
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

VINICIUS MILANI RODRIGUES DE FREITAS

Procedural generation of cave-like maps

for 2D top-down games

Porto Alegre
2021

VINICIUS MILANI RODRIGUES DE FREITAS

Procedural generation of cave-like maps
for 2D top-down games

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Engineering

Advisor: Prof. Dr. Dante Augusto Couto Barone
Coadvisor: Dr. Leonardo Filipe Batista Silva de
Carvalho

Porto Alegre
2021

CIP — CATALOGING-IN-PUBLICATION

Milani Rodrigues de Freitas, Vinicius

Procedural generation of cave-like maps for 2D top-down
games / Vinicius Milani Rodrigues de Freitas. – Porto Alegre:
2021.

55 f.

Advisor: Dante Augusto Couto Barone

Trabalho de conclusão de curso (Graduação) – Universidade
Federal do Rio Grande do Sul, Escola de Engenharia. Curso de
Engenharia de Computação, Porto Alegre, BR–RS, 2021; Coad-
visor: Leonardo Filipe Batista Silva de Carvalho.

1. Video game. 2. Procedural generation. 3. Dungeon.
4. Unity. 5. Cave. I. Couto Barone, Dante Augusto, orient.
II. Batista Silva de Carvalho, Leonardo Filipe. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Ensino (Graduação e Pós-Graduação): Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

Dedico este trabalho à minha família, amigos e namorada.

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Dante Augusto Couto Barone for accepting

my work proposal, for guiding me through the many changes we had, for connecting me

to the right people and for his incredible availability and for being always helpful. I also

would like to thank my co-advisor Leonardo Filipe Batista Silva de Carvalho for the great

support and crucial help.

I’d like to thank Anderson Ferrugem and Raphael Campos for participating in

some of our meetings and providing essential information for this work.

Even though I ended up changing the work idea I started with them, I’d like to

thank my former advisor Lisandro Zambenedetti Granville and my former coadvisor Lu-

cas Bondan for their understanding.

Finally, I want to thank my parents Nei and Nelci for always being supportive of

me, helping and encouraging me to achieve all my goals in life. I’m also thankful for

the emotional support and encouragements of all of my friends, and last but not least, my

girlfriend Débora Alexia, who was always there for me during the development of this

work.

“Video games are bad for you? That’s what they said about rock-n-roll.”

— SHIGERU MIYAMOTO

ABSTRACT

Procedural Content Generation (PCG) has been extensively used in game design. With

it, game content can be created automatically with limited or indirect user input. This

application of PCG is important in lowering the cost and time-consumption of game

design, specially in current years since the video-game industry has been experiencing a

dramatic growth over the last decades. The objective of this work is to create a system

that generates cave-like maps for 2D top-down games, which can serve as a blueprint for

game designers to build upon on the future. Additionally, the work intends to evaluate

if the generated maps have a set of qualities to make them be perceived as good or

desirable by players. The system was developed in the Unity Game Engine, utilizing the

C# language and a combination of algorithms, that are presented and explained in this

work. In order to evaluate the maps, criteria on what makes a good map were researched,

and then applied a survey to test if the generated maps satisfied said criteria. A pretest

questionnaire was made and answered by 23 participants, its results were used to develop

an improved version of it, which was then answered by 163 participants. Finally, 9 out of

12 questions of the survey have reached their desired result.

Keywords: Video game. procedural generation. dungeon. Unity. cave.

Geração procedural de mapas de cavernas para jogos 2D top-down

RESUMO

A Geração Procedural de Conteúdo (PCG) tem sido amplamente utilizada no design de

jogos eletrônicos. Com sua utilização, o conteúdo de um jogo pode ser criado automati-

camente, através do uso de entradas de usuário limitadas ou indiretas. Esta aplicação de

PCG faz-se importante para reduzir o custo e o consumo de tempo do design de jogos,

especialmente nos anos atuais, já que a indústria de videogames sofreu um crescimento

significativo nas últimas décadas. O objetivo deste trabalho é criar um sistema que gere

mapas semelhantes a cavernas para jogos 2D top-down, que podem servir como uma base

de desenvolvimento para designers de jogos. Além disso, o trabalho pretende avaliar se

os mapas gerados possuem um conjunto de qualidades para que sejam percebidos como

bons ou desejáveis pelos jogadores. O sistema foi desenvolvido utilizando-se do motor

de jogos Unity, da linguagem C# e de uma combinação de algoritmos, que são apresen-

tados e explicados neste trabalho. Para avaliar os mapas, pesquisou-se por critérios sobre

o que constitui um bom mapa e, em seguida, uma pesquisa foi realizada através de um

questionário para testar se os mapas gerados satisfazem esses critérios. Um questionário

de pré-teste foi aplicado e respondido por 23 participantes, seus resultados foram utiliza-

dos no desenvolvimento de uma versão aperfeiçoada deste, que foi respondida por 163

participantes. Por fim, 9 das 12 questões alcançaram seus resultados desejados.

Palavras-chave: Jogo eletrônico, geração procedural, calabouço, Unity, caverna.

LIST OF FIGURES

Figure 1.1 Atari’s PONG arcade released in 1972..14
Figure 1.2 Video game industry revenue through the ages ...14
Figure 1.3 Screenshot of Spore gameplay...16
Figure 1.4 Screenshot of Rogue gameplay ...17
Figure 1.5 Basic dungeon structures ...18

Figure 2.1 Example of the system’s usage ..19
Figure 2.2 Spongework cave pattern...20
Figure 2.3 Cave generation process ..21

Figure 3.1 Screenshot of Pokémon Gold gameplay..22
Figure 3.2 Screenshot of the Unity engine..23
Figure 3.3 Zelda-like tileset ..25
Figure 3.4 Common cave patterns...26

Figure 4.1 Map with fillPercent = 50. ...29
Figure 4.2 Map with fillPercent = 80. ...29
Figure 4.3 Representation of the CA rule used. ..30
Figure 4.4 Map after 5 iterations of CA..31
Figure 4.5 Map after 20 iterations of CA..31
Figure 4.6 Example of a malformed wall between two Rooms32
Figure 4.7 Visual representation of the connectivity algorithm.33
Figure 4.8 Map after connectivity is ensured..34
Figure 4.9 Passage before and after tile placement...35
Figure 4.10 Example of a horizontal inconsistency. ...35
Figure 4.11 Example of a vertical inconsistency...35
Figure 4.12 Wall tiles. ...36
Figure 4.13 Ruleset. ..37
Figure 4.14 Resulting generated map. ..38
Figure 4.15 Available user parameters. ...39

Figure 5.1 Age group of participants. ...41
Figure 5.2 Participants’ familiarity with 2D top-down games..41
Figure 5.3 Age group of participants. ...44
Figure 5.4 Participants’ familiarity with 2D top-down games..44
Figure 5.5 Still frame of GIF shown to participants, showing a character walking

on a generated map. ..44
Figure 5.6 Total results of the second version questionnaire. ...45
Figure 5.7 Average and mode of the second version questionnaire................................46

Figure 6.1 River generated by the system. ..47

Figure A.1 Maps used in the questionnaires ...53

LIST OF TABLES

Table B.1 Part of the pretest questionnaire regarding the maps......................................54
Table B.2 Part of the pretest questionnaire regarding the questionnaire itself................54

Table C.1 Second version of the questionnaire. ..55

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

CA Cellular Automata

DFS Depth-First Search

IMMS Instructional Materials Motivational Survey

NPC Non-Playable Character

PCG Procedural Content Generation

RPG Role-Playing Game

CONTENTS

1 INTRODUCTION...13
1.1 Game design ..13
1.1.1 Evolution of the video game industry ..13
1.2 Procedural content generation...15
1.3 Dungeons in games..16
1.4 Objectives...17
1.5 Organization of this work ..18
2 RELATED WORK ...19
2.1 Conditional Convolutional Generative Adversarial Networks Based Inter-

active Procedural Game Map Generation ..19
2.2 Cellular automata for real-time generation of infinite cave levels......................19
2.3 Procedural creation of 3D solution cave models ..20
2.4 Procedural Playable Cave Systems based on Voronoi Diagram and Delau-

nay Triangulation..20
2.5 Analysis and Development of a Game of the Roguelike Genre21
3 PROPOSAL...22
3.1 Video-game maps ..22
3.1.1 Map elements ...22
3.1.1.1 Map ...23
3.1.1.2 Layers..23
3.1.1.3 Tiles...24
3.1.1.4 Tileset..24
3.2 Cave patterns...24
3.3 What makes a good generated map ..25
4 DEVELOPMENT ...28
4.1 Create a randomly-filled base map ...28
4.2 Cellular automata ...30
4.3 Creating a list of rooms ..31
4.4 Checking if the generated map is possible..31
4.5 Connection between rooms ..32
4.5.1 Ensuring connectivity ..33
4.5.2 Drawing the connection ...34
4.6 Removing inconsistencies from the map...35
4.7 Tile placement ...35
4.8 User-defined parameters ..37
5 METHODOLOGY OF VALIDATION...40
5.1 Pretest questionnaire ..40
5.1.1 Pretest results ...42
5.1.1.1 Question 1 ...42
5.1.1.2 Question 2 ...42
5.1.1.3 Question 3 ...42
5.1.1.4 Question 4 ...43
5.1.1.5 Question 5 ...43
5.2 Second version of questionnaire ..43
5.2.1 Analysis of results..44
6 CONCLUSION ...47
REFERENCES...49

APPENDIX A — MAP FIGURES USED IN BOTH VERSIONS OF THE
QUESTIONNAIRE...53

APPENDIX B — PRETEST QUESTIONNAIRE ..54
APPENDIX C — SECOND VERSION OF THE QUESTIONNAIRE55

13

1 INTRODUCTION

Designing a game involves a conjunction of many different disciplines, for exam-

ple: art, animation, sound, story, character creation, etc. Although the term game design

is widely used in the industry to refer only to the design of the gameplay aspect, all the

separate parts of design must properly work together in order to provide the player with a

good experience (ZUBEK, 2020).

In this chapter we are going to present the necessary background information in

order to understand what motivated this work. First, we will discuss the concept of game

design and how it evolved through the ages. Then we will present some information

about the game industry and the costs of developing a game. Lastly we will explain

what procedural content generation (PCG) is and show a division of categories to better

understand it.

After the motivation of the work is explained, we will present our objectives and

preface the content of the next chapters.

1.1 Game design

The importance of game design has increased throughout video game history. De-

signers of early games like Pong, shown here on Figure 1.1, or Spacewar! had very

limited computing resources to work with, therefore it makes sense that they are simple

and straightforward. Such games had little to no audio output, very primitive graphics

and simple gameplay, sometimes borrowing ideas from well-established games, such as

Pong, which is an electronic version of the Tabletennis sport (WOLF, 2007).

In time, the technological advances made possible for more complex games to be

created. Designing a game became much more nuanced and time consuming.

1.1.1 Evolution of the video game industry

In 2020, the video game industry was already bigger than the movie industry and

North American sports combined. The gaming industry has also experienced a big growth

thanks to the COVID-19 pandemic (WITKOWSKI, 2020), since players are having more

time at home for their hobby. But even before the pandemic, the industry was already in

14

Figure 1.1 – Atari’s PONG arcade released in 1972

Source: (PONGMUSEUM, 2021)

fast-grow along the last decades, as shown in Figure 1.2.

Figure 1.2 – Video game industry revenue through the ages

Source: (SMITHERS, 2019)

On the other hand, the cost of making games has increased dramatically as well.

The cost of making Final Fantasy 7 remake, which was released in April 2020, for exam-

ple, was roughly $200 million, around $120 million more than the original Final Fantasy

7, which was released in January 1997 (KOUMARELAS, 2021).

Triple-A games, which are games that are produced by mid-sized or major pub-

lishers (STEINBERG, 2007), currently require the work of hundreds of people over the

period of years to develop a single game. This is resulting in games not being as profitable

for some developers, as few companies can afford developing long, diverse and polished

15

games (SHAKER; TOGELIUS; NELSON, 2016).

One of the methods to reduce the cost of game designing is Procedural Content

Generation (PCG), which uses algorithms to generate automatic content for the game.

1.2 Procedural content generation

In the context of video games, PCG is defined as "the algorithmic creation of

game content with limited or indirect user input" (TOGELIUS et al., 2011). In other

words, PCG refers to software that is able to create game content by itself.

According to Doull (2008) there are 7 categories of PCG in games:

• Runtime random level generation: the generation of game levels while the game

is being played. This is what people often think of when PCG in games is men-

tioned. In this category, an algorithm is responsible for generating random or

pseudo-random levels for the game.

• Design of level content: in this method, the automatically generated content is used

at the level design stage to supplement human design skills. An algorithm can, for

example, populate an environment created by the designer rapidly. Or the designer

may choose specific generated levels to expand on.

• Dynamic world generation: This technique is used to dynamically grow the en-

vironment that the player interacts on by using random seeds. In this case, the

generated maps are never held in memory except as temporary structures to dis-

play.

• Instancing of in game entities: in order to reach a statistically insignificant chance

of repetition, in-game entities, such as like monsters, items, non-playable characters

(NPCs), have some of their properties procedurally generated. These properties

may be, for example, the position of the entity, its size, structure, etc.

• User mediated content: this is a type of procedural generation where the user is in

control. The technique offers a range of possibilities to users, who are responsible

for putting them together in order to generate content.

• Dynamic systems: some real-world systems such as group or weather behavior can

be modelled using PCG techniques. This is widely used in combination of artificial

intelligence (AI) in order to, for example, make NPCs react differently according

to certain weather conditions.

16

• Procedural puzzles and plot generation: this category is about using PCG in order

to generate individual puzzle elements to increase replayability, e.g. changing door

codes. Games that have its plot generated by PCG are also included in this category.

An example of a commercial game that was developed utilizing different PCG

techniques is Electronic Arts’s Spore. In this game, the player’s objective is to evolve

its own species, starting all the way from a microscopic organism until interstellar explo-

ration. Entities on the game are generated by other players using in-game editors, which is

an example of user mediated content generation. Worlds and galaxies are created through

a combination of dynamic world generation and runtime random level generation. More-

over, some of the character animations are created procedurally (WRIGHT, 2007). Figure

1.3 shows user-generated characters standing on a procedurally generated world.

Figure 1.3 – Screenshot of Spore gameplay

Source: (ELECTRONIC ARTS, 2008)

1.3 Dungeons in games

One of the most notable applications of PCG in games is the creation of proce-

durally generated dungeons. A dungeon is a labyrinthic environment that the player can

explore, as well as collect items, slay monsters, fall into traps, etc. Although originally the

term "dungeon" refers to a labyrinth of prison cells, nowadays, there are dungeons repre-

senting caverns, castles, forests, underwater environments, etc (SHAKER; TOGELIUS;

NELSON, 2016).

17

Procedural generation of dungeons is also an extensive area of research, as is

shown in the survey from Viana e Santos (2019). The survey shows that there are still

challenges to be overcome and areas to develop, such as the generation of 3D dungeons.

This current definition of a dungeon can be probably tracked to the Dungeons and

Dragons game, which is a tabletop Role-Playing Game (RPG) that had a huge influence

in the development of video games throughout history. In fact, a specific type of computer

RPG has spawned from the idea of exploring randomly generated dungeons: the rogue-

like genre. The name "roguelike" comes from the 1980’s game Rogue, which featured

procedurally generated dungeons that the player had to explore in search of an amulet

(BREWER, 2016). A screenshot of a typical Rogue session can be seen in Figure 1.4.

Figure 1.4 – Screenshot of Rogue gameplay

Source: (EPYX, 1985)

In Melan (2006) it is suggested that the design of the dungeon structure is very

important to the creation of a good dungeon map. According to the author, a good map

design is one that embodies the factors that make playing on a dungeon fun: exploration,

decision making, consistent pace of action, discovery of secrets. Four different basic

forms of dungeon maps, created from the author experience with RPG, were presented in

Melan (2006), shown here on Figure 1.5.

1.4 Objectives

Taking motivation from the information presented in the previous sections, this

work has been elaborated with the objective of creating a PCG system to design cave-like

18

Figure 1.5 – Basic dungeon structures

Source: (MELAN, 2006)

dungeon maps for 2D top-down games.

More specifically, we will:

• Generate varied and cave-like dungeon maps from the combination of different

algorithms.

• Congtribute to the PCG category of ’design of level content’ by generating leves

that can serve as a blueprint for game designers to build upon on the future.

• Provide maps based on a set of criteria found in bibliography for what is considered

a good dungeon map.

• Evaluate if the generated maps match the criteria through a survey applied to video-

game players.

1.5 Organization of this work

Next, on Chapter 2, we will cover works that are related to this one. After that,

on Chapter 3 our proposal will be expanded on and some background information will

be provided in order to fully understand it. Following that, on chapter 4 we will provide

details on our development and implementation. Chapter 5 will cover the creation of the

survey and its results. Lastly on Chapter 6 we will discuss the conclusions of our work.

19

2 RELATED WORK

While looking for works related to this one, we searched for researches that fo-

cused specifically on dungeon or on content generation for games and also, on works that

had their focus on cave generation.

2.1 Conditional Convolutional Generative Adversarial Networks Based Interactive

Procedural Game Map Generation

This paper by Ping e Dingli (2020) suggests the usage of Conditional Generative

Adversarial Network and Convolutional Neural Network to create a game design sys-

tem. The system takes a gameplay area map defined by the user as input and generates a

complex map with the same design pattern.

In Figure 2.1 we see the image designed by the user in the first two steps and, in

the last step, the generated map. The variety of the resulting maps depend on the training

of the network as well.

Figure 2.1 – Example of the system’s usage

Source: (PING; DINGLI, 2020)

2.2 Cellular automata for real-time generation of infinite cave levels

In this paper a simple cellular automata (CA) algorithm is used in order to gener-

ate, in real time, infinite cave-like levels. The algorithm was tested in a game called Cave

Crawler, which is a top-down view game where the players have to traverse the generated

tunnels while defeating waves of enemies.

Much like this paper, our work also uses a simple CA algorithm as one of the steps

of the system in order to generate the cave levels. However, this paper focus mostly on the

real-time and performance aspect of the map generation (JOHNSON; YANNAKAKIS;

TOGELIUS, 2010).

20

2.3 Procedural creation of 3D solution cave models

The focus of this article by Boggus e Crawfis (2009) is to use PCG algorithms to

create 3D cave models based on real-world cave patterns. The authors present the usage

of surface images of cave patterns and use them to create models of cave systems. The

surface images can be generated, for example by utilizing fractal algorithms, or real world

terrain data.

After the surface image is provided, the algorithm creates a heightmap out of it

and then simulate the flow of water through this map, since this is ultimately the way

solution caves, which are specific kinds of caves, are formed. Figure 2.2 shows a cross

section view of a generated cave, where lighter areas represent walls (2009).

Figure 2.2 – Spongework cave pattern

Source: (BOGGUS; CRAWFIS, 2009)

2.4 Procedural Playable Cave Systems based on Voronoi Diagram and Delaunay Tri-

angulation

This paper by Santamaría-Ibirika et al. (2014) presents a new method for the gen-

eration of 2D or 3D playable cave systems. The user-defined input for their method are

a list of Points Of Interest (POI) that will be set inside the cave and the relationship that

these POI share. The paper defines a list of parameters that compose the POI like location,

depth, number of branches, etc.

Figure 2.3 shows their cave generation process. In (a) a Voronoi diagram is gen-

erated on a terrain representation. (b) shows the classification of the Voronoi cells. (c)

shows seven POI assigned to their respective cells in the diagram and (d) shows the final

generated cave (2014).

21

Figure 2.3 – Cave generation process

Source: (SANTAMARÍA-IBIRIKA et al., 2014)

2.5 Analysis and Development of a Game of the Roguelike Genre

The work of Gonçalves et al. (2015) describes the development of a prototype

game of the roguelike genre. It also presents an analysis focused on the different tech-

niques used on the AI for enemies and on the procedural generation of the dungeons. The

compared PCG algorithms include: Kruskal and Prim, both being genetic algorithms;

depth-first search, used to generate perfect mazes and cellular automata for cave-like

structures. Some of the gathered results show that techniques of basic interaction iter-

ation and BSP trees have good scalability while cellular automata and depth-first search

need optimization or restriction in other to increase scalability.

22

3 PROPOSAL

In this chapter we will define concepts that will be necessary to fully understand

our proposal, which was developed in order to achieve the objectives presented in section

1.4. In the last section we will expand on the criteria for what makes a good video-game

map.

3.1 Video-game maps

In the context of video games, a map corresponds to a game scenery inhabited by

the player and other entities like monsters, NPCs, objects, etc (CARVALHO, 2011). The

specific type of map that we have selected for this work is the 2D top-down type. This

map perspective, also sometimes referred to as overhead view, bird’s-eye view, Godview,

etc. have a camera angle that shows the player and the area around them from above. An

example of a game with an overhead view is shown in Figure 3.1.

Figure 3.1 – Screenshot of Pokémon Gold gameplay

Source: (GAME FREAK, 1999)

3.1.1 Map elements

The tool chosen to develop our solution is the Unity game engine, which was re-

leased in 2005 and developed by Unity Technologies (UNITY TECHNOLOGIES, 2021).

Game engines are softwares that provide the core functionalities needed for a game to

run, for example a rendering engine, a physics engine, a collision engine, etc. Figure 3.2

shows a screenshot of this tool with some important elements that will be described on

23

the next items of this section. The description of such elements have been adapted from

Carvalho (2011).

Figure 3.2 – Screenshot of the Unity engine

Source: Image provided by author

3.1.1.1 Map

The map is represented here by a three-dimensional mesh of width wmap and

height hmap, with {wmap, hmap ∈ N|(wmap > 0) ∧ (hmap > 0)}. Additionally, this

mesh has a depth of lmap layers, with {lmap ∈ N|lmap ≥ 1}, in our specific case, lmap = 2.

The map is composed by a number of wmap×hmap cells, in our case, each cell has

one or two tiles (which will be explained in a subsequent section) one per layer, creating

what is called a tiled map.

3.1.1.2 Layers

The layers are the different levels of the map where it’s elements are distributed.

In the scope of this work, there are two types of elements that will compose our maps,

which are: ground and walls. The ground is the path where the player can walk on, while

the walls are what define the structure of the cave maps. The player cannot walk on walls.

In addition, these two elements are organized in two separate layers, here called ground

24

layer and collision layer. The collision layer is named as such because, in order to avoid

letting the player walk on the walls, a collider1 component was added to this layer.

3.1.1.3 Tiles

A tile is the entity that occuppies the cells of the map mesh. Each tile is an image

that represents some object to be inserted in the game, this image is of dimensions (i ∗

wcel) × (j ∗ hcel) with wcel and hcel representing, respectively, the width and height of a

cell in the map, while i and j are constants where {i, j ∈ N|(1 ≤ i < wmap) ∧ (1 ≤ j <

hmap)}. In our specific case, wcel = hcel = 16pixels and all tiles used have i = j = 1.

3.1.1.4 Tileset

A tileset is, as the name suggests, an image containing the set of tiles that will

represent the game objects.

The Unity game engine divides any given tileset into a number of tiles that can be

used by the developer to fill the map mesh and create an envinronment. The tileset used

on this work is the "Zelda-like tileset", which was posted by ArMM1998 (2017) and is

licensed in the public domain. Figure 3.3 shows this tileset, although only the tiles needed

for walls and ground were used in this work, which will be shown in the next chapter.

3.2 Cave patterns

As will be discussed in the next section, one of the characteristics that make a good

map is for it to have a natural look. Since we focused on cave-like maps, we researched

for what would be understood as a natural cave representation in a 2D top-down view.

According to Audra e Palmer (2011), caves are formed by having different types

of sources of water interacting with different kinds of soil. Figure 3.4 show some of the

most common cave patterns.

It is outside of the scope of this work to give a larger description to each of the

different cave patterns shown here, however it is important to note that this is an accurate

representation of real-world caves and that they were used as a reference for the generated

maps.

1In the Unity engine, the collider component is added to GameObjects where there’s need to simulate
physical collision.

25

Figure 3.3 – Zelda-like tileset

Source: (ARMM1998, 2017)

3.3 What makes a good generated map

At last, an important part of our proposal is to generate maps that have a set of

qualities that make them be perceived as good or desirable maps by players.

During the bibliographic research for these criteria, most of the findings related

not only to the map but to the entire game level entirely, for example in Preuss, Liapis e

Togelius (2014) the placement of enemies and treasures are also taken into consideration.

However, there were some criteria found on such works that made reference only

to the map itself. Here is a list of the qualities of a good generated map, according to our

bibliographic research:

• The generated maps should have a natural look, they shouldn’t look as if they were

generated by an algorithm (SHAKER; TOGELIUS; NELSON, 2016) (ADAMS;

MENDLER, 2002).

• Dungeon maps should have a point of entrance, a point of exit (which might be the

same as the point of entrance), and a path between them (SHAKER; TOGELIUS;

NELSON, 2016).

• The Generated maps should look different from each other, to provide the player

with an unique experience each time (GONÇALVES et al., 2015) (ZAPATA, 2014).

26

Figure 3.4 – Common cave patterns

Source: (AUDRA; PALMER, 2011)

• The generated maps should encourage players to explore them (PING; DINGLI,

2020).

• Borders are necessary on the generated maps, in order to prevent players and mon-

sters from escaping them (RODRIGUEZ TORRADO et al., 2020).

To evaluate if the generated maps have the qualities listed here, we created a sur-

vey based on the one found on Carvalho (2016), which was used to evaluate players’

motivation to explore game levels, developed based on the Instructional Materials Motiva-

tional Survey (IMMS), that uses the ARCS model by Keller (KELLER, 1987), (KELLER,

1993). Therefore, some of the elements for a good map that we will be evaluating are also

adapted from the components of the ARCS model:

• Attention:

• The design of the generated maps should be able to keep the player attention

on the game.

• The generated maps’ design should be attractive to the players.

• Relevance:

• The player should want to play a game that includes the generated maps.

• Confidence:

• The generated maps should not appear to be too hard for the player.

27

• When looking at the map, the player should be able to comprehend it easily.

• Satisfaction:

• The player should want to explore the map.

More information about the survey will be given in Chapter 5.

28

4 DEVELOPMENT

On this chapter we will be explaining how the system was implemented, which

algorithms that were used, the reason for choosing them, and what were the challenges

faced during development.

The system was developed in the Unity Game Engine, utilizing the C# language.

The basis for this work was started by following the video tutorial available at Taft (2019),

about creating a 2D top-down game in Unity. This tutorial laid our foundation for impor-

tant concepts, like importing the tileset, understanding how to draw a map, the basics of

collision, etc.

It was after this point that the creation of the PCG system really started. To better

understand its implementation, we will divide it in 7 steps and discuss each one in a

different Section of this Chapter. The last Section will cover all of the user inputs that can

be provided to the system in order to tune the map generation. However, first, there are

still some information that are useful to understand all the steps from this point forward:

• The generated map will be represented by a global matrix of integers with width

wmap and height hmap.

• Its important to notice that wmap and hmap are user-defined parameters.

• Each individual position of this matrix will be referred to as a cell.

• A cell of value 1 represents a wall, a cell of value 0 represents the absence of a wall,

or a path.

• The Figures where the map is shown are created by the use of Unity’s Gizmo de-

bugging tool. On these figures, the white color represents a path cell and the black

color represents a wall cell.

• A group of one or more connected path cells is here defined as a room.

4.1 Create a randomly-filled base map

The first step taken was to have a randomly generated base map to start building

upon. The generation of random or pseudo-random content is a part of most PCG tech-

niques. In our case, the importance of the randomness is a reflection of one of the items

for what is considered a good map, pointed on Section 3.3: "the Generated maps should

29

look different from one another".

The creation of this base map is accomplished by the steps listed here in Algorithm

1.

Algorithm 1: Randomly filling of the map
int map[wmap, hmap]
Function FillMapRandomly():

for all cells in the map do
random = randomly generated number between 0 and 100
if random < fillPercent then

map cell = 1
else

map cell = 0

The variable fillPercent specifies how much of the map will be populated by

walls or paths, this variable is a user-defined parameter. The attribution of different values

to it will generate different maps at the end of the process. Figure 4.1 shows an example

of a base map with wmap = hmap = 50 and fillPercent = 50, while Figure 4.2 shows

the same map but with fillPercent = 80.

Figure 4.1 – Map with fillPercent = 50.

Source: Image provided by author

Figure 4.2 – Map with fillPercent = 80.

Source: Image provided by author

The random number generator used to fill the map can also be controlled by a

user-defined parameter. The user can choose to write a seed for the generator, which is

a text that will tune the generator. Different executions of the generator with the same

seed will always give the same results. In this case the generated map will always be the

same for each given seed. Otherwise, the seed will be automatically chosen based on the

execution time of the algorithm, making each generation different from the previous ones.

30

4.2 Cellular automata

A CA is a discrete model of computation that was first discovered by Stanis-

law Ulam and John von Neumann; it can be described, in a simplified manner, as an

n-dimmensional grid, with a set of states and a set of transition rules. The grid is com-

posed by cells, each of them able to be in one of several states; in its most basic form,

cells can be 1 (on) or 0 (off) (WOLFRAM, 1983).

Although CA has found application in many different areas of study, it was the

1970s Conway’s Game of Life which brought its attention to beyond academia. This was

a zero-person game where cells from a 2D grid would live or die (hence, they had only two

states, 1 or 0) based on how many neighbors they had around them. This neighborhood is

defined as the eight (8) cells surrounding the central cell currently being analyzed. Some

of the rules from the Game of Life have been applied in dungeon generation because of

the cave-like appearance that the algorithm creates on the grid (SHAKER; TOGELIUS;

NELSON, 2016).

In our specific case, the rule used is that, if there are more than 4 walls around

the current cell, then the cell becomes a wall, if there are less than 4 walls around the

cell, it becomes a path. The method was also chosen because it generates images that are

similar to the representation of spongework caves, shown in Figure 3.4. Figure 4.3 serves

as a visual representation to this rule, where the red cell is the one under current analysis,

while the number on the right represents is resulting state after the CA execution.

Figure 4.3 – Representation of the CA rule used.

Source: Image provided by author

In Figure 4.4 we can see the base map generated in Figure 4.1 after 5 iterations of

the CA. In addition, Figure 4.5 shows the map after 20 iterations. The number of iterations

is a user-defined parameter for the system.

31

Figure 4.4 – Map after 5 iterations of
CA.

Source: Image provided by author

Figure 4.5 – Map after 20 iterations of
CA.

Source: Image provided by author

4.3 Creating a list of rooms

At this stage, the algorithm has finished letting us with one or more rooms scat-

tered throughout the map. On code, we represent the rooms as a separate Room class that

contains the coordinates of all of its cells. It is important to note that the Room class also

contains other important information used by a following step of the algorithm (Section

4.5) defined by a flag indicating if the Room was visited, a list of Rooms connected to this

Room and a method that connects two Rooms.

There are two sets of user-defined inputs that will determine if there will be the

creation of entrance and exit rooms and their location on the map. After that is completed,

the algorithm goes through the map grid and searches for paths. If a path was found we

use the flood-fill algorithm in order to define where this room begins and where it ends,

and then, we create a Room containing all the coordinates of its cells. After the creation

of the Room it is added to a list containing all Rooms on the map.

4.4 Checking if the generated map is possible

One of the issues that came up during development is that not all generated maps

can translate well to a 2D top-down tile-based map. This happens because, for a visually

well-formed wall to be generated, there needs to have at least 2 walls between 2 paths.

On that respect, Figure 4.6 exemplifies a malformed wall between 2 Rooms.

To solve this matter, in this step we go through each cell of each Room and check

32

Figure 4.6 – Example of a malformed wall between two Rooms

Source: Image provided by author

if there are Rooms that have a distance of less than 2 cells from each other. If there are,

then the whole process is started again until the generated Room can be well translated to

a tile-based map. Algorithm 2 describes this process.

Algorithm 2: Checking if the generated map is possible
while map is not possible do

Randomly fill the map
Run cellular automata
Create a list of Rooms
Check if the generated map is possible

4.5 Connection between rooms

To better explain how we create connections between separated rooms we will

divide this section in two: ensuring connectivity through graph algorithms and drawing

the connection between rooms using Bresenham’s line algorithm.

33

4.5.1 Ensuring connectivity

Ensuring the connectivity between all rooms is important for, as mentioned on

Section 3.3: "Dungeon maps should have a point of entrance, a point of exit (which might

be the same as the point of entrance) and a path between them". For our specific case,

there is one more reason why this step is important: making maps that are similar to the

branchwork or network cave patterns previously seen on Figure 3.4.

As the guideline above recalls, we need to make sure that every pair of Rooms are

connected, i.e., there is a way to reach one Room by starting on any other Room. Each

Room in the map can be viewed as a node in a graph, that way, we made use of a popular

algorithm in graph theory to check if there’s connectivity: Depth-First Search (DFS). DFS

is an algorithm that starts at an arbitrary node of the graph and explores as far as possible

along each branch before backtracking (EVEN, 2011).

Figure 4.7 shows a visual representation of the algorithm used in this step, which

is described in Algorithm 3. Each node of the graph represents a Room in the map. In

quadrant 1 we start with a map with fully disconnected Rooms. Then, the algorithm

begins by connecting each node to its closest node, as seen in quadrant 2, this is done by

checking the distance between each two border tiles between all Rooms and connecting

the closest two; following that, it performs the DFS to check if connectivity is ensured; if

not, it handles the sets of connected nodes a a single node, like is shown on quadrant 3,

and then, redo the connectivity step, which leads to the result that can be seen in quadrant

4.

Figure 4.7 – Visual representation of the connectivity algorithm.

Source: Image provided by author

34

Algorithm 3: Ensuring connectivity of the map
Graph = represent Rooms as graph
while connectivity isn’t reached do

Connect closest Rooms in Graph
Check connectivity
Transform the sets of connected Rooms into new nodes for the new Graph

4.5.2 Drawing the connection

At this point of the algorithm, we have a map filled with Rooms that have ensured

connectivity, nonetheless, this connectivity is only represented by some elements of the

Room class, being not represented yet in the map grid as walls and paths.

This is where the algorithm known as Bresenham’s line is used. This algorithm,

suggested in 1962 by Jack Elton Bresenham, is used to determine which points on an n-

dimensional raster should be selected in order to form a close approximation of a straight

line (BRESENHAM, 1965).

Since each Room has all of its cell coordinates stored, we can choose the closest

cells for each connection and then use the Bresenham’s line algorithm to draw this straight

line on the map. Figure 4.8 shows the same map seen in Figure 4.5 after the connectivity

is ensured and then drawn on the map using Bresenham’s algorithm.

On a first glance, it may seem like these passages will not be wide enough to allow

the player to pass through them, but the nature of the chosen tileset ensures that this is

indeed possible, as shown in Figure 4.9.

Figure 4.8 – Map after connectivity is ensured.

Source: Image provided by author

35

Figure 4.9 – Passage before and after tile placement.

Source: Image provided by author

4.6 Removing inconsistencies from the map

Just like in Section 4.4, maps that are generated with single-spaced walls will not

translate well to a 2D tile-map. Some of these problematic walls are occasionally created

on the process of drawing the Bresenham’s lines to connect separate Rooms.

In this step we deal with these inconsistencies by going through the entire map

grid and checking for wall cells that have either a path to its right and left, here shown on

Figure 4.10; or to its up or down, as shown in Figure 4.11; the inconsistencies are circled

in red. After these inconsistent single-spaced walls are found, they are replaced by paths.

Figure 4.10 – Example of a horizontal
inconsistency.

Source: Image provided by author

Figure 4.11 – Example of a vertical
inconsistency.

Source: Image provided by author

4.7 Tile placement

Finally, the last step of the generation is to place the tiles to their corresponding

spots in the walls and paths. There are a number of 13 wall tiles needed to create the map,

which are shown here on Figure 4.12. There is only a single tile that corresponds to a

path, which is visible on the resulted map in Figure 4.14.

36

Figure 4.12 – Wall tiles.

Source: Image provided by author

The first idea we had was to try to use a custom CA ruleset, where each cell had

14 possible states, one for each needed tile. However, after we assessed that a single

execution of the ruleset through the map grid was enough to place all the tiles correctly,

it was our understanding that our algorithm could be better described as a morphological

operation.

This morphological operation, containing 14 rules, is here shown on Figure 4.13.

The next item list serves to better understand the content of this Figure:

• Similar to Figure 4.3, the center cell is the one currently being analyzed.

• Gray cells represent wall cells.

• White cells represent path cells.

• Pink cells represent either a wall or a path, meaning that the content of this cell is

not taken into account, i.e., it won’t be analyzed by this rule.

• The tile next to the rule number is what the rule will return for the cell being ana-

lyzed.

For example, Rule 3 will check if the current cell, the one at the center of the grid,

is a wall, then if the cell above it is a path, then if the cell to the left of it is a path, then if

the cell to the right of it is a wall, then if the cell below it is a wall and finally if the cell

to the bottom right of it is a wall; if all of these conditions are met, the rule will return the

37

corner tile shown on Figure 4.13 for Rule 3 and place it on the analyzed cell.

Figure 4.13 – Ruleset.

Source: Image provided by author

After the algorithm has gone through the whole map grid, the result will be a fully-

formed 2D tile-based top-down map. Figure 4.14 shows the same map from Figure 4.8

after the tile placement.

4.8 User-defined parameters

On this section we will be showcasing all of the user-defined parameters that can

be used to tune the generation of the map.

Figure 4.15 shows a snippet of the Unity tool, showing all the parameters used

to generate the map that was seen on Figure 4.14: wmap = hmap = 50; the creation of

a start and an end room was disabled, meaning that the cave used as an example was

38

Figure 4.14 – Resulting generated map.

Source: Image provided by author

created without entrance and exit; the number of iterations for the CA step was set to 20;

a specific seed was set; and the fill percent of the first step was set to 50.

The parameters can be explained as such:

• Width: the number of cells on a row of the generated map, or wmap.

• Height: the number of cells on a column of the generated map, or hmap.

• Create Start/End Room: toggles the creation of an entrance/exit for the generated

cave map.

• Start/End X/Y 1/2: the coordinates of the 2 cells that will compose the en-

trance/exit of the cave map.

• Iterations: number of times that the CA algorithm will execute on the map.

• Seed: a text that will tune the random number generator, can be set to always

generate the same map.

• Use Random Seed: this will define if the Seed from the above parameter will be

used or if the system will choose a random one.

• Random Fill Percent: define the value of the variable fillPercent, explained on

39

Section 4.1.

Figure 4.15 – Available user parameters.

Source: Image provided by author

40

5 METHODOLOGY OF VALIDATION

This chapter will discuss the creation of the questionnaire that was applied to

video-game players, the conduction of its pretest, leading to its revision and the applica-

tion of its final version. After that, we will discuss the results obtained.

As mentioned on Section 3.3, a survey was developed in order to test if a num-

ber of our generated maps can achieve the criteria we defined for what is considered a

good generated map, which was built by adapting the measured tool of the ARCS model

available at Carvalho (2016), originally used to assess the motivation of players to play

a game. Both the questionnaire and its pretesting version were made available through

Google Forms in Brazilian Portuguese. They make use of the typical five-level Likert

scale (LIKERT, 1985 - 1932):

• Strongly disagree.

• Disagree.

• Neither agree nor disagree.

• Agree

• Strongly agree.

Both questionnaires start with a question about the participant age group, and a

question about how familiar they are with 2D top-down games. Also in both cases, par-

ticipants were asked to carefully visualize eight different maps generated by our system.

These images are available in Appendix A. The main concern during the generation of

these maps was to create a variety of results by tuning the user-defined parameters of the

system.

English versions of the questionnaires are available in Appendix B and Appendix

C. The justification of each question is also presented. Details about both of them will be

discussed in the next sections, as well as their results.

5.1 Pretest questionnaire

Before sharing a definitive version of the questionnaire, a pretest was made with

a smaller group of participants, in order to determine the strengths and weaknesses of our

survey concerning question format and wording.

The pretest had 23 participants. These were the first two questions, made with the

41

purpose of understanding the profile of the respondents:

• What is your age group (in years)?

• (18-) Less than 18.

• (18 - 25) Between 18 and 25.

• (26 - 30) Between 26 and 30.

• (31 - 35) Between 31 and 35.

• (35+) More than 35.

• How familiar are you with 2D top-down games? (games like Zelda, Pokémon,

Bindings of Isaac, Hotline Miami etc)

• (1) Never heard of it.

• (2) Heard of it, but never played.

• (3) I’ve seen videos of people playing this type of games.

• (4) I’ve played at least one game in this style.

• (5) I’ve played more than one game in this style.

The results of these questions are shown here in Figure 5.1 and Figure 5.2. We

had the participation of mostly young people who were already familiar with the concept.

Figure 5.1 – Age group of participants.

Source: Image provided by author

Figure 5.2 – Participants’ familiarity
with 2D top-down games.

Source: Image provided by author

After these initial questions, as mentioned before, participants were asked to care-

fully visualize the map images shown in Appendix A, then they responded the 15 ques-

tions regarding the map, available in Appendix B. Also, Appendix B contains the next part

of the pretest, which involves answering five subjective questions about the questionnaire

itself, shown in Table B.2.

42

5.1.1 Pretest results

For the pretest, the results we analyzed are the ones about the questionnaire itself,

i.e., the ones in Table B.2. All of the points listed here have been taken into account when

developing the second version.

5.1.1.1 Question 1

Question 1 reads: "Do you think that the questions from this questionnaire were

easy to understand? If not, why?".

This question had 12 answers, from which 7 were positive, 3 were negative and

2 were neutral. The most important points we gathered from the neutral and negative

answers were:

• Participants weren’t sure what the map would be used for, this made it harder for

them to answer the questions.

• Participants who were unfamiliar with 2D top-down games found it hard to visual-

ize how the maps could be explored.

5.1.1.2 Question 2

Question 2 reads: "Are there repeated questions in this questionnaire? If yes,

which?".

This question had 17 answers, from which 9 were negative and 8 were positive.

All of the positive answers referred to questions that were opposites from one another,

for example, question 9 (The generated map’s design made it difficult for me to keep my

attention.) and 10 (The generated cave maps were capable of capturing my attention.).

5.1.1.3 Question 3

Question 3 reads: "Would you include other questions on this questionnaire? If

yes, which?".

This question had 16 answers, from which 7 were negative and 9 were positive.

Most of these 9 positive answers suggested some type of comparison between the maps.

From our understanding, adding questions that compare the generated maps is beyond the

scope of this work, therefore we concluded that we need to better explain the objectives

43

of the work before asking the questions.

One of the suggestions was to add a demonstration of how a character would view

these maps, how far away would the camera be, how much of the map could be seen etc.

5.1.1.4 Question 4

Question 4 reads: "Would you change the text of one or more questions in this

questionnaire? If yes, which?".

This question had 14 answers, from which 7 were negative and 7 were positive.

The most important points gathered from the positive answers are listed below:

• Grammatical errors to be corrected.

• Use of a more direct language.

• Change questions 7 and 8 so that, instead of measuring the influence of colors and

textures compared to the structure of paths, we can measure the influence of each

separately.

5.1.1.5 Question 5

Question 5 reads: "Do you think a question comparing the generated maps to real

cave representation is necessary for this questionnaire?".

This question had 19 answers, from which 13 were positive and 6 were negative.

Some of the positive answers suggested showing some real cave patterns, arguing that it

can be difficult to imagine how the structure of a cave can be represented in 2D.

5.2 Second version of questionnaire

After reviewing all the suggestions and important points brought up on the pretest

questionnaire, we developed an improved version of it, which can be seen on Table C.1

of Appendix C.

The second version had 163 participants, the first two questions were the same as

the ones asked in the pretest and their results can be seen in Figure 5.3 and in Figure 5.4.

We can see by these results that the participants’ profile is the same as the one the pretest.

A new question was added with the intent of better identifying the profile of the

participants: "Did you ever participate in the development of a video game?". For which

44

Figure 5.3 – Age group of participants.

Source: Image provided by author

Figure 5.4 – Participants’ familiarity
with 2D top-down games.

Source: Image provided by author

41,1% answered positively and 58,9% answered negatively. This is relevant since, as

discussed on Section 1.2, one of the main objectives of PCG in video games is to assist in

game design.

After these three initial questions, the participants were given a summary of the

objectives of this work, along with the image from Figure 3.4, to assist in answering the

questions to come. Additionally, an animated GIF of a character walking around one of

the generated maps was added. A still image of this GIF can be seen here on Figure 5.5.

Figure 5.5 – Still frame of GIF shown to participants, showing a character walking on a generated
map.

Source: Image provided by author

5.2.1 Analysis of results

The total results can be seen on Figure 5.6, where the questions that have the ideal

response as Strongly agree are marked with a (+) after the question number, and the ones

that have the ideal response as Strongly disagree are marked with a (-).

To analyze the results, we assigned a weight to each option of the Likert scale,

45

Figure 5.6 – Total results of the second version questionnaire.

Source: Image provided by author

from 1 (strongly disagree) to 5 (strongly agree). The question’s proposition was con-

sidered satisfied if the average of answers achieved 60% of the ideal value. For some

questions the ideal is to reach 5, for others the ideal is to reach 1. Therefore, considering

MAX as the maximum answer, MIN as the minimum answer, and Vmax and Vmin as the

maximum and minimum satisfactory value, respectively:

Vmax = (MAX −MIN) ∗ 0.6 +MIN = (5− 1) ∗ 0.6 + 1 = 3.4

Vmin = (MAX −MIN) ∗ 0.4 +MIN = (5− 1) ∗ 0.4 + 1 = 2.6

The average and mode of the answers is shown on Figure 5.7.

By these metrics; questions 1, 2, 4, 7, 8, 9, 10, 11 and 12 have reached a satisfac-

tory result; while questions 3, 5 and 6 have not.

Out of the questions that have reached satisfactory results, the most important

points gathered were:

• All of the questions related to the ARCS model for measuring motivation have

reached satisfactory results.

• Attention was shown to be the least influential component (questions 1 and 8).

• Confidence and relevance were the major drivers for motivation (questions 2

and 12).

• The structure of the caves was shown to be slightly more important in achieving the

46

Figure 5.7 – Average and mode of the second version questionnaire.

Source: Image provided by author

natural look for the map (question 7).

• The variety criteria didn’t reach a very expressive result, although still below the

40% mark (question 11).

• The criteria that proposed that the generated maps should encourage players to

explore was reached by a good margin (question 9).

Out of the questions that haven’t reached satisfactory results, the most important

points gathered were:

• It would be easy to get lost on the generated maps (question 3).

• This could be attributed to the labyrinthic nature of caves.

• Generating larger maps tend to create many branching paths. This can mean

that the system is more effective when generating smaller maps.

• Even though the results of question 4 suggests that the system can generate natural-

looking structures, the result of question 5 suggests that the maps still don’t quite

look like real caves. Although the result was not drastically low.

47

6 CONCLUSION

This work showed how PCG is important in game design and how the price of

game development has been increasing throughout the years. To aid in that matter, it

proposed the development of a PCG system to generate random cave-like maps that are

similar to real-world caves. Finally it evaluated this system through a survey.

One of the biggest challenges faced was the research for criteria on what makes a

good map, that can be seen on Section 3.3. Most of the related work we found focused

on video-game levels, which also contain additional elements like enemies and treasures.

Due to this difficulty we decided to also adopt the metrics found in Carvalho (2016) to

evaluate players’ motivation to explore game levels in educational games, which, in turn,

is an adaptation of the ARCS model measurement tool found in Keller (1987). To meet

our ends, the tool from Carvalho (2016) was adapted to verify players’ perception on our

auto-generated caves, which demanded a pre-test of the questionnaire to verify if it indeed

attended our needs. In this sense, the evaluation method for generated maps proposed on

this work can be further reused by others with little to no adaptation.

The creation of the system required knowledge from different areas and the use

and adaptation of many algorithms. Our system has many user-defined parameters, which

is a positive trait for map generation, since it allows for a larger variety of maps to be

created. Even though the work focused on cave-like maps, by changing the used tiles

the system can generate maps like forests, open fields, rivers, etc. Figure 6.1 shows a

procedurally generated river, also created with the use of the system.

Figure 6.1 – River generated by the system.

Source: Image provided by author

The survey was answered by 163 participants, most of them from the age group

48

that composes the average gamer and familiar to 2D top-down games. From the 12 ques-

tions, 9 achieved satisfactory results while 3 did not. Out of these results we found that,

even though the structure of the maps resembles natural caves, the maps were not found

to be much similar to 2D representations of real caves.

Finally, as a future works, the system could be turned into an Unity tool, that

can then be used to create full games. The generation of rivers can be expanded on, by

comparing them to real-life rivers and evaluating with a similar survey. The generation

of maps can be changed to a level-generator, where the system wouldn’t only generate

the map but also place enemies, treasures, hidden passages etc. A deeper analysis of the

questions regarding the ARCS model can be done to better evaluate the motivation to

explore given to players by our maps.

49

REFERENCES

ADAMS, David; MENDLER, Michael. Automatic Generation of Dungeons for
Computer Games. 2002. Bachelor Thesis – University of Sheffield.

ARMM1998. Zelda-like tilesets and sprites. 2017. Available from: https:
//opengameart.org/content/zelda-like-tilesets-and-sprites.
Visited on: 6 May 2021.

AUDRA, Ph; PALMER, Arthur. The pattern of caves: Controls of epigenic
speleogenesis. Géomorphologie : relief, processus, environnement, v. 17, p. 359–378,
Dec. 2011. DOI: 10.4000/geomorphologie.9571.

BOGGUS, Matt; CRAWFIS, Roger. Procedural creation of 3D solution cave models.
Proceedings of the IASTED International Conference on Modelling and
Simulation, Jan. 2009.

BRESENHAM, J. E. Algorithm for Computer Control of a Digital Plotter. IBM Syst. J.,
IBM Corp., USA, v. 4, n. 1, p. 25–30, Mar. 1965. ISSN 0018-8670. DOI:
10.1147/sj.41.0025. Available from:
https://doi.org/10.1147/sj.41.0025.

BREWER, Nathan. GOING ROGUE: A BRIEF HISTORY OF THE
COMPUTERIZED DUNGEON CRAWL. 2016. Available from:
https://insight.ieeeusa.org/articles/going-rogue-a-brief-
history-of-the-computerized-dungeon-crawl/. Visited on: 1 May 2021.

CARVALHO, Leonardo Filipe Batista Silva de. Aplicação do modelo de Algoritmo
Genético Baseado em Tipos Abstratos de Dados (GAADT) na adaptação de
cenários bidimensionais de MMORPGs. 2011. MA thesis – Universidade Federal de
Alagoas.

CARVALHO, Leonardo Filipe Batista Silva de. Explorando os Mitos Nacionais:
contribuição ao aprendizado pelo estímulo à motivação a partir dos Serious Games.
2016. PhD thesis – Universidade Federal do Rio Grande do Sul.

DOULL, Andrew. The Death of the Level Designer: Procedural Content Generation
in Games. 2008. Available from:
http://roguelikedeveloper.blogspot.com.br/2008/01/death-of-
level-designer-procedural.html. Visited on: 1 May 2021.

ELECTRONIC ARTS. Steam Page of Spore. 2008. Available from:
https://store.steampowered.com/app/17390/SPORE/. Visited on: 1
May 2021.

https://opengameart.org/content/zelda-like-tilesets-and-sprites
https://opengameart.org/content/zelda-like-tilesets-and-sprites
https://doi.org/10.4000/geomorphologie.9571
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.1147/sj.41.0025
https://insight.ieeeusa.org/articles/going-rogue-a-brief-history-of-the-computerized-dungeon-crawl/
https://insight.ieeeusa.org/articles/going-rogue-a-brief-history-of-the-computerized-dungeon-crawl/
http://roguelikedeveloper.blogspot.com.br/2008/01/death-of-level-designer-procedural.html
http://roguelikedeveloper.blogspot.com.br/2008/01/death-of-level-designer-procedural.html
https://store.steampowered.com/app/17390/SPORE/

50

EPYX. Steam Page of Rogue. 1985. Available from:
https://store.steampowered.com/app/1443430/Rogue/. Visited on: 1
May 2021.

EVEN, Shimon. Graph Algorithms. 2nd. USA: Cambridge University Press, 2011.
ISBN 0521736536.

GAME FREAK. Official Pokémon website. 1999. Available from:
https://www.pokemon.co.jp/game/other/gbc-gs/. Visited on: 5 May
2021.

GONÇALVES, C. et al. Analysis and Development of a Game of the Roguelike
Genre. 2015. Trabalho de Conclusão de Curso – Universidade Federal do Rio Grande do
Sul.

JOHNSON, Lawrence; YANNAKAKIS, Georgios; TOGELIUS, Julian. Cellular
Automata for Real-Time Generation of Infinite Cave Levels. In. PROCEEDINGS of the
2010 Workshop on Procedural Content Generation in Games. Monterey, California:
Association for Computing Machinery, 2010. (PCGames ’10). ISBN 9781450300230.
DOI: 10.1145/1814256.1814266. Available from:
https://doi.org/10.1145/1814256.1814266.

KELLER, John. Development and Use of the ARCS Model of Motivational Design.
Journal of Instructional Development, v. 10, Jan. 1987.

KELLER, John. Motivation by design. Unpublished manuscript, Florida State
University, Florida. [S. l.], 1993.

KOUMARELAS, Robert. Final Fantasy VII Remake Is Only Getting More
Expensive. 2021. Available from:
https://www.cbr.com/final-fantasy-vii-remake-cost/. Visited on:
30 Apr. 2021.

LIKERT, Rensis. A technique for the measurement of attitudes / by Rensis Likert.
New York: [s.n.], 1985 - 1932. (Archives of psychology ; no. 140).

MELAN. Dungeon Mapping. 2006. Available from:
https://www.darkshire.net/jhkim/rpg/dnd/dungeonmaps.html.
Visited on: 1 May 2021.

PING, Kuang; DINGLI, Luo. Conditional Convolutional Generative Adversarial
Networks Based Interactive Procedural Game Map Generation. In. [S. l.: s. n.], Feb.
2020. p. 400–419. ISBN 978-3-030-39444-8. DOI:
10.1007/978-3-030-39445-5_30.

https://store.steampowered.com/app/1443430/Rogue/
https://www.pokemon.co.jp/game/other/gbc-gs/
https://doi.org/10.1145/1814256.1814266
https://doi.org/10.1145/1814256.1814266
https://www.cbr.com/final-fantasy-vii-remake-cost/
https://www.darkshire.net/jhkim/rpg/dnd/dungeonmaps.html
https://doi.org/10.1007/978-3-030-39445-5_30

51

PONGMUSEUM. Pong Museum - History. 2021. Available from:
http://pongmuseum.com/history/. Visited on: 30 Apr. 2021.

PREUSS, Mike; LIAPIS, Antonios; TOGELIUS, Julian. Searching for good and diverse
game levels. In. 2014 IEEE Conference on Computational Intelligence and Games.
[S. l.: s. n.], 2014. p. 1–8. DOI: 10.1109/CIG.2014.6932908.

RODRIGUEZ TORRADO, Ruben et al. Bootstrapping Conditional GANs for Video
Game Level Generation. In. 2020 IEEE Conference on Games (CoG). [S. l.: s. n.], 2020.
p. 41–48. DOI: 10.1109/CoG47356.2020.9231576.

SANTAMARÍA-IBIRIKA, Aitor et al. Procedural Playable Cave Systems Based on
Voronoi Diagram and Delaunay Triangulation. In. 2014 International Conference on
Cyberworlds. [S. l.: s. n.], 2014. p. 15–22. DOI: 10.1109/CW.2014.11.

SHAKER, Noor; TOGELIUS, Julian; NELSON, Mark J. Procedural Content
Generation in Games. [S. l.]: Springer, 2016. ISBN 9783319427140.

SMITHERS, Pelham. Peak Video Game? Top Analyst Sees Industry Slumping in
2019. 2019. Available from:
https://www.bloomberg.com/news/articles/2019-01-23/peak-
video-game-top-analyst-sees-industry-slumping-in-2019/.
Visited on: 30 Apr. 2021.

STEINBERG, Scott. The definitive Guide: Videogame Marketing and PR (1st ed.)
[S. l.]: iUniverse, 2007. ISBN 9780595433711.

TAFT. Make a game like the Legend of Zelda using Unity and C#. 2019. Available
from: https://www.youtube.com/watch?v=F5sMq8PrWuM&list=
PL4vbr3u7UKWp0iM1WIfRjCDTI03u43Zfu. Visited on: 6 May 2021.

TOGELIUS, Julian et al. What is Procedural Content Generation? Mario on the
borderline, Jan. 2011. DOI: 10.1145/2000919.2000922.

UNITY TECHNOLOGIES. Unity home page. 2021. Available from:
https://unity.com/. Visited on: 6 May 2021.

VIANA, Breno M. F.; SANTOS, Selan R. dos. A Survey of Procedural Dungeon
Generation. In. 2019 18th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). [S. l.: s. n.], 2019. p. 29–38. DOI:
10.1109/SBGames.2019.00015.

WITKOWSKI, Wallace. Videogames are a bigger industry than movies and North
American sports combined, thanks to the pandemic. 2020. Available from:

http://pongmuseum.com/history/
https://doi.org/10.1109/CIG.2014.6932908
https://doi.org/10.1109/CoG47356.2020.9231576
https://doi.org/10.1109/CW.2014.11
https://www.bloomberg.com/news/articles/2019-01-23/peak-video-game-top-analyst-sees-industry-slumping-in-2019/
https://www.bloomberg.com/news/articles/2019-01-23/peak-video-game-top-analyst-sees-industry-slumping-in-2019/
https://www.youtube.com/watch?v=F5sMq8PrWuM&list=PL4vbr3u7UKWp0iM1WIfRjCDTI03u43Zfu
https://www.youtube.com/watch?v=F5sMq8PrWuM&list=PL4vbr3u7UKWp0iM1WIfRjCDTI03u43Zfu
https://doi.org/10.1145/2000919.2000922
https://unity.com/
https://doi.org/10.1109/SBGames.2019.00015

52

https://www.marketwatch.com/story/videogames-are-a-bigger-
industry-than-sports-and-movies-combined-thanks-to-the-
pandemic-11608654990/. Visited on: 30 Apr. 2021.

WOLF, Mark J. P. The Video Game Explosion: A History from PONG to
PlayStation and Beyond. [S. l.]: Greenwood, 2007. ISBN 9780313338687.

WOLFRAM, Stephen. Statistical mechanics of cellular automata. Rev. Mod. Phys.,
American Physical Society, v. 55, p. 601–644, 3 July 1983. DOI:
10.1103/RevModPhys.55.601. Available from:
https://link.aps.org/doi/10.1103/RevModPhys.55.601.

WRIGHT, Will. 2007 TED video of Spore. 2007. Available from:
https://web.archive.org/web/20070817073543/http:
//www.joystiq.com/2007/07/22/todays-most-delayed-and-
ambitious-video-ted-spore-demo/. Visited on: 1 May 2021.

ZAPATA, Santiago. A Classic Roguelike. 2014. Available from:
https://blog.roguetemple.com/roguelike-definition/. Visited on:
6 May 2021.

ZUBEK, Robert. Elements of Game Design. [S. l.]: The MIT Press, 2020. ISBN
9780262043915.

l;

https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990/
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990/
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990/
https://doi.org/10.1103/RevModPhys.55.601
https://link.aps.org/doi/10.1103/RevModPhys.55.601
https://web.archive.org/web/20070817073543/http://www.joystiq.com/2007/07/22/todays-most-delayed-and-ambitious-video-ted-spore-demo/
https://web.archive.org/web/20070817073543/http://www.joystiq.com/2007/07/22/todays-most-delayed-and-ambitious-video-ted-spore-demo/
https://web.archive.org/web/20070817073543/http://www.joystiq.com/2007/07/22/todays-most-delayed-and-ambitious-video-ted-spore-demo/
https://blog.roguetemple.com/roguelike-definition/

53

APPENDIX A — MAP FIGURES USED IN BOTH VERSIONS OF THE

QUESTIONNAIRE

Figure A.1 – Maps used in the questionnaires

Source: Image provided by author

54

APPENDIX B — PRETEST QUESTIONNAIRE

Table B.1 – Part of the pretest questionnaire regarding the maps.
No. Question Justification

1
There was something interesting in the cave
maps that caught my attention.

Question related to the Attention component of the
ARCS model.

2
The first time I saw the cave maps, I had the
impression that they would be easy to explore.

Question related to the Confidence component of
the ARCS model.

3
The structure of the caves was harder to
comprehend than I would have liked them to be.

Question related to the Confidence component of
the ARCS model.

4
While looking at the maps, I feel that it would
be easy for me to get lost.

Question related to the criteria: maps should have

an entrance, an exit, and a path between them.

5
The structure of the map looked natural, it didn’t
look like it was generated by an algorithm.

Question related to the criteria: generated maps
should have a natural look.

6
While I observed the maps, I felt like I was
seeing a representation of real caves.

Question related to the criteria: generated maps
should have a natural look.

7
In the generated maps, what reminds me of a
real cave are the used colors, and not the
structure of paths.

This question serves to evaluate how important
the structure is in the creation of a natural look.

8
In the generated maps, what reminds me of a
real cave is the structure of paths, and not the
used colors.

This question serves to evaluate how important
the used colors are in the creation of a natural look.

9
The generated map’s design made it difficult
for me to keep my attention.

Question related to the Attention component of
the ARCS model.

10
The generated cave maps were capable of
capturing my attention.

Question related to the Attention component of
the ARCS model.

11
While looking at the maps, I feel like exploring
them.

Question related to the criteria: maps should
encourage players to explore.

12
The design of the generated cave maps is
attractive.

This question serves to evaluate the overall
attractiveness of the maps.

13
The design of the maps is very simple and not
attractive.

This question serves to evaluate the overall
attractiveness of the design.

14
The generated structures look very similar,
with little variety.

Question related to the criteria: maps should
look different from one another

15
The variety of the maps helps to keep my
attention.

Question related to the criteria: maps should
look different from one another.

Source: Table provided by author.

Table B.2 – Part of the pretest questionnaire regarding the questionnaire itself.

No. Question

1 Do you think that the questions from this questionnaire were easy to understand? If not, why?

2 Are there repeated questions in this questionnaire? If yes, which?

3 Would you include other questions on this questionnaire? If yes, which?

4 Would you change the text of one or more questions in this questionnaire? If yes, which?

5
Do you think a question comparing the generated maps to real cave representation is necessary

for this questionnaire?

Source: Table provided by author.

55

APPENDIX C — SECOND VERSION OF THE QUESTIONNAIRE

Table C.1 – Second version of the questionnaire.
No. Question Justification

1
There was something interesting in the cave
maps that caught my attention.

Question related to the Attention component of the
ARCS model.

2
The structure of the caves was harder to
comprehend than I would have liked them to be.

Question related to the Confidence component of
the ARCS model.

3
I feel like it would be easy for me to get lost in
more than one of the observed maps.

Question related to the criteria: maps should have
an entrance, an exit, and a path between them.

4
In more than one of the generated maps, the
structure of the map looked natural, it didn’t
look like it was generated by an algorithm.

Question related to the criteria: generated maps
should have a natural look.

5
While I observed the maps, I felt like I was
seeing a representation of real caves.

Question related to the criteria: generated maps
should have a natural look.

6
In the generated maps, what reminds me of a
real cave are the used colors and textures.

This question serves to evaluate how important
the used colors and textures are in the creation
of a natural look.

7
In the generated maps, what reminds me of a
real cave is the structure of paths.

This question serves to evaluate how important
the structure of paths are in the creation of a
natural look.

8
The design of more than one map made it
difficult for me to keep my attention.

Question related to the Attention component of
the ARCS model.

9
While looking at the maps, I feel like exploring
them.

Question related to the criteria: maps should
encourage players to explore.

10
The design of the generated cave maps is
attractive.

Question related to the Satisfaction component of
the ARCS model.

11
The generated structures look very similar,
with little variety.

Question related to the criteria: maps should
look different from one another

12
I would play a game that utilizes the generated
maps.

Question related to the Relevance component of
the ARCS model.

Source: Table provided by author.

	Cover
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Game design
	1.1.1 Evolution of the video game industry

	1.2 Procedural content generation
	1.3 Dungeons in games
	1.4 Objectives
	1.5 Organization of this work

	2 Related Work
	2.1 Conditional Convolutional Generative Adversarial Networks Based Interactive Procedural Game Map Generation
	2.2 Cellular automata for real-time generation of infinite cave levels
	2.3 Procedural creation of 3D solution cave models
	2.4 Procedural Playable Cave Systems based on Voronoi Diagram and Delaunay Triangulation
	2.5 Analysis and Development of a Game of the Roguelike Genre

	3 Proposal
	3.1 Video-game maps
	3.1.1 Map elements
	3.1.1.1 Map
	3.1.1.2 Layers
	3.1.1.3 Tiles
	3.1.1.4 Tileset

	3.2 Cave patterns
	3.3 What makes a good generated map

	4 Development
	4.1 Create a randomly-filled base map
	4.2 Cellular automata
	4.3 Creating a list of rooms
	4.4 Checking if the generated map is possible
	4.5 Connection between rooms
	4.5.1 Ensuring connectivity
	4.5.2 Drawing the connection

	4.6 Removing inconsistencies from the map
	4.7 Tile placement
	4.8 User-defined parameters

	5 Methodology of validation
	5.1 Pretest questionnaire
	5.1.1 Pretest results
	5.1.1.1 Question 1
	5.1.1.2 Question 2
	5.1.1.3 Question 3
	5.1.1.4 Question 4
	5.1.1.5 Question 5

	5.2 Second version of questionnaire
	5.2.1 Analysis of results

	6 Conclusion
	References
	Appendix A — Map figures used in both versions of the questionnaire
	Appendix B — Pretest questionnaire
	Appendix C — Second version of the questionnaire

