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ABSTRACT

Most real-world decision problems involve multiple and, usually, conflicting criteria.

Multi-objective decision-making entails planning based on a model to find the best

policy to solve such problems. If this model is unknown, learning through interaction

provides the means to behave in the environment. Multi-objective decision-making in a

multi-agent system poses many unsolved challenges. Among them, multiple objectives

and non-stationarity, caused by simultaneous learners, have been addressed separately so

far. In this work, algorithms that address these issues by taking strengths from different

methods are proposed and applied to a route choice scenario formulated as a

multi-armed bandit problem. Therefore, the focus is on action selection. In the route

choice problem, drivers must select a route while aiming to minimize both their travel

time and toll. The proposed algorithms take and combine important aspects from works

that tackle only one issue: non-stationarity or multiple objectives, making possible to

handle these problems together. The methods used from these works are a set of

Upper-Confidence Bound (UCB) algorithms and the Pareto Q-learning (PQL) algorithm.

The UCB-based algorithms are Pareto UCB1 (PUCB1), the discounted UCB (DUCB)

and sliding window UCB (SWUCB). PUCB1 deals with multiple objectives, while

DUCB and SWUCB address non-stationarity in different ways. PUCB1 was extended to

include characteristics from DUCB and SWUCB. In the case of PQL, as it is a

state-based method that focuses on more than one objective, a modification was made to

tackle a problem focused on action selection. Results obtained from a comparison in a

route choice scenario show that the proposed algorithms deal with non-stationarity and

multiple objectives, while using a discount factor is the best approach. Advantages,

limitations and differences of these algorithms are discussed.

Keywords: Multi-objective decision-making. Multi-objective route choice.

Reinforcement learning.
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1 INTRODUCTION

Decision-making and reinforcement learning (RL) are turning increasingly

popular in multi-agent systems (MAS). Decision-making involves planning by selecting

a course of action, assuming that a model of the environment is known. If that model is

unknown, learning through interaction (RL) may be done to solve a problem.

The interaction between multiple agents deployed in an environment can make

learning challenging when there are many of them. Moreover, simultaneous learning leads

to a severe non-stationarity issue. From the point of view of an agent, the environmental

dynamics change constantly due to multiple agents concurrently trying to improve their

policies considering only their own interests.

While most approaches for MAS focus on optimizing an agent’s policy regarding

a single objective, many tasks are more naturally described by multiple, possibly

conflicting, objectives. In multi-objective MAS, the reward signal is a vector, where each

element corresponds to an objective. Considering a multi-objective perspective on

decision-making problems makes trade-offs between objectives possible.

This work uses a repeated game to model the interaction between agents, which

implies basically a single state. While this kind of formulation somehow means a

simplified modeling, such a composition is useful in real-world problems involving the

selection of several kinds of actions, while also providing a challenging problem for

independent learning agents. While many multi-agent RL algorithms assume the agent

can observe the actions or rewards of the other agents in the game, this can be

unrealistic, as this information may not be available (NOWÉ; VRANCX; HAUWERE,

2012). RL methods must deal with non-stationary rewards that are influenced by other

agents. For this class of RL problems, some algorithms have been proposed, such as the

UCB family (by using a multi-armed bandits formulation), learning automata, and even

simplifications of Q-learning (QL).

A wide range of domains can benefit from a multi-objective multi-agent approach

using a repeated game modelling. An example is route choice.

In route choice, a large number of drivers must select a path to travel from an

origin to a destination. Their route choices typically depend on minimizing their travel

times. However, these choices are influenced by more than just one cost function, e.g.,

travel time and toll costs. One relevant concern is that the resources are scarce, thus agents

compete for them and this makes the learning task much more difficult.
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Thus, route choice involves a competition for resources, while the simultaneous

learning of the agents results in a non-stationary environment. Most existing works deal

with these problems separately, focusing in a single-agent scenario with multiple

objectives or tackling only the non-stationarity issue. Proposals like Pareto UCB1

(DRUGAN; NOWÉ, 2013), henceforth PUCB1, and Pareto Q-learning (MOFFAERT;

NOWé, 2014), henceforth PQL, deal with a multi-objective scenario but focus on a

single agent, though their approaches differ. PUCB1 is a multi-armed bandits algorithm,

while PQL is a state-based algorithm that works in a deterministic environment.

Non-stationarity was addressed by other members of the UCB family, such as the

discounted UCB (DUCB) (KOCSIS; SZEPESVÁRI, 2006) and sliding-window UCB

(SWUCB) (GARIVIER; MOULINES, 2011). However, these do not deal with more

than one objective. Meanwhile, works in multi-objective reinforcement learning

(MORL), considering multiple agents, are recent (RADULESCU et al., 2020). Most

existing proposals for extending those popular algorithms for the multi-objective case

concentrate on single-agent scenarios. Therefore, the issues related to competition for

scarce resources, as well as non-stationarity, need further investigation when we deal

with multi-objective RL.

The present work addresses these challenges by proposing, implementing, and

testing extensions of algorithms that were proposed for multi-objective decision-making

in a MAS. Strengths from other works focused solely on either non-stationarity or

multiple objectives are taken and combined to produce algorithms applied to a route

choice scenario, where thousands of commuters have to pick a route from their origins to

their destinations. This problem is addressed from a decentralized perspective, which is

more realistic than using a centralized traffic assignment approach. After all, a commuter

does not have full knowledge of all possible routes and, especially, is not aware of all

costs at all times. Two objectives are considered for the sake of evaluation: travel time

and a monetary cost that can be a toll.

Then, this work focuses on if we can deal successfully with multiple objectives and

non-stationarity jointly by taking strengths from other works that address these problems

separately. To this end, this dissertation presents the following contributions:

• Extensions to PUCB1 are introduced to cope with the severe non-stationarity of a

multi-agent setting. PUCB1 works on multi-objective scenarios with a single agent,

while non-stationarity was tackled by other members of the UCB family, such as

DUCB and SWUCB, which deal with a single objective. It is unclear whether these
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variants of the UCB can indeed handle the kind of non-stationarity caused by other

agents learning simultaneously, where the pace of change is continuous or at least

very fast. It seems that the extensions of UCB are able to deal successfully with

changes that happen in large intervals of time, which is not the same type of non-

stationarity that arises due to multiple learners.

• A modification of the PQL algorithm. While this algorithm deals with multiple

objectives, it is intended to work in a deterministic environment. Changes are

introduced in order to enable its use in a rapidly changing environment whilst

employing a single state and focusing on action selection.

Experiments were carried out in a 4-node network with thousands of drivers,

whose objectives were to minimize travel time and toll. Results show that the proposed

algorithms address the issues of both non-stationarity and multiple objectives by

combining strengths from methods that tackle only one of those issues. The UCB-based

algorithms present more flexibility when compared to the algorithm based on PQL.

This work is organized as follows. Chapter 2 covers concepts, notations and

related work of reinforcement learning and traffic assignment. Chapter 3 discusses the

proposed algorithms based on methods provided in Chapter 2. Subsequently, Chapter 4

focuses on the experiments, the scenario where they were carried out, a discussion of the

results and some metrics that can be used for comparison. Finally, Chapter 5 contains a

summary of the contributions of this work and the conclusions derived from it.
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2 BACKGROUND AND RELATED WORK

This chapter presents concepts, definitions and works related to RL and

multi-objective decision-making (Sections 2.1 - 2.3). Particularly, the algorithms which

this work is based on are addressed in Section 2.3. The traffic assignment problem is

introduced in Section 2.4, including the single-objective and multi-objective case. The

chapter finalizes by giving an overview, in Section 2.5, of the RL algorithms that deal

with the issues of non-stationarity and multiple objectives, being separately or not.

2.1 Markov Decision Process (MDP)

Sequential decision problems are represented by Markov Decision Processes

(MDPs), where actions influence immediate rewards and also subsequent states,

extending this influence to future rewards.

In general, MDPs assume that the Markov hypothesis is valid. This means that the

system satisfies the Markov property: the current state of the system is all the information

that is needed to decide which action to take. There is no dependence on previous states,

actions or rewards.

2.1.1 Single-objective Markov Decision Process

A single-objective MDP is a tuple 〈S,A, T,R〉 (BELLMAN, 1957), where:

S is a set of states

A is a set of actions

T is a state transition function T : S×A×S → [0, 1] that gives the probability

of a next state given an action and a current state

R is a reward function R : S × A→ R

In this setting, an MDP models an agent acting in a stochastic environment where

the objective is to maximize a long-term measure of total reward, which is called return.

A policy is a mapping from states to actions, defined over the entire state A policy

is a mapping from states to actions, defined over the entire state space. It determines what

to do given knowledge of the current state.
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Solving an MDP means to find an action sequence that, starting from any state,

yields the maximum possible expected return that can be achieved starting from that state.

This solution is denoted by the optimal policy π∗.

2.1.2 Multi-objective Markov Decision Process (MOMDP)

A multi-objective MDP (MOMDP) is an extension of MDP used to represent a

multi-objective problem. In this model (ROIJERS et al., 2013), the reward is no longer

represented by a scalar. A vector of n rewards, one for each objective, is used instead.

A MOMDP is a tuple 〈S,A, T,R〉, where:

S,A, T are the same as in an MDP

R is a reward function R : S × A→ Rn

In general, the goal is to find a coverage set of non-dominated policies.

The presence of a reward vector implies the need of information to prioritize

objectives and that a partial ordering must be defined. For example, a policy can

outperform another with respect to one objective, but its performance might be worse

when considering another objective. Consequently, it is not possible to determine which

policy is better without additional information about how to prioritize the objectives.

2.2 Multi-objective decision making

Sequential decision making, modeled as MDPs, is present in many real-world

tasks. The utility or desirability of actions concerning such tasks is mostly represented by

a scalar value. However, most real-world problems are naturally multi-objective and can

be modeled by an MOMDP.

Scalarization, by using a set of weights, makes possible to apply single-objective

methods to the multi-objective problem. Each weight quantifies the relative importance

of the corresponding objective. However, it is not always possible or feasible to do this

scalarization a priori. In (ROIJERS et al., 2013), three scenarios of multi-objective

decision making were identified.

The first scenario deals with unknown weights. A set of policies must be

calculated first. When the information about the weights becomes available, the best
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policy is selected from the set by using those weights.

In the decision support scenario, the weights are never explicitly known and

scalarizing is not possible during the decision-making process. A set of policies is

computed, and the user has to make the final decision according to their arbitrary

preferences.

In the known weights scenario, scalarizing is possible. Despite that, if the function

used for scalarizing is non-linear, the MDP may be difficult to solve. Even if the function

is linear, the problem can become intractable. It is preferable to use a multi-objective

method in that case.

2.3 Reinforcement learning (RL)

The standard RL method consists of the repeated interaction between an active

decision-making agent and its environment (SUTTON; BARTO, 2018). In each time

step, the agent perceives the current state of the environment and selects an action. The

environment’s response is a reward signal and a new perception which will form a new

state. Thus, a RL problem is modeled as an MDP.

RL implies determining a mapping of situations (states) for behaviors (actions) to

maximize the total future rewards. Two of its most important features are the trial-and-

error method and the delayed reward. The agent does not know a priori which actions

it should take to maximize its reward, hence the need to try them. However, the agent’s

actions may not only determine the immediate reward but they may also affect subsequent

rewards. As such, the agent must learn which action is the most desirable considering the

immediate reward and a delayed reward that can take place far in the future.

One popular RL method is Q-learning (QL). Proposed by (WATKINS, 1989), QL

is a model-free algorithm used to learn the value of an action in a state. Being model-free

means QL does not explicitly learn transition probabilities or reward functions. Rather,

QL estimates the optimal policy directly from experience (i.e., the interaction between the

agent and the environment).

QL approximates state-action values, called Q-values, which are numeric

estimates of the quality for a state-action pair. A Q(s, a) value represents the maximum

discounted sum of the future rewards that an agent can receive if it begins in state s,

chooses action a and continues with the optimal policy π∗ (SUTTON; BARTO, 2018).

Q-values are updated as follows:
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Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

Where:

s is the current state

a is the action taken

s′ is the next state

a′ are all actions that were probed in state s′

α is the learning rate

r is the reward received when moving from state s to state s′ by taking action a

γ is the discount factor

The algorithm learns an action-value function Q which approximates the optimal

one while the agent interacts with its environment. When the Q-values are near the

optimal values, the most appropriate policy is the greedy one, e.g., to choose the action

with the highest Q(s, a).

Q-Learning is also an off-policy algorithm. This means that it approximates the

optimal Q function, independently of the policy used for action selection.

2.3.1 Multi-armed bandits (MAB)

The MAB problem is one of the simplest RL problems, as it is stateless (or

considers a single state). It was first studied in (THOMPSON, 1933) and later described

by (ROBBINS, 1952). A basic MAB problem consists of a set of K arms (or actions)

with different reward distributions, and T rounds (or plays). The player selects an arm in

each round and collects its reward. The goal is to maximize the total reward obtained.

The MAB problem is an instance of sequential decision making and offers a

theoretical formulation for analyzing the exploration-exploitation dilemma in sequential

experiments. The player needs to balance reward maximization based on the knowledge

gained (exploitation) and attempt new actions to acquire new information (exploration).

Regarding the MAB problem, the Upper-Confidence Bound (UCB) family of

algorithms was proposed by (AUER; CESA-BIANCHI; FISCHER, 2002). In this model,

the reward for each arm is drawn independently from a fixed distribution that is different



17

for each action.

In UCB1, the simplest algorithm, the arm a that maximizes the upper bound of a

confidence interval for the arm’s expected reward is selected. The bound is the sum of

two terms:

R̄(a) +

√
2 ln ne

Nt(a)

The first term is the current average reward R̄(a). The second term is a padding

function related to a one-sided confidence interval of the average reward (AUER;

CESA-BIANCHI; FISCHER, 2002). The second term grows with the total number of

actions the player has taken (ne) but decreases with the number of times this particular

action has been tried (Nt(a)). If an action was played several times, its average reward is

considered accurate and the value of the padding function is small. If the action was

played a few times, the padding function has a higher value, representing the lower

accuracy of its average reward. Thus, an action that has not been explored as often as

other actions will have a bigger padding function. This makes the algorithm explore

quickly unknown actions, by initially playing each arm once, before engaging in

selecting the more promising action.

There are variants proposed to deal with the non-stationary MAB problem. In

this problem, the distributions of the arms are modeled by a sequence of independent

random variables from different distributions which may vary through time. The

discounted UCB algorithm (DUCB) (KOCSIS; SZEPESVÁRI, 2006) was proposed to

deal with non-stationarity. It is an adaptation of the UCB algorithm and works by

averaging all past rewards while using a discount factor γ to give more weight to more

recent observations. Another variant of UCB is sliding-window UCB (SWUCB)

(GARIVIER; MOULINES, 2011). It also addresses the non-stationary case, but

averages the past rewards using only the last w plays.

2.3.2 Multi-objective reinforcement learning (MORL)

The algorithms used to solve multi-objective problems can be developed by

planning, given a model of the MDP, or by learning through interaction with an unknown

MDP. The latter case refers to MORL.

Regarding this work, there are two MORL algorithms that will be explained:

PUCB1 and PQL. As their names indicate, they are based on QL and the UCB1
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algorithm, respectively.

2.3.2.1 Pareto UCB1 (PUCB1)

The PUCB1 algorithm was proposed in (DRUGAN; NOWÉ, 2013) as an extension

of the standard UCB1 algorithm for the multi-objective MAB problem using the Pareto

dominance relationship. In the multi-objective setting, the reward vector ~R contains one

dimension for each objective.

Similar to the UCB1 algorithm, during the t-th episode, for each action (i.e., arm)

a, the sum of two terms is calculated:

– The average reward vector R̄(a). Eq. 2.1 shows how R̄(a) is calculated, where ~R(a)

is the reward vector received and N(a) is a scalar and the number of times action a

was selected (i.e., the number of times arm a was played).

R̄(a) = R̄(a) +
~R(a)− R̄(a)

Nt(a)
(2.1)

– A padding function ct(a). It corresponds to the upper bound of a confidence

interval of the average reward, as shown in Eq. 2.2, where |O| denotes the number

of objectives, A∗ is the set of Pareto optimal actions and ne is the number of

episodes or plays.

ct(a) =

√
2 ln(ne

4
√
|O||A∗|)

Nt(a)
(2.2)

IfA∗ is not known a priori, the term |A∗| can be replaced by the number of actions

|K|.

In each episode, aiming to maximize all objectives, the Pareto set A′ is found,

such that ∀` /∈ A′, there exists an action a ∈ A′ that dominates action `, as stated by

Eq. 2.3, where the padding function (a scalar) is added to each of the elements of the

average reward vector. An action is selected uniformly at random from A′.

R̄(`) + ct(`) � R̄(a) + ct(a) (2.3)

Exploitation is satisfied by the average reward vector, while exploration depends

on the upper bound represented by the padding function. The agent explores more during

the initial episodes, allowing the less pulled arms to be eventually chosen against the arms

with a high average reward.
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2.3.2.2 Pareto Q-learning (PQL)

PQL (MOFFAERT; NOWé, 2014) integrates the Pareto dominance relation into a

MORL approach. Based on QL, PQL is a state-based method that separates the

immediate reward vector from the set of expected future discounted reward vectors to

allow calculating Q-sets, denoted by Q̃set. Such Q-sets are composed of vectors. As

PQL was defined for a state-based case, the set of expected future discounted reward

vectors relies on a function, called ND, that finds those vectors that correspond to the

possible future states, and which are not Pareto-dominated.

Eq. 2.4 shows how Q-sets are calculated. R̄(s, a) denotes the immediate reward

vector and NDt(s, a), the set of non-dominated vectors in the next state of s that is

reached through action a at time step t. R̄(s, a) is added to each element of γNDt(s, a).

When the action a in state s is selected, both terms are updated. R̄(s, a) is updated

according to Eq. 2.5, where ~R is the new reward vector and N(s, a) is the number of

times action a was selected in s. NDt(s, a) is updated as shown in Eq. 2.6, using the

non-dominated vectors in the Q̃set of every action a′ in the next state s′.

Q̃set(s, a) = R̄(s, a)⊕ γNDt(s, a) (2.4)

R̄(s, a) = R̄(s, a) +
~R− R̄(s, a)

N(s, a)
(2.5)

NDt(s, a) = ND(∪a′Q̃set(s
′, a′)) (2.6)

PQL learns the entire Pareto front, finding multiple Pareto optimal solutions

(policies), provided that each state-action pair is sufficiently sampled. This algorithm is

not biased by the Pareto front shape (algorithms that find a single policy and use

scalarization can not sample the entire Pareto front if it is non-convex) or a weight vector

(it guides the exploration to specific parts of the search space).

Note that it is assumed that the environment is deterministic, hence PQL is not

directly useful for environments in which the presence of multiple agents learning

simultaneously causes non-stationarity.
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2.3.2.3 Other methods

There are other algorithms that have been proposed in the MORL literature,

mostly focusing on a single-agent scenario, such as (MOFFAERT et al., 2014), where

they focused on sampling actions that were Pareto-dominating from the objective space

in a MAB setting, proposing a strategy to discretize the continuous action space

according to such samples and approximating the Pareto front.

In (DRUGAN; NOWÉ, 2014b), an approach was proposed to identify the Pareto

optimal set of actions and the minimum subset of scalarization functions that optimize

such set, in order to avoid the need to use MAB to find the entire Pareto front when it is

not evident which scalarization functions should be used.

An hypervolume-based MORL algorithm was proposed in (MOFFAERT;

DRUGAN; NOWÉ, 2013), where the hypervolume unary indicator is used as action

selection mechanism. This algorithm was compared to two scalarization-based MORL

algorithms: linear scalarization and Chebyshev Function, outperforming the first and

performing similarly to the second without needing to prioritize objectives based on user

input.

In (ROIJERS; ZINTGRAF; NOWÉ, 2017), two algorithms were proposed

(Utility-MAP UCB and Interactive Thompson Sampling) using online MORL with user

interaction to learn the utility function of the user in a multi-objective MAB setting.

They showed that these algorithms approximate the regret of UCB and Thompson

Sampling, while Interactive Thompson Sampling outperforms Utility-MAP UCB.

2.4 Traffic assignment problem (TAP)

A road network can be modeled as a graph G = (V, L), where V is the set of

vertices that represent intersections, and L is the set of directed arcs (links) that describe

road segments that connect a pair of vertices. There is a demand for trips between origin-

destination (OD) pairs. The traffic assignment problem (TAP) aims at assigning these

trips to the links of the road network, according to the traveler’s route choice criteria

(ORTÚZAR; WILLUMSEN, 2011).
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2.4.1 Single-objective case

Central to the notion of the TAP is the idea of a rational traveler who wants to

make a trip from an origin to a destination vertex, choosing the route with the least

perceived individual cost. Several factors may influence this decision, such as travel

time, distance, monetary cost, e.g., toll, consumption, battery, emission, etc.

(ORTÚZAR; WILLUMSEN, 2011).

In the single-objective case, it is assumed that all drivers aim at minimizing a single

objective: travel time. One solution for this optimization problem is via the method of

successive averages (MSA). MSA is an iterative algorithm that calculates the current flow

on a link as a linear combination of the flow on the previous iteration and an auxiliary flow

produced by an all-or-nothing (AON) assignment in the present iteration (ORTÚZAR;

WILLUMSEN, 2011). An AON assignment is a typical approach to trip assignment

under no congestion, where all drivers are assigned to the shortest route.

As unrealistic as it is, AON is often the basis for iterative methods such as MSA,

i.e., the first step. The linear combination is given by Eq. 2.7, where f t+1
l is the current

flow in link l, f̃ t
l is the auxiliary flow and f t

l is the previous flow in l.

f t+1
l ← ωtf̃ t

l + (1− ωt)f t
l , ωt ← 1/(t+ 1) (2.7)

Regarding RL, the TAP can be solved in a decentralized fashion by letting agents

(drivers) select routes using RL, be it by means of the bandit algorithms or by stateless

QL. Normally, in this formulation, the goal is to reach the Nash or user equilibrium, as

stated by Wardrop (WARDROP, 1952): “under equilibrium conditions traffic arranges

itself in congested networks such that all used routes between an OD pair have equal and

minimum costs while all those routes that were not used have greater or equal costs”.

This way, no agent can improve its own travel time by unilaterally switching routes. Each

agent is rewarded by its travel time, i.e., a single objective underlies the reward function.

Recall that this kind of learning task is associated with repeated games, in which there is

a single state and actions are the selection of routes.

In (RAMOS; SILVA; BAZZAN, 2017), a regret-minimization method was

proposed, in which the performance of each route in comparison to the best one

experienced is used as an estimation of the regret.

In (OLIVEIRA et al., 2018), the authors compared stateless QL to MAB

algorithms, concluding that several variants of the UCB algorithm do not outperform
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QL, possibly due to the highly non-stationary nature of the route choice problem.

Departing from repeated games, (BAZZAN; GRUNITZKI, 2016) formulated the

TAP as a stochastic game, where the states are the vertices and actions are the links that

leave a vertex, and where the reward is as aforementioned.

2.4.2 Multi-objective case

While MSA assumes that each traveler aims at minimizing only its travel time, in

fact, travelers’ route choices depend on multiple cost functions, not just one. Traditionally,

multi-objective traffic assignment is modeled by using a linear combination of the cost

functions. For instance, as early as 1979, such a formulation was proposed by Dial (DIAL,

1979) for a bi-objective assignment.

However, using a generalized cost function has some drawbacks. It assumes the

travelers make their choices based on a cost function which is effectively

single-objective, as it is composed of a sum of components with different weights. This

generalized cost function causes some efficient paths to be missed. As shown in

(WANG; RAITH; EHRGOTT, 2010), shortest paths algorithms can only find supported

efficient solutions at extreme points. There might be other efficient solutions at

non-extreme points that could appeal to some travelers if they made their decision based

on multiple criteria, rather than using a generalized cost function.

Given multiple objectives, it is necessary to have alternative solutions for methods

such as the MSA. One issue here is that, in a multi-objective scenario, there is a set of

efficient paths rather than a single shortest path, given that travelers are not only trying to

improve their travel times, but other costs as well. To determine how users will choose

their preferred path, it can be assumed that all of them are equally attractive. This means

an equal share (EQS) assignment, as proposed in (WANG; RAITH; EHRGOTT, 2010),

where an equal number of trips is assigned to each efficient path. The EQS assignment

replaces the AON assignment in the original MSA. Again, while this may be unrealistic,

it is a good start point for iterative methods.

Other works that deal with the multi-objective TAP are the aforementioned (DIAL,

1979), which uses a linear combination of the cost functions; (RAITH et al., 2014), which

proposes heuristic solution algorithms based on the MSA and path equilibration; (WANG;

EHRGOTT, 2013), which works with a bi-objective approach by using a time surplus to

determine which path will be chosen by the individual, and (WANG; RAITH; EHRGOTT,
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2010), which also is applied to a bi-objective scenario and proposes traffic assignment

procedures to achieve a bi-objective equilibrium (the EQS assignment is among them).

All of these works are centralized approaches.

However, it must be noted that centralized approaches imply a central authority

is in charge of the process of assigning routes to drivers. These centralized methods

present unrealistic assumptions, such as the existence of such central authority, a complete

observation of network conditions and a communication channel between drivers and the

authority. In real life, and from a driver’s point of view, these assumptions may not

be satisfied. Considering that, a multi-agent systems can provide a robust modeling of

individual decision-making of the drivers in the road network.

2.5 Overview of algorithms

As mentioned, the TAP can be formulated as a single-state, action selection

fashion. Thus, algorithms such as UCB and its variants (see Section 2.3.1) can be used.

However, it is worth mentioning that these two variants (DUCB and SWUCB) were

created primarily to deal with a single agent learning in a non-stationary environment

with a single-objective. This differs from the non-stationarity that arises from

simultaneous learning by many agents. While the latter is also attributed to the

environment, its nature is such that changes occur much more frequently, thus leading to

a more challenging environment.

As this work uses a MAS to model the multi-objective TAP problem, the main

concerns lies in the subsequent non-stationarity and multiple objectives. While the former

can be handled by the DUCB and the SWUCB, two algorithms were considered to deal

with the latter: PUCB1 and PQL.

The first 5 lines of Table 2.1 summarize the gaps in the aforementioned

algorithms, which refer to the inability to deal with both issues: multiple agents causing

non-stationarity and multiple objectives. The next chapter then introduces the algorithms

proposed in this work to address both problems. The features of these algorithms

correspond to the last three lines of Table 2.1.
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Table 2.1 – Comparison of algorithms

Non-stationarity Multi-objective

UCB – –
PUCB1 –

√

DUCB
√

–
SWUCB

√
–

PQL –
√

DPUCB
√ √

SWPUCB
√ √

mPQL
√ √

Source: Author.
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3 PROPOSED ALGORITHMS

In this chapter, algorithms to address non-stationarity and multiple objectives are

detailed, based on methods discussed in Chapter 2. The first algorithms, described in

Section 3.1, are UCB-based and combine aspects from PUCB1, DUCB and SWUCB.

The third algorithm, detailed in Section 3.2, is a modification of the PQL method.

Before detailing the algorithms, the general formulation and representation is

presented. A multi-agent, multi-objective RL problem, formulated as a repeated game,

can be defined as a stateless multi-agent Markov decision process (MMDP), in which G

is the set of agents, A is the set of actions, and R(a) : A → R|O| is the reward function

defined over the set O of objectives. Each element of the reward vector corresponds to an

element of O.

The aforementioned MMDP is instantiated as follows for the route choice

problem. A is a set K containing routes that take each agent from origin o to its

destination d. The reward function is then R(a) : K → R|O|. Two objectives are

evaluated: travel time and flow-independent toll. Eq. 3.1 shows the definition of R(a),

where a ∈ K is a route and ~R is a reward vector whose elements are the travel time and

toll of route a. The travel time of route a is calculated as the sum of the travel times of its

links. Its toll is calculated analogously.

R(a) = ~R (3.1)

3.1 Discounted Pareto UCB (DPUCB) and Sliding window Pareto UCB (SWPUCB)

DPUCB takes a discount factor γ from the DUCB algorithm (see Section 2.3.1) to

average past rewards and give more weight to recent observations. This discount factor

is introduced in the calculations of the average reward vector and the padding function

defined in Eq. 2.2 from PUCB1 (see Section 2.3.2.1). DPUCB also employs the Pareto

dominance relation from Eq. 2.3 to determine the set of efficient solutions.

To deal with the non-stationarity that arises due to multiple agents learning

simultaneously, DPUCB employs a random initialization phase where each agent selects

each action once randomly, i.e., agents are prevented from choosing already selected

actions. This ensures that not all agents choose the same action in each episode.

At episode t, for action a, the upper bound in Eq. 3.2 is composed of the discounted
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average reward vector R̄t(γ, a), as stated in Eq. 3.3 (where Im is the action selected in

episode m), and the discounted padding function ct(γ, a) defined by Eq. 3.4. As rewards

are upper-bounded by B, its value was set to 1 in Eq. 3.4 since PUCB1 assumes the

rewards are defined on the interval [0, 1].

ub = R̄t(γ, a) + ct(γ, a) (3.2)

R̄t(γ, a) =
1

Nt(γ, a)

t∑
m=1

γt−m ~Rm(a)1{Im=a}

Nt(γ, a) =
t∑

m=1

γt−m1{Im=a}

(3.3)

ct(γ, a) = 2B

√√√√2 ln
(
nt(γ) 4

√
|O||A∗|

)
Nt(γ, a)

, nt(γ) =

|K|∑
i=1

Nt(γ, i) (3.4)

Like in PUCB1, in each episode, the Pareto set A′ is found, such that ∀` /∈ A′,

there exists an action a ∈ A′ that dominates `:

R̄t(γ, `) + ct(γ, `) � R̄t(γ, a) + ct(γ, a) (3.5)

Finally, an action is randomly selected from A′.

In Eq. 3.2, the exploitation part of the algorithm is defined by the discounted

average reward R̄ from Eq. 3.3. The exploration is determined by the discounted padding

function ct from Eq. 3.4. The denominator Nt(γ, a) represents the discounted number of

times action a was selected. At each episode in which action a is not selected, Nt(γ, a)

decreases, causing the value of the padding function ct to increase. This increment

makes action a more likely to be chosen, as the algorithm aims to maximize ub.

DPUCB is presented in Algorithm 1. Note that, in this case, the parameter w is

not required. For each agent, the initialization phase (lines 5 and 6) guarantees that each

action is selected once in random order. After this phase, the Pareto set A′ is computed

according to Eq. 3.5 by finding those actions whose associated upper bound (Eq. 3.2) is

not Pareto-dominated by another action (line 8). An action is selected randomly from A′

at line 9. The agent’s average reward vector R̄(γ, a) is updated using Eq. 3.3 (line 11).
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Algorithm 1 Discounted + Sliding window Pareto UCB

1: procedure DISCOUNTEDSLIDINGWINDOWPARETOUCB(G, |K|, γ, w, ne) . G
is the set of agents; |K|, the number of actions; γ, the discount factor; w, the window
size and ne, the number of episodes

2: t← 1
3: while t ≤ ne do
4: for each agent g ∈ G do
5: if t < |K| then
6: Select randomly an action that has not been taken yet
7: else
8: Find the Pareto set A′ as stated in Eq. 3.5 if not using w; otherwise,

use Eq. 3.9.
9: Select action a uniformly at random from A′

10: end if
11: Update R̄t according to Eq. 3.3 if not using w; otherwise, use Eq. 3.7.
12: end for
13: t← t+ 1
14: end while
15: end procedure

Afterwards, the current episode is updated at line 13, and the previous steps repeat until

ne episodes have passed.

In the case of SWPUCB, some modifications must be made to consider just the

most recent plays. As aforementioned, SWUCB also tackles non-stationarity by

averaging past rewards considering only the last w plays (episodes). This is done by

making Eq. 3.3 and Eq. 3.4 require w and by setting γ = 1 and m = t − w + 1 in them.

Changes are needed in some terms of those two equations: now we denote the average

reward vector and the padding function of action a by R̄t(γ, w, a) and ct(γ, w, a),

respectively. The upper bound of SWPUCB is defined by Eq. 3.6.

ub = R̄t(γ, w, a) + ct(γ, w, a) (3.6)

The average reward vector R̄t(γ, w, a) and the padding function ct(γ, w, a) are

calculated using Eq. 3.7 and 3.8, respectively.

R̄t(γ, w, a) =
1

Nt(γ, w, a)

t∑
m=t−w+1

γt−m ~Rm(a)1{Im=a}

Nt(γ, w, a) =
t∑

m=t−w+1

γt−m1{Im=a}

(3.7)
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ct(γ, w, a) = B

√√√√2 ln
(
nt(γ, w) 4

√
|O||A∗|

)
Nt(γ, w, a)

, nt(γ, w) =

|K|∑
i=1

Nt(γ, w, i) (3.8)

These changes are extended to Eq. 3.5, which is now represented by Eq. 3.9.

R̄t(γ, w, `) + ct(γ, w, `) � R̄t(γ, w, a) + ct(γ, w, a) (3.9)

SWPUCB is also presented in Algorithm 1, essentially following the same steps

of DPUCB, though it requires an additional parameter w for line 8 and line 11. The Pareto

setA′ is found at line 8 according to Eq. 3.9, and the average reward vector R̄t(γ, w, a) is

updated according to Eq. 3.7 at line 11.

It is worth emphasizing that the original SWUCB algorithm does not employ a

discount factor γ. However, the proposed formulation does consider such a discount

factor, in order to average past rewards using the last w plays while also giving more

weight to recent observations. If one wants to use SWPUCB without discount, it suffices

to set γ = 1.

3.2 Modified Pareto Q-learning (mPQL)

The original PQL algorithm (Section 2.3.2.2) was modified to deal with

non-stationary environments and with the fact that it is being applied to single-state

problems. This modified PQL is denoted by mPQL.

Note that Eq. 2.4 from PQL implies a learning rate α equal to 1. For mPQL to

work in non-stationary environments, α must set to values that are less than 1, to enable

using prior knowledge.

Recall that, in PQL, updating Q̃set(s, a) involves calculating NDt(s, a), which is

the set of non-dominated vectors in the next state of s that is reached through action a at

time step t. However, the model used in this work implies a single-state. Consequently,

there is not next state and it is not possible to calculate the set of non-dominating vectors

NDt(s, a). This allows for a simplified procedure to update the Q-sets of each action.

In fact, Q-sets are now replaced by Q-vectors denoted by ~Q, as PQL works with a set

of vectors for each state-action pair, but mPQL works with just a vector for each action.

The new update rule is the same as that of QL, but the rewards and Q-values are vectors
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Algorithm 2 Modified Pareto Q-learning
1: procedure MODIFIEDPARETOQLEARNING(G, α, ne) . G is the set of agents; α, the

learning rate and ne, the number of episodes
2: t← 1
3: while t ≤ ne do
4: for each agent g ∈ G do
5: if t=1 then
6: Initialize ~Q’s randomly
7: else
8: Find the Pareto set Q′ based on the ~Q’s
9: Select action a uniformly at random from Q′

10: Take action a and observe reward vector ~R
11: Update ~Q(a) according to Equation (3.10)
12: end if
13: end for
14: t← t+ 1
15: end while
16: end procedure

instead of scalars, as shown in Eq. 3.10, where ~R is the observed reward vector.

~Q(a) = α~R + (1− α) ~Q(a) (3.10)

The steps of mPQL are outlined in Algorithm 2. The Q-vector ~Q of each action

is initialized randomly at line 6. In each episode, the Pareto set Q′ is found based on the
~Q’s at line 8. An action from that set is selected randomly (line 9). This random way of

choosing is inherited from PQL to treat every non-dominated solution equally. To balance

exploration and exploitation in the action selection, the decaying ε-greedy method can be

used. After the action is executed, an agent receives a reward vector ~R (line 10), which is

used to update the ~Q of the chosen action according to a vector-oriented extension of the

general updating rule of QL (line 11), represented by Eq. 3.10.

3.3 Summary

In this chapter, three algorithms were introduced: DPUCB, SWPUCB and mPQL.

All of them deal with both non-stationarity and multiple objectives.

DPUCB and SWPUCB share the multi-objective approach of PUCB1 and use

certain elements from DUCB and SWUCB, respectively, to address non-stationarity.

SWPUCB can use a discount factor too, though.
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mPQL is based on PQL. While PQL is already a MORL algorithm, modifications

were needed to apply it to a stateless setting with non-stationarity.
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4 EXPERIMENTAL RESULTS

This chapter presents the results from experiments realized to evaluate the

algorithms proposed in Chapter 3. Section 4.1 details the settings and scenario used in

the experiments. Section 4.2 presents the methods used in the experiments, as well as

explanations of their results. A general discussion of the results is presented in

Section 4.3. Other metrics for comparison are discussed in Section 4.4.

4.1 Scenario and settings

Several works were consulted that deal with bi or multi-objective TAP. However,

many of the scenarios used in those works were not suitable to compare with due to some

issues, such as lack of information (some details about the networks were not included),

size (they were extremely small or large) and use of algorithms that require additional

information (the algorithms proposed in Chapter 3 work does not require this), among

other issues. Moreover, the main objective of this work is to deal with non-stationarity and

multiple objectives in a MAS, rather than comparing the proposed algorithms to others.

In what follows, the scenario used is a 4-node network, formulated in (WANG;

EHRGOTT, 2013) and depicted in Fig. 4.1, for which the solution is known. The demand

from vertex o to d is 10000 vehicles per hour, and there are six possible routes or paths

from o to d (the authors in (WANG; EHRGOTT, 2013) excluded paths such as 3-5-6-7).

It must be noted that all six routes are efficient when there is no flow. The cost functions

associated with each link follow the BPR family of cost functions, shown in Eq. 4.1,

where a = 0.15 and b = 4. Free flow travel time, or FFTT, and tolls of the routes are

given in Table 4.1.

Recall that the travel time of a route is calculated as the sum of the travel times of

its links, and its toll is calculated analogously.

Tl(fl) = T 0
l (1 + a (fl/Cl)

b) (4.1)

As a metric to compare the approaches, a table that reports the values for each

objective is shown. All plots and tables shown ahead report mean values, as well as

standard deviations, calculated over 30 repetitions of the same setting (except if the

method is deterministic). All experiments were carried out on a PC with a processor
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Figure 4.1 – 4-node network. Red links are toll-free.
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Source: Adapted from (WANG; EHRGOTT, 2013).

Table 4.1 – Routes characteristics of the 4-node network.

Route Links FFTT Toll

1 1 18.0 20
2 2 22.5 15
3 3–7 36 1
4 4–8 36 1
5 3–5–8 26.4 2
6 4–6–7 54 0

Source: Adapted from (WANG; EHRGOTT, 2013).

Intel Core i7-8700 3.20 GHz and 31 Gb of RAM under Ubuntu 18.04 operating system.

The algorithms were implemented using Python 3.7.

Recall that the action set A of each agent is formed by a set of |K| routes. Also,

the reward vector ~R, calculated by Eq. 3.1, is the negative travel time and toll of the route

chosen by the agent, as the standard practice of maximizing rewards is followed.

4.2 Methods used in experiments

Those algorithms presented in Chapter 3 are compared with the assignment

yielded by two centralized methods: EQS assignment and the time surplus maximization

(Section 2.4.2), as well as PUCB1. Table 4.2 shows the average travel time and average

toll reached by each algorithm. This information is used mainly to illustrate the different

solutions each algorithm provide and how each algorithm works.
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Table 4.2 – 4-node network. Average travel time and toll, for each algorithm.

Algorithm Avg. toll Avg. travel time

EQS 6.50 74.69
Time surplus max. 12.54 32.48

PUCB1 6.25 ± 0.01 94.31 ± 0.55

DPUCB (γ = 0.77) 9.72 ± 0.02 35.94 ± 0.11
SWPUCB (w = 12, γ = 1) 8.52 ± 0.10 48.06 ± 1.04
SWPUCB (w = 12, γ = 0.77) 8.44 ± 0.04 45.44 ± 0.54
mPQL (α = 0.9, decay = 0.997) 7.60 ± 0.01 56.97 ± 0.10

Source: Author.

4.2.1 Centralized methods

The EQS assignment was implemented following (WANG; RAITH; EHRGOTT,

2010), as these values are not reported in (WANG; EHRGOTT, 2013) for this particular

network. The EQS assignment iteratively divides the flow equally among all efficient

routes. Obviously, it is not expected for EQS to have a good performance, but it serves as

a baseline.

It must be noted that the EQS assignment does not perform well in this network.

When there is no flow, all routes are efficient. Therefore, the same flow is assigned to

all of them at the beginning. Given that there are 10000 agents and 6 routes, each route

has ∼ 1666.67 agents. As toll is flow-independent, the efficiency in following episodes

is determined by travel time. However, after calculating the new travel times, all routes

remain efficient. Then, the flow same flow (∼ 1666.67) is allocated in each route again.

The process of calculating travel time and allocating flow in the efficient routes repeats in

each episode, so this allocation does not change over time and the six routes remain with

the same number of agents.

The EQS assignment ends up performing an assignment that has average toll and

travel time as shown in the first line of Table 4.2.

Particularly, for this network, there is an alternative approach of the EQS

assignment that produces another reasonable result, instead of the practical result

explained in previous paragraphs. Taking into account that routes 3 and 4 are equivalent

(see Table 4.1), they could be represented as just one route. This way, in theory, there

would be 5 routes instead of 6. These 5 routes are efficient when there is no flow, thus the

total flow would be divided equally between them. Table 4.3 shows this new distribution

of flow. The flow assigned to the route that represents routes 3 and 4 would be divided



34

equally between those two, meaning that routes 3 and 4 would have 1000 agents each.

Table 4.3 – Alternative flow distribution of EQS.

Routes Route 1 Route 2 Route 3+Route 4 Route 5 Route 6

Flow 2000 2000 2000 2000 2000

Source: Author.

After calculating the new travel time, these 5 routes continue being efficient.

Therefore, the flow distribution would not change in subsequent episodes.

This alternative approach of EQS would lead to a solution with an average travel

time of 56.88 and an average toll of 7.60. These values are included to later show the

relation they share with the values obtained by mPQL.

However, it must be noted that, if all the routes in the network were different

(if there were no equivalent routes), the practical and the alternative results of the EQS

assignment would be equal.

The second line of Table 4.2 also shows the results reported in (WANG;

EHRGOTT, 2013), where the authors use their proposed method (time surplus

maximization). This method, by design, produces low travel time since it considers extra

information, namely, how travelers value their time. This, however, causes the toll to be

the highest. It must be noted that time surplus maximization requires extra information

that neither of the other algorithms demands. While it may be not fair to compare it to

the other methods, the results of time surplus maximization are included because it is the

known solution presented in (WANG; EHRGOTT, 2013) for this network.

4.2.2 PUCB1

This algorithm does not require parameters to be tuned, but rewards need to be

normalized, if one wishes to comply with the proof regarding the upper-confidence bound

of PUCB1 given in (DRUGAN; NOWÉ, 2013), which is based on a support of the rewards

in [0, 1]|O|, where O is the objective set.

For travel time, the min and max values used for normalization are the travel time

of the fastest route with a single agent and the travel time of the slowest route when all

agents are assigned to it, respectively. For toll, those min and max values are the minimum

and maximum toll of the six routes. PUCB1 shares the initialization phase of DPUCB.
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Figures 4.2 and 4.3 show the average travel time and average toll of PUCB1,

respectively.

Figure 4.2 – Average travel time of PUCB1.
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Source: Author.

Figure 4.3 – Average toll of PUCB1.
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While normalization certainly plays a role in the performance of PUCB1, the

second – and most important – issue regarding this algorithm is the fact that PUCB1
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does not fully deal with non-stationarity. Like UCB1, this algorithm assumes the reward

vectors of the routes are identically distributed. This means that if an agent chooses route

k at episode t and then chooses it again at episode t + 1, the reward vectors received at

both episodes should be drawn from the same probability distribution. That is the case of

toll, but travel time depends on the decision of the other agents as well and its

distribution may vary across time.

As a further note, it must be remarked that, for the sake of tests, PUCB1 was also

run without normalization. This yielded an average toll of 6.69 and an average travel time

of 71.14. The results produced less oscillations and the repetitions were more varied (i.e.,

there was a higher standard deviation), unlike PUCB1 with normalization. As it can be

observed in figures 4.2 and 4.3, the repetitions of PUCB1 with normalization are very

similar in average and there is a low standard deviation that is barely perceived.

Note also that PUCB1 takes the most time among all algorithms of the UCB

family; moreover, it yields the most unbalanced result, as it achieves the highest average

travel time and the lowest average toll. This is due to PUCB1 converging to values that

do not deviate too much from the initial sampling of average travel time and average toll

due to normalization. The min and max values used to normalize travel time provide a

too wide interval, mapping the normalized travel time rewards to a very narrow interval.

Consequently, the differences between the normalized rewards are too low, and the

algorithm relies more on the normalized toll values, which are less affected by such a

mapping/normalization.

In short, the PUCB1 yielded the worst performance, thus stressing the point that

a novel approach was needed. Next, it is discussed the performance of the algorithms

proposed in this work, which were detailed in Chapter 3, namely DPUCB, SWPUCB and

mPQL.

4.2.3 DPUCB

As just mentioned, normalization proved to be more of a hindrance than a help

when it was used in PUCB1. For that reason, DPUCB and SWPUCB do not include it.

For the experiments, the discount factor used was γ = 0.77. This value was

obtained after extensive tests. Figure 4.4 shows the average travel time when different

values of γ are used. It must be noted that it seems that when γ is too low, there are great

oscillations in the average travel time and average toll. This is caused due to a frequent
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Figure 4.4 – Average travel time of DPUCB using different values of γ.

Source: Author.

change of the set (and thus, the number) of efficient routes. A low γ increases quickly the

exploration term (Eq. 3.4), which means that a route that has not been selected as much

as the others, eventually will become the most, or one of the most, attractive. Therefore,

when there are just one or two of such attractive routes, traffic congestion occurs, while

a higher number of efficient routes produces the opposite effect. When γ is high, e.g.,

γ = 0.9, the exploration term increases slowly and also slows down convergence. As

such, initial rewards have a weight close to that of more recent ones. Therefore, most of

the routes are efficient, as it was the case in the initial episodes.

A compromise is achieved with γ = 0.77. It ensures the fastest routes 1, 2 and

5 have more probability to be chosen in the first episodes after initialization. Hence the

decrease in the average travel time, while the average toll increases as these routes have

the highest tolls. Figures 4.5 and 4.6 show the average travel time and average toll of

DPUCB when γ = 0.77, respectively.

Note that the padding function from Eq. 3.4, that determines exploration, will

produce low values as it depends on the function ln. As non-normalized rewards are

used, travel time is not affected as much as toll since it is in a higher scale. Particularly,

routes 3, 4, 5 and 6 are more affected since their tolls are very low when compared to those

of routes 1 and 2. This leads to travel time having more influence on the agents’ decisions.

As such, routes 1 and 2, which share no links with other routes, are the most preferred

routes as they are the fastest ones. The remaining routes maintain an order according to
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Figure 4.5 – Average travel time of DPUCB when γ = 0.77.

0 20 40 60 80 100 120 140
Episodes

40

50

60

70

Av
er

ag
e 

tra
ve

l t
im

e

Source: Author.

Figure 4.6 – Average toll of DPUCB when γ = 0.77.
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their FFTTs: route 5 is the third most chosen, while routes 3 and 4 have the same flow (as

they have the same toll and FFTT). Finally, route 6 is the slowest and least preferred one.

4.2.4 SWPUCB

SWPUCB requires a further parameter, when compared to DPUCB, namely the

window size w. Therefore, γ was kept as 1 and experiments changing the value of w were

made. Given that this network has six routes, values of w that are multiples of six were

tested. Figures 4.7 and 4.8 shows a comparison of average travel time and average toll,

respectively, using different values of w. Note that there is a period (roughly between

episodes 0 and 100), in which almost all cases show that exploration is more intense, thus

having visible oscillations. After those, most curves start to converge or stabilize.

An exception is the case when w = 6, which shows oscillations from beginning to

end. The window is too short to allow agents to learn something. It is observed that other

values of w produce varied effects, such as increasing the average toll and decreasing

the average travel time. When w = 12 the average toll also increases while the average

travel time decreases, as agents begin to select faster routes more frequently, with the

consequent increase in tolls. A higher value (w = 24) produces the same effect on a

higher scale, affecting mainly the average toll as it grows considerably. Note also that the

deviations are higher (see green curve). Finally, when the window size is large (36 and

60), the opposite effect occurs and the average travel time increases, depending on how

high the value of w is (w = 60 leads to a higher average travel time than w = 36), with

decrease in the toll.

As using w = 12 Pareto-dominates most of the other cases, i.e., has a lower

average travel time and average toll, while not incurring such a high increase in average

toll as w = 24 does, w = 12 was selected for the experiments regarding SWPUCB.

Given this selection, the next step is to analyze how SWPUCB with γ = 1 and

w = 12, compares to the other algorithms, not only in terms of the final values shown on

Table 4.2, but also in terms of oscillations and how these value change along episodes.

When w = 12, the agents have a short window to acquire experience. This affects their

decisions and produces initial oscillations, because the number of times a route has been

chosen inside that window frame may be low, taking into account there are six possibly

efficient routes to choose from. After about 200 episodes, the agents have chosen each

route enough times to prefer one.
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Figure 4.7 – Average travel time with non-discounted SWPUCB and different values of w.
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Figure 4.8 – Average toll with non-discounted SWPUCB and different values of w.
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In short, while using w = 12 produces oscillations in the initial episodes, it was

selected because it Pareto-dominates the most of the window sizes.

Next, the value of the discount γ was also varied. In the discounted SWPUCB,

γ plays an important role, especially when w is high. Depending on the value of γ, the

window size may become less relevant, i.e., the higher thew, the less relevant this window

becomes. This happens because least recent rewards (inside the window) may have almost

zero weight if γ is low. For comparison purposes, the value of γ used in DPUCB was

used (0.77), and the window size w remained as 12. Figures 4.9 and 4.10 show the

average travel time and average toll of SWPUCB with these values, respectively. Using

γ < 1 accelerates the convergence when compared to the non-discounted SWPUCB. If

w were higher, more rewards could be considered and the discounted SWPUCB could

approximate more the results of DPUCB and reduce the oscillations, as they are caused

because the window is small enough to leave out some information that causes the agent to

switch routes. Even so, note that discounting rewards helps, as SWPUCB with discount

achieves a lower average travel time and average toll than non-discounted SWPUCB,

shown in Table 4.2.

4.2.5 mPQL

mPQL was tested using different values of α (0.1, 0.3, 0.5, 0.7 and 0.9), while

using the decaying ε-greedy method to balance exploitation and exploration. The decay

was set to promote exploration for about 70% of the episodes. This ensures that there is

enough exploration to avoid biased results due to the initialization phase.

However, different values of α tended to reach very similar solutions after

converging. Figures 4.11 and 4.12 prove this point by showing a comparison of average

travel time and average toll with different values of α. All curves converge to very

similar values, though they differ during the learning process. The main difference lies in

the number of episodes required to stabilize or smooth these curves. Higher values of α

reduce that number. Because of this, in Table 4.2 it is presented the average travel time

and average toll of mPQL when α = 0.9 and the decay is 0.997. A higher value of α

means that the agents are learning faster and acquiring knowledge that leads to a flow

distribution that, though changes over time, does not experience large variations in

average travel time and average toll as, for example, the cases when α = 0.1 or α = 0.3.

When α is low, the agents take more time to learn about their environment and can also



42

Figure 4.9 – Average travel time of discounted SWPUCB when w = 12 and γ = 0.77.
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Figure 4.10 – Average toll of discounted SWPUCB when w = 12 and γ = 0.77.
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be biased due to initialization, thus switching routes yields less stable average travel time

and average toll. However, as observed, all values of α converge to similar values.

The solutions obtained by mPQL with different values of α are approximately

the same as the result of the alternative approach of the EQS assignment that has an

average travel time of 56.88 and an average toll of 7.60 1. These values are very similar

to those of mPQL, displayed in the last line of Table 4.2. This happens because of the

random uniform selection, which promotes an approximately equal number of agents in

each efficient route (e.g., the flow distribution in the first episode when α = 0.9 is [1675,

1667, 1660, 1666, 1669, 1663]), and the randomness in exploration. While the random

uniform selection emulates, to some degree, an equal share assignment, exploration lets

the agent acquire knowledge about the routes. As exploration decays, the agents come to

know that there are routes that are equivalent (specifically, routes 3 and 4). While these

routes are efficient, they are equally attractive, so half the agents selects route 3 and the

other half selects route 4. This results in a flow distribution similar to that of the alternative

approach of the EQS assignment.

4.3 Discussion

Experiments show that most of the decentralized algorithms provide alternative

solutions to those produced by centralized algorithms like Equal share assignment (EQS)

and Surplus maximization. Such solutions fall under multi-objective user equilibrium

(MUE) conditions (RAITH et al., 2014), where no individual agent can improve at least

one of their objectives without worsening any of the others by unilaterally switching

routes.

Pareto UCB1, applied to a multi-agent scenario, does not deal well with non-

stationarity due to giving the same importance to previous and current rewards.

DPUCB and non-discounted SWPUCB rely on a discount factor γ and a window

size w, respectively. Different values for them may favor one objective over the other.

When SWPUCB works with discount, it has both parameters to tune. w has a less relevant

role when it is increased, as γ can downplay the weights of the least recent rewards inside

the window.

1Note that these values are not the same that are displayed in Table 4.2. Table 4.2 shows the values of the
original EQS assignment, while here the comparison is made between mPQL and the alternative approach
of the EQS assignment explained in Section 4.2.1.
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Figure 4.11 – Average travel time of mPQL using different values of α and decay = 0.997.
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Figure 4.12 – Average toll of mPQL using different values of α and decay = 0.997.

0 250 500 750 1000 1250 1500 1750 2000
Episodes

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Av
er

ag
e 

to
ll

= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

Source: Author.



45

The modified Pareto Q-learning (mPQL) faces difficulties as the value of α does

not significantly influence its final result, which tends to be the same as that of the EQS

assignment. There are only small variations in average travel time and average toll

produced by different values of α. It must be noted that the result of an alternative

approach of the EQS assignment was used to compare the results of mPQL. However,

this is a particular case due to some features of the network used. In general, mPQL

should tend to reach a similar solution to that of the EQS assignment.

Unlike DPUCB and SWPUCB, variations of the parameters of mPQL does not

produce notably different flow distributions. As such, the learning rate does not influence

the final solution. This happens because of the random uniform selection and exploration.

While the UCB-based algorithms use the same rule to select randomly a route

between those that are efficient, their padding function and the discount factor (and the

window size to a lesser extent, as explained before) provide a variety of different solutions.

The padding function encourages choosing less explored routes, while the exploration

in mPQL does not give preference to specific routes. The discount factor in the UCB-

based algorithms helps to deal with the non-stationarity, as giving more importance to

recent rewards lets the agents adapt to the changing environment. For example, Figures

4.7 and 4.8 show how different average toll and average travel time can be obtained by

varying the window size w parameter of the non-discounted SWPUCB. Analogously,

using other values for other parameters of the UCB-based algorithms can result in other

solutions. Also, DPUCB and SWPUCB tend to converge more quickly when there is

discount involved.

Overall, DPUCB and SWPUCB offer more flexibility to find different alternative

solutions, but DPUCB is more advantageous. Meanwhile, mPQL tends to find solutions

that could be reached easier by using a centralized method (EQS).

Finally, Figure 4.13 shows the Pareto front formed by the results presented in

Table 4.2. Every result reached by the algorithms, except non-discounted SWPUCB, is an

efficient solution. Still, as it was pointed before, the UCB-based algorithms can produce

different results when their parameters vary (for an example, see Figure 4.14) and another

combination of values could yield an efficient solution for non-discounted SWPUCB. This

enables a better coverage of the Pareto front of efficient solutions. However, recall that

mPQL can reach different solutions, but all of them tend to be very similar, so it would

cover a very small area of the Pareto front. On the other hand, results of centralized

algorithms, such as EQS, will not change as they are deterministic. Though time surplus
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Figure 4.13 – Average travel time and average toll of the algorithms presented in Table 4.2.
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maximization may yield another result if the additional information it uses changes, that is

beyond the scope in this work, as the algorithms proposed do not require such information.

4.4 Other metrics for comparison

Since the problem is multi-objective, a comparison such as that presented in

Table 4.2 and illustrated in Figure 4.13 only shows a dimension of the algorithms’ results

based on the average travel time and average toll. There are other criteria that can be

useful for comparison purposes. In this section, some examples of these criteria will be

presented.

4.4.1 Coverage of the Pareto front

Coverage of the Pareto front demonstrates how useful an algorithm can be by

providing varied solutions to the user. As the algorithms proposed do not use scalarization

nor require additional information, it is not possible to prioritize one objective over the

other. As stated in Section 2.2, a set of solutions should be calculated so the agent can
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Figure 4.14 – Average travel time and average toll of mPQL with different values of α and same
decay, and non-discounted SWPUCB with different values of w.
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select one of them arbitrarily or based on some information (such as weights). A good

coverage of the Pareto front provides a better set of solutions the agent can choose from.

Figure 4.14 shows the solutions found by mPQL with different values of α and

same decay, and the non-discounted SWPUCB with different window sizes (w = 6 is not

included because it does not converge). Half the solutions of SWPUCB are

Pareto-dominating and vary widely from each other, as one favors lesser average toll and

the other one favors more a low value of average travel time. However, mPQL covers

such a small area of the Pareto front that its solutions, represented by triangles, overlap.

Figure 4.15 expands that area to visualize the solutions of mPQL. As explained in

previous sections, this demonstrates how mPQL tends to reach the same single solution

of the EQS assignment, though the randomness present in mPQL allows for very small

variations that are not significantly different between them.

Then, by considering coverage of the Pareto front, non-discounted SWPUCB

would be a better method than mPQL. A better coverage could be achieved if other

values of w and γ were used in SWPUCB.

Note that deterministic methods with no additional information, such as EQS,

produce a single unique solution that does not change as there is no parameters to be
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Figure 4.15 – Average travel time and average toll of mPQL con different values of α and same
decay (0.997).
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tuned. The methods proposed in this work also reach a single solution but, while none of

them include additional information, different parameter settings allow for exploration of

other results that can be part of the Pareto front of efficient solutions.

4.4.2 Fairness

Fairness relates to the travel time experienced by an agent compared to the other

agents. A fair solution would consider that all agents experiment the same travel time

when there is a single objective (to minimize travel time). However, in this case, there is

another objective: to minimize toll. Thus, evaluating fairness involves a less

straightforward idea. Considering that only efficient routes are attractive for the agents, a

low travel time implies a higher toll. The same applies to the opposite case: a high travel

time implies a low toll. Taking the solution provided by non-discounted SWPUCB with

w = 12, the travel time and toll of all agents were divided in 6 intervals or bins, and it

was calculated the percent of agents that belong to each bin. In addition to these

histograms, Figures 4.16 and 4.17 show the mean of travel time and toll, respectively.

These figures show that the idea previously explained applies here.
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Figure 4.16 – Percentage of agents for 6 different intervals of travel time, obtained by
non-discounted SWPUCB with w = 12. The mean of travel time is also included.
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Figure 4.17 – Percentage of agents for 6 different intervals of toll, obtained by non-discounted
SWPUCB with w = 12. The mean of toll is also included.
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Figure 4.16 shows a remarkable difference between agents with high and low

travel times, and Figure 4.17 shows that this difference continues in the case of tolls.

While about 45% of agents experience low travel times (first bin of Figure 4.16), they

also pay high tolls (represented by the two last bins in Figure 4.17). The other ∼55% of

agents have high travel times, but they pay low tolls.

Consider now the solution reached by mPQL with α = 0.5 and decay = 0.997.

Likewise, Figures 4.18 and 4.19 show histograms and the mean of travel time and toll,

respectively. Figure 4.18 shows that there is not a difference as big as that depicted in

Figure 4.16 when considering travel time, though the histograms of toll of both algorithms

are similar. In this case, about 40% of agents experience low travel times, while the

travel times of the remaining ∼60% are distributed in a wide interval composed of 4

bins, though only 3 bins have more than zero agents, as illustrated in Figure 4.18. Those

∼60% of agents pay low tolls, and the rest pays a significantly higher quantity, as shown

in Figure 4.19. This could be interpreted as less fair than the result of non-discounted

SWPUCB, since about 60% of agents whose travel times are in the aforementioned wide

interval, varying from∼50 to 110, pay almost the same toll when there is a big difference

between their travel times.

Means (or average values) help to illustrate this unfairness. In the case of non-

discounted SWPUCB, we can observe that it trades a relatively high average travel time

for a low average toll. The average toll is low because it is lesser than 10, which is the

middle point of the X-axis in Figure 4.17. This quantity (10) is the average value that

an agent could expect to pay, considering that the minimum toll is 0 and the maximum

is 20. The average travel time is high because the opposite happens in Figure 4.16: the

average travel time is greater than the middle point of the X-axis. This results in a sort

of balance where more than 50% of agents experiences high travel times but also those

more than 50% of agents pay low tolls. Meanwhile, in the case of mPQL, both means

illustrated in Figures 4.18 and 4.19 are low (lesser than the middle point in their respective

X-axis). More than 50% of agents experience low travel times and more than 50% of

agents pay low tolls. Therefore, there must be agents that pay less than the average toll

and experience travel times lower than the average travel time, which could be considered

unfair, since their low tolls should imply travel times higher than the average.
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Figure 4.18 – Percentage of agents for 6 different intervals of travel time, obtained by mPQL with
α = 0.5 and decay = 0.997. The mean of travel time is also included.
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Figure 4.19 – Percentage of agents for 6 different intervals of toll, obtained by mPQL with
α = 0.5 and decay = 0.997. The mean of toll is also included.
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5 CONCLUSION

Multi-objective decision-making in multi-agent settings present many challenges

for multi-armed bandit research, such as non-stationarity due the presence of

simultaneous learners. Research so far has addressed multiple objectives and

non-stationarity separately. There is a need for methods that can deal with such still open

challenges jointly. In this work, novel methods were proposed to combine the strengths

of both research fronts, namely DPUCB, SWPUCB and mPQL.

DPUCB and SWPUCB are based on PUCB1, discounted UCB and

sliding-window UCB. PUCB1 is a method designed to deal with multiple objectives in a

multi-armed bandit setting, but oriented towards a single agent, while discounted UCB

and sliding-window UCB address non-stationarity using a discount factor and a window,

respectively, to give more importance to more recent rewards. Combining these

approaches, it is possible to deal with both problems, multiple objectives and

non-stationarity. DPUCB follows the idea of discounted rewards, while SWPUCB adds

the sliding-window and includes the option to work with a discount.

mPQL derives from PQL, an state-based algorithm that works with multiple

objectives but that assumes that the environment is deterministic. As the presence of

many agents makes this assumption unrealistic, PQL was modified to address

non-stationarity while also changing it to work in a single-state setting.

These algorithms were applied to a route choice problem that involves thousands

of agents. These not only compete for a scarce resource (a route), but also have to

minimize travel time and toll expenditure. The proposed methods were compared to

centralized methods, as well as to a previous approach for MABs problems. The

experimental results show that using a discount factor is the best approach when

addressing non-stationarity and multiple objectives. Recall that the proposed DPUCB

does not require the setting of a window size and, still, performs as well as SWPUCB

with discount. mPQL also reaches a solution, but this solution is almost the same of a

centralized solution to the TAP.

As there is more than one objective, the need for other means to compare

algorithms arises, since a judgment based on solely average travel time and average toll

would be inconclusive. Other criteria make possible to compare the algorithms, such as

fairness or the coverage of the Pareto front of solutions that SWPUCB and DPUCB

offers thanks to the variation of their parameters. mPQL falls short in this aspect, as its
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solutions tend to be very similar, which does not allow to explore other efficient

solutions that may interest the agents.

In general, it was demonstrated that the algorithms proposed deal with

non-stationarity and multiple objectives in a multi-agent setting by using elements of

algorithms that were proposed to address only one of those issues.

The future of multi-objective decision-making is likely to play a major role in

route choice since, besides time and toll, one could consider battery autonomy, or further

objectives that are relevant for the driver agents (or for autonomous vehicles). Among

these additional objectives, those that are flow-dependent would provide a more

challenging problem. Another possibility that was not explored is the addition of

information provided by the user. There are many algorithms that work with that kind of

data to guide the process of learning. This could help to reach a satisfying solution

without the need to execute several times the proposed algorithms with different

parameters. The inclusion of such information is also an interesting challenge as the the

proposed algorithms focus in a direct Pareto approach, that considers a vector reward,

and not the straightforward scalarization that can incorporate weights provided by the

user to indicate preferences, or other kind of information to prioritize objectives.

Future work is also related to the scenarios. While there are many networks

focused on single objective TAP, scenarios for a multi-objective TAP are not as widely

known. The application of DPUCB and SWPUCB, and even mPQL, in a large network

with multiple OD pairs and multiple objectives could give more insight about how

different network features impact on their performance and what other details and/or

drawbacks exists but could not be observed while using the 4-node network that was

employed in this work.

The application of the proposed algorithms to other scenarios can also provide

large and complex environments to deal with. Techniques like those applied in

(DRUGAN; NOWÉ, 2014a) and (DRUGAN; NOWÉ; MANDERICK, 2014), which are

focused in MAB algorithms and that remove sub-optimal arms (actions), can also be

used in DPUCB and SWPUCB. The phase of initialization could also be improved, as

currently each action is selected once during this phase. As the action of an agent

influences the other agents, a more thorough sampling of combinations of the joint

actions of the agents could be beneficial to the decision-making process.

Finally, since mPQL does not perform as well as DPUCB and SWPUCB, using

additional data could be useful to reach different solutions and not cover just a very
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small area of the Pareto set of efficient solutions. There were suggestions to use data like

standard deviation and mean of the Q-values and the padding function from the PUCB1

algorithm. Some tests were run, but their results were not conclusive enough. Still, there

is room for improvement in mPQL and the inclusion of other kind of data could help in

this regard.
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Aprendizado por reforço multiobjetivo para a seleção de ações: lidando com

objetivos múltiplos e não-estacionariedade

RESUMO

A maioria dos problemas de decisão do mundo real envolve critérios múltiplos e,

geralmente, conflitantes. A tomada de decisão multiobjetivo implica um planejamento

baseado em um modelo para encontrar a melhor política para resolver tais problemas. Se

esse modelo for desconhecido, o aprendizado através da interação fornece os meios para

se comportar no ambiente. Além disso, a tomada de decisão multiobjetivo em um

sistema multi-agente apresenta muitos desafios não resolvidos. Entre eles, objetivos

múltiplos e não estacionariedade causados pela presença de aprendizes simultâneos têm

sido tratados separadamente até agora. Neste trabalho, são propostos algoritmos que

abordam ambos os problemas ao aproveitar pontos fortes de diferentes métodos. Esses

algoritmos são aplicados a um cenário de escolha de rotas formulado como um

multi-armed bandit problem, focando assim na seleção de ações. Neste problema de

escolha de rotas, os motoristas devem selecionar uma rota com o objetivo de minimizar o

tempo de viagem e o pedágio. Os algoritmos propostos extraem pontos fortes de

trabalhos que abordam apenas uma das questões: não estacionariedade ou objetivos

múltiplos. Ao combiná-los, esses algoritmos podem lidar com os dois assuntos em

questão. Os métodos usados para desenvolver os algoritmos propostos são um conjunto

de algoritmos baseados no Upper-Confidence Bound (UCB) e o algoritmo Pareto

Q-learning (PQL). Os algoritmos baseados em UCB são o Pareto UCB1 (PUCB1), o

Discounted UCB (DUCB) e o Sliding-window UCB (SWUCB). O PUCB1 lida com

objetivos múltiplos, enquanto que o DUCB e o SWUCB abordam o problema de não

estacionariedade de formas diferentes. O DUCB usa um fator de desconto para dar mais

importância às recompensas mais recentes, enquanto que o SWUCB usa uma janela para

considerar apenas as últimas ações selecionadas. O PUCB1 foi estendido para incluir

características do DUCB e do SWUCB, sendo propostos os algoritmos DPUCB e

SWPUCB, respectivamente. O DPUCB apenas considera o fator de desconto, enquanto

que o SWPUCB pode usar ele além da janela mencionada antes. No caso de PQL, por

ser um método baseado em estados que foca em mais de um objetivo, algumas mudanças

foram feitas para tratar um problema focado na seleção de ações considerando apenas

um estado e usando uma taxa de aprendizado para usar o conhecimento prévio. Este
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algoritmo foi chamado de mPQL.

Os resultados obtidos a partir de uma comparação em um cenário de escolha de rotas

com dois objetivos (minimizar o tempo de viagem e o toll) mostram que os algoritmos

propostos lidam com a não estacionariedade e objetivos múltiplos. Um dos algoritmos

usados na comparação foi o EQS assignment, que é centralizado e cujo resultado está

relacionado ao resultado do mPQL. O PUCB1 também foi usado para comparar,

mostrando um desempenho ruim devido a que ele não lida com a não-estacionariedade.

O DPUCB e o SWPUCB têm um melhor desempenho e chegam a resultados que podem

variar segundo os valores de seus parâmetros. Mas foi observado que o fator de desconto

tem uma maior relevância que o tamanho da janela. A diferença do DPUCB e do

SWPUCB, o mPQL produz resultados que tendem a ser muito similares ao do EQS

assignment. Então, variações na taxa de aprendizado só influencia nos episódios antes da

convergência, mas todos seus resultados são muito semelhantes. A similitude com o

EQS assignment acontece pela seleção aleatória uniforme de ações e a exploração.

Como há múltiplos objetivos, comparar diferentes métodos não é tão simples como no

caso de apenas um objetivo. Outros critérios de comparação foram tratados: a cobertura

da fronteira de Pareto e o fairness. O primeiro está relacionado à variedade de soluções

que os algoritmos encontram e como podem cobrir diferentes partes da fronteira de Pareto

de soluções eficientes. O segundo está relacionado à ideia de que agentes que pagam um

toll alto deveriam ter um tempo de viagem baixo e vice-versa. Em relação à cobertura

da fronteira de Pareto, O DPUCB e o SWPUCB podem chegar a resultados que cobrem

diversas áreas, mas o mPQL tende a ter o mesmo resultado do EQS assignment, cobrindo

apenas uma pequena parte.

Em conclusão, são propostos algoritmos que lidam com os problemas de objetivos

múltiplos e a não-estacionariedade em conjunto, baseados na combinação de outros

métodos que tratam esses problemas por separado, em quanto que usar um fator de

disconto é a melhor abordagem. As limitações, diferenças e vantagens destes algoritmos

são discutidas.

Palavras-chave: Tomada de decisões multiobjetivo, Escolha de rotas multiobjetivo,

Aprendizado por reforço.
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