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“An important feature of a learning machine is that its teacher will often be very

largely ignorant of quite what is going on inside, although he may still be able to

some extent to predict his pupil’s behaviour.”

— ALAN TURING, COMPUTING MACHINERY AND INTELLIGENCE



ABSTRACT

Digital Twins are a concept of designing two interconnected mirrored spaces, modeling

a real space with one virtual, each reflecting the other, sharing information, and making

predictions based on simulations. In practice, Digital Twin platforms are often built as

closed systems, limiting its operability with other applications, due to the lack of support

in interconnecting these systems. An open-source approach enables interoperability

and reduces the costs of design and implementation. To reflect their real counterpart,

Digital Twins are composed of a large number of sensors, resulting in the need to store

and analyze large amounts of data. Therefore, modern large scale Digital Twin systems

rely on offloading computation towards cloud-based architectures, due to shared pools of

hardware resources, but the significant large data volume can generate increased latency

and slower response times. To reduce these effects, bringing processing closer to the

edge devices, in a fog computing scenario, reduces the overall system latency, allowing

for faster computing of the Digital Twin, and allowing for faster response times to the

real physical system. This work proposes the creation of an open and expansible Digital

Twin framework, built on a stack of cloud-based microservices, allowing for flexibility

and reduced complexity for integrating with third-party applications. Tests performed

using the framework in an emulated environment resulted in up to 64% reduction in

average message transmission to the Digital Twin when deploying in fog computing

nodes, compared to a cloud-only approach.

Keywords: Digital twin. open source. cloud computing. fog computing. microservices.



Um framework aberto de Gêmeo Digital baseado em microsserviços na nuvem

RESUMO

Gêmeos Digitais são um conceito de projetar dois espaços espelhados interconectados,

modelando um espaço real com um virtual, cada um refletindo o outro, compartilhando

informações e fazendo previsões com base em simulações. Na prática, plataforms de

Gêmeos Digitais são muitas vezes construídas como sistemas fechados, limitando sua

operabilidade com outras aplicações, devido à falta de suporte na interligação desses sis-

temas. Uma abordagem de código aberto permite a interoperabilidade e reduz os custos

de planejamento e implementação. Para refletir sua contraparte real, os Gêmeos Digitais

são compostos por um grande número de sensores, resultando na necessidade de arma-

zenar e analisar grandes quantidades de dados. Para isso, sistemas baseados em Gêmeos

Digitais modernos de grande escala contam com a transferência de computação para ar-

quiteturas baseadas em nuvem, devido ao compartilhamento de recursos de hardware, mas

o significativo volume de dados pode gerar latência aumentada e tempos de resposta mais

lentos. Para reduzir esses efeitos, aproximar o processamento aos dispositivos de borda,

em um cenário de computação em névoa, reduz a latência geral do sistema, permitindo

uma computação mais rápida do Gêmeo Digital e permitindo respostas mais rápidas ao

sistema físico real. Este trabalho propõe a criação de um framework de Gêmeos Digitais

aberto e expansível, construído sobre uma pilha de microsserviços baseados em nuvem,

permitindo flexibilidade e complexidade reduzida para integração com aplicativos de ter-

ceiros. Testes executados com o framework em um ambiente emulado resultaram em

uma redução de até 64% na transmissão média de mensagens para o Gêmeo Digital ao

implantar em nós de computação em névoa, em comparação com uma abordagem apenas

em nuvem.

Palavras-chave: Gêmeo digital, código aberto, computação em nuvem, computação em

névoa, microsserviços.
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1 INTRODUCTION

Digital Twins (DT) are models of physical systems, containing two interconnected

mirrored spaces, one real and one virtual, which share real-time information, generating

possible outcomes of the real system via simulations executed by the digital space. The

concept of a DT, first introduced in 2002 (GRIEVES, 2016), has been used in various

scenarios, from cloning entire factories, building smart cars, and space exploration.

A DT should accurately simulate, analyze, and predict real-world events and situa-

tions, via the collection of real physical data, mirroring it into a virtual space. DTs can not

only anticipate and predict but can issue proactive measures to avoid problems by com-

bining real-time data with the knowledge of other DT instances. Simulations can provide

forecasts to their outcomes, allowing for humans to choose, knowing the consequences of

said actions, and settle for the optimal solution (VOELL et al., 2018).

In essence, a DT is a computer program that acquires real-world data about a phys-

ical system and generates simulations on how that system will be affected by this data.

Long before the terminology, Digital Twins were used in action by NASA, to monitor

and maintain machines in outer space, a situation where hands-on contact with devices

would be impossible, allowing for remote diagnosis and fixing problems that are pre-

sented (GRIEVES; VICKERS, 2017). Space capsules were duplicated, mirroring the

devices in orbit for diagnosing problems, but this presents the logical consequence of in-

creased costs. DTs solve this problem due to being exclusively digital solutions, where

a physical duplication of systems is not required, only the definition of the requirements

that compose the physical system.

In practice, DT platforms are often built as closed and commercial systems, which

by nature limits its interoperability between DT and other applications, like systems built

for the Web or even other closed systems, due to lack of support in connecting sys-

tems with diverse specifications. Open-source implementations of DTs (DAMJANOVIC-

BEHRENDT; BEHRENDT, 2019) enables interoperability and reduces costs of design-

ing and implementing new solutions while providing a high-level microservices DT archi-

tecture, allowing flexibility and reduced complexity, maintaining each service working on

small, isolated, and specific tasks while allowing the integration of heterogeneous soft-

ware. While the proposed architecture is inspired by Smart Manufacturing and Smart

Automotive standards (DAMJANOVIC-BEHRENDT, 2018), there are no specifications

that would limit the adaptation of this architecture for different models of Digital Twins.
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To reflect their physical counterparts, DTs are composed of a large number of sen-

sors, responsible for acquiring the used data. The rapid expansion of sensors powered by

the Internet of Things (IoT) is what makes DTs possible, but with this increased data gen-

eration, centralized applications oftentimes experience high latency and poor connectivity

situations which affects the performance of applications. With the advent of IoT devices

and its increased data volume in cloud systems, moving all data to the cloud does not sat-

isfy time-sensitive application requirements. Fog computing enables computing, storage,

networking, and data management on network nodes in closer proximity to edge devices,

allowing for processing to happen not only in the cloud but also occurring between the

edge and the cloud (YOUSEFPOUR et al., 2019).

Literature related to this theme already exists, but is limited to abstract and con-

ceptual proposals for these architectures. Therefore, this work will propose, implement,

and analyze an open and extensible DT framework, built on a stack of cloud computing

microservices, tested in two different scenarios: Case Study #1, which discusses the effect

on added latency of cloud-based services and our solution of deploying the framework el-

ements in a fog computing layer, bringing processing closer to the edge to reduce these

impacts, and Case Study #2, where we analyze the communication limitations imposed

by our implementation and how systems can work around these limits.

Bringing processing closer to the edge, to handle the DT message exchange, effec-

tively reduced latency for the system, allowing for the processing unit to receive data from

the source devices and compute its suggestion to the real system with a shorter response

time. Scaling to the cloud enables ease of sharing hardware in a centralized location, but

bringing resources closer to the edge enables data preprocessing, reducing overall traffic

and latency. Deploying the framework considering these aspects, in a controlled emulated

environment, resulted in up to 64% reduction in average message transmission from client

devices to the DT when deploying in fog computing nodes, compared to a cloud-only ap-

proach. Simulations performed in this work consider deadline-based communications as

their focus. Historic data, used to analyze previous system behaviour, do not present tim-

ing limitations and can be transmitted in the background, without deploying in a fog sce-

nario. This work focuses on the communication aspect of the DT implementation. Data

analysis and behaviour prediction is left as future work, where communication is made

full cycle, considering data acquisition, decisions are computed by the DT, suggesting an

action to the physical system.
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2 BACKGROUND INFORMATION

The following sections will describe and define some key concepts in understand-

ing what and how Digital Twins function. It will explain the concepts of cloud, fog, and

edge computing and why are they important to DTs, defining DT and IoT as overlapping

concepts and how DTs propose the evolution of IoT. This chapter closes with a look into

other works in the DT scenario, how some solutions already exist, and how they are used.

2.1 Digital Twins

Digital Twins are not just a digital model or interface of a physical object. A

twin receives input from a variety of sensors from their real-world counterpart. With

this data, the DT can simulate the physical object it mirrors in real-time, feeding the real

system with insights into their performance and potential problems that might occur, due

to incorrect or invalid behaviors.

Another usage of a DT is on the design stage of a system, in which the twin would

serve as the real system prototype, before any physical system is built, further reducing

project costs. According to Voell et al. (2018), Digital Twins are defined by a couple of

features:

• Comprehensiveness: Digital Twins must be able to handle data from multiple dif-

ferent types, to aggregate data from various sources. Multiple features of physical

objects may be integrated into Digital Twins, ranging from basic identification to a

fully detailed representation of objects.

• Linkage: Digital Twins are connected to multiple physical objects, but they can

also be connected to other Digital Twins, being a part of an even greater system of

linked representations of systems.

• Interoperability: Digital Twins must be flexible and allow for communication be-

tween components built by a wide range of different manufacturers. Digital Twins

must also understand problems and determine paths to solve them by communicat-

ing with other Digital Twins, instead of operating in isolation.

• Instantiation: Differentiation between abstract and fully functional Digital Twins.

Non-instantiated Digital Twins only contain methods and features they all share,

while instantiated Digital Twins contain functionality obtained from live data, not
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shared with other Twins.

• Evolution and Traceability: Digital Twins evolve, just as physical objects, and

must keep track of their evolution. After acquiring knowledge, whether it is the

addition of new components or from sensed data, Digital Twins keep track of

their changes, allowing for an understanding of how the system or physical object

evolved into its current state.

For Digital Twins to have the means of performing efficiently, they must know

the current and future states of the system, as well as the ability to identify and evaluate

disruptions, defining and acting on their solutions (KORTH; ZAJAC; SCHWEDE, 2018).

The implementation of self-aware systems like Digital Twins create modern con-

trol systems that freely adapt to their environment, not only mimicking but understanding

the reasons behind the behavior of objects (STOJANOVIC; MILENOVIC, 2018). Sys-

tems like this provide both the insight of the models and implicit knowledge of objects,

derived from their past behavior, only requiring the availability of raw data, unsupervised

by foreign agents. The purpose of a Digital Twin is not the same as being a virtual pro-

totype of physical systems, useful in aiding in the development process of products, but

another level of modeling, where digital and physical coexists in a continuous feedback

loop.

Building complex systems was never the limitation in building technology like

Digital Twins. How to obtain, store, and define what data to collect is inherently a cost-

based consequence. While the hardware for data acquisition and transmission may not be

cheap in extreme environments, the cost of microcontrollers and other low-cost System-

on-a-chip (SoC) boards enables the ease of connectivity between these devices via the

IoT, making the DT concept possible.

The implementation of a cloud-based microservices DT provides the means for

effortless integration between its parts and ease of access for the end-users, significantly

accelerating product development and manufacturing. Components from the platform

can be expanded and scaled on-demand, with independent development between each

module, where enhancements made to each of the microservices are easily inserted with

minimal changes to the entirety of the system (JOSEPH; CHANDRASEKARAN, 2019).

The virtual component of a Digital Twin system is not necessarily implemented physically

alongside the native physical devices. Due to its digital nature, it can be implemented

physically apart from its real counterpart, in a decentralized manner (CARDIN, 2019).

Modern DT-based systems can not only implement simple, well established, busi-
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ness logic, but also an intelligent system which can think and provide advanced feedback

for its users, with the integration of Artificial Intelligence (AI) via Machine Learning

(ML). DTs must support a collection of different models to accurately describe the device

in their full life-cycles. As so, they require a collection of services to effectively simulate,

analyze, and predict physical world events and situations that it mirrors.

2.2 Cloud, Fog, and Edge computing

For a DT to mirror any physical device, it must respect its real-time system

timing requirements. The correctness of the system behavior depends not only on the

logical results but also on the timing constraints defined for this system (KOPETZ,

2011). Applications in smart industries (KHAN et al., 2020; WAN et al., 2018), homes

(VERMA; SOOD, 2018), cities (TANG et al., 2015; PERERA et al., 2017) and healthcare

(NIKOLOUDAKIS et al., 2017) already exist for implementing fog computing in real-

time systems, where being time-critical is essential in preventing accidents and to provide

a better and more reliable experience, due to reduced latency. Integrating fog computing

with IoT and Digital Twins enables mirroring physical and virtual spaces while achieving

the necessary timing requirements of real-time systems. For DTs, it is still challenging to

manage, process, and store all this data in a highly distributed environment (DIZDARE-

VIĆ et al., 2019; KHAN et al., 2020).

Cloud computing provides means for convenient, on-demand access to shared

computing resources (MELL; GRANCE, et al., 2011), transferring the responsibility of

data processing and storage to remote data centers, allowing for geographical distribu-

tion, which yields in increased system redundancy and reliability (MARINESCU, 2017;

DENG et al., 2010). Table 2.1 presents a multi-aspect comparison between cloud and fog,

presenting strong and weak points of the two deployment scenarios. Fog differentiates it-

self from the cloud due to its nodes being deployed in large numbers at less centralized

locations, compared to cloud data centers. Edge computing moves processing nearest to

where it is needed, allowing computation closer to the source, reducing cloud traffic and

service latency, improving response times (CHEN et al., 2019).

Fog differentiates itself from the cloud due to decentralized nature. Fog comput-

ing extends cloud computing into the physical world and their multi-connected devices,

ensuring data availability where and when it is needed (ATLAM; WALTERS; WILLS,

2018), while edge computing represents the nearest it can be placed regarding the data
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source. This work excludes edge deployment, due to edge being composed mostly of

devices without complete control from the cloud provider, presenting problems in regards

to system reliability and availability. Fog enables latency reduction while still being in a

more controlled environment.

Table 2.1 – Comparison between cloud and fog computing.

Items Cloud Computing Fog Computing
Latency High Low

Hardware Scalable storage and computing power Limited storage and computing power
Location of server nodes Within the Internet At the edge of the local network

Distance between client and server Multiple hops One hop
Working environment Warehouse with AC Outdoor or indoor

Security measures Defined Hard to define
Attack on data Less probability High probability
Deployment Centralized Distributed

Location awareness No Yes

Source: (ATLAM; WALTERS; WILLS, 2018)

2.3 Internet of Things and Industry

The Internet of Things is a long-established term for devices connected to the

internet (ASHTON et al., 2009), acquiring and sharing data without direct input from

human beings, purely through these devices. Since its initial definition, the number of

devices with internet access has exponentially grown in recent years. According to some

research, the IoT market is forecasted to grow from 15.4 billion devices in 2015 to 75.4

billion in 2025 (LUCERO, 2016), as shown in Figure 2.1.

With the increasing number of devices and the promise of low-power embedded

sensors providing efficient signal processing and communication, the IoT concept pro-

vides an opportunity to bridge the physical world and cyberspace, being the backbone

enabling technology of Digital Twins (HE; GUO; ZHENG, 2018).

The Industrial Internet of Things (IIoT) is a derivation of the initial IoT definition,

but detailing industrial processes. When researching this topic, two terms are important

to be defined: Cyber-Physical Systems (CPS) and Industry 4.0.

A CPS could be defined as a system comprised of digital, physical, and human

components, which are engineered to be interconnected and to work together (GRIFFOR

et al., 2017). DT, CPS, and IoT share a significant overlap between concepts, but DTs

could be defined as an example of a CPS, which is a System of Systems, with combined

cyber and physical parts that share data and evolve through this communication. Fig-
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Figure 2.1 – Internet of Things connected devices worldwide from 2015 to 2025 (in billions)

Source: Image provided by author, data from (LUCERO, 2016), p. 5.

ure 2.2 presents a conceptual model for a CPS, where the cyber and physical parts of a

device interact with each other through decisions from the cyber part, which generates

actions performed by the physical, generating information which is fed back to the cyber

part, closing the device information loop.

Figure 2.2 – NIST Cyber-Physical System conceptual model

Source: (GRIFFOR et al., 2017), p. 6.

CPS integrate computation, communication, sensing, and actuation with phys-
ical systems to fulfill time-sensitive functions with varying degrees of inter-
action with the environment, including human interaction (GRIFFOR et al.,
2017).

As for Industry 4.0, the term is used to define the most recent revolution in pro-

duction, for the context of the burst of electronic and automated manufacturing, entirely
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relying on the use of CPS for obtaining sensor data and communication, aiming in in-

creasing efficiency, productivity, safety, and transparency of industrial processes (BOYES

et al., n.d.).

Linking IoT, Industry 4.0, and CPS we can define IIoT as the usage of information

technologies to build a framework for improving industrial processes, through the use

of automated data acquisition, product interconnection, and knowledge generation, pow-

ered by a multitude of different devices connected to the Internet, which instantly react

intelligently to the changing environment, without requiring human interaction. A DT-

powered system could implement all the concepts described for this scenario, improving

manufacturing processes through increased knowledge and real-time responses, reducing

production costs and waste (FULLER et al., 2020).

Digital Twins could be defined as "what is after the IoT" since by definition IoT

is purely acquiring a massive, ever-growing, number of data from multiple sources. With

more devices connected and generating more information, organizations can compare

these values and obtain a better idea of the functionality of their entire system. A DT

is an idea of effectively sorting and combining this data into palatable information, both

for machines that will keep improving themselves and generating more data and for any

person interested in the process, that wish for their real system to function most efficiently.

2.4 Related Work

The Digital Twin concept is not relatively new, but newer technologies, like low-

cost sensors for IoT and the development of efficient and intelligent Deep Learning, result

in becoming technology enablers for DTs, making fully digital simulations of real-life

objects not only a possibility but an approachable reality.

Studies combining CPS, DTs, and fog computing are not a new concept in related

academic literature. The benefits of fog computing, which include low latency, locality,

and scalability, are well known. CPS using DTs in the cloud, fog, or edge environments

have been proposed (QI et al., 2018) (KIM, 2019) as three levels of systems: unit, sys-

tem, and system of systems (or service) level. The proposal by Qi (QI et al., 2018)

highlights that cloud computing enables on-demand resources and computational shar-

ing, while fog computing shifts computation, storage, and networking of the cloud to the

edge network, and edge computing allows processing geographically closer to the data

source. Kim (KIM, 2019) states that the key driver to moving towards edge/fog comput-
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ing is time-sensitive communication, which is a required feature for real-time systems. It

also mentions that distinctions between the edge, fog, and cloud layer need to be further

clarified to be better explored in different setups.

Mohan and Kangasharju (MOHAN; KANGASHARJU, 2016) propose a decen-

tralized edge-fog IoT device network, where the edge is built with loosely coupled

general-purpose devices (i.e., phones, computers), with a horizontal connection between

all the edge devices. The fog layer, in this approach, works as a summation of networking-

related devices (i.e., network routers, switches) where edge devices can offload intensive

computations to. This model also includes a cloud background component, used only for

centralized data storage, without providing any computational capacity. This edge-fog

(and cloud) approach would not suffice in a high computation scenario, since it has no

means of scaling back towards the shared resource pool of the cloud if the edge and fog

become overload with tasks.

Ahmad and Afzal (AHMAD; AFZAL, 2019) state that although there are solu-

tions for this domain, many aspects are still unexplored in practical scenarios, lacking an

architecture that fully implements these principles.

The Digital Twin area of research still has many unexplored study areas, lacking

on an actual deployment of a real implementation of DTs which utilizes the benefits of a

cloud-fog architecture, presenting how it was built, its components and with experiment

results proving its benefits. There are plenty of arguments suggesting the benefits of a

DT implementation, from manufacturing to logistics in all industry sectors, but mainly

motivational. Open solutions are scarce, both free or commercial, being treated only

as assumptions or studies with no real, accessible implementations. This work aims to

analyze what is needed for building a general DT, which can be extended to model any

real physical device while being a reliable and open platform.

2.5 Use Cases

There are plenty of arguments suggesting the implementation of DTs in multiple

areas, from manufacturing to logistics in all industry sectors. Any complex system, that

is dependent and generates an output based on real-time sensor data could be made more

reliable and efficiently by using Digital Twins.
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2.5.1 Healthcare

DTs can identify problems with equipment in various medical fields. The vast

amount of data generated could be used to analyze patterns, and coupled with the patient’s

medical history stored in the Cloud, could provide more information and insights leading

to a successful and quicker diagnosis, taking into account the patient’s unique medical

history into account (KIELAR, 2019).

Work has been done in the field of DTs to engineer virtual organs. For instance,

Siemens has modeled the human heart via the usage of DTs (SIEMENS, 2018), by using

massive data sets from its medical devices and complex algorithms, to enable planning

and prediction of recovery after procedures, simulating the physiological processes of

a real human heart. This virtual heart can be controlled by sending electrical signals,

simulating muscle contractions, as shown in Figure 2.3.

Figure 2.3 – Siemens Digital Twin visualization of the human heart.

Source: Video footage of Digital Twin of the heart, Siemens.1

For individuals, DTs could enable the concept of personalized medicine: a virtual

representation of an individual, whom every known drug could be tested and its behavior

analyzed, reaching the optimal treatment for the patient. It would monitor the real person,

alerting before any medical condition, to most effectively execute preventive measures.

In hospitals, DTs can be used to handle emergency scenarios, simulating how

best to handle staff, patient beds, and access to testing rooms, with minimal downtime.

Medical facility administration of resources becomes easier and automated, allowing for

cheaper and improved access to medical care.
1Available from: https://www.siemens-healthineers.com/press-room/

press-videos/im-20181204001shs.html. Visited on: 5 Oct. 2020.

https://www.siemens-healthineers.com/press-room/press-videos/im-20181204001shs.html
https://www.siemens-healthineers.com/press-room/press-videos/im-20181204001shs.html
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Liu et al. (2019) proposes a cloud-based Digital Twin for providing healthcare

services for the elderly, by monitoring, diagnosing, and predicting the health of individ-

uals with data acquired via wearable medical devices, towards achieving personal health

management. In the author’s implementation, exposed in Figure 2.4, the Digital Twin

acts on three separate fronts: early reaction to a crisis, real-time supervision, and opti-

mization of scheduling. Data required for this process are weather forecasts, real-time

physiological data from patients (e.g. blood pressure, heartbeat, current temperature),

healthcare records provided by medical institutions, and data obtained from the Digital

Twin models, enabling quicker response times in the healthcare assist of elderly patients.

Figure 2.4 – Healthcare Digital Twin framework for the elderly.

Source: (LIU et al., 2019), p. 49098.

2.5.2 Automotive

Modern cars are designed with a variety of different, interconnected components.

DTs for the automobile sector allows for a virtual model of a vehicle, capturing and

analyzing the entirety of its parts, their performances, and how each part communicates.

Development of new vehicles with DTs would include testing how the environment in

real scenarios affects the car performance and allow for engineers to identify problems
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and possible failures before the actual production process begin.

Smart cars, by definition, requires the integration of IoT and CPS to function,

as shown in Figure 2.5. Sensors in cars, integrated with the aid of DTs, could record

and understand the current state of the vehicle. The driver could check the status of

its parts, receiving warnings if maintenance in specific parts is required. Manufacturers

could use vehicle data to construct new parts, refining their products with data from their

parts provided by drivers in real environments, allowing for improvement in safety and

reducing costs for manufacturers.

Figure 2.5 – Automotive trend for connected driving.

Source: (VELEDAR; DAMJANOVIC-BEHRENDT; MACHER, 2019), p. 416.

2.5.3 Manufacturing & Engineering

Planning of manufacturing processes, acquiring sufficient process information,

and the subsequent development of said process requires the largest overall time-

consumption in manufacturing (UHLEMANN; LEHMANN; STEINHILPER, 2017).

However, fully automated techniques for planning are not common practices and resulting

data is manually analyzed with the aid of simulations.

The use of DTs for a production process enables coupling production systems with

its digital equivalent as a means for optimization and full automation of data acquisition

(UHLEMANN; SCHOCK, et al., 2017). Virtual replicas enable testing new designs in an

efficient form, simulating whole supply chains without shutting down production, which

would result in a profit loss. Engineers can freely experiment and research, with no risk

of reducing productivity.
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2.5.4 Oil & Gas Industry

In Oil and Gas, definitions for DTs are still scarce and non-technical (CAMERON;

WAALER; KUMULAINER, 2018), only being used as a commercial term, with no defi-

nition of an all-purpose DT, which could integrate solutions from multiple vendors, from

many data sources, and simulation models.

For most industries, availability and monetization of data were the main moti-

vators for digitalization, but for Oil and Gas (IRVING, 2018), industry leaders saw no

advantage in changing their business model: oil prices were high, providing no reason

for improvement. There were no proven use cases with apparent benefits against known

methods that already worked.

Data science concepts were introduced but motivated by hype, distracting the fo-

cus that these technologies must be built with a solid foundation. The Oil and Gas indus-

try has data generated from decades of use from physical equipment and assets, with little

standardization between manufacturers, which provides no easy way of accessing and

computing this data, which could be resolved with cloud storage and the usage of open

software platforms, reversing the use of proprietary technology and allowing for partners,

suppliers and experts to collaborate effectively (PARRY, 2018).

2.5.5 Cloud Services

For the bibliographic search made for this work, the only commercial and ad-

vertised Digital Twin platform found was Azure Digital Twins, currently defined as a

preview, so the final product could be modified to what was reviewed. The service is

described as a way to create digital models of environments to gain insights that can

drive better products, generate operation optimization, and reduce costs (MICROSOFT,

2020a). The platform offers free trial access for a limited time, but instead of a plat-

form walkthrough, the user is sent to the Azure Cloud Services dashboard, providing no

introduction to the Digital Twin service.

After searching the Microsoft-provided documentation2, some small conceptual

tutorials are presented, showing examples with the scope limited to designing Smart

Buildings, without guides on how to define and create realistic representations of Twins

2Available from: https://docs.microsoft.com/en-us/azure/digital-twins/. Vis-
ited on: 27 Nov. 2019.

https://docs.microsoft.com/en-us/azure/digital-twins/
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and how to work with it. The Digital Twin documentation is defined mostly by an auto-

matically generated API documentation, without much detail on system functionality.

Most time spent on the platform was testing the APIs via trial and error, and with

configuring other Azure Cloud Services dependencies: plenty of other services are needed

to be linked with the Digital Twin service, like logging and data storage, to provide basic

functionality, and even so, documentation on these are scarce and outdated. A Digital

Twin platform like Azure Digital Twins should abstract generic configurations: all Twins

will need databases and execution logs. This data must be easily reached by the developers

and users, who need it for computation by the Digital Twin.

Figure 2.6 – Azure Digital Twins (ADT) explorer

Source: (MICROSOFT, 2020b)

Despite these problems, Azure Digital Twins allowed for easily creating new

spaces and sensors with an open-source graph viewer (MICROSOFT, 2020b), providing

a lightweight and adaptable front-end for the provided Digital Twin service. Figure 2.6

displays how modeling works in this tool. It did not allow for much other than creating

new spaces, devices, or sensors, with the collection of these physical environments and

associated assets in the graph becoming an ontology that describes that scenario virtually,

being a tool where you can start to create your model. Azure Digital Twins is currently

only a preview version and the final product is certain to change, but the difficulty in

configuration, testing, and lack of integration with tools outside the closed Azure Cloud

environment shows that it is not a definitive solution to the problems presented by this

work.
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3 PROPOSAL

The following proposed framework is built on a stack of different microservices.

In contrast to monolithic software, built as one massive codebase, the microservices ar-

chitectural approach of this solution allows for our DT to be developed as separate, self-

contained, small pieces of software, responsible for solving each task. This isolated na-

ture of each process allows for each application to be deployed individually, on-demand,

each part working independently. Changes introduced to a specific part of the system

only affect that module, and so only that part needs to be updated in case of software

change. This also allows for microservices to be scaled via a software deployment tool

(i.e., Docker, Kubernetes) only on required services, reducing hardware resource waste.

This chapter will detail the design of the Digital Twin framework, discussing the

challenges in defining how any software of this nature should be built ethically and openly,

due to the systems and data it could be used with. Another discussion about the language

of preference including an analysis of modern system bugs is included. The remainder of

the chapter to follow discusses the elements belonging to the microservices architecture

of the final framework design, from third-party services used, the modeling used to con-

struct Digital Twins, and how those elements were programmed. The chapter closes with

examples of how the defined services communicate for the deployed DT.

3.1 Motivation

Conceptually, Digital Twins impose a few ethical problems. The usage of raw

real-time data is essential to the definition of a Digital Twin, to accurately match their

physical counterparts. This allows for data pattern analysis, and with the growing number

of cheap and accessible IoT-powered sensors, raw data from any source could be easily

gathered by any interested party.

Digital Twins are not limited to reflect physical machines. In essence, DTs are

a collection of multiple entry points of data, gathering any live information of a system,

which could be an oil drilling rig, an autonomous smart car, or reflect the behavior of an

entire city, all depending on the amount of data acquired, the historical data used and the

algorithms that define the DT prediction behavior.

Integrating IoT and AI via ML create living digital simulation models that update

and change as their physical counterparts change, continuously learning and updating
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itself using sensor data relevant to its operating condition. In essence, a system of systems

like this could be used to effectively understand the works of any collective system, how

it behaves, what to expect of it giving certain scenarios, and means to obtain the input

required for a system to function expectedly.

With this problem in mind, a Digital Twin of any system which collects a massive

number of public data must have must be liable to the acquired data and the related com-

puting process which manipulates it. Software scaled to the complexity of manipulating

large amounts of public provided data must be accountable, transparent, apprehensible,

and open.

• Accountable: DTs and all stakeholders involved in its usage must be held account-

able for its actions and the consequences it generates. DTs should act most ethically

and conscientiously as possible.

• Transparent: DTs should operate in a manner that is is easy for others to see

what actions are performed and the motivations behind these actions. All actions

performed by complex systems of this nature should not hide the nature of its com-

putation.

• Apprehensible: Since DTs can be used not only as industry simulation tools but

also as a major part of the future of entire living and evolving cities, DTs must

be designed in a way to simplify its implementation to have the capacity of being

understood by all involved. Algorithms should not be incapable of being explained,

interpreted, or accounted for.

• Open: In computer software, open-source software refers to the underlying source

code being freely available, allowing for usage, analysis, and modification. In com-

puter security, debate still exists on the merit of full disclosure of vulnerabilities

versus offering security by obscurity. For DTs, open systems also are essential, for

enabling interoperability of different components.

Building an open platform allows for increased security in the platform through

exposure. All the code is available for inspection and end-users can build the code them-

selves. Security through blind trust in software companies is not an ideal approach for

software, as there is no guarantee it will work as expected. Open-source also allows any-

one to fix errors as fast as possible, without needing to wait for a vendor to acknowledge

the problem and decide if they will fix it. Open-source software is not inherently more se-

cure than closed source, but they can be audited and fixed as vulnerabilities are detected,
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by any party interested in maintaining the software. Due to the DT nature of connecting

a multitude of different devices, each with their own specifications and standards, open

systems enable easier interoperability between components.

Large-scale software is not inexplicable and parties involved with its development

and deployment must be held accountable for actions that are a result of its usage. Al-

gorithms are a definition of instructions that a machine will follow, without any analysis

of what the content of these instructions represents. Until the time comes that software

is not directly developed by humans and is fully automated by sentient AI (which will be

software created by accountable humans), systems that act on, manipulate and intervene

in acquired private human data must not simply be labeled as "complex", but should be

required to have a responsible and transparent development through its entire life-cycle.

This project is designed and developed with these requirements in mind. All the

project decisions, code repositories, and sample data used for testing are open1 and can

be freely audited by any person with access to GitHub. All work relating to this project

is open and transparent, so that any future party that is involved in using or expanding

its implementation, either into an upgrade or a newer and better Digital Twin framework

implementation, can know every single aspect that drives its creation.

3.2 Programming Language

Before getting further into how the DT framework was initially built, an explana-

tion is required of some aspects of its creation. One definition of programming languages

is a set of rules that can be used to command a computer. The usage of high-level lan-

guages enables us to write efficient programs, using features native to that language that

was built to simplify and produce higher quality code. Features that were built because

available solutions in other languages did not have a satisfactory performance or required

non-ideal implementations, resulting in hard to maintain or inexplicable code.

Because of this, personal preference may not be an ideal approach to building soft-

ware. Looking into known popularity sources, like the TIOBE Programming Community

index, shows the popularity of languages according to software engineers, courses, and

other third party (TIOBE PROGRAMMING COMMUNITY INDEX. . . , 2020). With this

data in mind and only this data, one programmer could be induced into thinking that the

1GitHub organization containing all repositories related to the project found at https://github.
com/Open-Digital-Twin.

https://github.com/Open-Digital-Twin
https://github.com/Open-Digital-Twin
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most popular language should be the most adequate when building a new software sys-

tem. This analysis ignores the main purpose of having different programming languages,

which is having features suited to the problems they are aimed at solving.

Working on software is not simple and bugs are unavoidable. Research by Google

engineers of the Chromium Project (GOOGLE, 2020) found that 70% of their high sever-

ity security bugs are related to memory safety, through mistakes introduced with C/C++

pointers, leaving breaches for attacks by leaving access to what should be private and un-

reachable data. Figure 3.1 describes the types of memory safety bugs in the Chromium

project. This number is identical to stats revealed by Microsoft, across their software

catalog (CIMPANU, 2019).

Figure 3.1 – Chromium project fixed memory safety bugs

Source: (GOOGLE, 2020)

Both companies are dealing with the same problem in their software, due to vul-

nerabilities inserted by human error in their code. To deal with the same issue, Mozilla

created Rust, an open-source language built from scratch to be focused on speed, par-

allelism, and memory safety, being less prone to memory exploits at an architectural

level (MATSAKIS; KLOCK, 2014), enforcing safety without overhead caused by both

runtime and garbage collection (BALASUBRAMANIAN et al., 2017). The Chromium

project and Microsoft, relating to this problem, also study the substitution of vulnerable

parts of their software with Rust or are developing internal solutions that are Rust-inspired

(GOOGLE, 2020; CIMPANU, 2019).



31

Given the points discussed above, to develop a modern system that is fast, but safe,

all code relating to the Digital Twin architecture built in this work was written in Rust.

3.3 Third-party Digital Twin services

To fully implement the DT framework, third party open-source software was

used in some services of the framework. One challenge in designing a real-time, tem-

poral data-generating system is to decide the right storage engine for time-series data

(DAMJANOVIC-BEHRENDT; BEHRENDT, 2019), which must be able to query and

aggregate a large amount of sensor data, from multiple sources, distributed geographi-

cally. In regards to data storage, the platform uses the ScyllaDB database. Instead of a

pure time-series database like InfluxDB, ScyllaDB is a highly-performant NoSQL general

wide-column store solution, with a selectable replication factor, intended for low latency

and high throughput to applications (SUNEJA, 2019; MAHGOUB et al., 2017). This

allows for our solution to have the benefits of fast querying in data with high support for

data replication, necessary for the distributed DT scenario.

Another crucial element for a DT implementation is Data Acquisition Systems

(DAS). For communication between the physical devices (i.e., sensors, devices) and the

DT instance, our framework uses the Message Queue Telemetry Transport (MQTT) pro-

tocol. For DTs, data acquisition overlap with the concept of telemetry: the collection

of measurements and their automatic transmission for monitoring. The usage of MQTT

for telemetry in IoT devices is an established and real-world tested concept, being used

in Microsoft Azure IoT Hub (MICROSOFT, 2018), Amazon Web Services (AWS) IoT

(BARR, 2015) and Facebook Messenger (ZHANG, 2011).

For the experiments executed, the platform uses the Eclipse Mosquitto message

broker, version 1.6.10. This software was chosen due to its high popularity as an MQTT

broker and for being an open-source implementation, built to be open and simple, in-

tended for situations with a need for lightweight messaging, due to devices with limited

resources (BANKS et al., 2019; LIGHT, 2017). The MQTT broker works by ordering

received messages in a queue and distributing it to its subscribers. To not reach the max-

imum message queue, which would discard all messages received on limit reached, the

broker was configured to not have a limit, other than the physical memory restriction of

where the broker was deployed.
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3.4 Digital Twin model objects

For building the framework, certain objects were defined to model the Digital

Twin. These objects allow users to represent the existing physical environment as digital

models and extend them with additional elements.

• User: responsible for creating, updating and modifying their twin instances.

• Twin: central structure of the instanced DT. All modeled objects are associated with

a twin instance, which represents the digitalized physical system.

• Element: a generic object used to define a part of the twin. An element could be a

device, which contains sensors, or it could represent any other physical space, like

buildings, or other real physical elements. Elements are directly associated with a

twin and can be associated with other elements, to create more complex systems,

all depending on the system modeled2.

• Source: a generic component of an element. Used to define data entry points inside

of elements of a twin instance. Figure 3.4 describes how communication for the

twin instance and the real devices are dependent on the data sources.

3.5 Repository Organization

For hosting the project codebase and testing scripts, the "Open Digital Twin" or-

ganization was created on GitHub3 and is freely accessible by any person with access

to GitHub. The architecture is an open-source software built as a collection of individ-

ual microservices, available under the GNU General Public License v3.0. Currently, the

organization hosts 11 repositories related to this project. In the following sections, the

different repository types and individual repositories will be described and related.

2Currently, elements are used as the location where data sources are located. Future implementations
could contain more useful information relating to the modeling of the actual physical element, for defining
their entire life-cycle, and additional information used for physics simulations.

3GitHub organization containing all repositories related to the project found at https://github.
com/Open-Digital-Twin

https://github.com/Open-Digital-Twin
https://github.com/Open-Digital-Twin
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3.5.1 Architecture repositories

Repositories which names start with "dt" are implementations of the Digital Twin

architecture. Figure 3.2 exposes the relationships between the repositories, showing how

the digital elements share common modules.

• dt-client and dt-client-bytes: Testing repositories to simulate data acquisition via

publishing to an MQTT broker, allowing for customization of the number of mes-

sages published, its frequency, and payload. They represent the "real" aspect of the

system and act as elements with data sources 4;

• dt-instance and dt-instance-webserver: instance of the created Digital Twins. The

dt-instance includes communication with the message broker and storage of ac-

quired data, while dt-instance-webserver is an optional service containing a Rep-

resentational State Transfer (REST) Application Programming Interface (API) for

configuring the instance elements, data sources, and other configuration related to

the DT instance5. The DT instance is the final destination for the client messages,

after being distributed by the broker. They represent the "digital" aspect of the

system;

• dt-master: Central Digital Twin microservice, where users can create and deploy

new DT instances;

• dt-common: Shared modules used in multiple projects, to be used as a Git submod-

ule, for reuse of DT-related code between the components;

• dt-sharedconfig: Shared configuration used in multiple projects, like database ini-

tialization.

3.5.2 Article testing repositories

Repositories which names start with "article-test" are code used directly in testing

for the case studies presented by this work. These include scripts for exporting and parsing

raw data for analysis shown in each study.

4Since this was a simulation, the "dt-client" and "dt-client-bytes" repositories act as the devices tested,
communicating with the DT instance using the rumqttc MQTT client, found at https://github.com/
bytebeamio/rumqtt.

5The DT instance is a prototype of the digital aspect of the system, providing means for acquisition,
storage, and processing of data, and is where the physical product is linked throughout its entire lifecycle
(GRIEVES; VICKERS, 2017).

https://github.com/bytebeamio/rumqtt
https://github.com/bytebeamio/rumqtt
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Figure 3.2 – Organization repository relationships
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• article-test-fog: Scripts used for testing Case Study #1 - Fog Computing, in the

cloud and fog deployment scenarios of the architecture.

• article-test-mqtt-sender and article-test-mqtt-receiver: Scripts used for testing Case

Study #2 - MQTT Analysis, which studies the usage of the MQTT protocol for

Digital Twins.

3.5.3 General repositories

Repositories that do not have a specific category, but are relevant to the project and

the organization.

• Summary: Meta repository, for documenting the organization. Repository for doc-

umenting the different repositories associated with the Open Digital Twin group

projects.

3.6 Architecture usage

To perform the experiments, the client devices were simulated with a custom pro-

gram that sends sequentially numbered messages, the "dt-client-bytes", with a config-

urable payload and publication interval, to the broker, with a specific topic known by the
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subscribed twin instance. Numbered messages allow us to analyze the timing aspects of

each message, from its publication by the client until it is processed by the twin instance.

Figure 3.3 presents an illustration of how the communication between the "real"

physical devices and the Digital Twin communicate. After deploying the instance web

server, the user can model its twin with as many elements required, which in turn can

have multiple data sources. The REST API will return the exact topic where the twin

will subscribe and the dt-instance and client services must be configured to communicate

using the same MQTT broker 6.

Figure 3.3 – Devices to Twin instance communication via MQTT broker.
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Figure 3.4 illustrates the relations between each of the twin model objects in con-

structing communication. Each data source will have a unique topic, dependent on how

the twin is modeled, in the format of "twin id/element id/source id". Real devices can

then publish messages to the broker in this topic, to insert data to these sources, and the

twin instance will subscribe to these topics awaiting new data.

6For the effects of our experiments, this is done by configuring an environment variable in each service
and manually deploying. In a more advanced scenario, like the framework being used as a Software as a
Service (SaaS) platform, all this configuration would be seamless to the users, who would use the dt-master
service to create and deploy their twins and only worry about publishing MQTT messages to an address,
returned by the API.
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Figure 3.4 – Twin model objects to MQTT publish/subscribe topics.
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Figure 3.5 illustrates the flow of messages from multiple devices. In this scenario,

each device represents an element with a single data source. To communicate data to

the twin instance, the device publishes messages to the specific topic of that source to

the MQTT broker. Previous to publishing, each twin instance is subscribed to all the

registered data sources for their twin. When a message is published to the subscribed

topic, the instance stores the transmitted data into its associated database.

Figure 3.5 – Multiple Twin instances system communication flow.
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4 EXPERIMENTS

This chapter will present two different studies implemented with the built Digi-

tal Twin framework, explaining each experiment’s motivation and scenario, factors, and

discussing the results obtained.

4.1 Case Study #1 - Fog Computing

To match their physical counterparts, DTs acquire data through a large number

of sensors. The rapid expansion of IoT-powered sensors is what makes DTs possible,

but with increased data generation, centralized applications can experience high latency

and poor connectivity, affecting application performance. Cloud services can be used to

reduce these problems, but moving all data to the cloud may not satisfy time-sensitive

application requirements. To further improve and minimize this situation, the concept of

fog computing enables computing, storage, networking, and data management on network

nodes closer to edge devices, allowing for processing to exist not only in the cloud but

between these two layers (YOUSEFPOUR et al., 2019).

Several areas can be improved with the usage of fog computing, including smart

industries (KHAN et al., 2020; WAN et al., 2018), homes (VERMA; SOOD, 2018), cities

(TANG et al., 2015; PERERA et al., 2017) and healthcare (NIKOLOUDAKIS et al.,

2017), real-time systems with time-critical processing to avoid accidents and to provide

a better and more reliable experience without suffering from cloud latency. Integrating

fog computing with IoT and DTs enables mirroring physical and virtual spaces while

achieving the necessary timing requirements of real-time systems.

Balancing the computational workload between multiple fog nodes, closer to the

edge, enables the network to be more efficient in handling timing critical tasks, by dis-

tributing operations between different devices and reducing communications between

edge and cloud. Research is still required so that several connected services and de-

vices can scale and correctly execute real-time operations in a timely fashion. It is still

challenging to manage, process, and store all this data in a highly distributed environ-

ment (DIZDAREVIĆ et al., 2019; KHAN et al., 2020).

The literature review revealed that the use of cloud and fog computing to build

DTs and CPS is not new, but they are presented mainly as abstract, non-experimented

scenarios. This case study analyzes the usage of a cloud-fog architecture that can manage
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a large scale number of real-time Digital Twins, increasing performance while reducing

latency, to meet timing requirements. Thus, the contribution of this study is to see how

the Digital Twin framework deployed in a fog computing layer can help applications that

must meet real-time requirements. To meet real-time requirements, the Digital Twin ar-

chitecture microservices, being virtual systems, can be widely distributed between cloud,

fog, and edge computing layers, depending on the scenario of the corresponding physical

system and the available network resources. This study presents the idea of using both

cloud and fog layers, but excluding edge, due to its possible short and temporary avail-

ability, using a more controlled layer, in this case, the fog, enables the objective of latency

reduction while still being supervisable. This work focuses solely on DT communication.

Analysis and prediction are left as future work, in a full cycle communication scenario,

with data acquisition, simulations generating decisions, and suggesting an action to the

real physical system. The full study can be found in Appendix A.

4.1.1 Experiment Setup

The first step, before defining the deployment scenarios, was to list the experiment

factors, variables that will be used or measured in the tests.

• Number of data sources: twin elements can have multiple data sources, in the form

of multiple individual devices, which by themselves can have multiple sensors. For

simplification of the problem in this paper, an element is defined as one general

part or device of the physical system, which has only one data source. To emulate

multiple data sources, it is possible to increase the number of elements accordingly.

Each source then sends a certain amount of messages to the broker.

• Message payload size: number of bytes sent in the MQTT message payload gen-

erated by "dt-client-bytes", which will affect bandwidth usage and processing time

for the message broker and the twin instance.

• Message frequency: the estimated time between messages sent by the data sources.

• Transmission latency: time for the message to travel in two steps: 1) from the client

to the broker; and 2) from the broker to the twin instance. This latency is directly

affected by the distribution of the architecture between cloud and fog.

To perform the study on cloud and fog, three different experiment scenarios are

proposed. These three scenarios are illustrated in Figure 4.1 and detailed as follows:
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• Scenario 1 - Cloud only: Processing is done exclusively on a single cloud node.

The MQTT broker, where the client publishes and the twin instance subscribes to a

data source, resides on this cloud node.

• Scenario 2 - Fog and Cloud: The MQTT broker is located on a fog node, closer to

the edge, while the twin instance resides on the cloud.

• Scenario 3 - Fog only: Both broker and the twin instance resides on a fog node.

Figure 4.1 – Case Study #1 - Cloud and fog deployment scenarios.
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Each scenario was individually tested under three situations: (A) varying the num-

ber of messages sent by each data source; (B) varying the frequency of messages trans-

missions; and (C) varying the payload of the sent messages.

• Situation A - Source and number of message: Situation A varied the amount of

messages sent by each source, in sets of 100, 1,000, 10,000, and 100,000 messages

by each source. To test concurrency, the number of data sources was set to 1, 3, and

5. The delay between when each message was sent by the data sources was fixed to

10ms, with a payload of 64 bytes.

• Situation B - Message frequency: Situation B tested the effects of the frequency

messages sent by the data source, sending messages after 10, 20, 40, 80, 160, 320,

640, 1280, and 2560 milliseconds. In this situation, a total of 1000 messages were

sent by only one source, each with a payload of 64 bytes.
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• Situation C - Message payload size: Situation C tested different payload sizes on

the messages. The payloads were 8, 16, 32, 64, 128, 256, and 512 bytes. Each test

sent a total of 1000 messages from one source, with a fixed delay of 80ms between

each message.

For running these experiment scenarios, a server running an Intel Xeon E5-2420

(with 6 cores and 12 threads) and 32 GB of RAM was used. The experiments were

executed on three individual Kernel-based Virtual Machines simulating real devices, each

named according to their use on the defined scenarios: Cloud, Fog, and Client. The Cloud

virtual machine runs with two virtual Central Processing Units (CPU) and 4 gigabytes

(GB) of memory. The Fog and Client are by definition devices with more constrained

resource capacities, with only one virtual CPU each and 1 GB of memory.

In regards to network limitations, network latency was injected in the communi-

cations between the machines, with the usage of tc-netem (HEMMINGER; LUDOVICI;

PFEIFER, 2011). In scenario 1, a delay of 100ms, with a 10ms variation, was added in

the Client. In scenarios 2 and 3, two different delays were added: 40ms, varying 10ms,

in the Client, and 20ms, varying 5ms, in the Fog. These delays were inserted to simu-

late existing latency between fog and cloud components, with fog having lower hardware

resources but lower latency.

4.1.2 Results

As expected by definition, bringing processing closer to the edge, to handle our

message exchange, effectively reduced latency for the system. DTs, composed of a large

number of sensors, could experience high latency and poor connectivity. Proposing pro-

cessing being done closer to the edge is a possible strategy, since being purely dependent

on the cloud may not satisfy time-sensitive requirements (YOUSEFPOUR et al., 2019).

The processing unit can receive the data from the source devices and compute its sugges-

tion to the physical system with a shorter response time.

When testing situation B, varying the message frequency, an important detail about

how the MQTT broker throttles messages were found. As illustrated by Figure 4.2, which

shows the number of messages receives per minute in each scenario, varying the message

frequency, the broker has a limit on the number of messages it can receive and publish to

its subscribers in the order of 800 messages per minute. This number was reached even
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Figure 4.2 – Case Study #1 - Messages per minute received by the DT instance, per scenario, in
the message frequency situation.

1 (Cloud only) 2 (Fog and Cloud) 3 (Fog only)

10 20 40 80 16
0

32
0

64
0

12
80

25
60 10 20 40 80 16

0

32
0

64
0

12
80

25
60 10 20 40 80 16

0

32
0

64
0

12
80

25
60

0

250

500

750

Delay (ms)

M
es

sa
ge

s 
pe

r 
m

in
ut

e

Source: Image provided by author

though the broker is set to have no limits on the message queue. This message rate is a

hard limit set by the broker to prioritize receiving publications and to not overload client

subscribers, via limiting the number of in-flight messages (messages queue to be sent

from the broker to its clients). Eclipse Mosquitto allows for configuration of this number,

but doing so would cause message order to break or overloading subscribers, and should

be tested depending on the deployment scenario of the real devices.

Figure 4.3 – Case Study #1 - Timing histogram of 1000 messages, from client to DT, in each
scenario.

1 (Cloud only) 2 (Fog and Cloud) 3 (Fog only)

0 50 10
0

15
0

20
0

25
0

30
0

35
0 0 50 10
0

15
0

20
0

25
0

30
0

35
0 0 50 10
0

15
0

20
0

25
0

30
0

35
0

0

250

500

750

Time (ms)

M
es

sa
ge

s

Source: Image provided by author

Figure 4.3 presents a timing histogram of 1000 messages in the three scenarios, on

situation C with a payload of 64 bytes and 80ms interval between each message, from the

time it is published by the client until received by the DT instance (subscriber). Results

from this experiment show the time of each publication. Scenario 1 presents messages
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with a higher time compared to the two other scenarios, where most messages are received

in the 50 to 100 ms interval, in this experiment. Considering a real-time system with a

communication requirement of 200ms in the Cloud only scenario (1), 805 of the 1000

messages would respect this limitation, representing 80.5% of the total messages sent by

the client. Meanwhile, only one message would not arrive in time for this imposed system

limitation in the Fog and Cloud (2) and Fog only (3) scenarios, respectively. Further

reducing this limitation to 150ms, 92.4% of messages sent in scenario 1 would be lost,

while 0.21% and 0.09% would not respect the requirement by scenarios 2 and 3.

Figure 4.4 – Case Study #1 - Timing per message, from client to DT, in each scenario, sending
1000 messages with a 80ms delay between each publication
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More benefits depend on the architecture scale of implementation in the fog and

cloud layers. The usage of cloud computing enables devices to store data in a centralized

location, but large amounts of data being transmitted, natural to the concept of Digital

Twins with a large scale network of sensors, implies an increasing delay, affecting re-

sponse times from the server. By having resources closer to the edge, it is possible to



43

preprocess data as soon as possible, before centralizing the data in the cloud.

Figure 4.4 makes this clear by showing the time each message takes from being

sent by the client until received by the twin instance in each deployment scenario. The

situation shown in this image sends 1000 messages, each one with a delay between each

publication of 80ms. Table 4.1 provides a summation of the average times of this exper-

iment, providing a general overview of all the published messages. Using the Fog and

Cloud scenario (2) and the Fog only scenario (3) reduced average times per message by

54% and 64% respectively, compared to the Cloud only scenario (1). Maximum times

were also reduced by 41% for scenarios 2 and 3, as were the minimum times by 53% and

69%.

Table 4.1 – Case Study #1: Average times per message, from client to twin, for the 80ms delay
experiment situation.

Time per message (ms) Average Std Deviation Max Min
Scenario 1 182.45 27.932 349.35 111.82
Scenario 2 84.43 20.417 205.83 52.51
Scenario 3 66.08 22.626 205.63 35.13

Source: Table provided by author

4.2 Case Study #2 - MQTT Analysis

For the second case study of the Digital Twin framework, further studies were

made in the context of determining the limitations and overall usability of MQTT for

Digital Twins. This study resulted in a published paper, written in Portuguese, which can

be found in Appendix B.

For DTs to function, one matter that requires definition is the necessity of com-

munication between the DT instance and the multitude of IoT-enabled sensors that input

data. MQTT, being a lightweight and economic protocol for usage in low capacity de-

vices (BANKS et al., 2019), is a possible alternative. Depending on a single element in

the architecture, the MQTT broker, to mediate all communication between clients could

represent a system bottleneck, being directly reliant on its performance, and being a sin-

gle point of failure. A study on how the broker behaves is required to assess its viability

for real-time, large scale, DT-based systems, to obtain the most efficient manner on how

to distribute multiple broker instances and reach higher system scalability.



44

4.2.1 Experiment Setup

This study consisted of an analysis of the MQTT broker performance for scenarios

where the volume of messages was higher than it could process. This situation is recreated

in several different contexts to determine which configuration is the most optimized for

the DT instance. To test these scenarios, two framework elements were used, other than

the MQTT broker: the dt-client-bytes and the dt-instance.

A server running an Intel Xeon E5-2420 (with 6 cores and 12 threads) and 32

GB of RAM was used as the experiment environment. The experiments were executed

on three different types of Kernel-based Virtual Machines simulating real devices: Type

1 machines, with 2 GB of memory and 1 virtual CPU, Type 2 machines, with 4 GB of

memory and 2 virtual CPUs, and Type 3 machines, with 8 GB of memory and 4 virtual

CPUs.

Considering this environment, the first conducted experiment published 1000

MQTT messages with a fixed payload of 64 bytes, from the client to the DT instance,

at decreasing intervals of time, to determine the message output capacity of a single bro-

ker. This was analyzed with the number of queued messages of the broker in different

moments, during its execution.

The solution to remove the limitation on the output flow of messages from the

broker is to distribute its message load to other brokers. Eclipse Mosquitto is not a multi-

threaded broker, but its lightweight nature allows for instantiating several parallel brokers

in the same device. The second experiment assessed the performance difference of send-

ing the same number of messages when distributed between multiple brokers, in two

different scenarios: Centralized, where all the brokers run in the same virtual machine

with higher computing resources and Distributed, where brokers are allocated to differ-

ent, lower capacity, virtual machines.

4.2.2 Results

For the first experiment, the goal was to determine the maximum rate of messages

that could be sent by only one broker. In this experiment, 1000 messages were sent

from the client device to the Mosquitto Broker in gradually smaller intervals. With the

analysis of the number of messages in the queue at the broker, the maximum output flow

of messages could be determined. These tests were executed in a type 3 machine, with all
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services centralized.

Figure 4.5 – Case Study #2 - Experiment 1 queue size on broker, with different intervals between
messages sent by client.
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Assessing the described behavior of Figure 4.5, we can see that the total time it

took the broker to effectively output all 1000 received messages was in the range of 67

seconds. Smaller intervals than 67 ms, shown in the figure, will generate a queue inside

the broker, which results in having no benefit in publishing messages with a smaller time

frame than that. With these values obtained, we can determine that Eclipse Mosquitto,

with its default settings, can at most handle publishing of 15 messages per second, in

these conditions. For intervals above that of 67 ms, there is no queue generation, since its

output rate is higher than its input.

For the second experiment, the messages were sent with a fixed 10 ms interval,

which would generate a large queue, but we wanted to determine if this message load,

when distributed to multiple brokers, could reduce the total time to send all messages, via

a higher output frequency. For the centralized scenario, machines of type 2 were used in

tests with 2 brokers and a machine of type 3 for the tests with 4 brokers. In the distributed

scenario, each broker was deployed using a machine of type 1.

In the centralized scenario, with 1, 2, or 4 brokers running on the same machine,

the performance of each broker was lowered, but the total time for all messages to be pro-

cessed was reduced. Figure 4.6 displays the values obtained for this experiment scenario,
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showing the total time to send all messages.

Figure 4.6 – Case Study #2 - Experiment 2 Centralized total time spent per broker scenario.
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Through this data, we can see the advantages of clustering our broker, but also that

the sum time of the clustered brokers increases with the number of brokers deployed. This

information infers that this tactic will not reduce broker times forever and must be tested

according to the deployment scenario of the specific DT, taking into account network

requirements and hardware resources available. Table 4.2 breaks down the experiment,

showing per broker scenario the total time, the sum time to send (sum of the individual

times each broker spent to finish), the frequency per broker (the average messages per

second sent by each broker), and the broker cluster frequency (the average messages per

second sent by all brokers combined).

Table 4.2 – Case Study #2 - Experiment 2 Centralized broker times.

Brokers
Total time

(s)
Sum time

(s)
Frequency per broker

(message / s)
Broker cluster frequency

(message / s)
1 67.34 67.34 14.85 14.85
2 36.125 72.25 13.84 27.68
4 20.79 83.19 12.02 48.08

Source: Table provided by author

For the distributed part of experiment 2, the scenario changes to use different ma-

chines per broker but using lower capacity machines. Figure 4.7 displays the total time

the total messages sent took, in each deployment with a different number of brokers.
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Figure 4.7 – Case Study #2 - Experiment 2 Distributed total time spent per broker scenario.
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Table 4.3 – Case Study #2 - Experiment 2 Distributed broker times.

Brokers
Total time

(s)
Sum time

(s)
Frequency per broker

(message / s)
Broker cluster frequency

(message / s)
1 67.34 67.34 14.85 14.85
2 37.03 74.07 13.50 27.00
4 19.715 78.86 12.68 50.72

Source: Table provided by author

Comparing tables 4.2 and 4.3, we can see that the results from both deployments

are quite similar in some aspects. Both share improved total times and similar message

frequency increases. All values are shown where the results of the mean values are found

in 5 executions of each experiment.

Through the results acquired in this case study, we have discovered there is a fre-

quency limitation on the output of messages from the Mosquitto MQTT broker, achieving

the maximum value of 15 messages per second per broker. To reduce the effects of this

limitation, we deployed multiple parallel brokers in two different scenarios (centralized

and distributed). Both scenarios similarly allowed for increased frequency and further

studies are required to obtain an ideal distribution of brokers for all cases. The exper-

iments did not factor in outside factors that could impact transmissions, like network

latency, jitter, or packet losses. Future experiments could take these factors into account

to more accurately determine the overall behavior of the broker and its consequences to a

more realistic DT deployment.
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5 CONCLUSION

This work investigated and discussed what defines Digital Twins, researching the

terminology, and the state of the art in the research area. One major problem found was

the absence of public, open implementations, being limited to abstract conceptual pro-

posals, leading to the suggestion of building a microservices cloud-based Digital Twin

framework. For software to scale in the manner expected for DTs, deployment in the

cloud is suggested, but with the increased data volume, moving all data to the cloud may

not satisfy time-sensitive application requirements, so the usage of a cloud-fog architec-

ture is suggested, to reduce overall latency. After defining the importance of DTs and

their building blocks, a proposal is presented, defining the elements required to create a

functioning DT instance in the cloud-fog environment.

Case study #1 investigated how the usage of a cloud-fog architecture for Digital

Twins can help in meeting the real-time requirements of these systems. Tests were exe-

cuted in three different scenarios, changing the deployment locations of the architectural

elements where the broker and twin reside in the cloud, where the broker resides in a fog

node, and the twin on the cloud, and lastly where both the broker and twin share the same

fog node. The experiments tested these different scenarios on how they would handle

the number of messages, different frequency of messages sent, and payload size. From

these experiments, fog computing is shown as a viable alternative to reduce the effects

of this problem, reducing the transmission delay to meet real-time requirements. It was

concluded that the distribution of these DT elements closer to the edge reduces communi-

cation delays for the end application, allowing faster response by bringing preprocessing

into distributed locations. This particular distribution allows the DT to have a best-effort

attempt at meeting real-time systems timing specifications. Real-time systems are not

necessarily systems with short deadlines. Non-critical data, like physical system teleme-

try or historic data, can be transmitted without timing deadlines. Only critical, alert, or

error-specific messages need priority in communication.

Case study #2 analyzed the impact of using MQTT and Eclipse Mosquitto as the

DT framework communication enabler. Several experiments were presented, reaching

even more specific values of message limitations, testing the performance limits of the

broker. With limits reached, we deployed the broker in several different ways, both in a

centralized and distributed manner, allowing for more messages to reach the DT instance

without overloading the message broker.
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This project is still a work in progress. A Digital Twin platform must be extensible

and collaborative, implementing more solutions to meet real scenarios. The first step in

creating the framework, which is modeling, providing data acquisition and storage, is

complete, but there is a multitude of other components required for fully implementing a

Digital Twin framework, for instance enabling feedback from the twin to its client devices

and to provide good visual feedback of the created twin for the users involved in the

process.

Having all the required data flow from the client devices, the DT can run

application-specific algorithms handling this input and be able to suggest actions to the

physical systems respecting their real-time requirements. Some limitations could be ad-

dressed, as the problem regarding the real-time priority policy for the MQTT broker:

message handling should prioritize real-time subscribers. The MQTT protocol has no

definition of priority for subscriptions, but a broker-defined configuration indicating pri-

ority topics could be used, dedicating more resources to attempt a best-effort approach to

meeting real-time requirements. External factors in regards to network communication

could be analyzed to check their impact on real-life, non-controlled scenarios.
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1. Introduction

The Digital Twin concept was first introduced in 2002 as a model of a system
containing two interconnected mirrored spaces, one real and one virtual, each
space reflecting the other while sharing real-time information [1]. Digital Twins
must be designed as real-time systems so that the virtual part can reflect the real
one accurately. The correctness of the system behavior depends not only on the
logical results but also on the timing constraints defined for this system [2].

Essentially, a Digital Twin is a computer program that acquires real-world
data about a physical system and generates simulations on how that system will
be affected by this data. Long before the terminology, Digital Twins were used
in action by NASA, in order to monitor and maintain machines in outer space,
a situation where hands-on contact with devices would be impossible, allowing
for remote diagnosis and fixing problems that are could occur [3].

To reflect their physical counterparts, Digital Twins are composed by a large
number of sensors, responsible for acquiring the used data. The rapid expan-
sion of sensors powered by the Internet of Things (IoT) is what makes Digital
Twins possible, but with this increased data generation, centralized applications
oftentimes experience high latency and poor connectivity situations which af-
fects the performance of applications. With the advent of IoT devices and its
increased data volume in cloud systems, moving all data to the cloud does not
satisfy time-sensitive application requirements [4]. Fog computing enables com-
puting, storage, networking, and data management on network nodes in closer
proximity to edge devices, allowing the processing to happen not only in the
cloud, but also between the edge and the cloud [4].

Applications in several areas can be improved with the usage of fog com-
puting, including smart industries [5, 6], homes [7], cities [8, 9] and healthcare
[10], all real-time systems with time-critical processing to avoid accidents and
to provide a better and more reliable experience without suffering from cloud la-
tency. Integrating fog computing with IoT and Digital Twins enables mirroring
physical and virtual spaces while achieving the necessary timing requirements
of real-time systems.

Among the many challenges of implementing a fog computing network,
computation offloading and data preprocessing are critical in terms of scalabil-
ity and guarantee of real-time requirements [11]. Balancing the computational
workload between multiple fog nodes, closer to the edge devices, enables the
network to be more efficient in handling timing critical tasks, by distributing op-
erations between different devices and reducing communications between edge
and cloud. For Digital Twins operate under time-sensitive conditions, research
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is still required so that a number of connected services and devices can scale
and correctly execute real-time operations in timely fashion. It is still challeng-
ing to manage, process, and store all this data in a highly distributed environ-
ment [12, 5].

Literature related to the usage of cloud and fog in IoT-related themes is al-
ready existent and discussed, but are limited to abstract and conceptual proposals
for these architectures, lacking on practical demonstrations, which show abso-
lute differences between the advantages of each deployment scenario. In light of
these challenges and possibilities, this paper proposes the usage of a cloud-fog
architecture that can manage a large scale number of real-time Digital Twins,
increasing performance while reducing latency, to meet timing requirements.
Thus, the contribution of this work is the study of an distributed architecture to
support Digital Twin applications that must meet real-time requirements, avoid-
ing timing problems that usually happen in centralized approaches.

The remainder of this paper is structured as follows. Section 2 provides
background information for Digital Twin and cloud, fog, and edge computing
concepts. Section 3 discusses related work. Section 4 describes the proposed
solution. Section 5 presents the experiments, the methodology, and the obtained
results. Section 6 discusses the results obtained in the experimental scenarios.
Section 7 concludes the paper and presents directions for future work.

2. Background

2.1. Digital Twins
Digital Twins are systems designed to work with rich data provided by both

the insight of the models and implicit knowledge of objects, products of their
behavior, only requiring the availability of raw data about their physical coun-
terparts. To achieve this, Digital Twins must accurately simulate, analyze, and
predict real-world events and situations, via the collection of real-time physical
data, mirroring it into its virtual space. Digital Twins can not only anticipate
and predict but can issue proactive measures to avoid problems by combining
real-time data with the knowledge of other Digital Twins instances. Simulations
can forecast the outcomes, allowing human operators to choose, knowing the
consequences of the possible actions, and set the optimal solution [13].

The implementation of self-aware Digital Twins creates modern control sys-
tems that adapt to their environment, not only mimicking but understanding the
reasons behind the behavior of their physical counterparts [14]. The virtual part
of a Digital Twin system is not necessarily physically implemented along with
the native physical devices. Conversely, it can be implemented physically apart
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from its real counterpart in a distributed and evolving manner, dynamically learn-
ing patterns, and helping predict possible disruptions throughout the life of the
system [15].

2.2. Cloud, Fog, and Edge Computing
Cloud computing enables convenient, on-demand access to a shared pool

of computing resources [16]. Cloud computing transfers the responsibility of
data processing and storage to remote data centers, via the Internet. It allows
resources to be geographically distributed, increasing data redundancy and reli-
ability [17, 18]. Fog nodes are distributed computing entities, formed by at least
one networked physical processing device, able to execute distributed tasks [19].
Edge computing moves processing nearest to where it is needed, allowing com-
putation closer to the source, reducing cloud traffic and service latency, improv-
ing response times [20].

Fog differentiates itself from the cloud due to its nodes being deployed in
large numbers at less centralized locations, compared to centralized cloud data
centers. In essence, fog computing is an extension of cloud computing into
the physical world and their multi-connected devices, ensuring data availability
where and when it is needed [21], while edge computing represents the nearest
the processing resources can be placed regarding the data source.

This work presents the idea of using both cloud and fog layers, but excluding
edge. Since the edge is composed mostly of devices without complete control
from the cloud provider, concerns are presented in regards to system reliability
and availability. It can be used to reduce latency and enable more computing
power, but due to its possible short and temporary availability, using a more
controlled layer, in this case, the fog enables the objective of latency reduction
while still being supervisable.

3. Related Work

Many studies combining cyber-physical systems, Digital Twins, and fog com-
puting exist, but to the best of our knowledge, not in the context of real-time
systems. Cyber-physical systems using Digital Twins in the cloud, fog, or edge
environments have been proposed by Qi et al. [22] and Kim [23] as three levels
of systems: unit, system, and system of systems (or service) level. The proposal
by Qi et al. [22] highlights that cloud computing enables on-demand resources
and computational sharing, while fog computing shifts computation, storage, and
networking of the cloud to the edge network, and edge computing allows pro-
cessing at closer proximity to the data source, which can benefit cyber-physical
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systems. Kim [23] states that the key driver to moving towards edge/fog com-
puting is time-sensitive communication, which is a required feature for real-time
systems. It also mentions that distinctions between the edge, fog, and cloud layer
need to be further clarified to be better explored in different setups.

A decentralized model for an edge-fog network with IoT devices is proposed
by Mohan and Kangasharju [24]. The proposal has the edge built with volun-
tary and loosely coupled general-purpose devices, one or two hops from the IoT
resources, and horizontal connection between the edge devices. The fog layer,
in this model, is a consolidation of networking devices (i.e., routers, switches)
where edge devices can offload computationally intensive tasks. The model in-
cludes a cloud component, but it is used only for centralized data storage, with
no computational capabilities. This approach would not suffice in a scenario with
high computational requirements, since it has no fallback to the cloud, in cases
where the edge and fog are overloaded with tasks.

The benefits of fog and edge computing, which include low latency, local-
ity, and scalability, are well known. However, Ahmad and Afzal [25] state that
although there are solutions for this domain, many aspects are still unexplored
in practical scenarios, lacking an architecture that fully implements these prin-
ciples. Despite this landscape, there are examples of real situations where fog
computing was used to build cyber-physical systems [26], to accelerate produc-
tion processes. In the scenario described by Fernández-Caramés et al. [26], ex-
periments revealed that fog nodes executed their tasks faster than the same tasks
in a purely cloud-dependent environment. The authors report that these nodes
can process more data while under high-load situations, in which real-time pro-
cessing is constrained.

In short, given the studies presented above, currently, the Digital Twin liter-
ature still has many unexplored study areas, lacking on an actual deployment of
a real implementation of Digital Twins which utilizes the benefits of a cloud-fog
architecture, presenting how it was built, its components and with experiment
results proving its benefits.

4. Proposal

This section initially describes in detail the problem addressed in this work.
Then, it provides an overview of how the Digital Twin architecture was designed,
its components, and details on how each of the components is used in the exper-
iments presented in Section 5.
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4.1. Addressed Problem
The literature review revealed that the use of cloud and fog computing to

build Digital Twins is not an entirely new idea. However, the studies surveyed
presented mainly abstract concepts, establishing the overall idea with notions on
what to expect from a cloud-based Digital Twin deployment, but without real-
istic implementations. An actual implementation and extensive experimentation
would allow a direct analysis of how systems like this can benefit from the use of
cloud, fog, and edge interchangeably, and how this could affect the performance
of this network of systems.

The three layers edge-fog-cloud architecture has been presented in multi-
ple investigations [22, 23], but none of which presents this architecture in the
context of real-time systems or analyzing how much each layer could add or
reduce latency. Another problem present in this situation is the scenario of a
public cloud/fog: the network resources are shared between heterogeneous sys-
tems. Systems in this network require resource competition management, defin-
ing process priority for real-time systems to execute their operations without
being frozen because other systems have access to the network resources. The
modification of existing systems to support Digital Twins implies the addition of
a new real-time approach, which would share resources of a network that could
already be near its computational limits.

Non-shared cloud and fog Digital Twin network scenarios presented in other
works do not accurately describe all real situations, because they demonstrate
scenarios where companies would build an entire infrastructure with the sole
purpose of supporting Digital Twins. Real situations where they would be im-
plemented most likely already have a working network where the Digital Twin
would be inserted, requiring minimal physical change. Cloud and fog, by def-
inition, enable reusable and cheap computation by handling multiple different
and independent devices. Networks with a single purpose do not make sense be-
cause idle resources would be wasted, going against the whole concept of cloud
computing.

These problems imply two situations: 1) the usage of cloud, fog, and edge
computing in the context of workload variability; and 2) the definition of priority
for different devices in the network to allow priority computation to be allocated
to time-critical systems. Sharing resources in a network requires the definition
of a priority policy between devices, to allocate the necessary computation to
Digital Twins or other systems. In light of this landscape, the problem addressed
in this paper is the investigation of how appropriate a cloud-fog architecture is to
support real-time Digital Twins.

6



4.2. Digital Twin Design Overview
Modern systems built with Digital Twins in mind can implement business

logic, ranging from simple computing software, only storing and processing data,
to complex systems that can “think” and provide advanced insight for its users.
The use of artificial intelligence techniques in all types of tasks is the next step in
digitalization and process automation, and the use of cloud-based technologies
is an essential tool for building scalable systems for any domain.

For Digital Twins to accurately simulate, analyze, and predict events and sit-
uations, they must collect a variety of data from the physical mirrored device or
system and process it effectively and timely. Digital Twins must support a col-
lection of different models to accurately describe devices in their full life-cycle
phases, which may include simulation and predictive models. As so, Digital
Twins require to be equipped with a collection of services to effectively monitor
and simulate the physical world it mirrors and computes relevant decisions.

The architecture we designed and implemented is an open-source1 software
built as a collection of individual microservices, available under the GNU Gen-
eral Public License v3.0. For the experiments performed in this work, the ar-
chitecture contains microservices for the client devices, simulating the physical
parts, a Digital Twin instance, which is the digital counterpart, and a message
broker to intermediate the communication. This work focuses on the communi-
cation aspect of the Digital Twin and will not detail internal processing services.
These elements are the minimum components required for the Digital Twin com-
munication, emulating the physical and digital parts, from the model proposed
by Damjanovic-Behrendt[27].

To execute the experiments, the client devices were simulated with a cus-
tom program that sends sequentially numbered messages, with a configurable
payload and publication interval, to an MQTT broker, which uses a topic-based
publish/subscribe pattern for communication. This allows decoupling from pub-
lisher and subscriber, allowing for each service to run independently and with
higher scalability. Each client device publishes their messages with a specific
topic known by the subscribed twin instance, identifying their publications as
being from that specific client. Numbered messages allow us to analyze the tim-
ing aspects of each message, from its publication by the client until it is processed
by the twin instance.

The Digital Twin instance is a prototype of the digital part of the system,
which implements the required mechanisms for acquisition, storage, and pro-
cessing of data obtained from its physical counterpart, and is where the physical

1Source code available at https://github.com/Open-Digital-Twin.
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product is linked throughout its entire life-cycle [3]. The Digital Twin instance
is the final destination for the client messages after they are distributed by the
broker. In this work, messages sent in the opposite direction, i.e. from the twin
instance to real devices, were not experimented with and require analysis by
future work.

The current implementation uses the Eclipse Mosquitto message broker, ver-
sion 1.6.10, as it is an open-source message broker implementation of the MQTT
protocol, purposely built to be open, simple, and light weight, characteristics
heavily associated with IoT contexts [28]. Eclipse Mosquitto is intended for use
in situations where there is a need for lightweight messaging, particularly on
constrained devices with limited resources [29]. The broker was configured with
its default settings, except for the max message queue limitations which were
removed, since the broker would discard all messages received if this limit was
reached, only retaining the physical restriction of memory limitations of where
the broker is being executed.

To meet real-time requirements, the fact that the Digital Twin components
of the architecture we designed and implemented are microservice-based allows
for a variety of distribution scenarios. These components can be distributed be-
tween cloud, fog, and edge computing layers, depending on the needs of the
corresponding physical system and the available network resources.

5. Experimental Setup and Methodology

This section describes the performed experiments. It also describes the pri-
mary experiment factors, variables that affect the experiment response, which di-
rectly impacts the performance of the proposal in the defined scenarios. Factors
will be tested in different scenarios, to analyze their impact on the architecture.

5.1. Experiment Scenarios
To perform the proposed study, three different experiment scenarios are pro-

posed. These three scenarios are illustrated in Figure 1 and detailed as follows:

• Scenario 1 - Cloud only: Processing is done exclusively on a single cloud
node. The MQTT broker, where the client publishes and the twin instance
subscribes to a data source, resides on this cloud node.

• Scenario 2 - Fog and Cloud: The MQTT broker is located on a fog node,
closer to the edge, while the twin instance resides on the cloud.

• Scenario 3 - Fog only: Both broker and the twin instance resides on a fog
node.
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Figure 1: Illustration of the three different experiment scenarios, with their corresponding distri-
butions.

5.2. Experiment Factors
• Number of data sources: twin elements can have multiple data sources,

in the form of multiple individual devices, which by themselves can have
multiple sensors. For simplification of the problem in this paper, an ele-
ment is defined as one general part or device of the physical system, which
has only one data source. To emulate multiple data sources, it is possible
to increase the number of elements accordingly. Each source then sends a
certain amount of messages to the broker.

• Message payload size: the number of bytes sent in the MQTT message
payload generated by the client devices, which will affect bandwidth usage
and processing time for the message broker and the twin instance.

• Source message frequency: the estimated time between messages sent by
the data sources, or client devices, depending on the types of sensors that
define the physical system.

• Transmission latency: time for the message to travel in two scenarios: 1)
9



from the client to the broker; and 2) from the broker to the twin instance.
This latency is directly affected by the distribution of the architecture be-
tween cloud and fog.

Each scenario was individually tested under three situations: (A) varying
the number of messages sent by each data source; (B) varying the frequency of
messages transmissions; and (C) varying the payload of the sent messages.

• Situation A - Source and number of message: Situation A varied the amount
of messages sent by each data source, in sets of 100, 1,000, 10,000, and
100,000 messages by each source. To test concurrency, the number of
data sources was set to 1, 3, and 5, which would add up to a maximum
of 500,000 messages to be handled by the broker and the Digital Twin
instance. The delay between when each message was sent by the data
sources was fixed to 10ms, with a payload of 64 bytes.

• Situation B - Message frequency: Situation B varied the wait interval be-
tween each message sent by the data source, in sets of 10, 20, 40, 80, 160,
320, 640, 1280, and 2560 milliseconds. In this situation, a total of 1000
messages were sent by only one source, each with a payload of 64 bytes.

• Situation C - Message payload size: Situation C tests variations of payload
sizes on the messages sent by the data source. The payloads were set to 8,
16, 32, 64, 128, 256, and 512 bytes. Each test sent a total of 1000 messages
from one source, with a fixed delay of 80ms between each message.

5.3. Experiment Hardware Specifications
A server running an Intel Xeon E5-2420 (with 6 cores and 12 threads) and

32 GB of RAM was used as the experiment environment. The experiments were
executed on three individual Kernel-based Virtual Machines simulating real de-
vices, each named according to their use on the defined scenarios: Cloud, Fog,
and Client. The Cloud virtual machine runs with two virtual CPUs and 4GB of
memory. The Fog and Client are by definition devices with more constrained re-
source capacities, so they only have one virtual CPU each, with 1GB of memory.

Regarding network limitations, the only limit inserted was a simulated net-
work latency in the communication between the machines, varying according to
each scenario, injected by the usage of tc-netem [30]. In scenario 1, a delay of
100ms, with a 10ms variation, was added in the Client. In scenarios 2 and 3,
two different delays were added: 40ms, varying 10ms, in the Client, and 20ms,
varying 5ms, in the Fog. Delays were injected into the scenarios to simulate the
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different delays when devices communicate with fog and cloud components, not
only with fog having lower hardware capabilities but also having a lower delay.
Considering just two machines, without any communication delay difference, the
one with more computational power would have a faster response, but computing
in the edge/fog layers is the concept that communication can be the bottleneck
in how specific distributed systems function.

6. Results

Bringing processing closer to the edge, to handle message exchange, reduces
latency for the application. Digital Twins, being composed with a multitude of
distributed sensors, could experience high latency and poor connectivity. Propos-
ing processing being done closer to edge is a possible strategy, since being purely
dependent on the cloud may not satisfy time-sensitive requirements [4]. The
processing unit can receive the data from the source devices and compute its
suggestion to the physical system with a shorter response time.
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Figure 2: Messages per minute received by the Digital Twin instance, in each scenario, in the
message frequency situation.

An important observation about how the MQTT broker throttles messages
was found when testing Situation B, varying the message frequency, in the de-
scribed scenarios. As evidenced by Figure 2, which shows the amount of mes-
sages received per minute in each scenario, varying the delay between publica-
tions, the broker has a limit on the number of messages it can receive and publish
to its subscribers in the order of 800 messages per minute. We did not set a limit
to the message queue in order to prevent the broker from dropping messages un-
der high load situations. Thus, this message per minute rate is a hard limit set by
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the broker in order to prioritize receiving publications and to not overload sub-
scribers through limiting the number of in-flight messages. Eclipse Mosquitto
can be configured to increase this in-flight message limitation or even remove
it. However, doing so could cause message ordering to break or it could over-
load subscribers and should be tested in a case by case scenario, according to the
number of messages sent by the real device.
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Figure 3: Timing histogram of 1000 messages, from client publish until reaching the Digital
Twin, in each scenario.

Figure 3 presents a timing histogram of 1000 messages in the three scenar-
ios, on situation C with a payload of 64 bytes and 80ms interval between each
message, from the time it is published by the client until received by the Digital
Twin instance (subscriber). Results from this experiment show not just the aver-
age timing of messages, but the time of each individual publication. Scenario 1
presents messages with a higher time compared to the two other scenarios, where
most messages are received in the 50 to 100 ms interval, in this experiment. Con-
sidering a real-time system with a communication requirement of 200ms in the
Cloud only scenario (1), 805 of the 1000 messages would respect this limitation,
representing 80.5% of the total messages sent by the client. Meanwhile, only
one message would not arrive in time for this imposed system limitation in the
Fog and Cloud (2) and Fog only (3) scenarios, respectively. Further reducing this
limitation to 150ms, 92.4% of messages sent in scenario 1 would be lost, while
0.21% and 0.09% would not respect the requirement by scenarios 2 and 3.

More benefits depend on the architecture scale of implementation in the
fog/cloud levels. By having resources closer to the edge, it is possible to per-
form preprocessing as soon as possible, before centralizing the data in the cloud.
Figure 4 makes this clear by showing the time each message takes from being
sent by the client until received by the twin instance in each deployment scenario.

12



The situation shown in this image sends 1000 messages, each one with a delay
between each publication of 80ms. Table 1 provides a summation of the aver-
age times of this experiment, providing a general overview of all the published
messages.
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Figure 4: Timing per message, from client publish to the Digital Twin receiving, in each scenario,
sending 1000 messages with a 80ms delay between each publication.

Table 1: Average times per message, from client to twin, for the 80ms delay experiment situation.
Time per message (ms) Average Std Deviation Max Min

Scenario 1 182.45 27.932 349.35 111.82
Scenario 2 84.43 20.417 205.83 52.51
Scenario 3 66.08 22.626 205.63 35.13

The usage of cloud computing enables devices to store data in a centralized
location, but large amounts of data being transmitted, natural to the concept of
Digital Twins with a large scale network of sensors, implies an increasing delay,
affecting response times from the server.
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As shown in Table 1, deploying to the Fog and Cloud scenario (2) and the
Fog only scenario (3) reduced average times per message by 54% and 64% re-
spectively, compared to the Cloud only scenario (1). Maximum times were also
reduced by 41% for scenarios 2 and 3, as were the minimum times by 53% and
69%.

As a response from the results presented in this work, fog computing is shown
as a viable alternative to reduce the effects of this problem, reducing the transmis-
sion delay in order to match real-time requirements. Further reductions depend
on improving lower layers of the network components, via extra connectivity
and reduced latency in general.

7. Conclusion and future work

This paper investigated how the usage of a cloud-fog architecture for Digital
Twins can help in meeting real-time requirements of these systems.

The tested architecture includes a client, for sending sensor data, the MQTT
broker, for handling messages sent by the client, and the Digital Twin instance,
which is subscribed by the broker. Tests were executed in three different scenar-
ios, changing the deployment locations of the architectural elements where the
broker and twin reside in the cloud, where the broker resides in a fog node, and
the twin on the cloud, and lastly where both the broker and twin share the same
fog node.

The experiments tested these different scenarios on how they would handle
the number of messages, different frequency of messages sent, and payload size.
From these experiments, it was concluded that the distribution of these Digi-
tal Twin elements closer to the edge reduce communication delays for the end
application, allowing faster response by bringing preprocessing into distributed
locations. This particular distribution allows the Digital Twin to meet real-time
systems timing specifications.

Having all the required data flow from the client devices, the Digital Twin
can run application-specific algorithms handling this input and be able to suggest
actions to the physical systems respecting their real-time requirements.

As future work, some limitations could be addressed, as the problem regard-
ing the real-time priority policy for the MQTT broker: message handling should
prioritize real-time subscribers. The MQTT protocol has no definition of prior-
ity for subscriptions, but a broker-defined configuration indicating priority topics
could be used, dedicating more resources to attempt a best-effort approach into
meeting real-time requirements.
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APPENDIX B — UMA AVALIAÇÃO DO USO DE MQTT PARA A

IMPLEMENTAÇÃO DE DIGITAL TWINS

The following document is a paper written, submitted, reviewed and approved at

ERRC 2020 (Escola Regional de Redes de Computadores). This work was done to further

understand the limitations and learn what to expect from MQTT-based communication for

our Digital Twin framework and to allow for the best relationship between client and twin

instances as possible.

The paper analyses how Eclipse Mosquitto handles a large number of messages

sent in a small interval and reaches the best use case, obtaining the maximum message

rate per broker. This is further extended by deploying multiple brokers, in a centralized

and in a distributed manner, so they can work in parallel and allow for an increased total

message rate in the system.
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Resumo. O conceito de Digital Twin tem se tornado cada dia mais importante
como um método para monitorar elementos e prevenir possı́veis defeitos. Uma
das tecnologias que pode ser usada para implementar a comunicação de dados
desse software é o MQTT. Este trabalho avaliou o uso dessa tecnologia nesse
contexto e constatou que existe uma limitação do broker na capacidade de en-
vio de mensagens, que pode ser contornada através da utilização de múltiplos
brokers em paralelo. Também foi examinado o comportamento dos brokers
em situações onde eles estão centralizados em uma máquina com mais recur-
sos computacionais e quando eles estão distribuı́dos em máquinas exclusivas,
porém com menos recursos. Nessas situações constatamos que os brokers apre-
sentam um comportamento mais estável quando seus serviços estão centraliza-
dos.

1. Introdução
Com o progresso da informática em áreas como a Internet das Coisas (IoT) e inte-
ligência artificial, a indústria tem adotado soluções cada vez mais sofisticadas para a
manutenção e monitoramento de seus produtos e estruturas. Uma destas novas soluções
é chamada Digital Twin (DT). A definição de DT surgiu em 2002 e tem como obje-
tivo replicar algum elemento que existe em um espaço fı́sico, em um espaço virtual
correspondente [Grieves 2016]. Para fazer isso, o DT é atualizado em tempo real com
dados vindos de sensores, que captam as caracterı́sticas fı́sicas do elemento e as trans-
mitem. O DT então analisa os dados recebidos e é capaz de dar recomendações so-
bre o uso e manutenção desse elemento. Dessa forma o software pode revelar proble-
mas em potencial para os seus usuários, para que eles sejam resolvidos de forma proa-
tiva [Boschert and Rosen 2016].

Para criar uma estrutura como essa, uma das questões que precisa ser resolvida
é a necessidade da comunicação entre o DT e os sensores que fornecem dados. Para
este fim, o protocolo Message Queue Telemetry Transport (MQTT) é indicado, por ser
leve, econômico e compatı́vel com o uso de aparelhos de baixa capacidade computacio-
nal [Banks et al. 2019]. O MQTT funciona através de um sistema de publish/subscribe
regulado por um mediador (broker). Neste sistema, primeiramente, os clientes que pre-
cisam receber dados (subscribers) registram os tópicos de seu interesse no broker. Em
seguida, os clientes que precisam publicar dados (publishers) enviam mensagens ao bro-
ker, que fica então responsável por entregar as informações aos subscribers.

Embora o MQTT seja um protocolo considerado confiável para entrega de men-
sagens, a dependência de um elemento na arquitetura (o broker) para mediar toda a



comunicação entre os clientes pode representar um gargalo no sistema. A agilidade para
o envio de mensagens depende diretamente do desempenho desse elemento mediador. A
aquisição de dados em DTs deve ser projetada como um sistema de tempo real para que
a parte virtual possa refletir o seu equivalente real com precisão. O comportamento cor-
reto do sistema depende não apenas dos resultados lógicos, mas também do respeito às
restrições de tempo real definidas para aquele sistema. Nesse sentido, um estudo sobre
o comportamento do broker é importante para avaliar a viabilidade do uso desse tipo de
comunicação em DTs de larga escala.

Neste trabalho é analisado o comportamento do broker em situações onde ele é
posto sob estresse considerando a arquitetura prevista pelos DTs e o volume de dados ge-
rado por eles. Estes são cenários onde o broker está sendo sobrecarregado e experimentos
buscando métodos de lidar com esse fluxo de mensagens distribuindo-as entre mais bro-
kers e mais máquinas. Através desses experimentos pode-se observar o comportamento
do broker em diferentes situações e avaliar quais seriam os impactos no funcionamento e
nos requisitos de tempo real de um DT. Através dos resultados obtidos é possı́vel suge-
rir quais são as formas mais adequadas para a implementação da comunicação do DT e
definir suas limitações.

O restante desse trabalho está estruturado da seguinte forma. A seção 2 discute o
background e os trabalhos relacionados. Na seção 3 são apresentadas a metodologia e os
experimentos que foram realizados. Os resultados são discutidos na seção 4 e a seção 5
relata as conclusões obtidas através desses resultados.

2. Trabalhos Relacionados

O conceito de Digital Twin surgiu do processo de Product Lifecycle Management (PLM),
proposto como uma representação não estática de um produto durante todo o seu ciclo de
vida desde a sua fabricação até o fim de seu uso [Grieves 2016]. Desde a criação deste
conceito, já era prevista a separação dos espaços reais dos espaços virtuais e o fluxo de
dados indo do espaço real para o virtual. Com o tempo o PLM evoluiu para o conceito
mais moderno de DT, mantendo as suas principais ideias, mas se adequando as novas
demandas do mercado.

Estudos recentes já discutem a possibilidade de implementar um DT com tec-
nologias de código aberto atuais [Damjanovic-Behrendt and Behrendt 2019]. Segundo
Damjanovic-Behrendt e Behrendt, um dos elementos fundamentais para a implementação
de um DT são os sistemas de aquisição de dados, do inglês Data Acquisition Systems
(DAS). Nesse contexto, o MQTT é visto como uma boa alternativa para regular o fluxo
das mensagens por ser otimizado para conectar clientes de baixa capacidade computa-
cional com um servidor. Estudos já fizeram análises de desempenho do broker MQTT,
onde foi possı́vel observar disparidades, sendo elas através da comparação entre diferentes
implementações de broker ou configurações do protocolo [Mishra 2018]. Porém, esse tipo
de análise ainda deixa em aberto outros aspectos que podem influenciar na comunicação
entre um sensor e seu DT, como opções de distribuição e balanceamento de carga entre
diversos brokers a fim de obter escalabilidade na comunicação. Este trabalho irá explo-
rar mais a fundo essas questões com o objetivo de encontrar a maneira mais eficiente de
distribuir os elementos da arquitetura de um DT.



3. Metodologia

A avaliação proposta neste trabalho consiste em analisar o comportamento do broker
MQTT para o envio de volumes de mensagens maiores do que ele é capaz de proces-
sar. Esta situação será recriada em diferentes contextos a fim de se determinar qual a
configuração mais otimizada para a implementação de um Digital Twin. Para realizar es-
tes experimentos, além do broker foram utilizadas outras duas estruturas, o cliente MQTT
e a instância de DT.

3.1. Broker MQTT

Como broker de MQTT foi utilizado o Eclipse Mosquitto versão 1.6.10. Em-
bora existam outras implementações de brokers MQTT voltados para a escalabilidade
[Pipatsakulroj et al. 2017, Jutadhamakorn et al. 2017] ou para uso em dispositivos embar-
cados [Espinosa-Aranda et al. 2015], o Mosquitto foi escolhido devido à sua popularidade
e ser uma implementação já integrada em produtos comerciais, para uso em dispositivos
com recursos limitados [Light 2017]. Ele trabalha ordenando as mensagens recebidas em
uma fila e as distribuindo para seus destinatários. Esse software recebe as mensagens e
as coloca em uma fila com tamanho limitado, portanto se executarmos esse experimento
com as configurações padrão deste broker, haveria perda considerável de mensagens. Para
contornar isso, as configurações do broker foram alteradas para que a limitação de tama-
nho máximo da fila fosse removido, restando apenas a restrição fı́sica da quantidade de
memória do computador onde o broker executa. A agilidade no envio das mensagens
depende do quão eficiente o Eclipse Mosquitto é para processar as regras de encaminha-
mento e esvaziar a fila.

3.2. Clientes MQTT

Para realizar o experimento foi feita a implementação de um cliente MQTT que envia
mensagens de forma controlada. Esse programa cria mensagens do tipo publish nume-
radas sequencialmente com um tamanho de payload configurável e as envia ao broker
utilizando um tópico especı́fico e um intervalo constante também configurável. O mo-
mento onde cada uma dessas mensagens é enviada é monitorado através de um log gerado
localmente pelo cliente.

3.3. Instância de DT

A instância de DT é um protótipo da parte virtual de um twin1 que implementa os meca-
nismos necessários para aquisição, armazenamento e processamento de dados oriundos
da parte fı́sica do DT. Neste estudo, a instância de DT é utilizada como destino das mensa-
gens enviadas pelos clientes MQTT após elas serem distribuı́das pelo broker. A instância
de DT registra as mensagens recebidas em um banco de dados local e gravando também
o momento quando uma mensagem é recebida. Neste trabalho não consideramos ne-
nhum tipo de processamento das mensagens recebidas nem envio no sentido inverso (da
instância de DT para o cliente), apesar de serem operações possı́veis e necessárias, ficam,
por hora, fora do escopo do trabalho.

1Código aberto disponı́vel em https://github.com/Open-Digital-Twin.



3.4. Configuração do Ambiente de Experimentação

Como ambiente de experimentação foi utilizado um servidor com processador Intel Xeon
E5-2420 (com 6 núcleos fı́sicos e 12 threads) e 32 GB de RAM. Nesse servidor foram
instanciadas máquinas virtuais, conectadas a uma rede local também virtual estabele-
cida através de uma Linux Bridge, e com três configurações de recursos computacionais:
Máquinas do tipo 1, com 2 GB de memória e 1 VCPU, máquinas do tipo 2, com 4 GB de
memória e 2 VCPUs e Máquinas do tipo 3, com 8 GB de memória e 4 VCPUs.

Considerando esse ambiente, foi conduzido um primeiro experimento enviando
1000 mensagens MQTT publish, com payload fixado em 64 bytes, do cliente MQTT
para uma instância de DT em intervalos de tempo cada vez menores, a fim de definir qual
capacidade de envio de mensagem de um único broker. Para determinar isso foi analisado
o número de mensagens da fila do broker em diversos instantes de seu funcionamento.

Para contornar a limitação no fluxo de saı́da de mensagens de um broker indivi-
dual é possı́vel distribuir sua carga de mensagens para outros brokers que funcionem em
paralelo considerando que o Eclipse Mosquitto é um processo leve. Em um segundo expe-
rimento foi avaliada a diferença de desempenho no envio do mesmo número de mensagens
quando elas são distribuı́das entre mais brokers, considerando dois cenários: (Centrali-
zado) onde eles estão centralizados em uma máquina virtual apenas, mas com aumento de
recursos computacionais ou (Distribuı́do) onde os brokers estão distribuı́dos em máquinas
virtuais com menos recursos, porém exclusivas.

Como esses experimentos foram realizados em um servidor controlado, os resul-
tados obtidos não representam os valores que seriam encontrados ao se executar esses
testes com dispositivos reais. Porém, com esses experimentos é possı́vel tirar conclusões
sólidas sobre os casos estudados por os cenários se assemelharem muito com a realidade.

4. Resultados

4.1. Experimento 1
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Figura 1. Gráfico que demonstra o tamanho da fila ao longo do tempo.



Baseado na abordagem discutida na seção 3, foi realizado um primeiro experi-
mento para determinar a taxa máxima de envio de mensagens quando se opera com apenas
um broker. Neste experimento foram enviadas 1000 mensagens pelo MQTT em intervalos
gradativamente menores e foi analisado o comportamento do tamanho da fila em diferen-
tes intervalos de tempo. Com essa análise podemos perceber que em cada uma dessas
situações é possı́vel determinar a taxa de saı́da máxima de mensagens do broker. Esses
testes foram realizados em uma máquina do tipo 3, com todos os serviços centralizados.

Avaliando o comportamento descrito na Figura 1, podemos verificar que o bro-
ker é capaz de enviar as 1000 mensagens em torno de 67 segundos para intervalos de
envio menores que 67ms. Com esses valores conseguimos determinar que o Eclipse Mos-
quitto consegue enviar no máximo aproximadamente 15 mensagens por segundo nessas
condições. Para intervalos de envio maiores que 67 ms, não ocorre a criação de fila e as
mensagens são encaminhadas antes das próximas serem recebidas.

4.2. Experimento 2

Para tentar aumentar a vasão de mensagens foi conduzido outro experimento. Nele as
mensagens foram enviadas com uma frequência fixa de 10ms, porém essa carga foi dis-
tribuı́das para mais brokers que funcionam em paralelo. Com esse experimento pre-
tendı́amos avaliar como eles se comportariam ao resolver as filas criadas. Como base
foi utilizado o cenário onde existe apenas um broker em uma máquina do tipo 1. A partir
deste cenário, foram criados outros dois, o Centralizado e o Distribuı́do, para verificar
se seria mais eficiente aglomerar todos os brokers em uma máquina com mais recursos
ou distribuı́-los em máquinas menores, sempre mantendo uma equivalência de recursos
entre os dois cenários. Para o cenário Centralizado foi usada uma máquina do tipo 2 para
realizar os testes com 2 brokers e uma máquina tipo 3 para realizar os testes com 4. O
cenário Distribuı́do utilizou uma máquina do tipo 1 para cada.

4.2.1. Cenário Centralizado
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Figura 2. Gráfico que mostra o tempo de operação dos brokers no cenário cen-
tralizado.



Com a análise do comportamento dos diferentes brokers apresentado na figura 2,
podemos perceber que embora distribuir as mensagens seja um bom método para diminuir
a quantidade de tempo total de envio de mensagens, a performance individual dos brokers
é prejudicada. Quando foi utilizado apenas um ele apresentou uma taxa de envio de 14.85
mensagens por segundo. Avaliando a implementação de 2 brokers a frequência de envio
foi em média 13.84 (27.68 no total). Avaliando 4, ela caiu para 12.02 (48.08 no total).

4.2.2. Cenário Distribuı́do
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Figura 3. Gráfico que mostra o tempo de operacão dos brokers no cenário dis-
tribuı́do.

Como podemos observar na figura 3, quando dispostos em um ambiente dis-
tribuı́do as mensagens são processadas em uma velocidade similar ao cenário Centra-
lizado. A configuração de dois brokers apresentou uma taxa de 13.50 mensagens por
segundo (27.00 no total), enquanto a configuração de quatro brokers apresentou 12.68
(50.72 no total).

Embora os cenários Centralizado e Distribuı́do apresentem resultados parecidos,
o cenário Distribuı́do apresenta uma variância consideravelmente maior no tempo tomado
por cada um de seus brokers. No cenário Centralizado as variâncias apresentadas são de
7.51 e 0.61 para 2 e 4 brokers respectivamente. No Cenário Distribuı́do esses valores
aumentaram para 14.36 e 5.24. Esses valores foram encontrados com 5 iterações do
experimento.

5. Conclusão

Neste trabalho, estudamos o MQTT com a intenção de usá-lo para o desenvolvimento de
um DT. Foram realizados experimentos envolvendo o envio de mensagens em diferentes
taxas para determinar as limitações de desempenho de um cenário com um único broker.
Além disso, foram avaliadas duas configurações viáveis para a arquitetura desse sistema,
centralizada ou distribuı́da, visando melhorar o seu desempenho. Através dos resultados
descobrimos que existe um limite da frequência de envio de mensagens através do broker,
que no caso da configuração do ambiente de experimentação foi de aproximadamente 15



mensagens por segundo. Contornamos essa limitação empregando diversos brokers em
paralelo em dois cenários (centralizado e distribuı́do). Ambos os cenários apresentaram
resultados similares, porém constatamos que adotar uma arquitetura centralizada tende
a gerar uma variância menor nos resultados criando um ambiente mais estável. Embora
aglomerar os brokers gere um ambiente mais estável, essa organização cria um único
ponto de falha no sistema.

Os experimentos realizados não levaram em conta algumas configurações do
MQTT que podem influenciar na agilidade do envio de mensagens, como a qualidade
do serviço e a persistência das mensagens, mesmo esse fatores tendo baixo impacto no
desempenho do broker. Eles também não levaram em conta fatores externos que podem
impactar na transmissão das mensagens como latência na rede, jitter ou perda de paco-
tes. Como trabalhos futuros, pretendemos realizar mais experimentos levando em conta
esses fatores para determinar de forma mais precisa o comportamento do broker e suas
consequências na implementação de um DT em situações mais realı́sticas.
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