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The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly
the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide.
Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk
factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions
share a range of molecular and cellular features, including protein aggregation, oxidative
stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute
to neuronal death and cognitive impairment. Rodent models of obesity, diabetes,
and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases,
and represent an interesting approach to the study of the phenotypic features
and pathogenic mechanisms of neurodegenerative disorders. We review the main
pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent
models of obesity, diabetes, and hypercholesterolemia.

Keywords: Alzheimer’s disease, Parkinson’s disease, hypercholesterolemia, obesity, diabetes, rodent models,
neurodegeneration

INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common
neurodegenerative diseases. They are chronic and progressive, and are defined by protein
abnormalities, neuroinflammation (characterized by glial activation), and neuronal loss (Dugger
and Dickson, 2017). Both AD and PD present genetic and sporadic forms, though the majority of
cases are of sporadic type (Bekris et al., 2010; Klein and Westenberger, 2012). Vascular risk factors,
such as metabolic disorders, have been linked to sporadic forms of AD and PD (Castillo et al., 2019).
Several epidemiological studies have demonstrated a connection between hypercholesterolemia,
obesity, and neurodegenerative disease development (Kivipelto et al., 2001, 2005; Gustafson et al.,
2003; Whitmer et al., 2008; Solomon et al., 2009; Santos et al., 2017). Notably, the metabolic diseases
in early life are risk factors for dementia. The epidemiological studies have shown that obesity and
hypercholesterolemia in adulthood or in middle age increase the risk of dementia in the future
(Kivipelto et al., 2001, 2005; Whitmer et al., 2005; Ariza et al., 2016). In the elderly, obesity and
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high plasma cholesterol levels are not correlated with a higher
occurrence of dementia (Reitz et al., 2008; Anjum et al., 2018).

These findings were confirmed and further explored by
experimental studies (Ullrich et al., 2010; de Oliveira et al.,
2011; Moreira et al., 2014; Denver et al., 2018). Experimental
models of obesity and hypercholesterolemia display similar
brain alterations to those present in the brain of patients
with neurodegenerative diseases, such as amyloid-β peptide
(Aβ) accumulation, as well as abnormal tau protein and
α-synuclein (Ullrich et al., 2010; Busquets et al., 2017; Han
et al., 2017; Nakandakari et al., 2019). Blood-brain barrier
(BBB) disruption and neuroinflammation have also been found
in the brain structures of obese and hypercholesterolemic
rodents (Ullrich et al., 2010; de Oliveira et al., 2014;
Denver et al., 2018). Importantly, behavioral impairments
related to neurodegenerative disease, particularly cognitive
impairment, are evident in experimental models of obesity and
hypercholesterolemia (Ullrich et al., 2010; de Oliveira et al., 2011;
Moreira et al., 2014; Denver et al., 2018).

Another critical point is that the molecular mechanisms of AD
and PD are still not completely known (Zeng et al., 2018), and,
so far, these diseases have no cure. In this regard, experimental
studies are needed to understand the structural, functional, and
molecular features of these diseases and to propose therapies.
The evidence is mounting that the environment has an essential
role in the development of neurodegenerative diseases. It is now
known that unhealthy lifestyles (including the excessive ingestion
of food) combined or otherwise with specific predisposing
genes are responsible for most cases of sporadic forms of AD
and greatly contribute to sporadic forms of PD (Bhatti et al.,
2020; Popa-Wagner et al., 2020). However, the classic models
of neurodegenerative diseases, based on genetic alterations, do
not encompass all the characteristics of these complex diseases
(Ransohoff, 2018).

Given that animal models of metabolic disorders share most
of the brain dysfunction associated with neurodegenerative
disease, even in early life (Ullrich et al., 2010; Moreira
et al., 2014; Paul et al., 2017a; de Oliveira et al., 2020b),
they represent an interesting strategy for studying the prior
events of neurodegeneration. This review contains the main
findings regarding AD and PD in rodent models of metabolic
diseases (in particular, obesity and hypercholesterolemia), to
highlight their relevance in the study of aspects related to
neurodegeneration.

ANIMAL MODELS OF ALZHEIMER’S
DISEASE

Alzheimer’s disease is clinically characterized by cognitive
impairments such as memory deficits (Kelley and Petersen, 2007),
as well as the irreversible decline in the number of basal forebrain
cholinergic neurons and synaptic loss mainly in the hippocampus
and cerebral cortex (Schliebs and Arendt, 2011; Kozlov et al.,
2017). Neuropathological components of this disorder include
the presence of extracellular Aβ aggregates that precipitate in
amyloid plaques, and neurofibrillary tangles mainly formed

by hyperphosphorylated tau protein (Hardy and Selkoe, 2002;
Selkoe and Hardy, 2016; Figure 1).

Alzheimer’s disease research mainly focuses on the hypothesis
of the amyloid cascade, which postulates that the characteristic
neuronal damage of the disease is partly attributed to changes
in Aβ metabolism (Hardy and Selkoe, 2002; Selkoe and Hardy,
2016). Aβ is the product of amyloidogenic metabolism of amyloid
precursor protein (APP) by enzymes called secretases (β and
γ secretases) (O’Brien and Wong, 2011). Studies indicated that
the Aβ becomes toxic by forming oligomers, which ultimately
result in amyloid plaques deposition, neurodegeneration, and,
consequently, cognitive impairments (Ferreira and Klein, 2011;
Hardy and Selkoe, 2002; Selkoe and Hardy, 2016). AD is also
characterized by chronic brain inflammation and BBB disruption
(Zenaro et al., 2017; Figure 1).

Mutations in genes related to APP processing result in genetic
AD (early-onset) (Levy et al., 1990). However, mutations in these
genes account for only a small proportion of the disease, with
sporadic (late-onset) AD accounting for 99% of the cases. It is
also important to highlight that the etiology of Aβ deposits in
sporadic AD remains unclear in most cases (Zhang et al., 2018;
Tzioras et al., 2019). Sporadic AD is considered a multifactorial
and complex neurodegenerative pathology, resulting from the
interaction of genetic and environmental risk factors. Several
diseases have been considered risk factors for AD, among
them are the metabolic diseases that are causative events
for cardiovascular diseases (Campos-Peña et al., 2017). Also,
the presence of apolipoprotein E (ApoE) ε4 allele (APOE4)
is the most important genetic risk factor for sporadic AD
(Liu et al., 2013).

Even AD being the most important cause of dementia, until
now, no treatment delays the onset or progression of the disease
and its pathogenesis is still not elucidated. The availability of
experimental models that cover the multifaceted aspects of AD
is essential to perform translational studies (Long and Holtzman,
2019; Tiwari et al., 2019). There are several experimental models
of AD, including genetic-based models of amyloid pathology
(mainly transgenic mice) and those involving rodents exposed to
intracerebroventricular (ICV) or intrahippocampal injection of
Aβ (Puzzo et al., 2015).

Genetic-Based Mouse Models of
Alzheimer’s Disease
Although none of the existing models fully reproduces the
complete spectrum of AD, specific critical aspects of AD
pathology and disease processes can be experimentally recreated
in experimental rodent models (LaFerla and Green, 2012).
Several animal models, using mice and rats mainly, have been
used to create genetically altered phenocopies of human AD.
Transgenic mice overproducing mutant tau and APP proteins
(e.g., PDAPP and PS19 mice) and/or some of the enzymes
implicated in their metabolic processing have been bred (Games
et al., 1995; Hsiao et al., 1996; Oddo et al., 2003a,b; Drummond
and Wisniewski, 2017).

For instance, PDAPP mice overexpress different isoforms of
APP (695, 751, and 770), presenting Aβ deposits in different
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FIGURE 1 | Neuropathological features of Alzheimer’s and Parkinson’s disease. The Alzheimer’s and Parkinson’s disease patients’ brains present neuronal
dysfunction and loss, deposits of Aβ and α-synuclein protein, neuroinflammation (mainly characterized by microglia and astrocytes activation), and BBB leakage. Aβ,
amyloid-β peptide; BBB, blood-brain barrier.

brain areas. The brain Aβ deposits start at 6–9 months of age
and progress in an age-dependent manner (Games et al., 1995;
Johnson-Wood et al., 1997; Chen et al., 2000), while behavioral
alterations, such as spatial learning and memory impairments
in the radial maze, appear at 3–4 months in PDAPP mice
(Dodart et al., 1999; Hartman et al., 2005). This fact is a critical
issue in this model, since the memory impairment does not
correlate with brain Aβ deposits (Chen et al., 2000; Hartman
et al., 2005). Concerning other pathogenic aspects, the PDAPP
model displays an increased number of activated microglia and
astrogliosis (Games et al., 1995), but the BBB integrity is intact
until 16 months of age (Blockx et al., 2016).

Another example is the transgenic mouse Tg2576, which
overexpresses a mutant form of APP (695) associated with
the Swedish mutation (K670N, M671NL; Hsiao et al., 1996).
The Tg2576 mouse better represents the connection between
the formation of amyloid plaques and behavioral changes that
are characteristic of AD. Around 4–5 months of age, Tg2576
mice present contextual memory deficits and an increase in the
fraction of Aβ1−42 relative to Aβ1−40 (Jacobsen et al., 2006).
Parenchymal Aβ plaques occur between 11 and 13 months of
age (Hsiao et al., 1996). An increase in microglial density was
observed in these mice when they turned 10–16-months of age

(Frautschy et al., 1998). Before the formation of plaques, at
4 months of age, Tg2576 mice exhibit BBB disruption in some
areas of the cerebral cortex (Ujiie et al., 2003) and in others brain
areas at 8 months of age, which can be visualized by magnetic
resonance imaging (MRI; Elhaik Goldman et al., 2018).

The triple-transgenic mouse model (3xTg) expresses
three significant genes associated with familial AD (APPSwe,
PSN1M146V, and tauP301L; Oddo et al., 2003a,b, 2005). It was
designed to be an animal model for studying plaque and tangle
pathology associated with synaptic dysfunction. The intracellular
Aβ deposition starts at 3 months of age, while extracellular
deposition of Aβ occurs in 6-month-old animals (Oddo et al.,
2003b); cognitive impairments start at 4 months old (Billings
et al., 2005). Other notable features of AD recreated in the 3xTg
mice are neuroinflammation, synaptic dysfunction, and BBB
impairment (Parachikova et al., 2010; Do et al., 2014; Belfiore
et al., 2019). Although this mouse model is considered the
most complete transgenic mouse model of AD available, the
widespread presence of plaques and tangles are typically not
observed until old age, and are not representative of human
AD (Drummond and Wisniewski, 2017). In fact, the limitations
to finding the AD molecular and morphology features in this
transgenic animal model impair translational comparisons.
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The 5xFAD mouse is an experimental model designed to
reduce the time before amyloid plaques are formed. This
transgenic mouse combines five mutations: Swedish mutation
(APP KM670/671NL), London (V717l), Florida (APP I716V),
L286V in PSN1, and M146L. The brain Aβ1−42 levels increase
as early as 1.5 months of age and an AD-like amyloid pathology
occurs at 2 months of age, while other available mouse models
display amyloid deposition in the brain parenchyma between 3
and 12 months after birth (Oakley et al., 2006). In addition, these
mice present spatial memory and learning deficits at 4–6 months
of age (Oakley et al., 2006; Ohno, 2009).

PS19 mice expressing the P301S mutant form of human
microtubule-associated protein Tau (MAPT) is also an AD mouse
model (Yoshiyama et al., 2007). PS19 mice develop filamentous
tau lesions at 6 months of age. Tangle pathology is accompanied
by microgliosis and astrocytosis, but not by amyloid plaques
(Yoshiyama et al., 2007). Interestingly, hippocampal synaptic
dysfunction and loss were detected before fibrillary tau tangles
emerged in the brains of these mice (Yoshiyama, 2008).

It is important to mention that metabolic parameters have
been investigated in the AD animal models. For example,
a glucose homeostasis impairment was demonstrated in the
3xTg-AD mice, which occurred in an age-dependent manner
(Vandal et al., 2015).

One critical point in using these transgenic mouse models of
AD is that they recapitulate the early-onset (familial) form of AD,
which accounts for only 1% of cases. Therefore, these models may
still present an incomplete perspective of the pathology (Kitazawa
et al., 2012; Zou et al., 2014).

On the other hand, E4FAD and E3FAD mouse models, which
are crosses between the 5xFAD mice and mice expressing APOE4
and APOE3 human isoforms, represent an effort to replicate
sporadic AD. However, the E4FAD and E3FAD mice display less
severe phenotypes compared with the 5xFAD mice. The brain
Aβ accumulation appears from 2 to 6 months of age and is
more intense in the brains of E4FAD mice (Youmans et al.,
2012). Both E4FAD and E3FAD mice showed reactive microglia
and dystrophic astrocytes at 6 months of age, but in E4FAD
mice, the microglial reactivity was higher than in E3FAD mice
(Rodriguez et al., 2014). Moreover, E4FAD mice exhibited more
severe age-dependent memory deficits than E3FAD mice (Liu
et al., 2015). Table 1 summarizes the main findings regarding
AD-like pathology in the main transgenic AD mice models.

Intracerebroventricular Injection of Aβ in
Rodents
It takes some time to recreate the features of AD using transgenic
mice models, because the increase in Aβ levels, amyloid plaque
formation, and behavioral impairments appear typically from
6 months of age (Games et al., 1995; Hsiao et al., 1996; Sturchler-
Pierrat et al., 1997; Dewachter et al., 2000). Therefore, another
interesting experimental tool with which to study Aβ toxicity
is ICV and intrahippocampal injections of Aβ peptides (Flood
et al., 1991; Piermartiri et al., 2010; Ferreira and Klein, 2011).
Here, studies have demonstrated spatial learning and memory
deficits induced by ICV administration of aggregated Aβ1−40 or

Aβ1−42 (Yamada et al., 1999; Yan et al., 2001; Jhoo et al., 2004;
Yamaguchi et al., 2006; Prediger et al., 2007) in rodents after
only a few days/weeks of administration. Cognitive impairments
in rodents exposed to aggregated Aβ1−40 were associated with
synaptic loss and cell death in the hippocampus and prefrontal
cortex (Prediger et al., 2007; Piermartiri et al., 2010; Figueiredo
et al., 2011; Santos et al., 2012). Furthermore, ICV injection
of aggregated Aβ1−40 or Aβ1−42 led to an increase in the
hippocampal concentration of the proinflammatory cytokine,
interleukin (IL)-1β (Yan et al., 2001; Minogue et al., 2003), as well
as microglial activation (Clarke et al., 2007; Medeiros et al., 2007;
Figueiredo et al., 2011).

Another approach is the ICV administration of soluble Aβ

oligomers (AβOs). These are potent neurotoxins derived from
Aβ1−42, which can be found in AD brains (Lambert et al., 1998;
Ferreira and Klein, 2011). The ICV infusion of AβOs has been
shown to cause synaptic loss in the hippocampus and memory
impairment related to AD in mice (Ledo et al., 2013; Figueiredo
et al., 2013). Moreover, mice injected by the ICV route with AβOs
presented hippocampal activation of microglia and astrocytes, as
well as brain increased tumor necrosis factor α (TNF-α), IL1β,
and IL-6 levels (Ledo et al., 2013; Brkic et al., 2015).

In both models, that is, mice ICV injected with aggregated
Aβ or AβOs, BBB integrity was not entirely explored. With
regard to the ICV injection of AβOs, a loss of blood – CSF
barrier integrity in the choroid plexus was observed in mice
(Brkic et al., 2015). On the other hand, C57BL/6 mice injected
with an aggregated form of Aβ1−40 did not present changes in
the hippocampal immunoreactivity of aquaporin-4 (AQP-4), a
putative marker of edema and BBB leakage (de Oliveira et al.,
2014). More studies are needed to better describe this aspect
in these AD experimental models. Another critical point is that
it is difficult to observe amyloid plaques in the brain in this
particular model (Kim et al., 2016). The heterogeneity of the
peptide samples is also a problem with the application of Aβ in
rodent models (Kasza et al., 2017).

ANIMAL MODELS OF PARKINSON’S
DISEASE

Parkinson’s disease is the second most prevalent
neurodegenerative disease after AD, and the most common
movement disorder (Obeso et al., 2017). The main features
of PD are dopaminergic neuronal loss in the substantia
nigra pars compacta (SNpc) and dopamine depletion in
the striatum (Poewe et al., 2017), with the presence of
intracytoplasmic inclusions called Lewy bodies, which are
composed mainly of misfolded α-synuclein (Spillantini et al.,
1998). Neuroinflammation and BBB disruption have also been
considered to be pathogenic features of PD (Collins et al., 2012;
Wang et al., 2015; Guzman-Martinez et al., 2019; Figure 1).

Clinically, PD is characterized by motor symptoms such as
resting tremor, bradykinesia, rigidity, and loss of postural reflex.
These result from dopaminergic degeneration of the nigrostriatal
pathway (Magrinelli et al., 2016). This neuropathology is also
associated with non-motor symptoms, for example anxiety,
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TABLE 1 | Summary of the main alterations observed in the transgenic mouse models of Alzheimer’s disease.

Animal model Gene mutation Main Alteration Age
(months)

References

PDAPP mouse APP (695, 751, and 770) – ↓Spatial learning
– Memory impairments

3–4 Dodart et al., 1999; Hartman
et al., 2005

– ↑ Aβ deposition 6–9 Games et al., 1995;
Johnson-Wood et al., 1997;
Chen et al., 2000

– Increased activation of
microglia and astrogliosis

Games et al., 1995

– Intact BBB integrity 16 Blockx et al., 2016

Tg2576 mouse APP (695) + Swedish mutation
(K670/M671NL)

– Contextual memory deficits
– ↑ Fraction of Aβ1−42 to Aβ1−40

4–5 Jacobsen et al., 2006

– ↑ Parenchymal Aβ plaques 11–13 Hsiao et al., 1996

– ↑ Microglial density 10–16 Frautschy et al., 1998

– ↑ BBB disruption in the
cerebral cortex and other brain
areas

4
8

Ujiie et al., 2003
Elhaik Goldman et al., 2018

3xTg mouse APP Swedish
(K670/M671NL) + PSEN1
(M146V) + MAPT P301L

– ↑ Intracellular Aβ deposition 3 Oddo et al., 2003b

– Cognitive impairments 4 Billings et al., 2005

– ↑ Extracellular Aβ deposition
– ↑ Amyloid plaques
– ↑ BBB permeability

6 Oddo et al., 2003b

– ↑ Neuroinflammation Parachikova et al., 2010;
Belfiore et al., 2019

5xFAD mouse APP Swedish
(KM670/671NL) + London
(V717l) + Florida (APP
I716V) + PSN1
(L286V) + M146L

– ↑ Levels of Aβ1−42 in the brain 1.5 Oakley et al., 2006

– AD-like amyloid pathology 2 Oakley et al., 2006

– Spatial memory and learning
deficits

4–6 Oakley et al., 2006; Ohno, 2009

PS19 mouse MAPT P301S – Filamentous tau lesions 6 Yoshiyama et al., 2007,
Yoshiyama, 2008– Hippocampal synaptic

dysfunction and loss
– Neuroinflammation

3

E3FAD mouse APP
Swedish+ London+ Florida+ PSN1
(L286V) + M146L + APOE3

– Aβ accumulation
– Neuroinflammation

2–6
6

Youmans et al., 2012
Rodriguez et al., 2014

E4FAD mouse APP
Swedish+ London+ Florida+ PSN1
(L286V) + M146L + APOE4

– Aβ accumulation
– Neuroinflammation

2–6
6

Youmans et al., 2012
Rodriguez et al., 2014

AD, Alzheimer’s disease; APP, amyloid precursor protein; Aβ, amyloid-β peptide; PSN1, presenilin 1; BBB, blood-brain barrier. (↑) Increased, (↓) decreased.

depression, and cognitive impairments (dementia; Franke and
Storch, 2017).

Parkinson’s disease can be genetic or sporadic (Singleton et al.,
2013). It is known that the development of the disease occurs
due to genetic susceptibility associated with environmental
risk factors (Chen and Ritz, 2018). Exposure to heavy metals,
fungicides, and pesticides (e.g., rotenone and paraquat) have been
associated with the development of the disease (Ball et al., 2019).
In addition, in the past few years, it has been suggested that
metabolic disorders may be causative events of PD (Limphaibool
et al., 2018; Nam et al., 2018; Alecu and Bennett, 2019).

Because PD occurs mainly as a sporadic form, experimental
models based on compounds’ neurotoxicity are useful for
the study of this neuropathology. For instance, the 6-
hydroxydopamine (6-OHDA) animal model of PD has been
used in the PD research field since 1968 (Ungerstedt, 1968).
The 6-OHDA is an analog of dopamine and norepinephrine

and is endogenously produced through the hydroxylation of
dopamine (Tieu, 2011). This neurotoxin is unable to cross the
BBB; therefore, the only way to expose the brain to neurotoxic
actions of this substance is through stereotaxic surgery (Duty
and Jenner, 2011). Bilateral injection of 6-OHDA into the
substantia nigra (SN) of rats has caused anterograde degeneration
of the nigrostriatal dopaminergic system, leading to akinesia
and high mortality. The first experimental model of PD was
generated thus (Ungerstedt, 1968). Specifically, after stereotaxic
injection, 6-OHDA is removed from the extracellular space
by dopamine or noradrenaline membrane transporters and
stored in catecholaminergic neurons. Inside these neurons, 6-
OHDA undergoes both enzymatic degradation by monoamine
oxidase A (MAO-A) and auto-oxidation, generating several
cytotoxic species that lead to neuronal damage (Soto-Otero et al.,
2000). Many studies have demonstrated that brain 6-OHDA
injections are associated with decreased locomotor activity,
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reduced tyrosine-hydroxylase (TH)-positive neurons, and brain
oxidative stress in mice (Ungerstedt, 1968; Simola et al., 2007;
Ozsoy et al., 2015). The 6-OHDA experimental models of PD are
also associated with neuroinflammation, that is, microgliosis and
astrogliosis (Walsh et al., 2011; Gasparotto et al., 2017), as well as
BBB disruption (Carvey et al., 2005). Unilateral injections of 6-
OHDA into the striatum or the medial forebrain bundle induced
an increased BBB permeability to FITC-labeled albumin in the SN
and striatum (Carvey et al., 2005). One limitation of 6-OHDA-
based models is that they do not cause changes in α-synuclein
expression or deposition, and for this reason they are more
correctly referred to as models of “Parkinson-like” dopaminergic
denervation or, simply, dopaminergic denervation.

Other rodent models of PD have been developed through
exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP). It was demonstrated that MPTP itself is not toxic;
however, as a lipophilic compound, it passes through the BBB.
Once in the brain, the molecule is rapidly converted into its
toxic metabolite, 1-methyl-4-phenylpyridinium or MPP+,
by monoamine oxidase B (MAO-B; Langston, 2017). Studies
performed with rodents showed a reduction of locomotion
and rearing in the open field task for several weeks after the
subcutaneous and intraperitoneal administration of MPTP
(Fredriksson et al., 1999; Fornai et al., 2005). In contrast, other
studies reported no change in locomotion and even hyperactivity
in mice after peripheral exposure to MPTP (Tomac et al., 1995;
Chia et al., 1996; Luchtman et al., 2009). In a chronic model of
intraperitoneal MPTP exposure, mouse dopaminergic neurons
presented α-synuclein-positive inclusions and secondary
lysosomes filled with proteinaceous debris and lipid droplets,
which resemble deposits in the brains of PD patients (Wu et al.,
2002). Yazdani et al. (2006) showed that the infusion of MPP+
into the left cerebral ventricle of rats destroyed dopaminergic
neurons in the nigrostriatal pathway. Another study indicated
that the presence of MPP+ is related to inflammatory reaction
along with the infiltration of T-cells into the SN and striatum
and activation of the microglia and increased gene expression of
proinflammatory cytokines such as IL-1β, interferon γ (INFγ),
and TNFα in those brain regions (Kurkowska-Jastrzebska et al.,
2009). The inflammation induced by MPTP treatment seems
to cause BBB failure. Mice exposed to MPTP intraperitoneal
injection presented less TH-positive dopaminergic neurons,
which was related to an increase in leakage of Evan’s blue dye and
FITC-albumin into the striatum. The striatum BBB disruption in
the MPTP mouse model was also characterized by a reduction in
the tight junctions’ proteins content (Chen et al., 2008).

Rotenone (pesticide), paraquat (herbicide), and maneb
(fungicide) exposure have been considered a possible
environmental cause of PD (Hatcher et al., 2008).
Epidemiological studies have shown that exposure to
agrochemicals increases the risk of PD (Narayan et al., 2017;
Pouchieu et al., 2018). The administration of agrochemicals in
rodents has been used to study the mechanisms underlying PD
pathogenesis. These compounds can cross the BBB and affect the
dopaminergic system (Bastías-Candia et al., 2019). For example,
rotenone and paraquat are known to cause dopaminergic
degeneration in mice (McCormack et al., 2002; Drechsel and

Patel, 2008). One advantage of rotenone administration as a PD
model is that the agrochemical mimics the chronic progression of
PD patients, while other metabolite exposure results only in acute
damage of dopaminergic neurons (von Wrangel et al., 2015).
Cannon et al. (2009) demonstrated that rotenone-treated animals
presented bradykinesia, postural instability, and/or rigidity. The
authors also observed the presence of α-synuclein positive
aggregates in the dopamine neurons of SN. Rotenone exposure
is also associated with neuroinflammation. Martinez et al.
(2017) reported that the chronic administration of intragastric
rotenone in mice caused progressive nigral degeneration and
neuroinflammation.

Another tool used to study PD is the intracerebral
administration of α-synuclein pre-formed fibrils (PFFs) in
mice. Usually, the administration of PFFs is performed with
unilateral and intrastriatal injection. Specifically, this model
has been used to study the mechanisms by which α-synuclein
aggregates spread throughout the brain. In addition to the broad
spread of pathological α-synuclein deposition, neuronal loss,
neuroinflammation, and some behavioral deficits were also
observed in the mice injected with PFFs (Luk et al., 2012; Gordon
et al., 2018; Chung et al., 2019; Earls et al., 2019).

It is also important to mention that genetic mouse models
are used to study PD; however, they are heterogeneous, and no
perfect model exists (Fleming et al., 2005; Bogaerts et al., 2008).
One example is A53T mice that overexpress human α-synuclein
with a PD-associated mutation (A53T; Giasson et al., 2002). In an
A53T mouse, the human-specific soluble α-synuclein expression
increases in the brain between 2 and 6 months of age and remains
constant after 12 months, resulting in the dispersal of α-synuclein
aggregates throughout the cortex, hippocampus, brain stem,
and cerebellum. The onset of motor symptoms is variable and
generally appears at 9–10 months of age (Lee et al., 2002;
Paumier et al., 2013).

Although there are many animal models of PD, none of
them accurately represent all the characteristic events of the
pathogenesis of this disease (Dawson et al., 2010). Table 2
summarizes the characteristics of the main PD rodent models.

METABOLIC DISEASES AS A RISK
FACTOR FOR NEURODEGENERATIVE
DISEASES

Metabolic disorders, e.g., obesity, diabetes, hypercholesterolemia,
and hypertension, are the main risk factors for cardiovascular
disease. The link between metabolic disorders and the future
risk of dementia has been reported in several studies (Beydoun
et al., 2008; Fitzpatrick et al., 2009; Hassing et al., 2009).
In the past few decades, hypercholesterolemia, that is, high
levels of blood cholesterol and obesity have been connected to
neurodegenerative diseases development (Kivipelto et al., 2001,
2005; Gustafson et al., 2003; Whitmer et al., 2008; Solomon
et al., 2009; Santos et al., 2017). It is postulated that one of
the mechanisms behind this connection is high levels of blood
cholesterol or free fatty acids (FFA) inducing deregulation of lipid
metabolism and altering the permeability of the BBB, leading to
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TABLE 2 | A summary of the main findings in toxin-induced rodent models of Parkinson’s disease.

Toxin Administration methods Main alteration References

6-OHDA Bilateral injection into the SN – Anterograde degeneration of the nigrostriatal
dopaminergic system

– Akinesia

Ungerstedt, 1968

Unilateral injections into the
right medial striatum forebrain
bundle

– ↓ Locomotor activity
– ↓TH-positive dopaminergic neurons
– Oxidative stress

Ozsoy et al., 2015

– BBB disruption Carvey et al., 2005

– Neuroinflammation (microgliosis and
astrogliosis)

Walsh et al., 2011; Gasparotto et al., 2017

MPTP Subcutaneous and
intraperitoneal injections

– ↓ Motor activity and locomotion Fredriksson et al., 1999; Fornai et al., 2005

– = Locomotion Tomac et al., 1995; Chia et al., 1996;
Luchtman et al., 2009

– ↑ Locomotion Tomac et al., 1995; Chia et al., 1996;
Luchtman et al., 2009

– ↑ α-synuclein-positive inclusions in neurons
– Lysosomes filled with proteinaceous debris and

lipid droplets

Wu et al., 2002

– BBB failure (↓tight junctions’ proteins)
– ↓ TH-positive dopaminergic neurons
– ↑ Gliosis

Chen et al., 2008

Infusion of MPP+ into the left
cerebral ventricle

– ↓ Dopaminergic neurons Yazdani et al., 2006

– ↑ Infiltration of T cells
– ↑ Activation of the microglia
– ↑ Gene expression of IL-1β, INFγ, TNF-α

Kurkowska-Jastrzebska et al., 2009

Agrochemicals (rotenone,
paraquat, and maneb)

Intraperitoneal injections – ↓ TH immunoreactivity in neurons
– Dopaminergic degeneration

McCormack et al., 2002; Drechsel and
Patel, 2008; von Wrangel et al., 2015

– Bradykinesia
– Postural instability
– Rigidity
– ↑ α-synuclein positive aggregates
– Neuroinflammation

Cannon et al., 2009

Intragastric administration – ↑ Nigral degeneration
– Neuroinflammation

Martinez et al., 2017

α-synuclein PFF Intracerebral administration – Pathological α-synuclein deposition
– Neuronal loss
– Neuroinflammation
– Behavioral deficits

Luk et al., 2012; Gordon et al., 2018;
Chung et al., 2019; Earls et al., 2019

neuroinflammation and cognitive decline (Takechi et al., 2013;
Paul and Borah, 2017; Paul et al., 2017b).

In their pioneering evidence, Sparks et al. (1990) pointed out
that the brains of non-demented individuals with coronary artery
disease, a condition strictly related to hypercholesterolemia,
presented amyloid plaques. The same research group observed
that hypercholesterolemia induced increased intracellular Aβ

deposition in the hippocampus and cerebral cortex of rabbits
fed a high cholesterol diet for 4, 6, and 8 weeks (Sparks et al.,
1994). Furthermore, Refolo et al. (2000) showed a positive
correlation between the plasma cholesterol levels and the content
of the Aβ brain when treating a transgenic mouse model of AD
with a hypercholesterolemic diet. Hypercholesterolemic rabbits
and individuals with cardiovascular diseases also displayed
neuroinflammation, and BBB increased permeability (Streit and
Sparks, 1997; Sparks et al., 2000).

It has been demonstrated that obesity contributes to impaired
cognitive performance and dementia (Beydoun et al., 2008;
Nguyen et al., 2014; Pegueroles et al., 2018; Hou et al., 2019).

An earlier 18-year follow-up conducted by Gustafson et al. (2003)
suggested that overweight in old age is a risk factor for dementia,
particularly AD. Moreover, Whitmer et al. (2008) reported that
central obesity in midlife increases the risk of dementia regardless
of diabetes and cardiovascular comorbidities. It is worth noting
that the vascular and inflammatory effects of obesity may play
a role in the development of neurodegenerative diseases such
as AD (Naderali et al., 2009; Businaro et al., 2012; Walker and
Harrison, 2015). Relatedly, obese women presented a decrease
in BBB function (Gustafson et al., 2007) while bariatric surgery
reversed obesity and reduced hypothalamic gliosis in women
(van de Sande-Lee et al., 2020).

Insulin is mostly known for its role in clearing glucose from
the circulation. The absence of insulin production and release
in type 1 diabetes (T1D) and the poor action of insulin on
target cells (insulin resistance) in type 2 diabetes (T2D) result
in hyperglycemia. Poorly controlled glycemia in diabetes impacts
the cerebrovascular system and BBB integrity and is a risk factor
for AD (Vagelatos and Eslick, 2013). However, the brains of
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AD patients showed downregulated insulin receptors, pointing
toward a role of neuronal insulin resistance in AD etiology
(Steculorum et al., 2014; de la Monte, 2017), and so several
clinical trials have focused on the administration of insulin to
treat or prevent dementia (Lee et al., 2018).

Metabolic disorders are also related to PD. Some findings
have suggested a prospective association between plasma
cholesterol or a history of hypercholesterolemia and PD
risk (de Lau et al., 2006; Simon et al., 2007; Hu et al.,
2008; Hu, 2010). Some evidence has also pointed to obesity,
diabetes, and cerebrovascular risk factors as contributors to PD
development (Chen et al., 2014; De Pablo-Fernandez et al.,
2018; Kummer et al., 2019), though the correlation is not yet
well established; epidemiological and clinical studies present
controversial data. For instance, one study found an inverse
association between plasma cholesterol levels and PD clinical
progression (Huang et al., 2011).

Taking into account the fact that (i) metabolic conditions
such as obesity, diabetes, and hypercholesterolemia are factors
that increase the individual risk of developing AD and PD; and
(ii) rodent models of obesity, diabetes, and hypercholesterolemia
present all the main hallmarks of AD and PD, we propose
these experimental animal models as strategic tools to study
neurodegeneration. The overlap of pathological features
between metabolic and neurodegenerative disorders supports a
mechanistic connection among these conditions that needs to be
better understood.

Animal Models of Hypercholesterolemia
and Brain Dysfunction
Diet-Induced Hypercholesterolemia in Rodents and
Brain Effects
Hypercholesterolemia can occur by genetic origin or due to
a high intake of cholesterol (Cha and Park, 2019). There are
many different types of experimental models of diet-induced
hypercholesterolemia. Studies have used different diets and
periods of exposure (Ullrich et al., 2010; Moreira et al., 2014; Paul
et al., 2017a).

Diet-induced hypercholesterolemia appears to be associated
with memory damage. Swiss mice fed a high cholesterol diet
(1.25% cholesterol and 20% fat) for 2 months displayed short-
term memory impairment (Moreira et al., 2014). Also, exposure
to a high cholesterol diet has led to severe spatial learning and
long-term memory deficits in rats (Ullrich et al., 2010).

The cholinergic system is critically important for memory,
learning, attention, and other higher brain functions. Evidence
has indicated that hypercholesterolemia has an impact on
cholinergic functions in the CNS. Ullrich et al. (2010) showed
that memory decline was associated with loss of choline
acetyltransferase (ChAT)-positive neurons (i.e., cholinergic
neurons) in the basal nucleus of Meynert, reduction of
acetylcholine levels in the cerebral cortex, and an increase in
cortical Aβ1−42 levels in hypercholesterolemic rats. In line with
this, we previous reported increased acetylcholinesterase (AChE)
activity in the hippocampus and prefrontal cortex of mice fed a
high cholesterol diet (Moreira et al., 2014).

Mice exposed to a high cholesterol diet also presented motor
alterations characteristic of PD. High levels of plasma cholesterol
in mice caused akinesia, catalepsy, and reduced swimming
performance, and were associated with a decrease in TH-positive
neurons and dopamine levels in the striatum (Paul et al., 2017a).
Interestingly, hypercholesterolemia increased the neurotoxicity
induced by MPTP in mice. Hypercholesterolemic mice treated
with MPTP exhibited a more severe loss of dopaminergic neurons
in the SN and reduced striatal levels of dopamine than those
treated with MPTP only (Paul et al., 2017b).

Experimental evidence supports the notion that BBB
disruption and further neuroinflammation underlying
hypercholesterolemia trigger brain dysfunction (Ullrich et al.,
2010; de Oliveira et al., 2014; Paul and Borah, 2017; Chen et al.,
2018). Ullrich et al. (2010) observed BBB disturbance in the
hypercholesterolemic rats’ cortex that was visualized by increased
leakage of IgG and microgliosis. Mice fed a high cholesterol
diet also displayed BBB disruption in brain regions (e.g., the
hippocampus, cerebral cortex, SN, and striatum) associated
with neuroinflammation (astrogliosis and microgliosis; Paul
and Borah, 2017; Paul et al., 2017b). The brain inflammation in
rodents fed a high cholesterol diet was also related to increased
levels of cytokines such as TNF-α, IL1-α, IL-1β, and IL-6 (Ullrich
et al., 2010; Chen et al., 2018).

Additionally, a previous experimental study indicated that
exposure to a high cholesterol diet worsened the outcomes
and accelerated the disease course in an animal model of AD.
Specifically, Refolo et al. (2000) observed that exposure to a high
cholesterol diet increased Aβ accumulation and accelerated the
AD-related pathology in a double-mutant PSAPP. The authors
demonstrated a positive correlation between the levels of plasma
cholesterol and cerebral Aβ content.

Notably, rodents exposed to a high cholesterol diet present
innumerable pathogenic characteristics of neurodegenerative
diseases. Notably, the brain dysfunction in these rodent models of
hypercholesterolemia occurred early in life (Table 3). Therefore,
we propose that rodents fed a high cholesterol diet are a
useful model with which study the mechanisms that lead to
neurodegeneration.

LDLr−/− Mice as a Model for the Study of
Neurodegeneration and Memory Impairments
The main form of genetic hypercholesterolemia is familial
hypercholesterolemia, which is very common in the general
population (Santos et al., 2016; Fairoozy et al., 2017). This
metabolic disorder is caused by mutations in the low-density
lipoprotein receptor (LDLr) gene, an important molecule in
cholesterol metabolism (Brown and Goldstein, 1986, 2006; Soutar
and Naoumova, 2007). Familial hypercholesterolemia is closely
related to the development of atherosclerotic cardiovascular
disease (Austin et al., 2004). Individuals suffering from familial
hypercholesterolemia also display a high incidence of cognitive
impairments (Zambon et al., 2010; Ariza et al., 2016).

Similarly, LDLr knockout (LDLr−/−) mice, a mouse model
of human familial hypercholesterolemia, display learning and
memory deficits (Mulder et al., 2004; de Oliveira et al., 2011).
Mulder et al. (2004) reported that 11-month-old LDLr−/−
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TABLE 3 | A summary of evidence linking high cholesterol diets exposure in rodents to cerebral alterations associated with neurodegenerative diseases.

Diet composition (cholesterol) Diet duration Animal (age-months) Main alteration References

1.25%+20% fat 8 weeks Mice (3) – Memory deficits
– ↑ AChE activity in PFC and hippocampus

Moreira et al., 2014

5% 5 months Rats (6) – Memory deficits
– ↓ ChAT positive neurons in cerebral cortex
– ↓ Acetylcholine levels in cerebral cortex
– ↑ Aβ1−42 immunocontent
– BBB disruption in cerebral cortex
– Neuroinflammation

Ullrich et al., 2010

12 weeks Mice (2) – Memory deficits
– Disruption of BBB
– Neuroinflammation

Paul and Borah, 2017

– Motor alterations (akinesia, catalepsy, and ↓ swimming
performance)

– ↓ TH-positive neurons in striatum
– ↓ Dopamine levels in striatum
– Neuroinflammation

Paul et al., 2017a

14 months Mice (2) – ↓ Dopaminergic neurons in substantia nigra
– ↓ Dopamine levels in striatum
– Neuroinflammation

Paul et al., 2017b

3% 8 weeks Mice (6) – Disruption of BBB
– Neuroinflammation

Chen et al., 2018

AChE, acetylcholinesterase; Aβ, amyloid-β peptide; BBB, blood-brain barrier; ChAT, choline acetyltransferase; PFC, prefrontal cortex; TH, tyrosine-hydroxylase. (↑)
Increased, (↓) decreased.

display spatial memory impairment in the Morris water maze
task and working memory damage in T-maze spontaneous
alternation analysis. We have observed that LDLr−/− present
spatial and working memory decline as early as 3 months of age
(de Oliveira et al., 2011, 2020a).

Memory deficits in LDLr−/− mice have been linked to
synaptic and neuronal dysfunction. Synaptic density reduction
in the hippocampus of 11-month-old LDLr−/− mice has been
demonstrated (Mulder et al., 2007). We recently showed a
high immunoreactivity of caspase-3 protein in the hippocampal
and prefrontal cortex neurons of 3-month-old LDLr−/−

mice (de Oliveira et al., 2020a). Neuronal damage and
synaptic dysfunction have also been associated with impaired
hippocampal neurogenesis in LDLr−/−mice (Mulder et al., 2007;
Engel et al., 2019). However, these neuronal changes were not
linked with the overproduction of Aβ, since LDLr−/− mice did
not exhibit alterations in Aβ1−42 content in the hippocampus and
prefrontal cortex (de Oliveira et al., 2020a). On the other hand,
LDLr−/− mice were more susceptible to Aβ ICV neurotoxicity
(de Oliveira et al., 2014).

We have revealed increased activity of AChE and antioxidant
disturbance in the brain areas of 3-month-old LDLr−/−

mice (Moreira et al., 2012; de Oliveira et al., 2014), while
treatment with donepezil, an anticholinergic drug, reversed
the memory decline in these hypercholesterolemic mice (Lopes
et al., 2015). Importantly, neuroinflammation characterized by
astrogliosis was visualized in the hippocampus of 3-month-
old LDLr−/− mice. The increased number of astrocytes in the
hippocampus of LDLr−/−mice was associated with the increased
immunoreactivity of AQP-4, which indicates BBB dysfunction
(de Oliveira et al., 2014). Specifically, the increased expression
and content of AQP-4, a bidirectional water channel found in

astroglial foot processes, and endothelial cells can indicate edema
and neurotoxicity (Thomas-Camardiel et al., 2005).

We also submitted 3-month-old wild-type and LDLr−/− mice
to a high cholesterol diet for 30 days, and we observed that
the BBB leakage was even more intense. The hippocampus
and prefrontal cortex BBB dysfunction in LDLr−/− mice was
associated with cognitive decline, while C57BL/6 wild-types
fed a high cholesterol diet exhibited impairments in the BBB
but not in cognition. In addition, LDLr−/− mice displayed
intense astrogliosis, increased microvessel content, and decreased
levels of IL-6 in the hippocampus (de Oliveira et al., 2020b).
Figure 2 presents the main brain alterations found in the
LDLr−/− mice.

ApoE−/− Mice as a Model for the Study of
Neurodegenerative Diseases
Apolipoprotein E was first discovered by Shore and Shore (1974)
in very-low-density lipoprotein (VLDL). ApoE in the periphery is
principally produced by the hepatocytes but is also expressed by
other cells (Kurano et al., 2011). In the brain, ApoE is synthesized
mainly by astrocytes, and it plays a vital role in neuronal
repair and maintenance (Huang et al., 2004). In the CNS, ApoE
serves as the primary carrier protein of lipids, redistributing and
mobilizing cholesterol between cells. These ApoE functions in
cholesterol transport are essential for maintaining myelin and
neuronal membranes (Leduc et al., 2010).

Apolipoprotein E knockout (ApoE−/−) mice were first
designed for atherosclerosis pathogenesis studies, because they
exhibit a 5- to 10-fold increase in plasma cholesterol levels (Zhang
et al., 1992). Currently, ApoE−/− mice have also been used for
studying the pathophysiology of neurological diseases, including
neurodegenerative ones (Yin and Wang, 2018).
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Previous studies have demonstrated that ApoE−/− mice
display a disruption in spatial learning as early as 3 months
and working memory impairment at 6–8 months. Both were
Morris water maze protocols (Gordon et al., 1995; Masliah et al.,
1997; Champagne et al., 2002). Spatial learning and working
memory, tested in the octagonal-arm radial maze, was impaired
in ApoE−/− mice at the age of 9–10 months (Evola et al., 2010).
It is worth mentioning that ApoE−/− and control mice were
submitted to a rotarod test at 5–6 and 12–14 months of age,
and both strains presented decreased average latency in the time
they remained in the apparatus (because of aging), which means
that ApoE deficiency was not associated with motor alterations
(Fuentes et al., 2018).

The cholinergic system also seems to be affected in ApoE−/−

mice. The ChAT activity was reduced in the hippocampus
and frontal cortex of 6-month-old ApoE−/− mice (Gordon
et al., 1995) and a significant decrease in AChE activity in the
cortex, hippocampus, and septum in 14-week-old ApoE−/−mice
(Fisher et al., 1998).

Neuronal cell death markers (caspase-1 positive cells) increase
in the hippocampus of ApoE−/− mice when they are fed a high
cholesterol diet (Rahman et al., 2005). The amyloid cascade is
also disturbed in the brains of ApoE−/− mice. The clearance
of synthetic Aβ, which was injected directly into the brain
parenchyma of ApoE−/− mice, was impaired (Ji et al., 2001).

On the other hand, the elderly ApoE−/− mice did not have their
brain Aβ deposition measured by Congo red staining, unlike in
a traditional AD mouse model (Shnerb Ganor et al., 2018). The
association between Aβ levels and ApoE deficiency needs to be
studied further.

Another hallmark of neuroinflammation found in ApoE−/−

mice was an increase in GFAP in the hippocampus and corpus
callosum (Crisby et al., 2004). Moreover, the disruption of BBB
integrity was showed in very young ApoE−/− mice (8 weeks
of age) by the BBB extravasation of Evans blue dye (Methia
et al., 2001). Hafezi-Moghadam et al. (2007) suggested that ApoE
deficient mice have a progressive, age-dependent BBB leakage in
the cortex and cerebellum.

Therefore, both genetic mouse models of
hypercholesterolemia (LDLr−/− mice and ApoE−/− mice)
present cognitive impairments early in life. These are
associated with neuroinflammation, BBB disruption, and
neurodegeneration, but not with increased brain Aβ deposition
(Figure 2). As the models induced by hypercholesterolemic
diet consumption, these genetic models present cerebral
dysfunction as early as 3 months. Given that genetic forms of
hypercholesterolemia (e.g., familial hypercholesterolemia) are
highly prevalent in the general population, these animals are
suitable for the study of neurodegenerative diseases, especially
AD (Figure 2).

FIGURE 2 | Brain alterations found in genetic mouse models of hypercholesterolemia. In LDLr−/− and ApoE−/− mice, both genetic mouse models of
hypercholesterolemia, were observed increased levels of plasma cholesterol, BBB disruption, neuroinflammation, synaptic and neuronal dysfunction, impaired
neurogenesis, and ultimately, cognitive impairments. ApoE−/−, apolipoprotein E knockout mice; BBB, blood-brain barrier; LDLr−/−, low-density lipoprotein receptor
knockout mice.
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Animal Models of Obesity and Its
Comorbidities and Features of
Neurodegenerative Diseases
Obesity is associated with chronic low-grade systemic
inflammation (Gregor and Hotamisligil, 2011; Lumeng and
Saltiel, 2011). The pathophysiological effects of obesity are
observed not only in adipose tissue but also in other organs,
including the brain (Alford et al., 2018). Evidence has suggested
that obesity in midlife is a risk factor for AD in later life (Kivipelto
et al., 2005; Beydoun et al., 2008; Whitmer et al., 2008; Chuang
et al., 2016; Gottesman et al., 2017).

Neurodegenerative Diseases and Rodents Fed a
High-Fat Diet
Increased consumption of high energy/high-fat food (i.e., over-
nutrition), is considered a critical environmental causative factor
of obesity (van Baak, 2013). Taking this into account, the most
common experimental models to study the consequences of
obesity are rodents fed high-fat diets (HFDs; Buettner et al., 2006,
2007). Nowadays, rodents exposed to HFDs are also widely used
to evaluate the impact of obesity on the brain (Arnold et al.,
2014; Underwood and Thompson, 2016; Nakandakari et al., 2019;
Garcia-Serrano and Duarte, 2020).

Several studies have shown that the consumption of a HFD
impairs critical brain areas that are involved in cognition,
which are affected in AD (Arcego et al., 2016; Lizarbe et al.,
2018; Nakandakari et al., 2019). There are several possible
reasons why a HFD may lead to memory impairment. However,
neuroinflammation seems to play a central role, because it
is present in brain tissues involved with memory (Johnston
et al., 2011; Verri et al., 2012; Kao et al., 2019). These
changes in inflammatory markers are directly involved in the
pathogenesis of AD. Thus, the study of rodents fed a HFD
becomes an interesting approach for investigating many aspects
of neurodegenerative diseases.

Experimental studies demonstrated impaired working
memory, that is, decreased spontaneous alternation in the
T-maze in 2-month-old mice fed an extremely HFD (60% fat for
17 days), as well as moderate HFD (45% fat for 8 weeks; Arnold
et al., 2014). Young adult rats exposed to a HFD (58% fat) for
12–15 weeks presented spatial memory deficits in the spatial
object recognition test (Underwood and Thompson, 2016).
More recently, Denver et al. (2018) published a study where
7–14 weeks-old mice fed a HFD (45% fat) for different periods
(from 18 days to 21 weeks) presented a sustained recognition
memory impairment, evaluated at the novel object recognition
task. Also, 24-month-old F344xBN F1 rats who were fed a HFD
(60.3% fat) for just 4 days showed impaired long-term memory
and partially impaired spatial memory (Spencer et al., 2017).
McLean et al. (2018) pointed out that HFD caused a rapid
decline in mice’s episodic memory. Specifically, memory deficits
appeared to occur after 1 day’s exposure to a HFD (60% fat).

Memory impairments in rodents fed a HFD are associated
with synaptic dysfunction and neuronal death. For instance, 3-
month-old mice fed diets containing 45 or 60% fat for 6 months
present synaptic degeneration, characterized by a reduction in

the content of proteins located in synapses in the hippocampus
and cortex (Lizarbe et al., 2018). Moreover, the exposure of
young mice to a HFD (around 30% fat) for only 3 days
caused an increase in hippocampal apoptotic molecular signals
(i.e., decreased expression of Bcl-2 and increased expression of
Bax; Nakandakari et al., 2019). AChE activity was reduced in
brain areas such as the prefrontal cortex of rats fed a HFD
(Morganstern et al., 2012).

Notably, Nakandakari et al. (2019) pointed out that a few
days’ exposure to a HFD induced alterations in AD markers
in the mice’s hippocampus. Mice fed a HFD for 3 days
exhibited an increase in Aβ levels and an elevation of tau
phosphorylation and total tau content in the hippocampus. Six-
week-old C57BL/6NHsd mice fed a HFD supplemented with
sugar in drinking water (42g/L, 12 weeks), presented increased
expressions of both 4G8 and 6E10, indicating Aβ deposition,
as well as an increase in the insulin-degrading enzyme (IDE),
an endopeptidase responsible for Aβ degradation, resulting in
decreased Aβ clearance. Furthermore, HFD supplemented with
sugar in drinking water augmented phosphorylation of tau
compared with the control diet (Kothari et al., 2017). Busquets
et al. (2017) indicated that chronic exposure (weaning until
16 months of age) to a HFD led to the appearance of amyloid
depositions in the brain of C57BL/6J mice, which therefore
pointed to a potential model of sporadic AD.

High-fat diet consumption is also associated with motor
abnormalities in rodents. After being given a HFD for 20 weeks,
mice displayed reduced locomotion in the open field test and
increased missteps in a vertical grid test. These changes were
associated with TH depletion in the SN and striatum (Jang et al.,
2017). Kao et al. (2019) recently demonstrated that mice fed
a HFD (60% fat) for 20 weeks presented decreased locomotor
function, loss of dopaminergic neurons in the SN, and dendritic
spine density reduction. We observed that rats fed a HFD
for 25 weeks presented a reduction in ventral tegmental area
(VTA) TH levels and non-motor features such as depressive-like
behavior (Bittencourt et al., 2020). Moreover, α- synuclein mRNA
expression was significantly increased in C57BL/6J mice fed a
HFD compared with the control group (Han et al., 2017).

Another critical point is that behavioral alterations in mice
and rats fed a HFD were accompanied by neuroinflammation and
BBB disruption. Levels of NF-κB, a major transcription factor that
regulates inflammatory genes, were more expressed in the brains
of mice fed a HFD (45% fat for 34 days) at 7–14 weeks of age
(Denver et al., 2018). Additionally, IL-1β protein levels increased
in the hippocampus of 4-week-old mice after being fed a HFD for
3 days (Nakandakari et al., 2019). Furthermore, the expression
of TLR4 was elevated in the brains of HFD compared with the
control group (Denver et al., 2018). The density of astrocytes
and microglia was increased in the dentate gyrus and cortex of
HFD-fed mice (45% fat for 18 days) (Denver et al., 2018). HFD
exposure for 25 weeks in rats induced increased astrocytes and
microglia density in the SN and VTA (Bittencourt et al., 2020).

The HFD also caused neuroinflammation in the nigrostriatal
pathway, that is, astrogliosis and microgliosis in the SN
and striatum (Kao et al., 2019). Finally, the increased
neuroinflammatory process in HFD animals is related to
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enhanced permeability of BBB. An increased extravasation of
Evans blue dye through the BBB and a disturbance of brain
tight junction proteins were observed in mice fed a HFD for
8 weeks (Zhan et al., 2018). It was recently demonstrated that
HFD feeding induced the higher entry of 14C-sucrose and
99mTc-albumin into the brains of mice, which indicates BBB
disruption (Salameh et al., 2019). It is also important to note that
a HFD also caused an increased neuroinflammatory response,
increased brain concentration of Aβ species, and exacerbated
behavioral deficits in APP/PS1 mice (Bracko et al., 2020).

Taking all these findings into consideration, it can be verified
that rodents exposed to a HFD exhibit the main hallmarks of
both AD and PD. Indeed, just a short period of exposure to
a HFD leads to brain alterations related to neurodegenerative
diseases (Figure 3).

Animal Models of Insulin Resistance and
Type 2 Diabetes
Alzheimer’s disease is thought to involve insulin resistance
and glucose hypo-metabolism (de la Monte, 2017; Mullins
et al., 2017), but it is debatable whether these factors are
triggers for neurodegeneration (Stanley et al., 2016). Human
imaging studies demonstrate that glucose utilization by the

brain declines with age and is notably impaired in subjects
with early AD, which may be related to insulin action in
key memory and cognition areas in the brain (Lee et al.,
2018). Work on animal models of AD and T2D did show
an association between dysfunctional insulin signaling in brain
cells and AD-like pathology (Duarte, 2015; Lee et al., 2018).
However, since glucose transport across the BBB into the
brain parenchyma is not dependent on insulin (Duarte and
Gruetter, 2012), it seems unlikely that typical glucose hypo-
metabolism in AD is directly related to poor insulin sensitivity.
On the other hand, insulin receptor activation stimulates
signaling cascades for brain function regulation (Mullins et al.,
2017). Insulin regulates the expression of genes necessary
for memory consolidation (the MAPK/ERK pathway; Kelly
et al., 2003; Dou et al., 2005), and also contributes to the
control of the cellular metabolic sensor AMPK (Hardie, 2004;
Marinangeli et al., 2016).

Diabetes mellitus takes two main forms: T1D results from
inadequate insulin secretion, and T2D results from poor
insulin action on target cells, that is, insulin resistance.
Since T2D is highly heterogeneous, a refined classification
of diabetes into five groups with different characteristics and
risks of complications has been proposed (Ahlqvist et al.,
2018). In any diabetic condition, insulin signaling perturbation

FIGURE 3 | High-fat diet exposure causes cerebral alterations associated with neurodegenerative diseases in mice. Mice fed a high-fat diet present increased Aβ

levels, neuronal dysfunction and loss, BBB leakage, neuroinflammation, and, ultimately, cognitive and motor alterations. Aβ, amyloid-β peptide; BBB, blood-brain
barrier.
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impacts the brain, since insulin is involved in key processes
such as metabolic regulation and synaptic plasticity (as
reviewed in Duarte, 2015). Therefore, in addition to other
metabolic syndrome factors such as hyperglycemia, dyslipidemia,
hypertension, and vascular complications, impaired insulin
signaling in diabetes likely contributes to the development of
neurodegenerative disorders.

Several studies aiming to understand how diabetes impacts
the brain have employed T1D models characterized by impaired
insulin secretion and chronic hyperglycemia. The most
extensively used T1D model is based on the administration of
streptozotocin, which results in the destruction of β-cells and
the halting of insulin production (Rees and Alcolado, 2005).
Such treatment to either rats or mice results in a model with
chronic severe hyperglycemia, causing neurotoxicity triggering
memory deficits and impaired synaptic plasticity (Biessels
et al., 1996), synaptic degeneration (Duarte et al., 2006, 2009),
increased astrocyte reactivity and proliferation (Duarte et al.,

2009), oxidative stress (Silva-Rodrigues et al., 2020), and altered
brain metabolism (Duarte et al., 2009; Wang et al., 2012;
Ruegsegger et al., 2019). Some of these findings have been
reproduced in other T1D models that spontaneously develop
diabetes due to the auto-immune destruction of β-cells, namely
the non-obese diabetic (NOD) mouse (Saravia et al., 2002) and
the BioBreeding/Worcester (BB/Wor) rat (Sima and Li, 2005).

Most available T2D models are associated with obesity
(King, 2012). As is the case in diet-induced obesity models,
spontaneous T2D rodent models with obesity display overt
memory impairment and synaptic dysfunction as a result of
a neurodegenerative process. This is so in polygenic strains
such as the NONcNZO10/LTJ mouse (Duarte et al., 2012),
the Otsuka Long-Evans Tokushima Fatty (OLETF) rat (Cho
et al., 2020), and the Kuo Kondo mouse with agouti yellow
(Ay) mutation (KK-Ay; Yin et al., 2017), as well as monogenic
strains, namely the obese Zucker rat (fa/fa) that carries an
autosomal recessive mutation of the fa-gene that encodes for

FIGURE 4 | Comparison between animal models of metabolic disorders, Alzheimer’s disease mouse model and Parkinson’s disease mouse model. The features of
Alzheimer’s disease (A), including memory alterations, are also observed in hypercholesterolemic and obese rodents. The cognitive decline in obese and
diet-induced hypercholesterolemic mice is associated with changes in Aβ levels, neuroinflammation, BBB dysfunction, and neuronal dysfunction, in the brain regions
affected in Alzheimer’s disease. On the other hand, the genetic models of hypercholesterolemia also presented memory alterations, which are related to
neurodegeneration, brain inflammation, BBB disruption, and neuronal dysfunction, but not modification in the Aβ deposits. Parkinson’s disease (B) features,
including motor alterations, are also observed in hypercholesterolemic and obese rodents. Moreover, the hypercholesterolemic and 6-OHDA mouse model did not
present an increase in α-synuclein mRNA expression while mice fed a high-fat diet presented. The motor alterations in obese, diet-induced hypercholesterolemic and
6-OHDA mice are associated with neuroinflammation, BBB dysfunction, and neuronal dysfunction in the brain regions affected by Parkinson’s disease. 6-OHDA,
6-hydroxydopamine; AD, Alzheimer disease; Aβ, amyloid-β peptide; BBB, blood-brain barrier; LDLr−/−, low-density lipoprotein receptor knockout mice. (+) There is
alteration, (–) there is no alteration.
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the leptin receptor (Kamal et al., 2013), the leptin-deficient
ob/ob mouse (Lepob/ob; Jeon et al., 2016), and the widely used
db/db mouse that carries a spontaneous mutation in the leptin
receptor gene (Leprdb/db; Chen et al., 2016; Zheng et al., 2016).
Most relevant for understanding neurodegenerative pathologies
is insulin resistance. When studying insulin resistance one can
employ transgenic mice bearing gene deletions or mutations
in genes required for insulin action and/or insulin secretion
(Nandi et al., 2004). Such models, however, do not recreate a
complete T2D phenotype.

There are very few non-obese T2D models available for
research (King, 2012), and only the insulin-resistant Goto-
Kakizaki (GK) rat has been probed for brain function
(Duarte, 2015).

Goto-Kakizaki rats do not seem to show the overt deposition
of Aβ in plaques or tau pathology that are typical of AD
(Pereira et al., 2000; Candeias et al., 2017). However, their
brains have an increased susceptibility to damage by stressors
such as oxidative stress or aging (Duarte, 2015). Moreover,
they display reduced neuronal glucose utilization and impaired
glutamatergic neurotransmission, together with exacerbated
mitochondrial astrocyte metabolism (Girault et al., 2019). In
addition, glycogen metabolism in astrocytes, which is crucial
for fueling glutamatergic neurotransmission and memory, was
found to be impaired in insulin-resistant GK rats (Soares
et al., 2019). Accordingly, it has been proposed that glycogen
in cultured astrocytes is under insulin and IGF-1 regulation
(Muhič et al., 2015).

These metabolic alterations in GK rats are accompanied
by the development of synaptic dysfunction and increased
astrocyte reactivity in the hippocampus, as well as spatial memory
impairment (Duarte et al., 2019). In keeping with synaptic
dysfunction in non-obese insulin resistance, activity between
synapses was shown to trigger the mobilization of GLUT4
(the insulin-sensitive glucose carrier) from intracellular sources
into axonal plasma membranes, a process that is mediated
by the metabolic sensor AMPK. This is necessary to support
the energy demands of active synapses (Ashrafi et al., 2017).
Interestingly, it has been shown that toxic Aβ oligomers impair
insulin signaling and decrease plasma membrane translocation
of the insulin-sensitive GLUT4 in the hippocampus (Pearson-
Leary and McNay, 2012). This might result in poor energy
supply to neurons.

Despite astrogliosis (Duarte et al., 2019), neuroinflammatory
microglia have not been yet reported in non-obese T2D models.
Also, BBB leakage has not been confirmed in insulin resistance
models, even though there have been reports of endothelial
dysfunction (which impacts cerebral perfusion; see the discussion
in Garcia-Serrano and Duarte, 2020).

CONCLUSION

We can conclude that rodent models of obesity, diabetes,
and hypercholesterolemia are useful tools for studying
neurodegenerative disease development and characteristics. The
main features of AD and PD, which include behavioral alterations
such as memory and motor impairments, have been observed
in hypercholesterolemic and obese rodents. The behavioral
alterations in obese and diet-induced hypercholesterolemic
mice are associated with Aβ content and α-synuclein changes,
neuroinflammation, BBB dysfunction, and ultimately neuronal
death in the brain regions affected by AD and PD (Figures 4A,B).
In addition, genetic models of hypercholesterolemia have
presented behavioral alterations (mainly those associated
with AD) related to neurodegeneration, brain inflammation,
and BBB disruption, but not modification in Aβ deposits
(Figure 4A). Finally, brain alterations in mice and rats submitted
to metabolic disorders occur earlier than in the classic rodent
models of neurodegenerative diseases. The rodent models of
metabolic disorders represent primarily the sporadic forms of
neurodegenerative diseases.
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