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ABSTRACT

In recent years, the technique of electrospinning has been used to develop a novel class of micro- and nanoscale materials 
based on fibrous structures. Several polymers, in particular elastomers, that have been implemented in this process rely on 
properties such as elasticity, flexibility, biocompatibility, and low cost. Herein, we describe for the first time the electros-
pinning of natural rubber fibers without polymeric matrix to obtain self-standing non-woven mats and oriented elastomeric 
fibers. The fibers average diameters were approximately 5.5 µm. Polyaniline (PAni) was deposited on the membrane sur-
face in order to enhance the conductive properties making easy the charge transportation. We have obtained biocompatible 
and flexible fibrous materials using natural rubber, this research opens up possibilities of using micro and nanofibers of 
only-natural rubber in many applications including sensors preparation.
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1. INTRODUCTION

Electrospinning is a process that uses electric fields to produce nonwoven materials with high porosity, large surface area, 
small diameters, and uniform fibers; there is great industrial and scientific interest in these materials because of their many 
potential applications [1-3], as membranes for drug delivery [4], for tissue engineering [5], for water treatment [6], for food 
packing applications [7], sensors [8, 9] and others. A typical electrospinning setup comprises a syringe pump to control the 
solution flow rate, a syringe with a small-diameter metallic needle, a high-voltage power supply, and a grounded collector 
plate (Fig. 1) [10, 11].

Figure 1: Schematic illustration of the homemade electrospinning setup using a syringe pump with single syringe, a 
high-voltage power supply and a grounded collector plate.

Researchers are increasingly shifting their attention toward the use of polymeric materials in order to obtain submi-
cron and nanometer fibers by electrospinning [12-13]. Of the polymers that have been utilized, elastomers are attracting 
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increasing interest, and their use could be an important strategy in the development of flexible electrospun mats. Silicone 
rubber [4,17] and synthetic rubbers such as polybutadiene rubber (BR) and polyisobutylene-isoprene rubber (IIR) [11] have 
been used to produce electrospun fibers containing inorganic fillers such as silver nanoparticles (AgNPs) [11] and a euro-
pium (Eu3+)-like luminescent filler [18], more recently fluorescent polymer/acrylonitrile butadiene rubber (NBR) blends 
[19] and epoxidized natural rubber [20] have been studied.

Natural rubber (NR) is a unique elastomeric material whose flexibility, biocompatibility, elasticity, and low cost have 
led to its widespread use [21-24]. In recent studies, NR has been used to produce many materials such as thermo-mecha-
nical actuators [25], nanocomposites to be used as gas barriers [26], shape memory polymers [27], and polymer networks 
used for environmental gas recognition [28, 29]. By combining the properties of NR with the electrospinning technique, 
it is possible to obtain highly flexible fibers and nonwoven porous mats with good mechanical resistance and elasticity. 
However, the production of electrospun fibers using only natural rubber has not yet been explored.

Recently, authors have reported attempting to electrospinning a blend of natural rubber (non-vulcanized) and polyca-
prolactone (PCL) using a maximal ratio of 50% of natural rubber in a PCL matrix [30]. Sithornkul et. al. reported elec-
trospinning a blend of vulcanized NR and acrylonitrile-butadiene-styrene to investigate the parameters of electrospinning 
[31]. Mascia et al. produced binary blend of an epoxidized natural rubber and PLA using compatibilizer ENR-g-JM [32], 
still using PLA like matrix Cosme et al. developed a blend from PLA/ epoxidized natural rubber but without compatibilizer 
[33]. A number of challenges must be addressed when electrospinning NR: for example, it is difficult to obtain the ideal 
process parameters, such as solution flow, voltage, distance between the collector and the injector. Moreover, the amount 
of water present in the NR latex increases the time required for drying and evaporation of the solvent during the electros-
pinning process, i.e. when the fibers are deposited over the collector losing their fiber characteristic becoming a film mate-
rial. Here, we report the development of a new material based on electrospun NR fibers. We have produced organic fibers 
deposited on a collector or substrate in an oriented arrangement; these fibers show high linearity and submicron size. We 
have also produced self-standing non-woven mats from Polyaniline-coated natural rubber (NR/PAniFibers) as a possible new 
material to apply in the sensors industry.

2. MATERIALS AND METHODS

NR membranes were prepared using latex collected from different rubber trees (Hevea brasiliensis) of the RRIM 600 clone 
in Indiana City, Sao Paulo State, Brazil (Fig. 2a). After extraction, the latex samples were stabilized with ammonium hydro-
xide (2% v/v). The stabilized latex was centrifuged at 14000 rpm (15,340 g) in a Microhemato Bench Centrifuge (Model 
2410, Fanem) to separate out the solid rubber phase. After centrifugation, the latex was separated into three phases (Fig. 
2b): the solid rubber phase (cream phase), composed mostly of isoprene monomers and containing approximately 60–40% 
dry rubber; the serum phase, composed of approximately 1.0 to 1.8% protein, 1.0 to 1.2% carbohydrate, 0.4 to 1.1% neutral 
lipids, 0.4 to 0.5% polar lipids, 0.4 to 0.6% inorganic lipids, 0.4% amino acids and amines, various other components, and 
50 to 60% water; and the bottom fraction, which contained a portion of the monomers and metal ions obtained from inte-
ractions between the plant and soil [15]. The rubber cream phase was removed and annealed at 50 °C until completely dry.

Figure 2: a) Latex extracted from Hevea brasiliensis from different trees was collected. b) Latex separated into three pha-
ses (cream phase, serum and, botton phase).
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To prepare the solution for electrospinning, the dried rubber phase was diluted in toluene to a concentration of 20.0 
mg mL-1 under constant stirring for 48 h to form a rubber solution (NRL). To confer an electrostatic charge to the NRL, 
was added 30 wt% of analytical-grade ethanol (Labsynth Products for Laboratories) to the dried rubber/toluene mixture. 

The electrospinning system was composed of a high-voltage (15kV) power supply (Spellman Bertan Series 225), a 
syringe pump (Cole Parmer) with a flow rate of 0.50 mL h-1, and a plastic syringe equipped with a 23-gauge metallic needle. 
To prevent problems with the solution outflow, a 50-W halogen lamp was included in the system, to maintain a temperature 
of approximately 40 °C to prevent the solvent from evaporating before the fibers reached the collector, which was placed a 
distance of 0.1 m from the needle. An evaluation of the optimal parameters for producing natural rubber fibers (NRFibers) is 
presented in the Supporting Information. To analyze the structural and thermal behavior of the electrospun fibers, membra-
nes by casting were produced. The 10 mL of the solution previously prepared for electrospinning was poured into a glass 
petri dish (ϕ 90 mm), then was dried in an oven above 65 ºC for 12 h in order to evaporate the solvent content.

To polymerize the PAni was used the MacDiarmid method [34, 35]. The aniline was acquired by Labsynth and was 
previously distilled. The polymerization process was performed using a 5:1 molar ratio of monomer:oxidant. In this sense, 
the mats were immersed in 0.2684 mol of the aniline and 300 mL of 1M HCl (hydrochloric acid). In another beaker 0.0505 
mol of (NH4)2S2O8 (Ammonium persulfate) were solubilized in 200 mL of 1M HCl, then the oxidant solution was added 
slowly in the first solution maintaining the temperature at 0 °C, 20 minutes under constant stirring. The mats were withdra-
wn, washed with 1M HCl and dried in desiccator.

Characterization of the electrospun fibers was performed using optical microscopy (OM) to evaluate the morphology 
of the materials produced. A Carl Zeiss optical microscope with a digital camera (AxioCam MRC5) and a nominal mag-
nification of up to 1500x was used. In addition, a scanning electron microscope (SEM; Carl Zeiss, EVO LS 15) was used 
to perform a complementary study of the structural properties of the NRFibers. FT-IR spectroscopy with mode ATR (model 
Tensor 27, Bruker) was performed in the range from 600 to 4000 cm−1 with 64 scans and 4 cm−1 spectral resolution in order 
to evaluate whether electrospinning modified the polymeric structure of NRFibers compared to that of common NR membra-
nes prepared by casting (annealed at 65 °C in the over during 12 h). The thermal behavior was studied by TGA (model 209, 
Netzsch). After the polyaniline coating, the UV-Vís spectrometer (model 1800, Shimadzu) was carried out to confirm the 
emeraldine form of the conductive polymer. For evaluate the fibers conductive properties was used the DC with a Keithey 
Source (Model 617Programmable Electrometer) by the two-point method applied from -0.5 to 0.5V.

3. RESULTS AND DISCUSSIONS

A self-standing non-woven mat of neat natural rubber (porous membrane) microscopy image is shown in Fig. 3a. The ima-
ge shows the high porosity into the fibrous mat. The preparation of fibrous membranes results in increased surface area and 
shows great promise for the production of implanted devices, drug delivery systems, and biological filters. 

Figure 3: a) Optical micrograph of self-standing non-woven mat of neat natural rubber (NRFibers) produced with increase 
1000x. b) Optical micrograph of oriented fibers produced with increase 400x. c) SEM image of isolated fibers electrospun 
with magnification of 2000x. d) Histogram of fibers diameter distribution for the NRFibers.
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In addition, when a rotary collector was used to control the mats porosity (i.e., to ensure uniformity), oriented fibers 
were obtained (Fig. 3b). The characteristics of the fibers was observed, mainly the linearity and the fiber thickness, varied 
under the different electrospinning parameters tested (Supporting Information).

To produce oriented fibers, we used a rotary collector (30 rpm) on which the fibers were deposited onto coupled glass 
slides (Fig. 4a). To produce self-standing non-woven mats, the fibers were deposited on a stationary stainless-steel plate 
(Fig. 4b). The SEM micrograph (Fig. 3c) shows the morphology of a single fiber at a magnification of 2000x. A relatively 
smooth surface is observed, with well-formed fibers. ImageJ® software was used to measure the fiber diameter and revea-
led that the NRFibers deposited in self-standing mats had an average diameter of 5.5 μm.

Figure 4: a) Rotary collector for deposit the oriented fibers on glass slides, was used a rotation of 30 rpm in this collector. 
b) The stainless-steel plate for deposit the self-standing non-woven mats.

Fig. 5 shows FT-IR/ATR spectra for NR (casting membranes) and NRFibers (self-standing mats). The spectra show 
vibrational bands characteristic of cis 1,4 poly-isoprene. The bands between 3666 and 3105 cm-1 can be attributed to water 
vapor. The absorption bands at 3007, 2929 and, 2849 cm-1 can be assigned to various functional groups of NR: asymmetric 
stretching of C=C and CH in the –CH3 region and symmetric stretching of CH in the -CH2 region, respectively. The band at 
1659 cm-1 arises from C=O symmetric stretching, the band at 1447 cm-1 from C=C stretching, the band at 1375 cm-1 from 
angular deformation (δ), and the band at 839 cm-1 arises from angular deformation of the C=CH group [15, 36, 37]. There 
are no observable differences between the NR and NRFibers spectra, indicating that electrospinning generated no structural 
modifications and that the elastomeric properties, such as flexibility and elasticity (mechanical resistance), of the natural 
rubber polymer were maintained.
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Figure 5: FT-IR spectra of natural rubber) produced by casting method (NR and natural rubber fibers produced by elec-
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In addition to the similarity of the FTIR spectra for both samples, the thermal similarity was also observed in Fig.6. 
The profile of the curves were very similar with a displacement of 2 °C in the main degradation stage of the NR (as seen in 
the DTG peaks), which is related to polyisoprene degradation [15, 38].Two peaks (432 and 494 ºC) were observed for the 
electrospun sample, which may have occurred due the stretching of the rubber chains during the electrospinning process.

Figure 6:TGA and DTG curves for NR (casting membranes) and NRFibers (electrospun mats).

The produced mats present properties to be applied in different materials, including the sensors can be easily produ-
ced with this flexible mat. Then, the electrospun mat was coated with PAni, a polymereasily synthesized, chemically stable 
at room temperature conditions, high conductivity, and low cost [39]. To verify the presence of polyaniline in the conduc-
tive state (emeraldine salt), UV-Vis spectroscopy analysis was performed. Fig. 7 shows the presence of PAni absorption 
bands at 408 nm and 799 nm, which refers to the π bond transition in the benzenoids unites and the excitonic transitions for 
the polymer protonation, respectively [28, 30].

Figure 7: UV-Visible spectrum of the natural rubber/polyaniline fibers (NR/PAniFibers) showing the presence of polyaniline 
on fibers. 

The Figure 8 shows the current–voltage (I–V) characteristics of the NRfibers and the NR/PAniFibers at room temperature 
in the potential range −0,5 V to +0,5 V. The linear dependence of current on voltage indicated an ohmic behavior of NR/
PAniFibers. Inserted inthe figure above is possible observe the values of resistivity and conductivity calculated by the follo-
wing equations (1) and (2) respectively:
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                                                                                                                               (1)

	
                                                                                                                              (2)

where  is the electrical resistance of membranes (Ω), ρ represents the electrical resistivity (Ω.m),  is the sample length (m),  
is referent the cross-section area of the sample (m2) and, σ represents the electrical conductivity (S.m-1).

Figure 8: Shows the current–voltage (I–V) characteristics of the natural rubber fibers (NRFibers) and the natural rubber/
polyaniline fibers (NR/PAniFibers). In detail are showing the photography of the electrospun membranes before and after add 
polyaniline; the table shows the conductivity and resistivity values for both samples.

As expected, the natural rubber fibers show high resistivity around to 1 x 108 Ω.m which qualifies the membranes as 
insulating materials. After PAni deposition the resistivity decrease to 3.32 x 105 Ω.m as well as increases the conductivity 
to 3.0 x 10-6 S.m-1. It is known that the conductivity of solid materials is caused by the number of carriers and the mobility 
of these carriers. The conjugated polymers have a large number of carriers, but a low mobility. For this reason, lead in low 
conductivity orders [40].

In this sense, the materials described in this paper reached values of electrical conductivity in the semiconductor 
range around to 10-6 S.m-1 for NR/PAniFibers, and can be applied as melamine (1,3,5-triazine-2,4,6-triamine) sensor [41]; 
ammonia sensors [42, 43]; radiation sensors [44]; H2S and SO2 sensors [45] and strain sensor [46].

It was observed from the I–V curve that the NR/PAniFibers has ohmic behavior increased the current from 3.90 x10-8 
mA to 4.77 x10-8 mA as the voltage increased. It is expected that the PAni molecules be incorporated into the natural rubber 
fibbers, i.e. into the porous surface due the fibers presence. 

4. CONCLUSIONS

Oriented fibers and self-standing non-woven mats were prepared from NR by electrospinning, and their morphological, 
structural and thermcalproperties were characterized. The average diameter of the NR fibers was approximately 5.5 µm. 
Self-standing, non-woven mats fabricated using an organic polymer (such as NR) could lead to the production of biocom-
patible and flexible fibrous materials. Moreover, highly oriented fibers will improve the homogeneity and uniformity of 
porous mats. Through the study is possible to suggest the application in sensor, as confirmed by the electrical characteriza-
tion after the polyaniline deposition.
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