bandwidth selection (model: z = (z1, z2, z3))

z1 z2 z3

hcv 2.1705 5.5530 3.6990
Fonte: Elaboração própria.

Tabela 3 – Descriptive analysis for countries with λ̂(x, y) > 1

N Mean St. Dev. Min Pctl(25) Pctl(75) Max

λ̂(x, y) 79 2.156 3.621 1.008 1.081 1.967 31.679
y? 79 2,205.185 799.203 100.000 1,606.500 2,930.800 3,142
x1 79 130.833 11.613 110.402 123.085 136.270 170.506
x2 79 112.330 6.841 100.889 108.340 116.262 138.138

Fonte: Elaboração própria.

(DARAIO; SIMAR, 2005). Here, we use Epanechnikov kernel, a very natural choice, and
highlight the fact that Daraio e Simar (2007) acknowledge it is well known in applications
like this that the results are robust to the choice of function (provided it belongs to the
class with support presented before). This is not the case for the choice of bandwidth
vector h. For that matter, we use Least Squares Cross-Validation (LSCV), a data-driven
method that selects bandwidth minimizing the integrated squared error of the distribution
estimate, providing an optimal bandwidth for all z in the support of K(z). For details on
the methodology, we point to Li e Racine (2007). Applying LSCV method for the model
with all environmental variables, the chosen bandwidths are given in Table 2. For the
model that solely controls for z1, we have hcv = 1.5907.

Finally, for applying the methodologies presented in Sections 2.3.4 and 2.3.5, we use
local constant regression for estimation (PAGAN et al., 1999). Also, following the approach
by Witte e Kortelainen (2013), when estimating the relation of non-pharmaceutical
interventions and the ratios, we will not delimit to descriptive analysis, as we will also
test for significance. To achieve this, after estimating the conditional mean for each point
of the sample, we apply bootstrap tests (which in this context work as a nonparametric
analogous of standard t-tests in ordinary least squares regression), as proposed by Racine
(1997).

3.3 RESULTS
First, we present a description of the estimates for the unconditional efficiency

scores. Tables 3, 4 and 5 show statistics for the 105 countries, grouped by λ̂(x, y) greater,
smaller or equal to 1 (inefficient, super-efficient and efficient). For clarification, because
we are using order-m partial frontier estimator, the existence of super-efficient countries
is possible, meaning they perform better than the average m = 20 countries they were
benchmarked with.
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Tabela 4 – Descriptive analysis for countries with λ̂(x, y) = 1

N Mean St. Dev. Min Pctl(25) Pctl(75) Max

λ̂(x, y) 7 1.000 0.000 1.000 1.000 1.000 1.000
y? 7 2,484.057 611.938 1,663.943 1,931.199 2,933.544 3,118.848
x1 7 116.293 14.548 100.000 104.910 125.592 139.749
x2 7 104.501 5.499 100.000 101.206 105.424 115.885

Fonte: Elaboração própria.

Tabela 5 – Descriptive analysis for countries with λ̂(x, y) < 1

N Mean St. Dev. Min Pctl(25) Pctl(75) Max

λ̂(x, y) 19 1.000 0.0003 0.999 1.000 1.000 1.000
y? 19 3,160.078 14.232 3,109.814 3,153.554 3,168.956 3,172.447
x1 19 129.632 9.699 110.883 123.379 136.491 144.724
x2 19 110.138 10.415 100.103 106.139 109.757 148.402

Fonte: Elaboração própria.

3.3.1 Ranking responses

As stated earlier, our specification for ranking countries responses considers the
output variable y?, the two inputs x?1 and x?2, along with z1, the median age of population
as conditioning variable. Because we are already working with two input variables, and
a limited sample size, we could not add as many environmental variables as we first
intended, since efficiency estimates rapidly lost discriminatory power due to the curse of
dimensionality (CHARLES; APARICIO; ZHU, 2019). Some other factors we considered
for controlling heterogeneous settings included population density, NCD prevalence and
smoking habits. For the last two, we did not find data for a large enough number of
countries, which means adding them to the model would narrow the already restricted
sample size, enhancing the discriminatory power problem. As for population density, we ran
some tests with it as a second controlling variable and found mostly similar results, with
less significance on the regression and a larger number of countries being rated as efficient
(λ̂(x, y|z) = 1). As discussed by Charles, Aparicio e Zhu (2019), this is the main sign of
decreased discriminatory power of the estimation, which suggests a data set is not suited
for frontier estimation with DEA (FDH) like methods. Trying to overcome this problem,
we propose this restricted specification, controlling only for the median age of population.
We base our decision on the fact that epidemiological evidence vastly points to the severity
of infections being highly linked to the age of patients (CAMPOS et al., 2021). As for
population density, since we are leaving it out as an environmental factor, we point to an
interesting discussion about deaths and contamination rates in highly populated areas,
see Hamidi, Sabouri e Ewing (2020) and Arbel et al. (2021). Before presenting the final
ranking of countries responses, we exhibit some general results found when applying the
methodology introduced in Section 2.3.5. After estimating the conditional efficiency scores
λ̂(x, y|z1) as first stage, we followed the second stage approach proposed by Bădin, Daraio
e Simar (2012), and regressed its logarithm log λ̂(x, y|z1) on z1. Within this framework,
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Figura 1 – Second stage regression: effect of median age on conditional efficiencies

Fonte: Elaboração própria.

figures 1 and 2 are used to analyze the effect of z1 on conditional efficiencies log λ̂(x, y|z1).
At first, we note from Figure 1 that the regression line µ̂(z1) increases with larger values
of z1, indicating worst responses for higher levels of z1 (median age). From the analysis of
the histogram in Figure 2a, we note that managerial efficiencies are highly concentrated
around zero, with mostly negative values (fewer inefficient countries than efficient). As for
the scatter plot in Figure 2b, we find no specific pattern, indicating independence between
them (correlation is calculated at 0.0051). This is important since it indicates our model
has cleaned most of the effects of z1 from our managerial efficiency measures, confirming
them as good quantities to rank countries (MINVIEL; BOUHENI, 2021) (CORDERO;
SALINAS-JIMÉNEZ; SALINAS-JIMÉNEZ, 2017). Finally, the ordering with results for
all countries on the second-stage approach is presented in Tables 6 and 7.

3.3.2 Evaluating the relationship between efficiency and non-pharmaceutical
interventions

Now for evaluating how non-pharmaceutical interventions are linked to the estima-
ted scores, we apply the methodology presented in Section 2.3.4. For that purpose, besides
controlling for z1, we add variables z2 and z3 as proxies for the average non-pharmaceutical
responses over countries. After estimating conditional efficiency scores within this specifi-
cation, we calculate the ratios given in (2.28) for each country. Since we are using partial
estimators (order-m), the goal here is to analyze the global correlation between Z and the
efficient frontier as well as on the distribution of inefficiencies (BĂDIN; DARAIO; SIMAR,
2012). Controlling for heterogeneous characteristics (here, for median age of population),
the reference sample for comparison is delimited to countries with similar environments
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Tabela 6 – Ranking countries responses by ε̂, the managerial efficiency estimates (most
efficient response first)

Rank Country y? x?
1 x?

2 z1 log λ̂(x, y) log λ̂(x, y|z1) µ̂(z1) σ̂(z1) ε̂

1 KOR 3139.55 126.28 108.30 43.40 0.01 -0.00 0.72 0.15 -4.93
2 CHE 1928.80 113.30 102.37 43.10 0.00 0.00 0.71 0.14 -4.91
3 FIN 3005.30 121.26 108.71 42.80 0.05 -0.00 0.68 0.14 -4.83
4 SGP 3172.20 126.32 110.15 42.40 -0.00 -0.00 0.64 0.14 -4.65
5 DNK 2743.29 116.01 109.11 42.30 0.14 -0.00 0.63 0.14 -4.59
6 BLR 2876.12 128.15 100.11 40.30 0.00 0.00 0.36 0.10 -3.49
7 THA 3163.07 135.75 107.94 40.10 -0.00 -0.00 0.32 0.09 -3.45
8 EST 2234.03 120.98 118.30 42.70 0.35 0.20 0.67 0.14 -3.37
9 DEU 2120.34 122.53 116.99 46.60 0.40 -0.00 0.50 0.15 -3.27
10 KHM 3165.04 136.81 100.77 25.60 -0.00 0.00 0.11 0.03 -3.23
11 BOL 1933.60 123.03 102.30 25.40 0.00 0.00 0.11 0.03 -3.14
12 KGZ 2900.72 100.00 115.88 26.30 0.00 0.00 0.14 0.05 -3.11
13 NOR 3033.41 138.08 102.47 39.70 0.04 -0.00 0.29 0.09 -3.08
14 SWE 1746.94 125.33 107.78 41.00 0.59 0.10 0.48 0.13 -2.98
15 NPL 2924.34 111.36 114.09 25.00 0.08 0.00 0.10 0.03 -2.95
16 HND 2536.42 122.64 111.38 24.90 0.22 0.00 0.09 0.03 -2.90
17 LUX 1875.87 115.71 108.86 39.70 0.52 0.02 0.29 0.09 -2.89
18 BGD 3101.22 126.22 103.74 27.50 0.02 -0.00 0.16 0.06 -2.88
19 CAN 2501.46 125.74 132.30 41.40 0.23 0.15 0.52 0.13 -2.80
20 BRB 3014.29 150.76 121.18 39.80 0.05 0.05 0.29 0.09 -2.64
21 TJK 3168.40 124.15 102.36 23.30 -0.00 -0.00 0.06 0.02 -2.62
22 NLD 2133.36 124.62 111.22 43.20 0.40 0.34 0.71 0.14 -2.56
23 PNG 3159.73 127.79 107.91 22.60 -0.00 -0.00 0.05 0.02 -2.36
24 MEX 1443.85 129.81 103.57 29.30 0.78 0.00 0.15 0.06 -2.32
25 MMR 3118.71 160.34 103.83 29.10 0.02 0.00 0.15 0.06 -2.31
26 PAN 1701.28 121.82 107.16 29.70 0.60 0.00 0.14 0.06 -2.22
27 MYS 3091.45 142.77 106.90 29.90 0.02 -0.00 0.14 0.06 -2.19
28 MLT 2228.89 131.60 119.07 42.40 0.35 0.34 0.64 0.14 -2.19
29 GHA 3152.58 144.72 118.89 21.10 -0.00 -0.00 0.03 0.02 -2.17
30 AUT 2000.57 121.88 117.97 44.40 0.46 0.40 0.74 0.17 -2.05
31 IRL 2177.19 113.32 112.11 38.70 0.37 -0.00 0.16 0.08 -2.01
32 GEO 1981.35 110.40 117.82 38.70 0.45 -0.00 0.16 0.08 -2.01
33 RWA 3150.59 136.17 109.37 20.30 -0.00 -0.00 0.02 0.01 -1.83
34 IDN 2992.93 140.84 108.38 29.30 0.06 0.03 0.15 0.06 -1.78
35 JAM 2857.69 127.72 106.37 31.40 0.10 -0.00 0.10 0.06 -1.78
36 TUR 2614.32 116.25 110.17 31.60 0.19 -0.00 0.10 0.06 -1.76
37 SAU 2966.37 139.75 100.00 31.90 0.00 0.00 0.09 0.05 -1.72
38 GAB 3109.55 144.04 118.00 23.10 0.02 0.02 0.06 0.02 -1.71
39 KEN 3118.85 104.80 106.20 20.00 0.00 0.00 0.02 0.01 -1.70
40 KAZ 2993.94 135.04 109.31 30.60 0.06 0.02 0.13 0.06 -1.65
41 IND 2937.34 147.08 110.85 28.20 0.08 0.07 0.17 0.06 -1.64
42 ITA 1091.76 121.04 116.87 47.90 1.06 0.00 0.19 0.12 -1.62
43 LVA 1918.16 127.08 109.58 43.90 0.50 0.49 0.73 0.15 -1.57
44 GRC 2017.43 129.63 113.86 45.30 0.45 0.45 0.73 0.19 -1.50
45 PAK 3083.45 138.22 105.88 23.50 0.03 0.03 0.06 0.02 -1.47
46 TGO 3162.74 111.31 110.77 19.40 -0.00 -0.00 0.01 0.01 -1.46
47 NZL 3172.45 122.23 118.33 37.90 -0.00 -0.00 0.09 0.07 -1.43
48 BRA 1000.61 133.81 104.85 33.50 1.15 0.00 0.07 0.05 -1.43
49 CRI 2384.57 115.82 106.34 33.60 0.27 0.00 0.07 0.05 -1.39
50 SRB 2168.96 124.87 111.28 41.20 0.38 0.32 0.50 0.13 -1.37
51 DOM 2843.40 132.06 109.29 27.60 0.11 0.09 0.16 0.06 -1.36
52 LTU 1610.78 120.50 122.13 43.50 0.67 0.53 0.73 0.15 -1.34
53 JPN 3075.01 129.86 115.84 48.20 0.03 -0.00 0.15 0.12 -1.32

Fonte: Elaboração própria.



Capítulo 3. COVID-19 responses over countries 33

Tabela 7 – Ranking countries responses by ε̂, the managerial efficiency estimates (most
efficient response first)

Rank Country y? x?
1 x?

2 z1 log λ̂(x, y) log λ̂(x, y|z1) µ̂(z1) σ̂(z1) ε̂

54 PHL 2986.51 139.42 109.80 25.20 0.06 0.06 0.10 0.03 -1.29
55 SLV 2831.10 126.83 112.92 27.60 0.11 0.09 0.16 0.06 -1.28
56 LKA 3110.54 132.73 114.94 34.10 0.02 -0.00 0.06 0.05 -1.27
57 MDA 1663.94 105.02 104.65 37.60 0.00 0.00 0.08 0.06 -1.26
58 AUS 3142.15 127.39 132.29 37.90 0.01 0.01 0.09 0.07 -1.26
59 MUS 3163.68 143.90 107.48 37.40 -0.00 -0.00 0.08 0.06 -1.24
60 BEN 3169.51 129.95 109.33 18.80 -0.00 -0.00 0.01 0.01 -1.23
61 CMR 3129.81 133.20 102.39 18.80 0.01 0.00 0.01 0.01 -1.23
62 CIV 3166.28 110.88 108.04 18.70 -0.00 -0.00 0.01 0.01 -1.22
63 SEN 3109.81 141.09 100.10 18.70 -0.00 0.00 0.01 0.01 -1.22
64 BHS 2592.97 123.56 109.80 34.30 0.20 -0.00 0.05 0.05 -1.18
65 ROU 1602.18 117.44 114.66 43.00 0.68 0.54 0.70 0.14 -1.14
66 AGO 3154.53 122.61 148.40 16.80 -0.00 0.00 0.00 0.00 -1.13
67 NGA 3167.66 138.52 104.63 18.10 -0.00 -0.00 0.01 0.01 -1.13
68 QAT 2984.85 154.64 108.73 31.90 0.06 0.03 0.09 0.05 -1.12
69 MLI 3152.31 129.96 105.63 16.40 -0.00 0.00 0.00 0.00 -1.08
70 UGA 3169.93 128.91 107.85 16.40 -0.00 0.00 0.00 0.00 -1.08
71 MOZ 3151.09 131.27 106.65 17.70 -0.00 -0.00 0.01 0.01 -1.03
72 BFA 3169.90 120.65 108.01 17.60 -0.00 -0.00 0.01 0.01 -1.00
73 ISR 2437.04 120.47 113.41 30.60 0.26 0.07 0.13 0.06 -0.90
74 URY 1946.88 130.98 105.36 35.60 0.48 -0.00 0.03 0.04 -0.79
75 PRT 1508.18 122.50 117.20 46.20 0.74 0.48 0.63 0.19 -0.77
76 ARE 3007.98 138.87 116.95 34.00 0.05 0.03 0.06 0.05 -0.62
77 OMN 2718.63 161.84 101.89 30.70 0.15 0.09 0.13 0.06 -0.62
78 CHL 1645.11 134.07 105.14 35.40 0.65 0.01 0.03 0.03 -0.41
79 TTO 2824.14 147.81 104.43 36.20 0.11 0.03 0.05 0.06 -0.38
80 BWA 2816.81 136.90 113.48 25.80 0.12 0.12 0.12 0.04 -0.04
81 ESP 1467.79 128.74 115.22 45.50 0.77 0.76 0.72 0.19 0.18
82 BHR 2601.91 129.63 110.17 32.40 0.20 0.09 0.08 0.05 0.39
83 FRA 1554.35 123.53 112.66 42.00 0.71 0.66 0.60 0.14 0.42
84 HRV 1222.79 125.50 114.34 44.00 0.95 0.89 0.73 0.16 1.02
85 CPV 2703.01 144.71 100.89 25.70 0.16 0.16 0.12 0.04 1.19
86 SVN 1073.39 124.34 113.58 44.50 1.08 1.03 0.74 0.17 1.70
87 ZMB 3108.16 143.39 138.14 17.70 0.02 0.02 0.01 0.01 1.89
88 POL 1229.32 126.20 111.59 41.80 0.95 0.89 0.58 0.13 2.31
89 BEL 1024.62 119.48 117.28 41.80 1.13 0.98 0.58 0.13 3.01
90 ZAF 2225.09 135.15 108.41 27.30 0.35 0.33 0.16 0.06 3.06
91 NAM 2851.18 139.57 108.59 22.00 0.11 0.11 0.04 0.02 3.20
92 GBR 1291.66 127.81 120.77 40.80 0.90 0.89 0.45 0.12 3.58
93 ECU 2011.83 129.03 113.92 28.10 0.45 0.43 0.17 0.06 4.26
94 GTM 2722.09 129.86 104.99 22.90 0.15 0.15 0.05 0.02 4.52
95 BGR 630.51 129.98 110.03 44.70 1.61 1.60 0.75 0.17 4.96
96 SVK 917.07 135.64 113.99 41.20 1.24 1.23 0.50 0.13 5.63
97 BLZ 2362.99 153.40 121.11 25.00 0.29 0.29 0.10 0.03 5.96
98 PRY 1889.94 132.14 112.22 26.50 0.52 0.51 0.15 0.05 7.41
99 BIH 357.50 127.08 105.51 42.50 2.18 1.69 0.65 0.14 7.48
100 CZE 366.37 120.61 114.45 43.30 2.16 2.01 0.72 0.15 8.87
101 IRQ 2770.73 170.51 116.68 20.00 0.13 0.13 0.02 0.01 9.36
102 USA 1381.52 124.55 122.31 38.30 0.83 0.82 0.12 0.07 9.48
103 COL 1433.17 133.35 113.61 32.20 0.79 0.69 0.08 0.05 12.81
104 PER 1074.77 140.50 108.86 29.10 1.08 1.06 0.15 0.06 14.11
105 HUN 100.00 129.14 119.51 43.40 3.46 3.44 0.72 0.15 18.50

Fonte: Elaboração própria.
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Figura 2 – Analysis of managerial efficiencies

(a) Histogram (b) Scatter plot against median age

Fonte: Elaboração própria.

Tabela 8 – Descriptive analysis of ratios R̂z (model: z = (z1, z2, z3))

N Mean St. Dev. Min Pctl(25) Pctl(75) Max

R̂z 105 0.851 0.185 0.113 0.688 1.000 1.001
Fonte: Elaboração própria.

and this can ultimately allow us to understand how z2 and z3 impact efficiency. Table
8 depicts statistics for the calculated ratios. As stated before, to assess the relationship
between environmental factors and efficiency scores, we nonparametrically regress the
ratios R̂z on Z and evaluate partial regression plots of each factor against the given
ratio. Practically, this analysis can help us understand the extent at which Z is affecting
COVID-19 responses over countries, allowing us to detect (confirm) how the median age
of population (variable z1) intensified the stroke of the virus and ultimately serving as an
indicative of effectiveness for non-pharmaceutical interventions (characterized by variables
z2 and z3). For the nonparametric local constant regression, we use LSCV method to select
bandwidths and Epanechnikov kernel function, just as we did for the estimation of λ̂(x, y|z).
The partial regression plots are set in Figure 3. While evaluating for zi we set all other
zj, j 6= i on their median value, as usual in the literature for multivariate regression. The
regression significance test results (p-values) are given in Table 9, alongside the description
for the average effect, as observed from partial plots. For statistical inference, we used
1.000 bootstrap replications.
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Figura 3 – Partial plots (z1 = median age, z2 = stringency index, z3 = retail and recreation
visitors change)

Fonte: Elaboração própria.

Tabela 9 – Nonparametric significance test (model: z = (z1, z2, z3))

p-value Average effect (from partial plot)
z1 (Median Age) < 2e− 16 Negative
z2 (Stringency Index) 0.046 Non-monotonic/Negative
z3 (Retail and Recreation Visitors Change) 0.075 Non-monotonic/Negative

Fonte: Elaboração própria.
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4 DISCUSSION

As stated before, the conditional structure of the proposed estimator implies
that efficiency scores will be taking into account heterogeneous environments, so that
countries responses to COVID-19 crisis will be compared to a narrower set of responses,
from countries with similar characteristics. In general, though, even when applying the
methodology described in Section 2.3.4, whether we can infer causal impacts of the
environmental variables on efficiency scores is a matter of determining if all (observed
and unobserved) variables causing heterogeneity between countries are being controlled
for. Since it is inconceivable to assert we are controlling for every cause of heterogeneity
just by adding median age as environmental factor, we leave the study of causal effects
for future research. That being said, we focus solely on what the data showed within the
framework we proposed, and try to outline some possible reasoning for the results. First,
we analyze the results for each of the proposed environmental factors:

(z1) As expected, it appears that countries with higher median age of population strug-
gled more (on average) with the spread of the virus. This comes in line with the
epidemiological evidences asserting the diseases severity and lethality is indeed
age-dependent (CAMPOS et al., 2021), affecting disproportionately the elders. In
that sense, countries with higher median age suffered with higher death rates, being
unable to avoid the escalation of lethal infections even after imposing hard restriction
policies that significantly impacted economic indicators.

(z2) The stringency index summarizes information about government responses regar-
ding school and workplace closures, cancellation of public events, restrictions on
gatherings, closed public transportation services, restrictions on internal movement
and international travel, test and contact tracing police and requirement of facial
coverings. At first, we expected higher average indexes would help explain higher
levels of estimated efficiency scores, but we did not observe that. In fact, analyzing
the partial regression plot, it shows a negative (or neutral for larger values of z2

1)
relationship between stricter responses and the calculated ratios. This is an indicative
that duration of government restriction policies were not that effective on preventing
deaths, whilst it is hard to assert they were not linked to a deterioration of economic
indicators. In fact, a number of issues arise when evaluating results for this variable
and we present some thoughts on why this is what the data showed. Countries with
higher death rates were (almost by definition) the ones struggling more with the

1 We even note an increasing behavior for z2 > 80, but this is negligible, specially because confidence
intervals become very large at this point.
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pandemic, and this struggling demanded actions from governments, which responded
by maintaining restriction policies for longer periods. This is the reasoning for a
possible causality design operating contrary to what we were expecting. In other
words, it is likely that higher death rates caused stricter responses, that caused
economic downturn and debt increase, which explains the higher inefficiency levels.
Summarizing, it is not as if our results are necessarily showing restriction policies
caused inefficiency, but it is also not absurd to assert maintaining restrictions for
longer periods, at least the way they were implemented on most countries, was
relatively not effective on stopping death escalation, considering the cost in terms of
activity reduction and debt increase2. In this sense, we could look at the anecdotal
evidence from New Zealand. Commonly referred to as a role model for combating
the pandemic, the island is, in our sample, indeed, the country with least deaths per
million, and presents only the 103th average strictest response during the evaluated
period (out of 105 countries). Besides the convenience of not having terrestrial
frontiers in a pandemic situation, another possible explanation for this is the success
of assertive restriction policies, in the right time (contrary to long and unsteady
political responses), that allowed the government to ease constrains as soon as
the number of cases was completely under control. In essence, within this point of
view, we could assert the more effective a country was on combating the virus with
decisive non-pharmaceutical interventions, the sooner it was able to ease restrictions,
presenting, thus, a small average stringency index for the whole evaluated period.
In other words, our measurement does not take into account quality or timing of
implemented policies, and this is probably a main issue on determining how successful
they were. Any causal study on this matter must take these into account, most likely
by expanding the study to a time series analysis of detailed implemented restrictions
and direct observed results.

(z3) The second variable related to non-pharmaceutical interventions is the average
Google Mobility Trends retail and recreation visitors change during the evaluated
period. The reasoning for including z3 is the fact that (as always in public economics)
population responses may significantly differ from the intention of policy-makers.
Since the numbers represent percentage change in visitors, it is important to note
that decreasing values can be seen as proxies for stricter responses, which is why
we adjusted our sample (to ease interpretation) by taking negative values of the
original variable. In Figure 3 the partial plot is already adjusted, so z3 = −10, for
example, means the number of visitors in retail and recreation increased by 10%.
Again, regardless the non-monotonic shape of the curve, the plot indicates a negative

2 It is really important to note we are not proposing a trade-off relation between economic burden and
lives lost by COVID-19. Here, we simply infer that (when comparing responses) some countries were
able to control the disease with less GDP reduction or GDD increase than others, and try to identify
whether and how non-pharmaceutical interventions interacted with this process.
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relationship between z3 and efficiency estimates (specially for higher values of z3).
Consequently, we simply extend the previous analysis in terms of possible explanation
for the results.

Besides explaining inefficiency with environmental variables, another objective of
the proposed application is the effective ranking of countries responses, as we did in Tables
6 and 7. It is worth highlighting some of the observed results:

a) Hungary presented, in all measures, the least efficient response, mainly due to very
high debt increase within IMF predictions for the end of 2021, and to the fact that it
presented the higher deaths per million statistic on the end of the evaluated period
(approximately 3.077 deaths per million in 2021/05/31);

b) Peru and Colombia would be ranked as 9th and 15th least efficient countries when
evaluating unconditional scores and as 6th and 14th if we were to use the conditional
scores alone. Besides, when we look at the unconditional scores, not only they
were better ranked, but they also presented scores much closer to the average of
countries (the average is 1.87, Peru has 2.95 and Colombia 2.21). When applying
the methodology described in Section 2.3.5, though, ranking by ε̂ (the managerial
efficiency estimate), they stand out as 2nd and 3rd most inefficient, with ε̂ of 14.11
and 12.81, contrasting with the average of −0.20. This is directly linked to the
fact that both countries were in an advantageous positions in terms of population
age, and the applied methodology clears the effect of environmental advantages,
displaying the true level of inefficiency they attained.

c) When evaluating efficient responses, we observe some regions of the world standing
out. As an example, the countries of our sample that belong to Eastern Asia and
South-eastern Asia, presented mean values of −3.12 and −2.70 for ε̂, meaning they
were much more efficient than the estimated average, conditional on their values of
z1. On Table 10, we can compare the distributions of ε̂ by world region and contrast,
for example, what we just said about Eastern Asia and South-eastern Asia with the
results for Eastern Europe (mean ε̂ of 4.30), the most inefficient region on combating
COVID-19.

4.1 CONSIDERATIONS ABOUT THE ESTIMATION
Having estimated the efficiency scores for each country, we bring some considerations

about the conclusiveness of our findings. First, we point to the fact that in our exploratory
analysis, we find a great deal of countries operating under low input usage and high output
levels. Intuitively, this is a problem for estimating efficiency frontiers since higher input
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Tabela 10 – Managerial efficiency estimates (ε̂) distributions, by world regions

Region N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Eastern Asia 2 -3.12 2.55 -4.93 -4.02 -2.22 -1.32
South-eastern Asia 7 -2.70 1.15 -4.65 -3.34 -1.99 -1.29
Central Asia 3 -2.46 0.74 -3.11 -2.87 -2.14 -1.65
Melanesia 1 -2.36 -2.36 -2.36 -2.36 -2.36
Northern Europe 9 -2.24 2.50 -4.83 -3.37 -1.57 3.58
Southern Asia 5 -2.04 0.81 -2.95 -2.88 -1.47 -1.27
Western Europe 7 -1.75 2.64 -4.91 -3.08 -0.82 3.01
Caribbean 5 -1.47 0.83 -2.64 -1.78 -1.18 -0.38
Middle Africa 3 -1.36 0.31 -1.71 -1.47 -1.18 -1.13
Australia and New Zealand 2 -1.34 0.12 -1.43 -1.39 -1.30 -1.26
Western Africa 9 -1.04 0.91 -2.17 -1.23 -1.08 1.19
Eastern Africa 6 -0.83 1.37 -1.83 -1.58 -1.04 1.89
Central America 7 0.05 3.61 -2.90 -2.27 1.62 5.96
Western Asia 9 0.11 3.55 -2.01 -1.72 -0.62 9.36
Southern Europe 9 0.33 2.98 -2.19 -1.50 1.02 7.48
Southern Africa 3 2.07 1.83 -0.04 1.51 3.13 3.20
Northern America 2 3.34 8.68 -2.80 0.27 6.41 9.48
South America 8 4.10 6.70 -3.14 -0.95 8.76 14.11
Eastern Europe 8 4.30 7.07 -3.49 -1.17 6.44 18.50

Fonte: Elaboração própria.

levels should translate into more output, and any significant deviations from this pattern
probably means there are other factors impacting production. Of course, by controlling
for the median age, we intend to tackle this, but there are certainly other circumstances
influencing output and input levels on this abstract approach we propose. We could point
to the very fact that our measurement of economic impacts may produce some gaps in
estimation. For example, it is perfectly possible that a number of countries presented
(in April 2021) substantially recovery signs, which led projections for the end of 2021
to be more optimistic, specially regarding the advance of vaccination policies. Unlike
non-pharmaceutical interventions, which were implemented differently across countries,
with heterogeneous results, vaccines have tested efficacy and are important tools to prevent
deaths, working basically the same way around the globe. Including information about
vaccination progress in countries, hence, could serve for isolating this factor on comparing
countries and estimate better conditional scores for ranking them. Due to lack of available
data for a sufficient amount of countries in our sample, we leave that information out of
the proposed models.

In what concerns sample size, empirical applications of nonparametric frontier
estimators usually demand a large number of observations, which, unfortunately, was not
possible here. Since we propose analyzing countries efficiencies, we depart from an already
reduced sample (total number of countries integrating UN is 193). At our best effort, we
managed to gather the information needed for 114 countries. After filtering countries with
less than 500 cases per million and removing outliers, we ended up with our sample of 105
countries. As a suggestion for future research, we leave the idea of estimating efficiency
scores in similar frameworks for cities or states within countries. This should increase
significantly the sample size, possibly leading to more trustworthy results and allowing for
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the inclusion of other controlling variables.



41

5 CONCLUDING REMARKS

In light of the different impacts of COVID-19 around the world, we propose an
application of conditional nonparametric order-m partial frontier estimation to rank
countries efficiencies on combating the pandemic and to evaluate the interaction between
non-pharmaceutical interventions and the efficiency of responses. We apply two distinct
second-stage approaches:

a) At first, we nonparametrically regress conditional efficiency scores on environmental
variable median age, in order to rank countries by the residuals of this regression,
widely understood as managerial efficiency measures;

b) To estimate how non-pharmaceutical interventions interacted with the efficiency
scores, we regress the ratios of conditional and unconditional efficiency scores on
the conditioning factors, and test significance. We find that variables median age,
stringency index and retail and recreation visitors change were significant for having a
negative relationship with the efficiency estimates. We point that variables stringency
index (z2) and retail and recreation visitors change (z3) can be mostly considered
to be measures of duration of restriction policies and social distancing, as they
are not really informative on the quality and timing of interventions. Hence, our
findings simply assert the maintenance of restrictions for longer periods was not
effective (on average). Any causal study on this matter should consider the timing
and differentiate types of actions took in different countries to reach more conclusive
results.

Throughout the text, we approach some topics for future research. First of all,
there is the causality issue. Witte e Kortelainen (2013) point that efficiency analysis
papers are usually only concerned with correlation between environmental variables and
efficiency outcomes, neglecting endogeneity and causality issues (this is indeed the case
here). Another related point is the inclusion of other variables to be used as conditioning
factors. This problem is mainly operational: due to a small sample size and the lack
of established databases containing accurate information for a big number of countries,
we ended up omitting other possibly important country-level characteristics impacting
efficiency on combating COVID-19, like non-communicable diseases (NCD) prevalence,
smoking habits and number of vaccines delivered. For future work, we propose the use of a
similar framework for evaluating the interaction of efficiency estimates and environmental
variables, only enlarging the number of observations by considering not countries, but
cities or states information.
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Finally, as far as we know, our work represents the first attempt to apply efficiency
frontier estimation methods to COVID-19 framework in a multi-level approach, considering
not only healthcare issues, but also the extent of production plunge and public finance
deterioration that followed the outburst of the pandemic crisis.
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