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

1. INTRODUCTION 

Distillation columns are very important equipment in the 

process industries because they are responsible for the 

separation and specification of final products and for the 

intermediate recovery of raw materials, among other 

functions. Therefore, distillation columns are essential for the 

operation, profit, efficiency and environmental compliance of 

chemical processes. Nevertheless, distillation columns are 

complex systems, due to the high number of internal states 

(hundreds, in most cases), low number of measurements, 

slow dynamics, and their multivariable and nonlinear 

characteristics. One important issue regarding distillation 

columns is the estimation of product composition, since in 

most cases these are not analyzed on-line, and even in 

favourable situations measurements are only available with 

sampling times and/or delays that can reach several hours. In 

this sense, any techniques destined to the monitoring, control 

and optimization of units involving distillation columns are 

valuable, especially those model-based, as, for example, 

predictive control, sensor fusion/Kalman filtering, data 

reconciliation, etc. However, the computational cost and 

reliability of obtaining numerical solutions from dynamic 

first principles distillation models, which can be constituted 

by systems of hundreds (even thousands) of differential or 

differential-algebraic equations, can be prohibitive for on-line 

applications (Ito et al., 2018). 

In the literature, there have been several proposals to reduce 

the complexity and, as a result, the computational burden in 

integrating the dynamic equations of distillation models as 

well as applications thereof. Examples in this regard are 

alternative model formulations like the nonlinear wave 

propagation theory (Fu and Liu, 2017; Hankins, 2007; 

Hwang, 1995), stage aggregation, also called 

compartmentalization (Kamath et al., 2010; Linhart and 

Skogestad, 2009, 2010; Schäfer et al., 2019), or specialized 

simulation algorithms, as orthogonal polynomial collocation 

(Cao et al., 2016; Valleriote et al., 2012), among others 

(Abrol et al., 2010; Dones and Preisig, 2010). Particularly, 

Schäfer et al. (2019) report approximately 95% time savings 

relative to conventional models in optimal control 

applications. Another approach is related to the great extent 

of the computational time associated to solving the 

thermodynamic equilibrium equations that determine phase 

compositions in this type of model. In this sense, an 

interesting alternative is to use simplified property models, 

which can reduce significantly the time cost (Fernandes and 

Trierweiler, 2009; Ledent and Heyen, 1994), or by 

approximating phase equilibrium properties with, for 

example, artificial neural networks (Nentwich and Engell, 

2016). This is particularly beneficial for conventional 

property models that are themselves implicit functions of the 

state variables (like volumetric equations of state or 

Helmholtz energy models, for example). 

1.1 Adomian decomposition method 

The Adomian series expansion, or decomposition (Adomian, 

1984, 1988, 1991), is an analytical method that can solve a 

wide class of mathematical problems, either linear or non-

linear. The key idea of the method is to obtain recursively the 

terms of an expansion of the solution by reverting its Taylor 

series in the independent variable. Considering an equation in 

operator form 

ℒ𝑣𝑣 = 𝑔𝑔 + ℛ𝑣𝑣 + 𝒩𝒩𝑣𝑣 (1) 

where ℒ is a general linear operator, ℛ a linear function or 

operator and 𝒩𝒩 a nonlinear one, 𝑔𝑔 an inhomogeneous term 

and 𝑣𝑣 the dependent variable. The formal solution of this 

problem is, obviously, 

𝑣𝑣 = ℒ−1𝑔𝑔 + ℒ−1ℛ𝑣𝑣 + ℒ−1𝒩𝒩𝒩𝒩 (2) 

The proposed solution involves the infinite series of the form 

𝑣𝑣 = ∑ 𝑣𝑣𝑛𝑛
∞
𝑛𝑛=0  (3) 

where the 𝑣𝑣𝑛𝑛 are partial solutions, with 𝑣𝑣0 the solution of  

ℒ𝑣𝑣 = 𝑔𝑔 (4) 

and the following terms obtained by the recurrence relation 
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approximating phase equilibrium properties with, for 

example, artificial neural networks (Nentwich and Engell, 

2016). This is particularly beneficial for conventional 

property models that are themselves implicit functions of the 

state variables (like volumetric equations of state or 

Helmholtz energy models, for example). 

1.1 Adomian decomposition method 

The Adomian series expansion, or decomposition (Adomian, 

1984, 1988, 1991), is an analytical method that can solve a 

wide class of mathematical problems, either linear or non-

linear. The key idea of the method is to obtain recursively the 

terms of an expansion of the solution by reverting its Taylor 

series in the independent variable. Considering an equation in 

operator form 

ℒ𝑣𝑣 = 𝑔𝑔 + ℛ𝑣𝑣 + 𝒩𝒩𝑣𝑣 (1) 

where ℒ is a general linear operator, ℛ a linear function or 

operator and 𝒩𝒩 a nonlinear one, 𝑔𝑔 an inhomogeneous term 

and 𝑣𝑣 the dependent variable. The formal solution of this 

problem is, obviously, 

𝑣𝑣 = ℒ−1𝑔𝑔 + ℒ−1ℛ𝑣𝑣 + ℒ−1𝒩𝒩𝒩𝒩 (2) 

The proposed solution involves the infinite series of the form 

𝑣𝑣 = ∑ 𝑣𝑣𝑛𝑛
∞
𝑛𝑛=0  (3) 

where the 𝑣𝑣𝑛𝑛 are partial solutions, with 𝑣𝑣0 the solution of  

ℒ𝑣𝑣 = 𝑔𝑔 (4) 

and the following terms obtained by the recurrence relation 
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𝑣𝑣𝑖𝑖 = ℒ−1ℛ𝑣𝑣𝑖𝑖−1 + ℒ−1𝒜𝒜𝑖𝑖−1, for 𝑖𝑖 = 1, . . , ∞ (5) 

where 𝒜𝒜𝑖𝑖 are particular functions of 𝑣𝑣𝑗𝑗, 𝑗𝑗 = 0, . . , 𝑖𝑖, called the 

Adomian polynomials, which can be found on the basis of 

derivatives of 𝒩𝒩 with respect to a dummy argument 

(Adomian, 1984; Elsaid, 2012). The Adomian decomposition 

has been employed to solve a number of different problems, 

as partial differential equations (Adomian, 1986; Arabia, 

2015), boundary value problems (Kumar and Singh, 2010) 

and ordinary differential equations (Younker, 2011). 

Although the method has been applied for nonlinear root 

finding with separation processes, for example in flash 

solving and steady-state distillation (Fatoorehchi et al., 2015; 

Fatoorehchi and Abolghasemi, 2014), no work has been 

found concerning dynamic simulation of such processes. 

This paper proposes the combination of the Adomian 

decomposition method, using a discretization scheme 

(Younker, 2011), and the local thermodynamic model 

approach (Fernandes and Trierweiler, 2009) to accelerate the 

dynamic simulation of distillation columns. The next section 

describes the phenomenological dynamic model considered 

in the paper. The thermodynamic approximation method is 

shown in Section 3, and the application of the Adomian 

technique to the distillation equations is explained in Section 

4. Simulation results comparing the original problem with the 

approximations are in Section 5.  

2. DYNAMIC MODEL 

The considered dynamic model for the distillation column 

consists of a set of coupled ordinary differential equations 

(ODE’s) representing the liquid mole fractions in each stage 

of the column. The main hypotheses of this model are the 

homogeneity of properties in the control volume, constant 

internal flows in each section, 100% efficient stages in 

thermodynamic equilibrium, and constant stage holdup. The 

column is depicted in Figure 1, where 𝐹𝐹 and 𝑧𝑧 are 

respectively feed rate and molar composition, 𝐿𝐿 is the reflux 

rate, 𝑊𝑊 is the reboiler boilup, 𝐷𝐷 is the distillate flow and 𝑥𝑥𝐷𝐷 

its molar composition, 𝐵𝐵 is the bottoms rate and 𝑥𝑥𝐵𝐵 its 

composition.  

 

Fig. 1. Scheme of the distillation column (one feed and two 

products, total condenser). 

For the condenser, the equations are (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐): 

𝑀𝑀1
𝑑𝑑𝑥𝑥𝑖𝑖,1

𝑑𝑑𝑑𝑑 = 𝑉𝑉2(𝑦𝑦𝑖𝑖,2 − 𝑥𝑥𝑖𝑖,1) (6) 

For the internal stages, except the feed stage, the equations 

are (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐 𝑗𝑗 = 2, . . , 𝑁𝑁𝑠𝑠 − 1, 𝑗𝑗 ≠ 𝑁𝑁𝑓𝑓): 

𝑀𝑀𝑗𝑗
𝑑𝑑𝑥𝑥𝑖𝑖,𝑗𝑗

𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑗𝑗−1𝑥𝑥𝑖𝑖,𝑗𝑗−1 − 𝐿𝐿𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑉𝑉𝑗𝑗+1𝑦𝑦𝑖𝑖,𝑗𝑗+1 − 𝑉𝑉𝑗𝑗𝑦𝑦𝑖𝑖,𝑗𝑗 (7) 

On-stage feed (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐): 

𝑀𝑀𝑁𝑁𝑁𝑁
𝑑𝑑𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑 =  𝐹𝐹𝑧𝑧𝑖𝑖 + 𝐿𝐿𝑁𝑁𝑁𝑁−1𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁−1 − 𝐿𝐿𝑁𝑁𝑁𝑁𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁 +
𝑉𝑉𝑁𝑁𝑁𝑁+1𝑦𝑦𝑖𝑖,𝑁𝑁𝑁𝑁+1 − 𝑉𝑉𝑁𝑁𝑁𝑁𝑦𝑦𝑖𝑖,𝑁𝑁𝑁𝑁 (8) 

For the reboiler, the equations are of the form (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐): 

𝑀𝑀𝑁𝑁𝑁𝑁
𝑑𝑑𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑 =  𝐿𝐿𝑁𝑁𝑁𝑁−1𝑥𝑥𝑖𝑖,𝑁𝑁−1 − (𝐿𝐿𝑁𝑁𝑁𝑁 − 𝑊𝑊)𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁 − 𝑊𝑊𝑦𝑦𝑖𝑖,𝑁𝑁𝑁𝑁 (9) 

In each stage, the molar holdup is 𝑀𝑀𝑗𝑗. The internal flows are 

given by: 

𝐿𝐿𝑗𝑗 = {
𝑅𝑅,  if  𝑗𝑗 < 𝑁𝑁𝑓𝑓          
𝑅𝑅 + 𝑞𝑞𝑞𝑞, if 𝑗𝑗 ≥ 𝑁𝑁𝑓𝑓  (10) 

𝑉𝑉𝑗𝑗 = {𝑊𝑊 + (1 − 𝑞𝑞)𝐹𝐹,  if 𝑗𝑗 ≤ 𝑁𝑁𝑓𝑓 
𝑊𝑊, if 𝑗𝑗 > 𝑁𝑁𝑓𝑓                         (11) 

 

where 𝑞𝑞 is the feed quality. Therefore, the model contains 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 differential states (the liquid compositions in each 

stage, 𝑥𝑥𝑖𝑖,𝑗𝑗). 

2.1  Thermodynamic equilibrium 

In an equilibrium stage 𝑗𝑗, vapour composition can be related 

to the liquid composition by a generally implicit relation of 

the form: 

𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝐾𝐾𝑖𝑖(𝑇𝑇𝑗𝑗, 𝑃𝑃𝑗𝑗, 𝑥𝑥, 𝑦𝑦) ⋅ 𝑥𝑥𝑖𝑖,𝑗𝑗 , 𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐 (12) 

with 𝐾𝐾𝑖𝑖, called the K-values, obtained by means of 

thermodynamic relationships for the properties (fugacities) of 

each phase. Vapor compositions 𝑦𝑦𝑖𝑖  and stage temperatures 𝑇𝑇𝑗𝑗 

must be obtained by solving the so-called bubble-point 

problem involving (12) and the constraint on mole fractions 

∑ 𝑦𝑦𝑖𝑖,𝑗𝑗𝑖𝑖=𝑁𝑁𝑐𝑐 = 1, ∀𝑗𝑗 (13) 

for given 𝑥𝑥𝑖𝑖,𝑗𝑗 and stage pressure 𝑃𝑃𝑗𝑗. 

3. THERMODYNAMIC APPROXIMATIONS 

As shown in (Fernandes and Trierweiler, 2009), 

thermodynamic approximation methods can improve the 

computational time for the solution of separation problems, 

especially the dynamic simulation of distillation columns. In 

this paper, an alternative method called Simplified 

Thermodynamic Model (STM) is employed, which has the 

form: 

ln(𝐾𝐾𝑖𝑖𝑃𝑃) = 𝜃𝜃1,𝑖𝑖 + 𝜃𝜃2,𝑖𝑖
𝜃𝜃3,𝑖𝑖+𝑇𝑇 + ∑ 𝜃𝜃𝑟𝑟[𝑘𝑘],𝑖𝑖 ⋅ 𝑥𝑥𝑗𝑗

2𝑁𝑁𝑁𝑁
𝑘𝑘=1,𝑘𝑘≠𝑖𝑖  (14) 

where 𝜃𝜃𝑝𝑝,𝑖𝑖 are model parameters (𝑟𝑟 = 4, 5, … , 𝑁𝑁𝑐𝑐 + 2), fitted 

previously on the basis of data generated with an adequate 

conventional thermodynamic model covering the operating 

space both in terms of composition and pressure. The 

simplified model (14) employed in this work consists in a 

single equation for each component and not in a network of 

such models, as in Fernandes and Trierweiler (2009), in order 
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𝑣𝑣𝑖𝑖 = ℒ−1ℛ𝑣𝑣𝑖𝑖−1 + ℒ−1𝒜𝒜𝑖𝑖−1, for 𝑖𝑖 = 1, . . , ∞ (5) 

where 𝒜𝒜𝑖𝑖 are particular functions of 𝑣𝑣𝑗𝑗, 𝑗𝑗 = 0, . . , 𝑖𝑖, called the 

Adomian polynomials, which can be found on the basis of 

derivatives of 𝒩𝒩 with respect to a dummy argument 

(Adomian, 1984; Elsaid, 2012). The Adomian decomposition 

has been employed to solve a number of different problems, 

as partial differential equations (Adomian, 1986; Arabia, 

2015), boundary value problems (Kumar and Singh, 2010) 

and ordinary differential equations (Younker, 2011). 

Although the method has been applied for nonlinear root 

finding with separation processes, for example in flash 

solving and steady-state distillation (Fatoorehchi et al., 2015; 

Fatoorehchi and Abolghasemi, 2014), no work has been 

found concerning dynamic simulation of such processes. 

This paper proposes the combination of the Adomian 

decomposition method, using a discretization scheme 

(Younker, 2011), and the local thermodynamic model 

approach (Fernandes and Trierweiler, 2009) to accelerate the 

dynamic simulation of distillation columns. The next section 

describes the phenomenological dynamic model considered 

in the paper. The thermodynamic approximation method is 

shown in Section 3, and the application of the Adomian 

technique to the distillation equations is explained in Section 

4. Simulation results comparing the original problem with the 

approximations are in Section 5.  

2. DYNAMIC MODEL 

The considered dynamic model for the distillation column 

consists of a set of coupled ordinary differential equations 

(ODE’s) representing the liquid mole fractions in each stage 

of the column. The main hypotheses of this model are the 

homogeneity of properties in the control volume, constant 

internal flows in each section, 100% efficient stages in 

thermodynamic equilibrium, and constant stage holdup. The 

column is depicted in Figure 1, where 𝐹𝐹 and 𝑧𝑧 are 

respectively feed rate and molar composition, 𝐿𝐿 is the reflux 

rate, 𝑊𝑊 is the reboiler boilup, 𝐷𝐷 is the distillate flow and 𝑥𝑥𝐷𝐷 

its molar composition, 𝐵𝐵 is the bottoms rate and 𝑥𝑥𝐵𝐵 its 

composition.  

 

Fig. 1. Scheme of the distillation column (one feed and two 

products, total condenser). 

For the condenser, the equations are (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐): 

𝑀𝑀1
𝑑𝑑𝑥𝑥𝑖𝑖,1

𝑑𝑑𝑑𝑑 = 𝑉𝑉2(𝑦𝑦𝑖𝑖,2 − 𝑥𝑥𝑖𝑖,1) (6) 

For the internal stages, except the feed stage, the equations 

are (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐 𝑗𝑗 = 2, . . , 𝑁𝑁𝑠𝑠 − 1, 𝑗𝑗 ≠ 𝑁𝑁𝑓𝑓): 

𝑀𝑀𝑗𝑗
𝑑𝑑𝑥𝑥𝑖𝑖,𝑗𝑗

𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑗𝑗−1𝑥𝑥𝑖𝑖,𝑗𝑗−1 − 𝐿𝐿𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑉𝑉𝑗𝑗+1𝑦𝑦𝑖𝑖,𝑗𝑗+1 − 𝑉𝑉𝑗𝑗𝑦𝑦𝑖𝑖,𝑗𝑗 (7) 

On-stage feed (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐): 

𝑀𝑀𝑁𝑁𝑁𝑁
𝑑𝑑𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑 =  𝐹𝐹𝑧𝑧𝑖𝑖 + 𝐿𝐿𝑁𝑁𝑁𝑁−1𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁−1 − 𝐿𝐿𝑁𝑁𝑁𝑁𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁 +
𝑉𝑉𝑁𝑁𝑁𝑁+1𝑦𝑦𝑖𝑖,𝑁𝑁𝑁𝑁+1 − 𝑉𝑉𝑁𝑁𝑁𝑁𝑦𝑦𝑖𝑖,𝑁𝑁𝑁𝑁 (8) 

For the reboiler, the equations are of the form (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐): 

𝑀𝑀𝑁𝑁𝑁𝑁
𝑑𝑑𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑 =  𝐿𝐿𝑁𝑁𝑁𝑁−1𝑥𝑥𝑖𝑖,𝑁𝑁−1 − (𝐿𝐿𝑁𝑁𝑁𝑁 − 𝑊𝑊)𝑥𝑥𝑖𝑖,𝑁𝑁𝑁𝑁 − 𝑊𝑊𝑦𝑦𝑖𝑖,𝑁𝑁𝑁𝑁 (9) 

In each stage, the molar holdup is 𝑀𝑀𝑗𝑗. The internal flows are 

given by: 

𝐿𝐿𝑗𝑗 = {
𝑅𝑅,  if  𝑗𝑗 < 𝑁𝑁𝑓𝑓          
𝑅𝑅 + 𝑞𝑞𝑞𝑞, if 𝑗𝑗 ≥ 𝑁𝑁𝑓𝑓  (10) 

𝑉𝑉𝑗𝑗 = {𝑊𝑊 + (1 − 𝑞𝑞)𝐹𝐹,  if 𝑗𝑗 ≤ 𝑁𝑁𝑓𝑓 
𝑊𝑊, if 𝑗𝑗 > 𝑁𝑁𝑓𝑓                         (11) 

 

where 𝑞𝑞 is the feed quality. Therefore, the model contains 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 differential states (the liquid compositions in each 

stage, 𝑥𝑥𝑖𝑖,𝑗𝑗). 

2.1  Thermodynamic equilibrium 

In an equilibrium stage 𝑗𝑗, vapour composition can be related 

to the liquid composition by a generally implicit relation of 

the form: 

𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝐾𝐾𝑖𝑖(𝑇𝑇𝑗𝑗, 𝑃𝑃𝑗𝑗, 𝑥𝑥, 𝑦𝑦) ⋅ 𝑥𝑥𝑖𝑖,𝑗𝑗 , 𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐 (12) 

with 𝐾𝐾𝑖𝑖, called the K-values, obtained by means of 

thermodynamic relationships for the properties (fugacities) of 

each phase. Vapor compositions 𝑦𝑦𝑖𝑖  and stage temperatures 𝑇𝑇𝑗𝑗 

must be obtained by solving the so-called bubble-point 

problem involving (12) and the constraint on mole fractions 

∑ 𝑦𝑦𝑖𝑖,𝑗𝑗𝑖𝑖=𝑁𝑁𝑐𝑐 = 1, ∀𝑗𝑗 (13) 

for given 𝑥𝑥𝑖𝑖,𝑗𝑗 and stage pressure 𝑃𝑃𝑗𝑗. 

3. THERMODYNAMIC APPROXIMATIONS 

As shown in (Fernandes and Trierweiler, 2009), 

thermodynamic approximation methods can improve the 

computational time for the solution of separation problems, 

especially the dynamic simulation of distillation columns. In 

this paper, an alternative method called Simplified 

Thermodynamic Model (STM) is employed, which has the 

form: 

ln(𝐾𝐾𝑖𝑖𝑃𝑃) = 𝜃𝜃1,𝑖𝑖 + 𝜃𝜃2,𝑖𝑖
𝜃𝜃3,𝑖𝑖+𝑇𝑇 + ∑ 𝜃𝜃𝑟𝑟[𝑘𝑘],𝑖𝑖 ⋅ 𝑥𝑥𝑗𝑗

2𝑁𝑁𝑁𝑁
𝑘𝑘=1,𝑘𝑘≠𝑖𝑖  (14) 

where 𝜃𝜃𝑝𝑝,𝑖𝑖 are model parameters (𝑟𝑟 = 4, 5, … , 𝑁𝑁𝑐𝑐 + 2), fitted 

previously on the basis of data generated with an adequate 

conventional thermodynamic model covering the operating 

space both in terms of composition and pressure. The 

simplified model (14) employed in this work consists in a 

single equation for each component and not in a network of 

such models, as in Fernandes and Trierweiler (2009), in order 
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to improve simulation speed. Moreover, there is no model 

update during the simulation, as in (Ledent and Heyen, 1994) 

3.1  Bubble Point Problem Acceleration (BPPA) 

By exploiting the structure of (14), it has been shown 

(Fernandes and Trierweiler, 2009) that the bubble point 

problem can be solved explicitly, at least in an approximate 

fashion, avoiding iterative solutions of the equilibrium 

problem for each stage at every time step. With this method, 

the bubble point temperature can be directly determined for 

stage 𝑗𝑗 by means of the following relations: 

𝑇𝑇𝑗𝑗 =
−𝐶𝐶2,𝑗𝑗+√𝐶𝐶2,𝑗𝑗

2 −4𝐶𝐶1,𝑗𝑗𝐶𝐶3,𝑗𝑗

2𝐶𝐶1,𝑗𝑗
 (15) 

𝐶𝐶𝑝𝑝,𝑗𝑗 = ϕ𝑝𝑝,𝑗𝑗 + ∑ β𝑝𝑝,𝑖𝑖𝑅𝑅𝑖𝑖,𝑗𝑗
𝑁𝑁𝑁𝑁
𝑖𝑖=1 , 𝑝𝑝 = 0, … , 3 (16) 

𝑅𝑅𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 exp(𝜃𝜃1,𝑖𝑖 + ∑ 𝜃𝜃𝑟𝑟[𝑘𝑘],𝑖𝑖 ⋅ 𝑥𝑥𝑘𝑘,𝑗𝑗
2𝑁𝑁𝑁𝑁

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖 ) (17) 

where ϕ0,𝑗𝑗 = −𝑃𝑃𝑗𝑗 and ϕ1,𝑗𝑗 = ϕ2,𝑗𝑗 = 0. The coefficients β𝑝𝑝,𝑖𝑖, 
𝑝𝑝 = 1, … , 3 are specific of the method and determined solely 

on the basis of 𝜃𝜃𝑝𝑝,𝑖𝑖, and thus are not additional approximation 

parameters. The vapor compositions can be finally calculated 

by 

𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗
𝑃𝑃𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝜃𝜃2,𝑖𝑖
𝜃𝜃3,𝑖𝑖+𝑇𝑇𝑗𝑗

) 𝑅𝑅𝑖𝑖,𝑗𝑗 (18) 

 

4. ADOMIAN COLUMN APPROXIMATION 

Casting the equations describing the composition dynamics 

of a distillation column in the matrix form 

ℒ{𝑋𝑋} = 𝐠𝐠(𝑡𝑡) + ℛ{𝑋𝑋} + 𝒩𝒩{𝑋𝑋} (19) 

where ℒ is the differential operator 𝑑𝑑 𝑑𝑑𝑑𝑑⁄ , 𝑋𝑋 is a vector 

representation of 𝑥𝑥𝑖𝑖,𝑗𝑗 (𝑖𝑖 = 1, . . , 𝑁𝑁𝑐𝑐, 𝑗𝑗 = 1, . . , 𝑁𝑁𝑠𝑠), ℛ is a linear 

operator and 𝒩𝒩 a nonlinear operator. Then, by following 

Adomian method, and considering the discretization of the 

integration interval suggested by Younker (2011), in order to 

avoid polynomial divergence, the solution at each time sub-

interval 𝑘𝑘 up to approximation order 𝑁𝑁𝑎𝑎 is given by  

𝑋𝑋𝑁𝑁𝑎𝑎
(𝑘𝑘) = ∑ 𝑋𝑋𝑟𝑟

(𝑘𝑘)
𝑟𝑟=𝑁𝑁𝑎𝑎  (20) 

where the partial solutions are  

𝑋𝑋0
(𝑘𝑘) = 𝑆𝑆0

(𝑘𝑘) + ℒ−1{𝐠𝐠} (21) 

𝑋𝑋𝑟𝑟
(𝑘𝑘) = ℒ−1 {ℛ{𝑋𝑋𝑟𝑟−1}} + ℒ−1 {𝒜𝒜𝑟𝑟−1{𝑋𝑋𝑟𝑟−1}} (22) 

for 𝑟𝑟 = 1, . . 𝑁𝑁𝑎𝑎, where 𝑆𝑆0
(𝑘𝑘)

 is the vector of initial conditions 

in each sub-interval, equal to 𝑋𝑋𝑁𝑁𝑎𝑎
(𝑘𝑘−1)

 for the discretized 

implementation to ensure solution continuity, ℒ−1 is the 

definite integration from 𝑡𝑡𝑘𝑘−1 to 𝑡𝑡𝑘𝑘, and 𝒜𝒜𝑟𝑟−1 is the 

Adomian polynomial of order 𝑟𝑟 − 1. For the column 

equations, the linear part ℛ corresponds to the component 

liquid flows of the form 𝐿𝐿𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗, and the non-linear term 𝒩𝒩 

corresponds to vapor component flows 𝑉𝑉𝑗𝑗𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑉𝑉𝑗𝑗𝐾𝐾𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗. 

The non-homogeneous term 𝐠𝐠 has elements 𝑔𝑔𝑖𝑖,𝑗𝑗 given by 

𝐹𝐹𝑧𝑧𝑖𝑖 𝑀𝑀𝑁𝑁𝑓𝑓⁄  if 𝑗𝑗 = 𝑁𝑁𝑓𝑓 (feed stage) and 0 otherwise, and is 

considered constant for simplicity in this work. 

Although the original method is exact (analytic), for practical 

purposes the solution is truncated after a number of terms 𝑁𝑁𝑎𝑎. 

Such discretization renders the integration method explicit 

and of finite order. Moreover, since the main objective of this 

work is to achieve a low computational time with satisfactory 

precision, and in order to avoid the integration of the 

nonlinear Adomian terms, the K-values are considered 

constant at each time step. Although the Adomian solution is 

general, the direct application of the method for more 

rigorous column model formulations can be prohibitive in 

terms of computational time, due the arising integrals of 

Adomian polynomials, which can be cumbersome (Younker, 

2011). Tailored schemes must be devised in this case. 

With these considerations, (19) can be rewritten as  

ℒ{𝑋𝑋} = 𝐠𝐠 + Φ(𝑘𝑘)𝑋𝑋 (23) 

where Φ(𝑘𝑘) is the permutation of a block tridiagonal matrix 

with the following elements 

 lower diagonal: 𝐿𝐿𝑗𝑗 𝑀𝑀𝑗𝑗 ⁄ , 𝑗𝑗 = 1, . . , 𝑁𝑁𝑠𝑠 − 1 

 main diagonal: Φ𝑖𝑖,1
(𝑘𝑘) = − (𝑅𝑅 + 𝐷𝐷) 𝑀𝑀𝑖𝑖⁄ ; Φ𝑖𝑖,𝑗𝑗

(𝑘𝑘) =
− (𝐿𝐿𝑗𝑗 + 𝑉𝑉𝑗𝑗𝐾𝐾𝑖𝑖,𝑗𝑗

(𝑘𝑘)) 𝑀𝑀𝑗𝑗⁄ , 𝑗𝑗 = 2, . . , 𝑁𝑁𝑠𝑠 − 1; and Φ𝑖𝑖,𝑁𝑁𝑁𝑁
(𝑘𝑘) =

− (𝐵𝐵 + 𝑊𝑊𝐾𝐾𝑖𝑖,𝑁𝑁𝑁𝑁
(𝑘𝑘) ) 𝑀𝑀𝑁𝑁𝑠𝑠⁄  

 upper diagonal: 𝑉𝑉𝑗𝑗+1𝐾𝐾𝑖𝑖,𝑗𝑗+1
(𝑘𝑘) 𝑀𝑀𝑗𝑗+1⁄ , 𝑗𝑗 = 1, . . , 𝑁𝑁𝑁𝑁 − 1 

Therefore, by applying the Adomian method in the column 

equations (19), it is possible to obtain the following series 

solution with 𝑁𝑁𝑎𝑎 terms:  

𝑋𝑋𝑁𝑁𝑎𝑎
(𝑘𝑘) = ∑ 1

𝑛𝑛!

𝑁𝑁𝑎𝑎

𝑛𝑛=0
(Φ(𝑘𝑘))𝑛𝑛𝑆𝑆0

(𝑘𝑘)𝛿𝛿𝑘𝑘
𝑛𝑛 + 

                                                 ∑ 1
𝑛𝑛+1!

𝑁𝑁𝑎𝑎
𝑛𝑛=0 (Φ(𝑘𝑘))𝑛𝑛g 𝛿𝛿𝑘𝑘

𝑛𝑛+1
 (24) 

where 𝛿𝛿𝑘𝑘 = 𝑡𝑡𝑘𝑘−1 − 𝑡𝑡𝑘𝑘 is the time step. Note that, for 

computational efficiency, the matrix power (Φ(𝑘𝑘))𝑛𝑛
 can be 

calculated by accumulating the matrix product between Φ(𝑘𝑘) 
and the previous term. This solution can be also implemented 

in Horner-type form: 

𝑋𝑋𝑁𝑁𝑎𝑎
(𝑘𝑘) = (𝐈𝐈 + Φ(𝑘𝑘)𝛿𝛿𝑘𝑘

1 (𝐈𝐈 + Φ(𝑘𝑘)𝛿𝛿𝑘𝑘
2 (⋯ ))) 𝑆𝑆0

(𝑘𝑘) + (𝐈𝐈 +

Φ(𝑘𝑘)𝛿𝛿𝑘𝑘
2 (𝐈𝐈 + Φ(𝑘𝑘)𝛿𝛿𝑘𝑘

3 (⋯ ))) g 𝛿𝛿𝑘𝑘 (25) 

In this way, the solution in each subinterval is the exponential 

matrix function updated with state values reached at the end 

of the previous interval. Therefore, the proposed simulation 

algorithm using the Adomian technique can be stated as 

follows: 

1. Calculate the K-values at the step 𝑘𝑘 with the 

STM/BPPA technique using liquid composition given in 

the initial condition vector 𝑆𝑆0
(𝑘𝑘)

 and stage pressure 𝑃𝑃𝑗𝑗; 

2. Determine the system matrix for the k-th interval, Φ(𝑘𝑘); 

3. Determine recursively the solution 𝑋𝑋𝑁𝑁𝑎𝑎
(𝑘𝑘)

 for a specified 

approximation order, 𝑁𝑁𝑎𝑎; 
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4. Make 𝑆𝑆0
(𝑘𝑘+1) = 𝑋𝑋𝑁𝑁𝑎𝑎

(𝑘𝑘)
 and advance one time step 𝛿𝛿𝑘𝑘; 

5. Return to 1 until the endpoint is reached. 

In this paper, three different possible algorithms with the 

Adomian technique were also tested: 

I. Fixed order 𝑁𝑁𝑎𝑎 and fixed time step 𝛿𝛿 (ADM-I);  

II. Fixed order 𝑁𝑁𝑎𝑎 and adaptation of variable time step 

𝛿𝛿𝑘𝑘 to achieve a specified tolerance 𝜀𝜀 (ADM-II);  

III. Fixed time step 𝛿𝛿 and adaptation of variable order 

𝑁𝑁𝑎𝑎,𝑘𝑘 to achieve a specified tolerance 𝜀𝜀 (ADM-III).  

In cases II and III, error control is done based on the 

improvement of the solution after a new term is added in the 

solution, that is,  

Δ𝑋𝑋 = ‖𝑋𝑋𝑟𝑟
(𝑘𝑘) − 𝑋𝑋𝑟𝑟−1

(𝑘𝑘) ‖2 (26) 

For case II, if the method fails to achieve the specified 

tolerance in a given sub-interval, the step is then reduced by a 

factor 𝜀𝜀 Δ𝑋𝑋⁄ , and it is increased by a maximum of 25% if the 

step is successful. 

5. RESULTS AND DISCUSSION 

In order to compare the methods, the original model (6)-(11) 

and the Adomian algorithms were implemented in Python (v. 

3.8.5, numpy v. 1.19.2). Conventional integration was done 

with scipy (v.1.5.0) odeint function (algorithm lsoda).  

5.1  Case Study 

The case study was a 34-stage (including condenser and 

reboiler) distillation column separating the mixture benzene, 

toluene and m-xylene, which shows a moderate departure 

from ideality. Feed stage was the 16th from top, and the feed 

is a saturated liquid mixture (𝑞𝑞 = 1) with composition 0.625 

(benzene), 0.250 (toluene) and 0.125 (m-xylene) and molar 

flow of 7.330 kmol/min. Molar holdups were 100 kmol for 

each internal stage and 1000 kmol for condenser and reboiler. 

Specified flows were 𝐷𝐷 = 4.794 and 𝐵𝐵 = 2.899  kmol/min. 

For the base case (initial steady state), reflux flow was 

𝐿𝐿 = 12.41 kmol/min. Pressure (1.4 atm) was considered 

constant in all stages for simplicity. The conventional 

thermodynamic model was constituted by the Peng-Robinson 

equation of state for the vapor phase and by the UNIQUAC 

activity coefficient model for the liquid phase. The STM was 

obtained by means of 364 equilibrium points around a 

nominal steady-state composition profile by solving a least-

squares regression to determine the parameters 𝜃𝜃𝑝𝑝,𝑖𝑖. Figure 2 

displays a diagonal plot of the resulting approximated K-

values. 

5.2  Test setup 

Several simulation types were compared in this paper with 

regard to computational time and simulation error: 

 Type 𝐴𝐴 (reference): conventional thermodynamic 

model, iterative bubble problem solution and integration 

with odeint, default tolerance (1.4910-8); 

 

Fig. 2. Diagonal plot of the K-values from the STM 

(predicted) and the conventional model (real). 

 Type 𝐵𝐵: the same as Type A, but with precision reduced 

to a specified tolerance 𝜀𝜀; 

 Type 𝐶𝐶: STM, iterative bubble problem solution and 

integration with odeint, default tolerance; 

 Type 𝐷𝐷: STM/BPPA and integration with odeint, 

default tolerance; 

 Type 𝐸𝐸: STM/BPPA and integration with Adomian-I of 

order 𝑁𝑁𝑎𝑎 (referred to as ADMNa-I); 

 Type 𝐹𝐹: STM/BPPA and integration with Adomian-I of 

order 𝑁𝑁𝑎𝑎 with the Horner scheme (referred to as 

ADMNa-IH). 

In each case, step perturbations from a fixed steady state were 

simulated. Ten runs were performed with simultaneous 

multiplicative step disturbances in 𝐿𝐿 and 𝑉𝑉 in the range [0.5, 

1.5], plus ten runs with additive disturbances in 𝑧𝑧1 in the 

range [-0.125, 0.125] (with opposite perturbations in 𝑧𝑧2 and 

𝑧𝑧3). The dynamic responses were simulated up to 100 min, 

with time steps of 0.1 min (note that for odeint this value is 

only used to interpolate intermediate solutions at variable 

intervals). Three different values of 𝜀𝜀 (510-2, 110-2, 510-3) 

were also tested, although this has effect solely on type B. 

Therefore, 60 simulations were done with each method. 

Errors at the endpoint were calculated as the 2-norm of the 

distance of a given solution and that of the reference solution, 

that is, for  𝑙𝑙 = 𝐵𝐵, … , 𝐹𝐹: 

𝑒𝑒𝑙𝑙 = ‖𝑋𝑋𝐴𝐴 (𝑡𝑡 = 100 min) − 𝑋𝑋𝑙𝑙 (𝑡𝑡 = 100 min)‖2 (27) 

Observe that (27) is related to the global error of each 

integration scheme, and that the individual component/stage 

composition error is of the order of 10-2𝑒𝑒𝑙𝑙. The 

computational time 𝑇𝑇 for each simulation was measured with 

the function timer of the timeit package and then averaged. 

An “acceleration factor” with respect to the reference 

solution was calculated in each case by 

Γ𝑙𝑙 = 𝑇𝑇𝐴𝐴 𝑇𝑇𝑙𝑙⁄ , 𝑙𝑙 = 𝐵𝐵, … , 𝐹𝐹 (28) 

A qualitative comparison of the average computational times 

for all simulations is shown in Fig. 3. For reference, the 

vertical grid represents 100s in an Intel i5 3.2GHz PC with 

4Gb RAM. As it can be seen, there are at least 2 orders of 
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magnitude between the conventional solution (A) and the 

Adomian schemes (E and F). 

 

Fig. 3. Overall comparison of the simulation types with 

regard to computational time. 

Figure 4 illustrates the transient responses of benzene liquid 

mole fractions in all stages for a step increase of 50% in the 

benzene feed composition. In this plots, tolerance 𝜀𝜀 was 110-

2 for simulation type B and Adomian order was 3 for types E 

and F. Clearly, all responses are very close. 

 

 

Fig. 4. Integrated dynamic responses of the distillation 

column for a 50% step in 𝑧𝑧1. Top: simulation types A (full 

lines), B (dotted), C (dashed), D (dashed-dotted); Bottom: 

simulation types A (full lines), E (dotted), F (dashed). 

Table 1 exhibits the average simulation errors 𝑒𝑒𝑙𝑙 (27) and 

acceleration factors Γ𝑙𝑙 (28) for each simulation type. As one 

could expect, type B has the smallest error with respect to the 

reference simulation, since it has the same model structure of 

the original problem, although it is only approximately 3x 

faster. Types C and D have very similar errors, showing that 

the BPPA causes a very small precision loss, but with a time 

burden 20x smaller than the iterative solution with STM (and 

150x faster than the original solution). The additional gain 

with the Adomian approximation is further 25%, and the 

approximations of order 3 (ADM3-I and ADM3-IH) show 

already a similar precision to the conventional integration 

with the STM. Simulation types E and F have the same 

errors, since the only difference is the implementation form. 

ADM-I is slightly more efficient then ADM-IH, probably due 

to the fact that, although it is Horner form, (25) has two terms 

which have to be calculated separately. Moreover, the 

approximated methods show fairly less variations in 

computational time, what is very desirable for on-line 

applications. 

Table 1. Average simulation results  

Simulation 
Acceleration 

factor, Γ𝒍𝒍 
Final error, 𝑒𝑒𝑙𝑙 

Type B   

𝜀𝜀 =510-2 2.97 0.0321 

𝜀𝜀 =110-2 2.66 0.0096 

𝜀𝜀 =510-3 2.24 0.0028 

Type C* 7.86 0.0274 

Type D* 155.8 0.0275 

Type E   

ADM2-I 184.7 0.0355 

ADM3-I 185.3 0.0283 

ADM4-I 181.7 0.0281 

Type F   

ADM2-IH 180.6 0.0355 

ADM3-IH 176.8 0.0283 

ADM4-IH 167.7 0.0281 

* these simulations do not depend on 𝜀𝜀. 

5.2  Variable Step Implementations 

Tests were also conducted with the variable step 

implementations described in section 4 (ADM-II and ADM-

III) as shown in Table 2 for 𝜀𝜀 =510-2 and order 3. 

Table 2. Average simulation results for the variable step 

implementations 

Simulation 
Acceleration 

factor, Γ𝒍𝒍 
Final error, 𝑒𝑒𝑙𝑙 

ADM3-I 185.4 0.0283 

ADM3-II 396.0 0.1888 

ADM3-III 171.9 0.0610 

 

The results are highly dependent on fine-tuning the algorithm 

(step increase factor). Nevertheless, simulations with ADM-II 

can be 2x faster in comparison to ADM-I at crude tolerances 

(with 40% less steps at the cost of 50% larger final error), 

specially for steps in L and V. This is 400x faster than the 

original simulation.  
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6. CONCLUSIONS 

The combined use of thermodynamic model simplification 

(STM), an algorithm to avoid implicit solutions of the bubble 

point problem (BPPA), plus the Adomian decomposition 

technique led in this paper to a speeding factor of 2 orders of 

magnitude in the dynamic simulation of distillation columns 

(that is, time savings above 99,5%). This improvement can 

make possible the on-line implementation of several model-

based techniques when accuracy is not of paramount 

importance. This is particularly true for composition 

estimation, due to the fact that the saved time can allow for 

model correction with plant data. Moreover, since the 

proposed method does not depend on internal iterations, 

which may fail to converge, it is also more reliable for real 

time applications. Although the integration with the Adomian 

decomposition in original form (type F, ADM-I) contributes 

to a lesser extent in this time reduction, optimized variable-

step implementations can further boost the time savings. 

Moreover, the ADM analytic structure has the potential to 

allow for the efficient implementation of optimal control 

problems, for example. 
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