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Abstract— Individuals, with mental or physical disabilities, 

need that others know their localization within an indoor 

environment in order to receive adequate healthcare. This 

paper presents an indoor positioning system based on a 

received signal strength indicator (RSSI) sensor network, 

where positions are determined by an artificial neural 

network (ANN) from the received signals. This work 

investigates the effect of using the past and present data from 

the other sensors to estimate one missing signal, using a second 

ANN, and using it as a virtual sensor in the main ANN. For 

the study, a database was built in a typical residential 

environment with one transmitter and four receivers. The 

research studies the effect on the performance caused by the 

failure of one sensor showing the gains of using virtual signals, 

as well as a comparison of this virtual data with the measured 

data. The ANNs are trained with the cross-validation method 

to avoid overfitting. The selected number of neurons in the 

inner layer, for each case, was the complexity capable of 

presenting at least the same performance of an oversized 

ANN, which was also trained without overfitting. The system 

developed achieved a considerable efficiency, being able to 

reproduce the position of the individual with less than 0.36 m 

of average error when all four receivers were working 

properly. However, this average error can increase to 0.52-

0.91 m when a receiver is at failure, depending on which one 

fails. Nevertheless, the use of the proposed virtual sensor can 

diminish about 0.2 m of average error in case of failure. 

Therefore, the use of virtual data proved to be a feature 

capable of improving positioning when a sensor fails, in 

relation to the alternative of performing this positioning 

without this sensor nor its corresponding virtual signal.  

Keywords— Neural Networks · machine learning · indoor 

localization · wireless sensor network · virtual sensor.  

I. INTRODUCTION   

Localization technology inside an indoor environment may 

be of interest for many of reasons such as informing healthcare 

staff of the position of their patients [1] or to analyze how 

different people behaves during building evacuation 

procedures [2]. Some organizations get interest in these 

technologies in order to track their clients or to maintain a 

complete computational environment at factories [3]. Global 

Navigation Satellite Systems (GNSS) signals are not proper for 

indoor detection and consume too much energy [4]. Thus, 

wireless sensor network (WSN) that identify the Received 

Signal Strength Indicator (RSSI) became a popular solution [5] 

[6]. Although there are other algorithms, such as time of arrival 

(TOA) [7], the RSSI approach presents advantages like lower 

cost and dismissal of additional hardware [8].  

A use of smartphones for indoor localization was proposed 

by [9], who fused information from a Pedestrian Dead 

Reckoning (PDR) system with the RSSI data obtained through 

the Wi-Fi signal, compass, accelerometer and gyroscope of the 

phones.   

A study comparing three techniques (with Bluetooth, Wi-Fi 

and ZigBee) for indoor positioning systems was produced by 

[10]. Their indoor positioning system (IPS) had fixed anchor 

and mobile nodes spread through a hospital. Although image 

processing with Wi-Fi presented more accuracy, it had the 

greatest cost. Another of these techniques mapped the room 

through Bluetooth, however it was severely impaired when a 

sensor presented failure. Thus, it may be beneficial to develop 

virtual sensors, which activates upon failures detection of a 

number of the sensors, and provide information based on 

present data from still functioning sensors and past recorded 

data. This is possible through machine learning methods as 

show by [11], which applied an Artificial Neural Network 

(ANN) and data-mining techniques to develop a virtual sensor 

to effectively acquire cylinder pressure.  

The present paper shows a method based on ANNs for 

estimating the position of a target with signals from four RSSI 

sensors in four different locations with a main feed-forward 

ANN. In case of sensors fault, it is possible to continue 

determining the position of the target with an alternative ANN, 

though with less precision. In order to reduce the loss of 

precision a second ANN estimates the data from the faulting 

sensor based on past and current data from the other RSSI 

sensors. Then the calculated signals are used as input to the 

main ANN. The database recorded for this work consists of a 

set of positions and its correspondent Bluetooth RSSI data 

gathered with android based smart phones.   

II. RELATED WORKS  

ANNs have their origin in the artificial neuron described in 

[12]. This neuron was used to compose a network, called 

Perceptron [13], with only one layer of binary neurons. The 

delta rule, presented by [14], based on the error square 

minimization, was a remarkable evolution, allowing the 

efficient training of this Perceptron, with real domain outputs. 
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To solve more complex logical problems, perform nonlinear 

discrimination or approximate nonlinear functions, the 

backpropagation algorithm was introduced by [15], which can 

calculate the internal layer errors. These Multi-layer 

Perceptron (MLP) networks, according to the universal 

approximation theorem [16] are able to approximate any 

function exactly with a single inner layer and with 2n + 1 

artificial neurons where n is the number of entries. Another 

theorem by [17], stated that a ANN with a single hidden layer 

can approximate any measurable relationship r: Rn− > Rm, 

where m is the number of outputs, with its accuracy depending 

on the number of neurons in the hidden layer. The cross 

validation approach [18] is commonly used to avoid 

overfitting. This technique divides the original samples in three 

sets: training, validation and verification. The first set is 

successively submitted (each in a training cycle or epoch) to 

the ANN within the training phase. Thus, the algorithm 

continuously evaluates its own performance through sum of the 

square of errors at each epoch, with the validation samples. The 

detection of signs of the start of the overfitting phenomenon, 

stops the training phase. Finally, the ANN is applied to the 

verification samples that were not used previously in training 

or in the definition of the neural network complexity to test its 

generalization capability [18].   

The system developed by [19] locates smartphones 

combining information from Wi-Fi and GNSS signals through 

paths with transitions between indoor and outdoor 

environments. A combination of a RSSI with pulse sensors in 

the writs of the patients has been presented by [20].The 

inclusion of light sensor and map information almost doubled 

the precision in comparison to inertial sensor approaches [21]. 

A low cost alternative has been proposed by [22] that 

implemented an IPS with RSSI from Bluetooth of a WSN 

composed Android mobile devices, also to an IPS by [23], who 

joined this data with magnetic field sensors (MFS) information 

and images interpreted by a deep learning application.  

Machine learning techniques also have been applied for IPS 

by [4], who investigated least-squares SVM, support vector 

regression and vector output regularized least squares with 

RSSI fingerprinting. Another application of machine learning 

in IPS was proposed by [24], whose MLP reduced noises in an 

IPS. A statistical method enhanced the results of [25] by 

correcting RSSI measure errors. A study of filtering functions 

improved the accuracy of a Bluetooth RSSI. Low Energy has 

been used by [26], achieving an accuracy of less than 1.5 

meters in 80 percent of the times it has been used. A 

fingerprinting mapping using RSSI online k-nearest-neighbor 

algorithm for Wi-Fi indoor services was developed by [27], 

while [28] used a feature adaptive online sequential Extreme 

Learning Machine to lifelong Wi-Fi indoor localization 

technique. Also, a fusion of video camera and radar sensors 

through a convolutional neural network was studied by [29].  

This research aimed to fill the gap, observed in the works 

previously described, with respect to the occurrence of failures 

in part of the sensors, which can impair the functioning of the 

system. To this end, an IPS with an ANN is developed that 

compensates for sensor failures by emulating its results based 

on information from other sensors. 

 

III. METHODOLOGY  

A. Database Construction  

The database for this research was built with the help of 

five Android devices: one of these served as the Bluetooth 

emitting mobile node, while the other four were fixed along 

the scenario, thus becoming anchor nodes. The scenario 

consisted of a typical 75.3 m2 apartment, in which paths 

were chosen for analysis, considering the furniture 

disposition, as shows Figure 1. A series of points were 

marked along these paths, 0.4 m apart from each other. For 

each of these points the anchor nodes collected multiple 

RSSI data within a period of two minutes. These nodes, 

labelled S1, S2, S3 and S4, were positioned at this map. Sensor 

S1 was positioned at the northwest of the dinner room, while 

the sensor S2 is at the southwest corner of the living room. 

Sensor S3 is at the south entrance of the corridor and sensor 

S4 is at the northwest corner of the kitchen. The collected 

data were sent to a computer for further analysis in the 

MATLAB® software to determine mean value, median, 

standard deviation and maximum and minimum values, 

which were important to devise a proper ANN.  

Three paths provided data for neural network training 

sampling. The first path comprises the way between the 

entrance door (the top point of the hall in the map) and the 

living room passing by the point S2. The second path starts 

at the entrance door and ends at the laundry room. The third 

path goes from the entrance door to the bathroom, and from 

the bathroom interior to the bedroom center passing through 

the corridor. Another three paths provided data for the 

verification of the performance obtained with the 

methodology used and for verifying the generalizability of 

the ANN. The fourth path is the course from the laundry 

room to the living room passing by the sensor S2. The fifth 

path is the route from the living room passing by the sensor 

S2 to the bedroom. The sixth path is the course from the 

interior of the bedroom to the interior of the bathroom. The 

points forming each path have been measured in terms of X 

and Y plane.  
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B. System Architecture and Experiments Setup  

The target node emits a Bluetooth signal that is perceived 

by the anchor nodes (S1, S2, S3 and S4), which detect the 

RSSI of the target. The nearer the target is of the anchor, the 

greater the RSSI is, though this relation is nonlinear. The 

distances between a target and a sensor could be determined 

by a Euclidean distance calculation, and the coordinates 

calculated geometrically from these distances. However, in 

this work an ANN has been used directly the RSSI to better 

address the non-linearity of these signals. This ANN has 20 

inputs formed by the data from up to five last points 

recorded by each of the four sensors, thus an auto regression 

AR5. There is two outputs for this ANN: one for the 

measure of the target according to the X-axis of the 

Cartesian plane and one for the position along the Y-axis. If 

the system detect that one of the data streams of the sensors 

is missing, it requests the correspondent data from a virtual 

sensor. This virtual data comes from a second ANN, which 

has been previously trained with the data from the other 

three sensors. Therefore, this ANN has generated virtual 

data in the case of failure on any of the four receivers. This 

ANN has been designed with 15 input neurons, considering 

the past and present five positions of each of the three 

remaining anchor nodes. The ANN output layer has one 

neuron as the network aims to generate just one RSSI signal. 

Figure 2 presents a flow chart of the system architecture. A 

study has been developed to determine the best number of 

neurons for the inner layers of both ANNs, considering this 

number is the one that results in an ANN at least equivalent 

in performance to more complex networks. Once the ANNs 

are trained to take profit of the resulting information of 

walks through the path, samples of different directions are 

considered as different paths. So, the training paths are 

applied in both directions. Besides, the data from paths 1, 2 

and 3 are divided in two parts, by alternate selection, for the 

validation and verification. After the data from the paths 

were ordinate sequentially, this method separated only the 

ordering multiple of three, for the selection of the validation 

registers to result in a more representative training series. 

That procedure resulted in 99 registers for the training 

algorithms and 49 validation algorithms necessary for the 

cross validation technique. The verification paths were 

considered in just one direction and, therefore, consist of 75 

registers. The paths area also drawn in Figure 1.  

  

Fig. 1 Map of the 75.3 m2 apartment, sensors (S1, S2, S3 and S4) and 

measured points. 

  

Fig. 2 Proposed system architecture.  

The proposed methodology is evaluated comparing the 

positions found by the ANNs with the recorded point positions. 

The parameters used for the evaluation of the proposed 

methodology effectiveness are the average errors in respect to 

the position measured according to the X and to the Y axis. The 

average distance error verifies the Euclidean distance between 

the real point and the calculated by the ANN. The Nash 

coefficients evaluate the proportion of the variance of the data 

explained by the model.  

IV. RESULTS  

The performance of both ANNs are evaluated by the sum of 

the square errors, the Nash coefficient and the absolute average 

error between the observed and calculated data. The Nash 

efficiency coefficient represents the proportion of the variance 

explained by the model. This parameter varies from the 

negative infinite to 1. The better the model, the closer the Nash 

coefficient will be to one. Figure 3 presents the sum of the 

square errors by the number of neurons at the hidden layer for 

the complexity research of the main ANN.  
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It was possible to infer that the performance of the system 

with 5 neurons was better in relation to oversized networks. 

The test also verified that the performances of too simple 

networks are impaired by their lack of degrees of freedom. The 

ANN of all virtual sensors performed better with five neurons 

for the hidden layer.  

This section presents the results of this research. Figure 4 

presents the graphs comparing the results of each of the virtual 

sensors generated by the second ANN to the signals it 

reproduces. These graphs include the reproduction by all 

virtual sensors of the verification paths (4, 5 and 6). The virtual 

sensors that substitute the sensors S1, S2, S3 and S4 are 

represented in this work as VS1, VS2, VS3 and VS4.   

  

Fig. 3 Evaluation of the square errors sum.  

Table 1 shows the average errors in respect to the axis X and 

Y (26.2 cm and 24.1 cm), besides the average distance error 

(35.5985 cm) of the proposed ANN alimented by data from all 

four sensor nodes in relation to the observed. The table also 

displays the Nash coefficients (0.987 and 0.950) for this 

configuration in respect to X and Y planes.  

Table 2 has a similar purpose of Table 1 as it presents the 

values of the average errors and Nash efficiency coefficients in 

respect to the X and Y axis, besides the average distance error. 

Table 2 shows this statistic data for the ANN when the system 

operates with just three of its sensors.  

Table 3 has an analogous purpose to Table 2, displaying the 

behavior of the ANN. However, Table 3 shows the evaluation 

of this criteria (error statics in respect to X and Y axis and in 

respect to the distance) when the ANN receives the virtual 

sensor data besides the other three sensor data.  

  

Fig. 4 Virtual sensors signal verification compared to their correspondent 

sensor signal.  

Table 1 Errors and Nash coefficients when the four sensors are active.  

Parameters  Parameters 

Values  

Average X Error (cm)  26.2  

Nash in X  0.987  

Average Y Error (cm)  24.1  

Nash in Y  0.950  

Average Distance Error (cm)  35.5985  

  

In order to have another view and to understand how well 

the ANN with the four sensors works and with one of these 

sensors substituted by virtual sensors, the charts of the 

verification of the ANNs are presented in Figure 5 and in 

Figure 6. Figure 5 presents XY plots of the behavior of the 

ANN with all four combinations of three real sensor and one 

virtual sensor tracking path 5. Analogously, Figure 6 

presents graphs of the ANN tracking path 4 and path 6.  

 

Table 2 Errors and Nash coefficients per set of three active sensors.  

Parameters  S1S2S3  S1S2S4  S1S3S4  S2S3S4  

Average X Error (cm) 58.4 40.6 71.3 55.0 

Nash in X  0.95 0.97 0.92 0.95 

Average Y Error (cm) 39.4 33.0 57.2 29.4 

Nash in Y  0.88 0.91 0.75 0.93 

Average Distance Error  (cm) 70.45 52.32 91.40 62.37 
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Fig. 5 Verification with path 5. ‘*’ path is the real route, ’+’ path is 

traced by the 4 sensors ANN, ’o’ path is traced by the ANN with a 

virtual sensor. 

  

Fig. 6 Verification with paths 4 and 6. ’*’ path is the real route, ’+’ path 

is traced by 4 sensors ANN, ’o’ path is traced by virtual sensor ANN.  

V. DISCUSSION 

In Figure 4 it is remarkable that the second ANN is 

reproducing the collected data and, thus, building its virtual 

sensors. However, the accuracy of this reproduction has a 

certain variation between each virtual sensor. It is noteworthy 

that the virtual data signal VS1 shown an overall great 

accuracy. VS3 and VS4 fared well especially in reproducing 

path 4, while the reproduction of VS2 had better results in path 

5. Comparing Tables 1 and 2, it is perceivable the difference of 

using all four or just three sensors. Depending on the 

combination of three sensors used, the failure of a sensor 

aggregates distance error from 0.167 to 0.55 m to the position 

measure. This difference is due to the disposition of the four 

sensors, the walls and the furniture. The more sensors used as 

inputs, the better precision the ANN will have.  

  

Table 3 Errors and Nash coefficients per set of three active 

sensors and a virtual sensor.  

Parameters  S1S2S3 + 

VS4  
S1S2S4 +  

VS3  
S1S3S4 +  

VS2  
S2S3S4 +  

VS1  

Average X Error (cm) 38.60  44.2  60.3  49.8  

Nash in X  0.975  0.968  0.935  0.951  

Average Y Error (cm) 32.3  42.90  49.0  39.6  

Nash in Y  0.926  0.863  0.757  0.880  

Average Distance Error (cm) 50.33  61.60  85.28  70.43  

  

A comparison between Tables 2 and 3 shows that in most 

cases the ANN fed also with the virtual sensor data has better 

results than the alternative ANN that receives only the data 

signals from the three remaining real sensors. VS4 was the most 

successful virtual sensor in enhancing the main ANN 

performance as it diminished the average distance error in 

relation to the real position in 0.2 m, while VS2, reduced this 

error by 0.062 m. According to table comparison, the use of the 

virtual sensors VS1 and VS3 did not presented advantages.  

Analyzing the charts described in Figure 5, path 5 has been 

better tracked by the ANN with VS4. This is likely due to this 

sensor being farther from this path. Thus, the closer sensors had 

already very reliable information. The ANN with the virtual 

sensor VS2 tracked more precisely the real route at the corridor, 

being comparable to its behavior with 4 working sensors. 

Figure 6 has shown the effects of all four virtual sensors in the 

ANN tracking path 4 and path 6. Comparing these four charts, 

it is perceivable that virtual sensor VS3 had difficulty tracking 

the path of the way between the bathroom and the bedroom, 

while the other virtual sensors fared considerably better. At this 

path, virtual sensor VS2 shows less precision, but better 

accuracy than the other virtual sensors. At the path between the 

laundry and living rooms, it is noteworthy to point out that 

virtual sensors VS1 and VS3 fare very well tracing the route 

within the kitchen and living room. At the Hall, virtual sensors 

VS1, VS2 displayed more reliable results. VS3 presented more 

accuracy at tracing at the dinner room. Nevertheless, both 

Figure 5 and Figure 6 show that the ANN tracked well the three 

paths at its verification stage both with four real sensors and 

with one virtual sensor complementing the information of the 

other three. However, sudden changes of direction cause 

greater errors, especially for virtual sensors, as noted in the 

passage through the hall on path 2. In this region, VS3 resulted 

in fewer errors.  
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VI. CONCLUSIONS 

Individuals, with mental or physical disabilities, need others 

to know their localization within an indoor environment to 

receive adequate healthcare. This paper presents an indoor 

positioning system based on a received signal strength 

indicator (RSSI) sensor network, where positions are 

determined by an artificial neural network (ANN). This work 

investigates the effect of using the past and present data from 

the other sensors to estimate one missing signal, using a second 

ANN, and using it as a virtual sensor in the main ANN.  

A comparison of the final results, with the alternative of 

using a different ANN with only three sensors, was developed. 

Once the ANN are excellent function approximators, this 

models obtained good results, in some cases being comparable 

to model that used a virtual sensor. The virtual sensor method 

revealed itself as an important alternative to improve the main 

ANN calculation of the coordinates, even when one of the 

sensors fails. The virtual sensor was favored by the faithful 

reproduction of the data signals of each missing sensor by the 

ANN. It is expected that the installation of more sensors would 

result in localization with even more accuracy by the ANN, 

what may be theme for further studies.  
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