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A B S T R A C T   

The large groundwater reserves of the Urucuia Aquifer System (UAS) enabled agricultural development and 
economic growth in the western Bahia State, in northeastern Brazil. Over the last several years, concern has 
grown around the aquifer’s diminishing water levels, and water balance (WB) studies are in demand. Considering 
the lack of measured actual evapotranspiration (ETa), a major component of the water cycle, this work uses the 
Operational Simplified Surface Energy Balance (SSEBop) model to estimate ETa, and compares it to basin-scale 
estimates from the Soil Moisture Accounting Procedure (SMAP) monthly model and from an annual WB closure 
method, based on gridded meteorological data and the Gravity Recovery and Climate Experiment (GRACE) 
product. Additionally, a comparative assessment of different versions of the SSEBop parameterization was per
formed. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used to implement eight 
different versions of the SSEBop algorithm over the UAS between 2000 and 2013. SSEBop and SMAP ETa yielded 
similar seasonal patterns, with correlation coefficient (r) up to 0.65, mean difference (MD) of 0.8 mm/month and 
mean absolute difference (MAD) of 18.5 mm/month. Comparison of SSEBop annual ETa estimates to annual 
SMAP and WB closure estimates yielded low MD (12.1 and − 7.3 mm/year, respectively) and MAD (82.5 and 
82.8 mm/year, respectively), but also low r values (0.00 and 0.37, respectively). The comparison of the different 
SSEBop versions indicated the need to incorporate a calibration step of the aerodynamic heat resistance (rah) 
parameter. SSEBop results were also used for land cover and drought monitoring. Analysis indicates that agri
culture, associated with an increasing trend of atmospheric evaporative demand, is responsible for the decrease 
in groundwater levels and streamflow in the studied time period.   

1. Introduction 

The Urucuia Aquifer System (UAS) is one of the largest groundwater 
reservoirs of Brazil, with an area close to 120,000 km2. Water from its 
sandstone formations supplies the São Francisco River and is partially 
responsible for streamflow maintenance during the dry season (ANA, 
2018). Over the last decades, the UAS native vegetation was gradually 
replaced by crop plantation and livestock farming. In the past few years, 
concern around the aquifer’s ability to replenish itself has grown, as a 
decrease in the local rivers’ baseflow and terrestrial water storage was 
observed (Gonçalves et al., 2019; Pousa et al., 2019). Therefore, studies 

about the UAS water balance are needed, since monitoring of important 
water cycle processes, such as actual evapotranspiration (ETa), is scarce. 

In a river basin, the main source of water loss is ETa, a process that 
comprises evaporation from soil, plants and water bodies; and transpi
ration from plants (Tateishi & Ahn, 1996; Fisher et al., 2017). These two 
sub-processes occur simultaneously, making it difficult to distinguish 
one from the other (Allen et al., 1998). For this reason, ETa is often 
addressed as a single process. Knowledge of ETa rates is relevant both for 
estimates of crop consumption, at a local scale, and for assessment of 
water availability, at a regional scale. 

Land ETa is measured locally by flux towers and lysimeters and can 
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also be estimated from meteorological and hydrological processes. 
However, these measurements only represent local processes and can 
rarely be extended to large areas due to land cover heterogeneity (Kalma 
et al., 2008). To estimate ETa over large areas, surface energy balance 
(SEB) models and water balance (WB) models are commonly used (Liou 
& Kar, 2014). 

Despite their simplicity, lumped WB models, such as the Soil Mois
ture Accounting Procedure – SMAP (Lopes et al., 1982), provide accu
rate results and can be used to investigate ETa rates, among other 
hydrological processes within a river basin at daily and monthly time 
intervals (Alley, 1984; Guo et al., 2017). In addition, the Gravity Re
covery and Climate Experiment (GRACE) has also shown great potential 
as a reference tool for WB closure at large scales (Wouters et al., 2014). 
The GRACE mission (Tapley et al., 2004) computes Total Water Storage 
Anomaly (TWSA) by indirectly measuring spatial changes of Earth’s 
gravity (Schmidt et al., 2008). Over the last two decades, GRACE mea
surements have been used to monitor extreme events, such as droughts 
(Chen et al., 2009; Xavier et al., 2010) and monsoons (Nahmani et al., 
2012; Fu et al., 2013), as well as to improve estimates of water balance 
processes (Moreira et al., 2019; de Sales & Rother, 2020). 

Although WB models can indirectly provide ETa values at the basin 
scale with high accuracy, they do not capture the process’s high spatial 
variability. On the other hand, advances in remote sensing technology 
has enabled the creation of SEB-based models that provide spatial and 
temporal estimates of ETa with reasonable accuracy, both at local and 
regional scales (Opoku-Duah et al., 2008; Li et al., 2009). Among such 
models, the Operational Simplified Surface Energy Balance (SSEBop) 
model is relatively simple to implement (Senay et al., 2013), but has 
provided accurate ETa estimates over a wide range of climates across the 
globe (Chen et al., 2016; Senay et al., 2017; Alemayehu et al., 2017; 
Paula et al., 2019; Dias Lopes et al., 2019; Senay et al., 2020). However, 
even in light of the different SSEBop applications found in the literature, 
a comparative study of the various possible model parameterizations 
and driving datasets is still lacking. 

In this paper, we aimed to assess SSEBop ETa estimates over the UAS, 
a region that, despite its economic and hydrological relevance, lacks 
proper monitoring of ETa. In this context, we performed a comparative 
study of eight SSEBop versions, and validated the estimates against the 
ETa estimates from the SMAP model and from WB closure using GRACE 
and local meteorological data. The SSEBop model was then used for land 

Fig. 1. Simplified flowchart SSEBop ETa calculation procedure and assessment.  
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cover and drought monitoring between 2000 and 2013. 

2. Material and methods 

The SSEBop model (Senay, 2018) was applied with the Moderate 
Resolution Imaging Spectroradiometer (MODIS) data in the region of the 
UAS, and then compared to SMAP and WB closure ETa, on four river 
basins. Fig. 1 presents a simplified flowchart of the model imple
mentation and evaluation. A total of eight versions of SSEBop ETa were 
evaluated, considering meteorological or climatological input datasets, 
zone splitting of the temperature correction factor (c factor) parameter, 
and calibration of the aerodynamic heat resistance (rah) parameter. 
Accuracy assessment of the SSEBop estimates was performed by means 
of dual evaluation. ETa derived from SSEBop was aggregated into 
monthly and annual estimates and spatially averaged for each evaluated 
river basin. Then, SSEBop ETa was compared to the SMAP and WB 
closure estimates. 

2.1. Study area 

Located in northeastern Brazil, the UAS covers part of 6 Brazilian 
States and is one of the country’s largest groundwater reservoirs, as seen 
in Fig. 2. The east UAS effective area, which is responsible for the 
baseflow of the São Francisco River tributaries, is presented as well 

(Gaspar & Campos, 2007). The aquifer’s baseflow is responsible for 
more than 40% of São Francisco River flow, measured at Sobradinho 
Dam, to the northeast, and also feeds the Tocantins River tributaries, to 
the west (ANA, 2017). 

The study area climate is predominantly tropical with two well- 
defined seasons: a dry and mild season (April-September), and a wet 
and hot season (October-March) (Alvares et al., 2013). Averaging 1100 
mm of annual precipitation, 80% of rainfall occurs between November 
and March, with almost no precipitation between June and August 
(INMET, 2019). Despite the seasonal pattern of rainfall, rivers in the 
region are perennial, which can be associated with the UAS capacity to 
sustain baseflow throughout the dry season (Gaspar & Campos, 2007; 
Gonçalves et al., 2018). Average air temperature ranges between 20 ◦C 
and 30 ◦C, with July and October as the coldest and hottest months, 
respectively (INMET, 2019). 

Fig. 3 displays land cover changes that occurred in the region be
tween 2001 and 2013. Cropland areas in the UAS nearly doubled, 
growing from around 9.3 thousand km2 in 2001 to over 16.1 thousand 
km2 in 2013. Irrigated area has grown as well, increasing from less than 
15 km2 in 1985 to more than 1670 km2 in 2016 (Guimarães et al., 2017). 
Nevertheless, there is a growing concern over the sustainable supply of 
fresh water and hydroelectric power generation, as a reduction in 
rainfall (up to 12%) and in streamflow (up to 60%) has been identified 
over the past three decades (Pousa et al., 2019). Additionally, an 

Fig. 2. São Francisco River basin, UAS location and modeled river basins distribution.  
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increasing trend in pan evaporation (Althoff et al., 2019) and air tem
perature (de Jong et al., 2018) further escalate the pressure on the 
aquifer. 

2.2. Input dataset 

Table 1 presents the input dataset used in the SSEBop implementa
tion over the UAS region, while Table 2 shows the dataset utilized in the 
WB modeling. For the spatiotemporal analysis of ETa, land cover data 
from the MCD12Q1 v006 product (Friedl & Sulla-Menashe, 2019) was 
used between 2001 and 2013. 

2.3. The SSEBop model 

Developed by Senay et al. (2013), SSEBop uses remote sensing 
multispectral data and ancillary meteorological data to derive the sur
face ETa, as given by Eq. (1): 

ETa = ETf∙k∙ET0 (1)  

where ETf is the evapotranspiration fraction; ET0 is the reference 
evapotranspiration for grass surface (mm/day); and k is a scaling factor. 
A predefined value of k factor = 1.20 is used (Senay et al., 2013; Senay, 
2018), which simulates an aerodynamically rougher surface than the 
grass reference, such as alfalfa. 

For a given image, each pixel’s ETf is derived from the relationship 
between surface temperature (Ts), and the temperatures of cold (Tc) and 
hot (Th) boundary conditions. 

The ETf is given by Eq. (2): 

ETf =
Th − Ts

Th − Tc
= 1 −

1
dT

(Ts − Tc) (2) 

Fig. 3. UAS land cover change between 2001 and 2013, derived from the MCD12Q1 v006 product. Data source from Friedl & Sulla-Menashe (2019).  

Table 1 
Input datasets used in the SSEBop implementation.  

Input Datasets Symbol Source Resolution 

Spatial Temporal 

Surface elevation Z GMTED2010 ( 
Danielson & Gesch, 
2011) 

900 m – 

Surface temperature Ts MODIS TERRA ( 
Wan, 2015) 

1000 
m 

1 day 

Normalized Difference 
Vegetation Index 

NDVI MODIS TERRA ( 
Didan, 2015) 

1000 
m 

16 days 

Reference 
evapotranspiration 

ET0 (Xavier et al., 2015) 27 km 1 day 

Max daily air 
temperature 

Tmax (Xavier et al., 2015) 27 km 1 day 

Min daily air 
temperature 

Tmin (Xavier et al., 2015) 27 km 1 day  

Table 2 
Datasets used in the water balance modeling.  

Input Datasets Symbol Source Resolution 

Spatial Temporal 

Precipitation P (Xavier et al., 2015) 27 km 1 day 
Observed streamflow Q (ANA, 2019) – 1 day 
Total Water Storage 

Anomaly 
TWSA GRACE TELLUS ( 

Swenson, 2012) 
110 
km 

monthly 

Reference 
evapotranspiration 

ET0 (Xavier et al., 2015) 27 km 1 day  
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where Ts is the surface temperature of a pixel; Th is the estimated surface 
temperature of the hot (dry) boundary condition for the same pixel; Tc is 
the surface temperature of the cold (wet) boundary condition for the 
pixel; and dT is the pixel temperature difference between boundary 
conditions Tc and Th (dT = Th − Tc). Negative ETf values are converted 
to zero, while the maximum ETf value is capped to 1.05. Pixels with 
cloud presence, identified in the MODIS product or defined by the Senay 
(2018) methodology, were removed from analysis. 

The value of Tc is calculated from air temperature, according to Eq. 
(3): 

Tc = cfactor∙Tmax (3)  

where Tmax is daily maximum air temperature; and c is a correction 
factor that relates Tmax and Ts in a well vegetated surface with good 
water availability. Senay et al. (2017) defined how to calculate c factor, 
according to Eqs. (4) and (5): 

Tcorr =
Ts cold

Tmax
(4)  

cfactor = Tcorr,mean − 2∙Tcorr,std (5)  

where Ts_cold is the surface temperature in well vegetated places, in 
which the Normalized Difference Vegetation Index (NDVI) is equal to or 
greater than 0.7; Tcorr is the ratio between Ts and Tmax in well vegetated 
places; and Tcorr,mean and Tcorr,std respectively refer to the spatial average 
(mean) and standard deviation (std) of Tcorr pixels for a given image. For 
each image, a minimum of 50 Tcorr pixels was used, as recommended by 
Senay et al. (2017). For images that failed this criterion, a historical 
average of c factor (2000–2013) was used. 

The dT parameter is calculated as a solution of the energy balance 
equation for exposed and dry soil, which represents the dry (hot) 
boundary condition. For the calculation of dT, we consider latent heat 
flux (LE) and soil heat flux (G) are equal to zero, as proposed by Senay 
et al. (2013), so that dT is given by Eq. (6). 

dT =
Rn∙rah

ρa∙Cp
(6)  

where Rn is the net radiation; H is the sensible heat flux; ρa is the specific 
mass of air; Cp is the specific heat of air; and rah is the aerodynamic heat 
resistance for exposed and dry soil. Senay et al. (2013) determined the 
value of rah via calibration in the United States and recommended rah =

110 s/m, which corresponds to the aerodynamic resistance over exposed 
soil. Rn, ρa and Cp are derived from formulations given by Allen et al. 
(1998), under the assumption of clear-sky conditions. 

To evaluate the effects of model parameterization and choice of input 
datasets, eight SSEBop versions were applied in this work, as listed in 
Table 3. The versions are distinguished by the value of the rah parameter 
(110 s/m or a calibrated value), by input dataset (meteorological or 
climatological dT and ET0) and by spatial distribution of the c factor. 
Details on the parameterization of the different versions is presented in 
Appendix A. 

2.4. Basin-scale water balance 

SSEBop ETa estimates were compared to ETa estimates derived from 
the water balance in four river basins. These basins were chosen because 
their drainage areas encompass most of the East UAS area and present 
consistent streamflow gauged data at four discharge stations (DS) be
tween 2000 and 2012 (ANA, 2019). Fig. 2 displays the river basins (i.e., 
drainage areas), as well as their DS locations, and Table 4 presents 
additional information about the selected river basins and DS. Topo
graphic (superficial) and subterranean drainage areas (UAS effective 
area) are discriminated in Table 4. The percentage of subterranean 
contribution area for each river basin is displayed as well. 

The SMAP model was used to calculate ETa at monthly and annual 
time intervals, while WB closure was applied to calculate ETa at annual 
time intervals. Given the seasonality patterns of the hydrological vari
ables in the UAS region, annual fluxes were calculated considering the 
hydrological year, which starts in July of one year and ends in June of 
the next year. Details on the application of the SMAP model and the WB 
closure are presented in Appendix B. 

2.5. ETa estimates analysis and comparison 

ETa derived from the eight SSEBop versions was compared at 
monthly and annual time intervals to ETa from the SMAP model, and at 
annual time intervals to ETa from WB closure. Alongside seasonal and 
annual time series charts, statistical metrics were used for the compar
ison. Eqs. (7)–(9) present the metrics used: 

r =
∑(

xi − xavg
)(

yi − yavg
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

xi − xavg
)2 ∑(

yi − yavg
)2

√ (7)  

MD =

∑
(xi − yi)

n
(8)  

MAD =

∑
|xi − yi|

n
(9)  

where r is the correlation coefficient; xi is one SSEBop ETa estimate; xavg 
is the average of SSEBop ETa estimates; yi is one SMAP or WB closure ETa 
estimate; yavg is the average of SMAP or WB closure ETa estimates; n is 
the number of observations; MD is the mean difference; and MAD is the 
mean absolute difference. The metrics were calculated for the spatial 
average of ETa among the four studied river basins. 

Trends and standard errors of trends of the hydrological variables 
were calculated using the ordinary least squares (OLS) method. Trend 
statistical relevance was assessed based on the modified Mann-Kendall 
test (Yue & Wang, 2004), at a 5% significance level. 

Table 4 
Selected fluviometric stations information.  

Station 
Code 

Station Name River Drainage Area (km2) 

Topographic Subterranean 

46870000 Fazenda Porto 
Limpo (FPL) 

Preto 22,470 22,210 
(98.8%) 

46902000 Boqueirão (BOQ) Grande 41,935 38,745 
(92.4%) 

45960001 Porto Novo (PNV) Corrente 31,435 28,515 
(90.7%) 

45260000 Juvenília (JUV) Carinhanha 16,440 16,180 
(98.4%)  

Table 3 
Evaluated SSEBop ETa estimation versions for rah, input datasets and number of c 
factor zones.  

SSEBop Version Aerodynamic Resistance (s/m) Input Dataset c factor 

p1 110 Meteorological One zone 
p2 110 Meteorological Six zones 
p3 110 Climatological One zone 
p4 110 Climatological Six zones 
p5 Calibrated Meteorological One zone 
p6 Calibrated Meteorological Six zones 
p7 Calibrated Climatological One zone 
p8 Calibrated Climatological Six zones  
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3. Results 

3.1. SSEBop model results 

3.1.1. dT validation 
For each Ts image, we used Th and Tc criteria defined by Ji et al. 

(2019) to calculate observed dT (dTobs) over the entire UAS region. 

Fig. 4 displays the pixel count seasonal distribution. Cold and hot pixels’ 
frequencies present opposite seasonal behavior, with cold pixels maxing 
out in the wet season (peaking by the end of February) and reaching the 
bottom by the end of the dry season (September). 

Fig. 5 shows the seasonal values of dTobs, dT calculated with rah =

110 s/m, as recommended by Senay et al. (2013) and dT after rah cali
bration. Calibration resulted in rah = 70 s/m. Uncalibrated rah resulted in 
overestimated dT, while the calibrated rah yielded dT estimations closer 
to dTobs. It is worth mentioning that dT and dTobs have opposite seasonal 
behavior. This happens because water availability during the wet season 
(October-March) greatly reduces the Ts difference between densely and 
sparsely vegetated areas. The utilization of meteorological or climato
logical input data did not affect significantly the calibration step and 
resulted in the same value for rah. 

3.1.2. SSEBop versions comparison 
SSEBop ETa was calculated according to the eight versions presented 

in Table 3. Fig. 6 displays a comparison of the results. ETa varies 
seasonally, presenting lower values during the dry season, reaching the 
bottom in July, and higher values in the wet season, peaking in January. 

SSEBop ETa is sensitive to rah calibration, as versions with higher rah 
yielded approximately 30% higher ETa in relation to those with lower rah 
value (Fig. 6A and B). Input data are also relevant, as meteorological 
versions yield higher ETa seasonal variability, with higher ETa values 
during the wet season (October to March) (Fig. 6C), and are more sen
sitive to daily variations of the inputs (Fig. 6D). Versions with c factor 
split into 6 zones per image yielded higher ETa estimates than those 
yielded with a single c factor zone per image. The difference is more 
significant in the dry season, when ETa estimates are lower (Fig. 6E and 
F). 

3.2. Comparison of remote sensing and water balance ETa 

Table 5 presents the comparison metrics between SSEBop, SMAP and 
WB closure ETa estimates. At monthly time intervals, the eight versions 
of SSEBop presented similar correlation (r between 0.57 and 0.65), but 
versions that used uncalibrated rah (from p1 to p4) presented signifi
cantly higher MD and MAD values. SSEBop version p5 (calibrated rah, 
meteorological data, one c factor zone) presented both the highest 
correlation and the lowest MD and MAD. At annual time intervals, 
SSEBop versions that used climatological data (p3, p4, p7 and p8) pre
sented higher correlation, and lower MD and MAD. In general, SSEBop 
estimates presented higher correlation to WB closure ETa than to SMAP 
estimates. Versions with calibrated rah (from p5 to p8) yielded lower MD 
and MAD values. SSEBop version p5 presented the closest ETa estimates 
to both SMAP and WB closure ETa, although the correlation values were 
lower than those of versions with climatological input data (p3, p4, p7 
and p8). Comparison between SMAP and WB closure annual ETa esti
mates yielded r = 0.40, MD = 7.8 mm/year and MAD = 72.7 mm/year. 

Fig. 7 displays SMAP and SSEBop seasonal monthly ETa, as well as 
SMAP uncertainties (shaded area). SMAP and SSEBop both yielded 
similar seasonal amplitude of ETa. While SSEBop versions p1 to p4 
generally yielded higher ETa throughout the year, versions p5 to p8 
yielded closer estimates to SMAP ETa, staying within SMAP uncertainty 
boundaries for most of the year. SSEBop version p5 more closely adheres 
to SMAP seasonal ETa. 

Given its closer adherence to SMAP seasonal ETa, SSEBop version p5 
(calibrated rah, meteorological data, one c factor zone) was selected for 
further comparisons. Fig. 8 presents annual (A) and seasonal (B) values 
of precipitation (P), streamflow (Q), total water storage variation (ΔS), 
total water storage anomaly (TWSA), Normalized Difference Vegetation 
Index (NDVI), reference evapotranspiration (ET0), evapotranspiration 
fraction (ETf) and actual evapotranspiration (ETa) for hydrological years 
between 2000 and 2013. Hydrological years extend between July of one 
year and June of the next year. A strong positive correlation was iden
tified between P and WB closure ETa (r = 0.85); Q and TWSA (r = 0.76); 

Fig. 5. Comparison of observed (black) and calculated dT with rah = 110 s/m 
(red) and rah = 70 s/m (blue), presented for each day of the year (DOY). Shaded 
areas represent the difference between maximum and minimum observed dT 
for each DOY. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 4. Hot and cold pixels count for each UAS image between April 2000 and 
December 2013, presented for each day of the year (DOY). Shaded areas 
represent the difference between maximum and minimum pixel count for 
each DOY. 
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and NDVI and ETf (r = 0.71). Similar seasonal patterns were yielded by 
TWSA, NDVI and ETf. On the other hand, ET0 yielded a negative cor
relation to all other variables, and an opposite seasonal pattern. 

Table 6 presents the trends of P, Q, TWSA, NDVI, ET0, ETf, and ETa, 
during the common data period (2002–2012), and their standard errors. 
No significant trend was observed for P, ETf, and WB closure ETa. NDVI, 
ET0, SMAP and SSEBop ETa yielded positive trends. Significant 

decreasing trends were observed for Q and TWSA. 

3.3. Using the SSEBop model results for land cover and drought 
monitoring 

Based on the analysis of the different versions of the SSEBop model 
and on the comparison to SMAP ETa and Grace ΔS and TWSA, version p5 

Fig. 6. Summary of the eight SSEBop versions results in the UAS. Seasonal estimations and scatter plots are displayed comparing: uncalibrated and calibrated rah (A 
and B); meteorological and climatological input data (C and D); single and multiple c factor zones (E and F). 
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(calibrated rah, meteorological inputs, single c factor per image) was 
chosen for land cover and drought observations. 

Fig. 9 shows the expansion of croplands in the UAS, from 9400 km2 

in 2001 to 16,200 km2 in 2013 (A). An area of almost 7000 km2, 
composed of grassland (94.3%) and savanna (5.7%), went through a 
gradual transition to croplands (B). Seasonal patterns (C) and annual 
anomalies (D) also gradually became similar to that of croplands, with 
larger seasonal amplitude and less sensitivity to water availability. 

ETa over natural land covers (forest, savanna and grassland) in the 
UAS has a similar seasonal amplitude of about 50 mm/month, but 
different average values, with forest having the highest ETa and grass
land the lowest. On the other hand, cropland ETa presents a larger 
seasonal amplitude, being higher than that of savanna in the first quarter 
and lower than grassland for the rest of the year. 

In the UAS, ETa in croplands yielded an increasing trend (4.7 ± 3.4 
mm/year), while in grassland ETa yielded a decreasing trend (-4.4 ± 3.4 
mm/year). The cropland expansion area, and the savanna and forest 
land covers yielded no significant trend of ETa (2.2 ± 3.3 mm/year, 1.2 
± 5.0 mm/year and − 1.9 ± 4.6 mm/year, respectively). Annual ETa in 
croplands and in the cropland expansion area yielded negative 

correlation to P (r = -0.21 and r = -0.28, respectively) and positive 
correlation to ET0 (r = 0.39 and r = 0.33, respectively) in the UAS. 
Cropland ETa also seems to be less sensitive to water scarcity, as it 
yielded positive anomalies during the 2007–2008 hydrological year. 

In this work, the SSEBop ETf was used to monitor drought. Fig. 10 
presents the average monthly ETf over the UAS, for each month of the 
year, derived between April-2000 and December-2013. A higher spatial 
variation is observed during the dry season (April-September), when 
cropland areas yield ETf lower than 0.2 while in forested areas it remains 
higher than 0.6. During the wet season (October-March), most of the 
UAS yields ETf higher than 0.4. 

Fig. 11 presents the average annual ETf over the UAS (2000–2013) as 
well as the annual anomalies per hydrological year, between 2000 and 
2013. Savanna and forest (eastern UAS) ETf anomalies indicate that 
these land covers are more sensitive to rainfall anomalies, such as the 
drought of 2001–2003 (Bazame et al., 2018) and the dry summer of 
2007–2008 (Sun et al., 2016); and the period of 2011–2013, which 
coincides with a decreasing trend in both NDVI and TWSA. 

Fig. 7. Monthly ETa over four studied watersheds, derived by SMAP and the eight SSEBop versions. The shaded area represents uncertainties in SMAP ETa.  

Table 5 
Comparison metrics between the SSEBop versions estimates and monthly ETa from SMAP and annual ETa from SMAP and GRACE.  

SSEBop version Comparison to SMAP 
Monthly ETa 

Comparison to SMAP 
Annual ETa 

Comparison to GRACE 
Annual ETa 

r MD 
( mm

month

)
MAD 

( mm
month

)
r 

MD
(

mm
year

)

MAD
(

mm
year

)
r 

MD
(

mm
year

)

MAD
(

mm
year

)

p1 0.64 32.2 34.6 − 0.08 388.4 388.4 0.28 369.3 372.7 
p2 0.63 37.1 38.9 − 0.05 449.1 449.1 0.29 427.9 431.4 
p3 0.62 19.1 28.1 0.32 230.6 230.6 0.63 216.9 220.7 
p4 0.57 23.9 31.8 0.40 289.2 289.2 0.64 273.5 273.9 
p5 0.65 0.8 18.5 0.00 12.1 82.5 0.37 − 7.3 82.8 
p6 0.64 7.0 19.8 0.00 88.8 108.5 0.41 65.7 98.9 
p7 0.64 − 8.9 19.1 0.35 − 106.9 116.0 0.59 − 119.0 122.1 
p8 0.60 − 3.1 19.8 0.45 − 35.0 63.8 0.61 − 50.4 81.5  
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Fig. 8. Time series of precipitation (P), streamflow (Q), total water storage variation (ΔS), total water storage anomaly (TWSA), Normalized Difference Vegetation 
Index (NDVI), reference evapotranspiration (ET0), evapotranspiration fraction (ETf) and actual evapotranspiration (ETa) for hydrological years from 2000 to 2013 (A) 
and the respective mean seasonal cycles (B). 
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4. Discussion 

4.1. SSEBop uncertainty assessment 

4.1.1. SSEBop uncertainty related to aerodynamic resistance 
Ji et al. (2019) proposed a method to validate SSEBop dT estimates 

and indicated that the model’s dT estimation was reliable. However, we 
have found that SSEBop dT estimates are higher than the observed in the 
UAS. This difference in dT may lead to overestimation of ETa. The value 
of rah varies greatly, driven mainly by wind speed, and lower values of 
rah (around 70 s/m) are common during daylight hours on both bare and 
vegetated surfaces, while higher values of rah (over 100 s/m) are more 
common during night time (Liu et al., 2006; Liu et al., 2007). Therefore, 
we proposed the incorporation of a rah calibration step into the SSEBop 
model algorithm. This calibration step takes into account the dTobs 
proposed by Ji et al. (2019) for the dry season, which is when the 
temperature difference between the hot and cold pixels is higher, due to 
surface humidity conditions. 

4.1.2. SSEBop uncertainty related to input dataset 
Calibration of parameter rah yielded similar results using both 

meteorological and climatological inputs for the derivation of Rn. Thus, 
using climatological data to compute dT does not affect ETa estimates 
and requires less computational storage, which agrees with Senay et al. 
(2013). On the other hand, using climatological data to calculate ET0 
and Tc restricts ETa daily variability and leads to lower estimates during 
the wet season and, consequently, to a negative bias in annual ETa. Thus, 
we found it is best to use daily meteorological data to calculate ET0 and 
Tc anomalies. In the absence of daily or hourly meteorological datasets, 
climatological datasets can be used, after correction of the bias at the 
annual scale. 

4.1.3. SSEBop uncertainty related to c factor zone division 
Observations of c factor time series indicate a high correlation with 

Rn, and a large region split based on latitude provides more accurate c 
factor seasonality for each split zone. Scene sub-division should, there
fore, provide more accurate local ETa estimations. However, sub- 
division in too many areas may result in lower c factor standard devi
ation values, as the viable pixel samples get smaller. Senay et al. (2020) 
subdivided MODIS images into 5x5 tiles. In our study, even though we 
used the minimum sample size of 50 pixels (according to Senay et al., 
2017), the division of the studied area into 6 zones roughly the same size 
as the tiles used by Senay et al. (2020) resulted in higher parameter c 
values. This led to higher ETa during the dry season, when pixels with 
NDVI > 0.7 are scarcer and Tcorr standard deviation is lower (Eqs. (4) 
and (5)). Therefore, using a minimum of 100 pixels is a more statistically 
sound threshold to avoid this overestimation (NIST/SEMATECH, 2013; 
Wan et al., 2014). Scene subdivision should then be adjusted to satisfy 
this criterion. As a result, larger zones could be necessary in arid and 
semi-arid climates, where high NDVI pixels are scarcer. Alternatively, c 

Fig. 9. Cropland expansion in the UAS between 2001 and 2013 (A). Land cover composition evolution within the cropland expansion area (B). SSEBop monthly ETa 
for each land cover (spatial averages) in the UAS and in the cropland expansion (2001–2013) area (C). Annual ETa anomalies per land cover (in relation to each land 
cover average ETa, between 2001 and 2013) in the UAS and in the cropland expansion area (D). 

Table 6 
Spatial averaged annual trends of the hydrological variables and their statistical 
significance, for the common data availability period (2002–2012).  

Variable (unit) Trend ± Standard error Significant trend 

P (mm/year) − 3.9 ± 13.9 No trend 
Q (mm/year) − 1.1 ± 1.2 Decreasing 
TWSA (mm/year) − 6.1 ± 4.6 Decreasing 
NDVI (-) 0.002 ± 0.002 Increasing 
ET0 (mm/year) 3.8 ± 5.5 Increasing 
ETf (-) 0.001 ± 0.002 No trend 
SMAP ETa (mm/year) 5.5 ± 4.9 Increasing 
WB closure ETa (mm/year) 2.9 ± 9.5 No trend 
SSEBop ETa (mm/year) 1.8 ± 4.9 Increasing  
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factor zones division could consider topographic and climatic 
conditions. 

4.1.4. SSEBop uncertainty related to scaling factor k 
SSEBop ETa magnitude is greatly influenced by the value of the k 

factor (Chen et al., 2016). In recent studies, different values of k factor 
have been used, ranging from 1.00 to 1.25 (Senay et al., 2013; Singh 
et al., 2013; Senay et al., 2016; Alemayehu et al., 2017; Senay et al., 
2017; Chun et al., 2018; Dias Lopes et al., 2019; Paula et al., 2019; Senay 
et al., 2020); and Senay (2018) recommended a value of k factor value 
between 1.20 and 1.30, emulating an aerodynamically rougher surface 

than the grass reference, such as an alfalfa surface. However, the 
observed k factor of alfalfa lies within a broader range, between 1.15 
and 1.70 (Hunsaker et al., 2002; Sharma & Irmak, 2017; Hu et al., 2020), 
which is expected for climatic conditions that deviate from the standard 
sub–humid climate (Allen et al., 1998). Although the value of k = 1.20 
used in this study provided low MD values for SSEBop p5, other values of 
k factor within the alfalfa range would provide low MD values for other 
versions too, such as k = 1.10 for p6, k = 1.37 for p7, and k = 1.26 for p8 
(obtained via calibration). The k factor should, therefore, be obtained 
via calibration before SSEBop ETa usage in water balance applications. 
For land cover and drought monitoring, however, no calibration is 

Fig. 11. Average annual SSEBop ETa and annual anomalies over the UAS.  

Fig. 10. UAS average monthly SSEBop ETf (2000–2013).  
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needed, as changes in ETa are more important the its absolute value 
(Senay et al., 2013). 

4.2. Validation of the SSEBop model 

At monthly time intervals, SSEBop ETa estimates presented similar 
seasonal amplitude to SMAP estimates, version p5 yielding the highest 
correlation and lowest MAD values. On the other hand, annual SSEBop 
p5 yielded low correlation to SMAP and WB closure estimates, despite 
also showing low MD and MAD. Nonetheless, at annual intervals, cor
relation values are not as important as MD and MAD values, given the 
low variance of annual ETa. Converting to daily ETa, SSEBop p5 yielded 
MAD values of 0.61 mm/day compared to SMAP monthly estimates and 
of 0.23 mm/day compared to SMAP and WB closure annual estimates, 
which are within the average error range of other studies that compare 
remote sensing models to water balance and local measurements of ETa 
(Ruhoff et al., 2012; Senay et al., 2013; Alemayehu et al., 2017; Dias 
Lopes et al., 2019; Senay et al., 2020). 

The main drawback of SSEBop evaluation with basin-scale water 
balance is the uncertainty of the hydrological model in relation to ETa 
estimation. Zhang et al. (2016) showed that WB models present ETa 
errors correlated to streamflow errors, with opposite bias. This way, 
SMAP ETa uncertainty can be associated to the SMAP average discharge 
errors of about 10%. On the other hand, other methods of ETa mea
surement have similar complications, such as eddy covariance, which 
presents error in energy balance closure of up to 30% (Twine et al., 

2000; Barr et al., 2012; Laipelt et al., 2020). Hence, utilization of hy
drological models for remote sensing ETa validation is considered 
reasonable and may be used as a surrogate in regions with no ETa 
monitoring (Alemayehu et al., 2017), or as a complement in regions 
where monitoring does not represent the land cover complexity (Ruhoff 
et al., 2012). 

4.3. Land cover and drought monitoring in the UAS 

Although no trend in P was identified between 2002 and 2012 in the 
UAS, both Q and TWSA decreased significantly. This was accompanied 
by an increase in both ET0 and ETa (SMAP and SSEBop). These results 
agree with what has been found by other studies in the UAS (de Jong 
et al., 2018; Gonçalves et al., 2019; Pousa et al., 2019). Annual ETa over 
cropland land cover correlates positively to ET0, while natural land 
covers present an opposite trend. Cropland ETa also yielded a positive 
trend between 2002 and 2012, while natural land covers yielded either a 
negative or no trend. These facts indicate that the presence of croplands, 
associated with the increase in ET0, may have been responsible for the 
decreasing trend of Q and TWSA, between 2002 and 2012. 

Drought monitoring in the UAS is proposed in this study via SSEBop 
ETf mapping. The ETf is used instead of the ETa in the UAS because of the 
opposite correlation between ET0 and other hydrological variables, such 
as P and TWSA, which result in attenuated anomalies of SSEBop ETa. The 
ETf formulation is analogous to that of relative air humidity measured by 
a psychrometer (Senay, 2018). Thus, while the psychrometer measures 
air humidity, SSEBop ETf provides information about land surface hu
midity. This indicates that the ETf is a more suitable variable to monitor 
drought than the ETa. 

5. Conclusions 

This study focused on the assessment of the SSEBop model estimates 
of ETa and its utilization in understanding the water balance dynamics in 
the UAS. Given the absence of local measurements of ETa, SSEBop re
sults were compared to basin-scale estimates from the SMAP monthly 
model and from annual WB closure, using GRACE measurements of 
TWSA. This method is a viable alternative for validation in data-scarce 
areas, as mass conservation is met with low uncertainty (around 10%). 

SSEBop ETa and ETf estimates were used to monitor land cover 
change and drought in the UAS, between 2002 and 2012. The expansion 
of croplands, associated with the increase in ET0, was identified as the 
main driver of the decrease in both groundwater and surface water re
sources of the region, during the studied period. 

This paper also provided a comprehensive analysis of the SSEBop 
model options of parameterization. Based on the comparative evalua
tion of the eight SSEBop set of parametrizations, the following list of 

Fig. 12. Spatial division of c factor computation areas and normal (1980–2013) 
daily maximum air temperature. 

Table 7 
SMAP calibration and validation results.  

Calibration Parameters Discharge Stations 

FPL BOQ FPN JUV 

kb (month− 1) 9.4 6.0 10.9 6.4 
Pe (-) 3.9800 2.8413 3.5246 2.4732 
Str (mm) 6936.9 6474.2 4491.2 8140.3 
Crec 2.9% 9.7% 8.7% 12.0% 
w (-) 0.64 0.23 0.82 0.39  

Initial Conditions Calibration Validation Calibration Validation Calibration Validation Calibration Validation 
Tu ini 42.5% 42.5% 38.3% 37.0% 39.5% 40.6% 37.0% 31.0% 
Eb ini (m3/s) 81.8 66.7 189.0 172.9 144.8 127.0 92.0 77.0  

Goal Functions Calibration Validation Calibration Validation Calibration Validation Calibration Validation 
NSE 0.74 0.80 0.72 0.88 0.73 0.81 0.68 0.76 
R2 0.78 0.87 0.75 0.89 0.76 0.81 0.71 0.78 
Bias 0.9% 1.2% 0.1% 1.3% − 1.5% − 0.9% 2.1% − 2.7% 
MAE (mm/month) 10.3 (10.5%) 6.8 (7.8%) 29.1 (11.4%) 18.2 (7.4%) 19.7 (10.6%) 16.2 (9.2%) 13.9 (12.1%) 11.5 (10.7%) 
RMSE (mm/month) 13.1 (13.4%) 9.3 (10.6%) 37.4 (14.6%) 25.3 (10.2%) 25.9 (13.9%) 23.2 (13.1%) 19.8 (17.2%) 16.1 (15.1%)  
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considerations are recommended when implementing the model: 

• Comparison of SSEBop dT to observed values of temperature differ
ence demonstrated the necessity of including an internal calibration 
step of parameter rah into the coefficient’s calculation;  

• The use of climatological data does not affect dT results, but it yields 
lower ETa estimates in the wet season, causing a biased error. Thus, 
the use of meteorological data for quantitative studies is recom
mended. But climatological data still can be used for drought and 
land cover monitoring, since absolute ETa values are not necessary 
for these uses;  

• Parameter c spatial zone division is important to ETa calculation and 
it should be considered when implementing the SSEBop model over 
large areas. However, the quantity of split zones is dependent on Ts 
and NDVI datasets spatial resolution, as well as of the study area’s 
complexity in hydroclimate; and  

• The SSEBop scaling factor k plays a major role in ETa magnitude. 
Even though the use of a preliminary k factor value is commonly 
used, calibration of this parameter is necessary before the utilization 
of SSEBop ETa estimates in water balance studies. 

Given the negative correlation between ET0 and ETf in the UAS, 
SSEBop ETa yielded attenuated anomalies during dry years. Our results 
indicate that the SSEBop ETf is deemed a more suitable tool for drought 
mapping and monitoring than the SSEBop ETa. 
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Appendix A. SSEBop ET parametrization versions 

A.1. Aerodynamic resistance calibration 

Despite the recommended value of aerodynamic resistance (rah) by Senay et al. (2013), it is believed that the implementation of the SSEBop model 
to other locations other than the United States calls for calibration of the parameter, as errors of 1% in rah leads to errors of 3% in actual evapo
transpiration (ETa) (Chen et al., 2016). 

To calibrate rah, we used a method for the calculation of the observed temperature difference (dTobs), defined by Ji et al. (2019), based on the 
choice of hot and cold pixels. Hot pixels are defined as Normalized Difference Vegetation Index (NDVI) < 0.25 and cold pixels as NDVI > 0.70. dTobs 
values are computed as the average difference between hot and cold pixels, in each scene. In order to compare surface temperature from different 
locations, Ts needs to be corrected for elevation, as presented by Eq. (10) 

Ts,corrected = LR × z+Ts (10)  

where Ts, corrected is the elevation-corrected surface temperature; LR is the lapse rate at which temperature decreases with an increase in elevation; z is 
the surface elevation; and Ts is the MODIS surface temperature. As Ji et al. (2019), we used a constant LR of 0.0065 K/m. 

Observed dT sampling was done for the entire UAS region. To avoid outliers in the Ts, corrected, a minimum of 100 pixels was established as 
necessary for both hot and cold temperature computations. dTobs was calculated by Eq. (11): 

dTobs = Th,obs − Tc,obs (11)  

where dTobs is observed dT for each day; Th, obs and Tc, obs are average temperature of hot and cold pixels, respectively. 
Calibration of rah was performed to reduce quadratic errors between dTobs and dT. For the calibration, only the driest months were considered (May 

to September), as they more reliably represent the temperature difference between a dry surface and a wet one. 

A.2. Input dataset selection 

In order to assess the difference between running SSEBop with daily meteorological data against using average climatological data, the model was 
applied considering both for dT, Tc, and ET0. Meteorological data were used as provided by Xavier et al. (2015). From this dataset, climatological data 
(Tmax, Tmin and ET0) were derived as the average for each 6-day period of the year. The datasets are available from 1980 to 2017. However, due to the 
non-stationarity identified in the Tmax and ET0 time series, only the period between 2000 and 2013 was used. 
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A.3. Parameter c factor zone division 

Although SSEBop eliminates the subjective selection of cold and hot boundaries, the model parameters required improvements as more research 
was employed. Senay et al. (2017) and Alemayehu et al. (2017) identified the need of a seasonally variable coefficient c, and Senay et al. (2020) 
proposed the division of MODIS tiles into 5 by 5 sub-tiles, to account for spatial variability. 

In this paper, two methods of c calculation are proposed: one derived for the whole UAS region; and another in which the UAS was split into zones, 
based on latitude. Due to the climatological conditions and large latitudinal range of the study area, the second method involved the sub-division of the 
region into 6 zones distributed along the north–south axis, each with an area of approximately 66,000 km2, as shown in Fig. 12. The daily maximum 
air temperature is presented as well, as the climatological normal between 1980 and 2013 (extracted from the data provided by Xavier et al., 2015). A 
clear slope can be observed, with higher temperatures in the north (C1) and lower temperatures in the south (C6). 

Appendix B. Water balance-based ET calculation procedures 

B.1. SMAP ET calculation procedure 

The Soil Moisture Accounting Procedure (SMAP) is a lumped conceptual rainfall-runoff model, developed by Lopes et al. (1982). It was initially 
designed for daily forecasts, but hourly and monthly versions have also been presented, with modifications in the model’s structure (Alexandre et al., 
2013; Fernández Bou et al., 2015). SMAP has been widely used within various Brazilian basins, with minor adaptations in its structure and transfer 
functions (Nunes et al., 2014; Campos et al., 2018; Silva et al., 2019). Model validation has proven its efficiency is comparable to other more widely 
known models, such as the ABCD (Block et al., 2009). 

In this study, a monthly version of SMAP was used. This version is composed of two reservoirs that represent the saturated (Rsub) and unsaturated 
(Rsolo) zones. Spatial averages of precipitation and potential evapotranspiration were used as input and observed streamflow was used for calibration. 

For each time-step, the two reservoir volumes and transference functions are described by Eqs. (12)–(21): 
Mathematical Reservoirs: 

Rsolo(1) = Tu(1)∙Str (12)  

Rsub(1) =
BF(1)∙Uu

(1 − 0.5
1

kb )∙DA
(13)  

Rsolo(t) = Rsolo(t − 1)+ P(t) − Es(t) − ETa(t) − Rec(t) (14)  

Rsub(t) = Rsub(t − 1)+Rec(t) − Eb(t) (15) 

Transference Functions: 

Tu(t) =
Rsolo(t)

Str
(16)  

Es(t) = P’(t)∙Tu(t)Pes (17)  

ETa(t) = Tu(t)∙ETp(t) (18)  

Rec(t) = Crec∙Rsolo(t)∙Tu(t)4 (19)  

Eb(t) = Rsub(t)∙(1 − 0.5
1

kb ) (20)  

Q(t) =
[Es(t) + Eb(t) ]∙DA

Uu
(21)  

where Rsolo(1) is the initial soil reservoir volume (mm); Rsub(1) is the initial groundwater reservoir volume (mm); Rsolo(t) is the soil reservoir volume at 
the start of time-step t (mm); Rsub(t) is the groundwater reservoir volume at the start of time-step t (mm); P(t) is precipitation during time-step t (mm); 
ETp(t) is potential evapotranspiration during time-step t (mm); Es(t) is runoff during time-step t (mm); ETa(t) is actual evapotranspiration during time- 
step t (mm); Rec(t) is groundwater recharge during time-step t (mm); Eb(t) is baseflow during time-step t (mm); Q(t) is total streamflow (m3s− 1); Tu(t) 
is soil moisture ratio (dimensionless); BF(1) is initial baseflow (m3s− 1); DA is the river basin drainage area (km2); Uu is unit conversion coefficient (Uu 
= 2629.8 month). The model calibration parameters are: soil saturation capacity, Str (mm); runoff parameter, Pes (dimensionless); recession coef
ficient, kb (dimensionless); and groundwater recharge coefficient, Crec (dimensionless). 

Two optimization procedures were applied to the model calibration. In order to consider eventual accumulations of water on superficial water 
bodies, the computation of Es (t) (Eq. (17)) was done considering the averaged value of precipitation, described by Eq. (22) 

P’(t) = P(t) × w+P(t − 1) × (1 − w) (22)  

where w is month precipitation weight (dimensionless), between 0 and 1, which states that past month precipitation may influence streamflow. The 
value of w is obtained by calibration. 

Additionally, the well-known Heun’s numerical method was applied to reduce errors introduced by the large monthly time-steps. This way, to 
estimate the Rsolo and Rsub reservoirs depths, Eqs. (14) and (15) are substituted by Eqs. (23) and (24): 

Rsolo(t) = Rsolo(t − 1)+
ΔRsolo(t)*

+ ΔRsolo(t + 1)*

2
(23) 
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Rsub(t) = Rsub(t − 1)+
ΔRsub(t)*

+ ΔRsub(t + 1)*

2
(24)  

where ΔRsolo(t)* and ΔRsolo(t + 1)* are temporary values of P – Es – ETa – Rec for time-steps t and t + 1, respectively; ΔRsub(t)* and ΔRsub(t + 1)* are 
temporary values of Rec – Eb for time-steps t and t + 1, respectively. 

Model calibration was applied by employing a global efficiency coefficient (GEC), given by Eq. (25): 

GEC = (1 − R2) + 2∙|%Bias| + 3∙%RMSE+ 4∙%MAE+ 5∙|NSE − 1| (25)  

where R2 is the determination coefficient (dimensionless); |%Bias| is the absolute value of the mean error between simulated and observed 
streamflow, relative to average observed flow (dimensionless); %RMSE is root mean square error, relative to average observed flow (dimensionless); 
MAE is mean absolute error, relative to average observed flow (dimensionless); and NSE is the Nash-Sutcliffe coefficient (Nash & Sutcliffe, 1970). 

Primarily, an automatic calibration algorithm was employed to adjust the Str, Pes, kb and Crec. Tu(1) and BF(1) values were then determined to 
minimize errors in the earlier simulation months. Finally, month weights were calibrated to optimize GEC value. These iterations were repeated until 
convergence was reached for GEC. 

Uncertainty of SMAP ETa estimates was derived based on the correlation between modeled streamflow and modeled ETa biases found by Zhang 
et al. (2016). ETa uncertainty was calculated monthly as the 95% confidence interval of monthly flow biases, multiplied by the ETa over streamflow 
ratio. 

Table 7 displays SMAP input parameters and initial conditions resulting from calibration, as well as the performance indicators (Goal Functions) of 
the calibration and validation periods. In the validation series, NSE varied between 0.68 and 0.88, R2 between 0.71 and 0.89. Absolute bias stayed 
below 3.0%, while maximum MAE and RMSE were found for JUV, at 12.1% and 17.2%, respectively. 

B.2. Water balance closure calculation procedure 

ETa was also derived from the annual water balance for each river basin, using Eq. (26). 

ETa(t) = P(t) − Q(t) − ΔS(t) (26)  

where ETa is annual evapotranspiration rate; P is annual precipitation; Q is annual flow; and ΔS is of terrestrial water storage annual variation, derived 
from Eq. (27) 

ΔS(t) = TWSA(t+ 1) − TWSA(t) (27)  

where TWSA is GRACE annual terrestrial water storage anomaly. GRACE TWSA was generated as a mean of the three available products: Center for 
Space Research (CSR), Jet Propulsion Laboratory (JPL), and GeoForschungsZentrum (GFZ), which, according to Sakumura et al. (2014), produces less 
noise and improves accuracy, in comparison to using a single product. 
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Brasília. 

Barr, A.G., van der Kamp, G., Black, T.A., McCaughey, J.H., Nesic, Z., 2012. Energy 
balance closure at the BERMS flux towers in relation to the water balance of the 
White Gull Creek watershed 1999–2009. Agric. For. Meteorol. 153, 3–13. https:// 
doi.org/10.1016/j.agrformet.2011.05.017. 

Bazame, H., Althoff, D., Filgueiras, R., Alves, E., 2018. Rainfall spatio-temporal 
distribution of Western Bahia. Water Resour. Irrigat. Manage. 7 (2–3). 

Block, P.J., et al., 2009. Streamflow Forecasting Framework Using Multiple Climate and 
Hydrological Models. J. Am. Water Resour. Assoc. 25 (4), 828–843. 

Campos, D.O., Dos Santos, J.W.B., DE Assis, P.B., 2018. Application of the SMAP 
hydrological model in the determination of water production in a coastal watershed. 
Revista Brasileira de Geografia Física 11 (1), 124–138. 

Chen, J.L., Wilson, C.R., Tapley, B.D., Yang, Z.L., Niu, G.Y., 2009. 2005 drought event in 
the Amazon River basin as measured by GRACE and estimated by climate models. 
J. Geophys. Res. 114 (B5) https://doi.org/10.1029/2008jb006056. 

Chen, M., Senay, G.B., Singh, R.K., Verdin, J.P., 2016. Uncertainty analysis of the 
Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux 
tower sites. J. Hydrol. 536, 384–399. https://doi.org/10.1016/j. 
jhydrol.2016.02.026. 

Chun, J.A., Baik, J., Kim, D., Choi, M., 2018. A comparative assessment of SWAT-model- 
based evapotranspiration against regional-scale estimates. Ecological Engineering 
122, 1–9. https://doi.org/10.1016/j.ecoleng.2018.07.015. 

Danielson, J.J., Gesch, D.B., 2011, Global multi-resolution terrain elevation data 2010 
(GMTED2010), U.S. Geological Survey Open-File Report 2011–1073, pp. 26. 

De Jong, P., Tanajura, C.A.S., Sánchez, A.S., Dargaville, R., Kiperstok, A., Torres, E.A., 
2018. Hydroelectric production from Brazil’s São Francisco River could cease due to 
climate change and inter-annual variability. Sci. Total Environ. 634, 1540–1553. 
https://doi.org/10.1016/j.scitotenv.2018.03.256. 

De Sales, F., Rother, D.E., 2020. A New Coupled Modeling Approach to Simulate 
Terrestrial Water Storage in Southern California. Water 12 (3), 808. https://doi.org/ 
10.3390/w12030808. 

Dias Lopes, J., Neiva Rodrigues, L., Acioli Imbuzeiro, H.M., Falco Pruski, F., 2019. 
Performance of SSEBop model for estimating wheat actual evapotranspiration in the 
Brazilian Savannah region. Int. J. Remote Sens. 1–18 https://doi.org/10.1080/ 
01431161.2019.1597304. 

Didan, K., 2015. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN 
Grid V006. NASA EOSDIS Land Processes DAAC. Available at: <https://doi.org/10. 
5067/modis/mod13a2.006> (access: 15 Feb. 2019). 
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