

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Biocompostos Funcionalizados como Agentes Retardantes de
	Chamas
Autor	FERNANDA KELLER
Orientador	CARLOS ARTHUR FERREIRA

BIOCOMPOSTOS FUNCIONALIZADOS COMO AGENTES RETARDANTES DE CHAMA

Fernanda Keller¹, Carlos A. Ferreira¹

1 - Laboratório de Materiais Poliméricos (LAPOL), Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS

A elevada ocorrência de acidentes com fogo despertou a necessidade de se desenvolver materiais com tecnologia adequada a retardar o processo de combustão. Uma das formas de melhorar o desempenho dos materiais quando expostos a fontes de ignição é aditivá-los com compostos conhecidos como Retardantes de Chama (RC). O apelo por processos mais sustentáveis alavancou o desenvolvimento de RC não halogenados e de fontes renováveis. Substâncias à base de fósforo e biocompostos com estruturas complexas, como os polifenóis, têm se mostrado boas alternativas a estes retardantes. O presente estudo visa o desenvolvimento de agentes RC de fontes renováveis a partir da modificação química da Lignina e do Tanino com dois diferentes compostos fosforados: Pentóxido de Fósforo (PF) e Ácido Fítico (AF). Para tal, aproximadamente 50g de cada biocomposto foi solubilizado em Tetrahidrofurano (THF) seguido da adição do composto fosforado em excesso a 70°C, por 7h em um sistema com refluxo de solvente. Ao final, a solução foi filtrada e lavada para remoção do excesso do composto fosforado. O produto filtrado foi seco em estufa a 75°C durante 24h e avaliado por Análise Termogravimétrica (TGA) e Microcalorimetria de Combustão (MCC). As amostras modificadas com PF foram denominadas Lig P e Tan P, e quando modificadas com AF, Lig A e Tan A. Para comprovar o desempenho RC, os biocompostos, puros e modificados, foram incorporados ao sistema formado pela resina epóxi (DGEBA) e o endurecedor Trietilenotetramina (TETA) (na proporção 1:1). Foram confeccionados corpos de prova por casting com diferentes proporções em peso de biocompostos (10, 15 e 20%) e de biocompostos modificados (10, 15, 20, 35 e 50%), estes foram submetidos ao ensaio de chama (UL94). Os resultados indicam ser promissora a utilização de biocompostos modificados como RC. No entanto, quando incorporados à resina, apenas as formulações com LigP/TanP se mostraram eficazes.