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ABSTRACT

Industrial Wireless Sensor Networks (IWSN) usually have a centralized management approach,
where a device known as Network Manager is responsible for the overall configuration, definition
of routes, and allocation of communication resources. The routing algorithms need to ensure
path redundancy while reducing latency, power consumption, and resource usage. Graph routing
algorithms are used to address these requirements. The dynamicity of wireless networks has
been a challenge for tuning and developing routing algorithms, and Machine Learning models
such as Reinforcement Learning have been applied in a promising way in Wireless Sensor
Networks to select, adapt and optimize routes. The basic concept of Reinforcement Learning is
the existence of a learning agent that acts and changes the state of the environment, and receives
rewards. However, the existing approaches do not meet some of the requirements of the IWSN
standards. In this context, this thesis proposes the Q-Learning Reliable Routing approach, where
the Q-Learning model is used to build graph routes. Two approaches are presented: QLRR-WA
and QLRR-MA. QLRR-WA uses a learning agent that adjusts the weights of the cost equation
of a state-of-the-art routing algorithm to reduce the latency and increase the network lifetime.
QLRR-MA uses several learning agents so nodes can choose connections in the graph trying
to reduce the latency. Other contributions of this thesis are the performance comparison of the
state-of-the-art graph-routing algorithms and the evaluation methodology proposed. The QLRR
algorithms were evaluated in a WirelessHART simulator, considering industrial monitoring
applications with random topologies. The performance was analyzed considering the average
network latency, network lifetime, packet delivery ratio and the reliability of the graphs. The
results showed that, when compared to the state of the art, QLRR-WA reduced the average
network latency and improved the lifetime while keeping high reliability, while QLRR-MA
reduced latency and increased packet delivery ratio with a reduction in the network lifetime.
These results indicate that Reinforcement Learning may be helpful to optimize and improve
network performance.

Keywords: Industrial Wireless Sensor Networks. Routing. Reinforcement Learning. Q-Learning.



RESUMO

As Redes Industriais de Sensores Sem Fio (IWSN) geralmente têm uma abordagem de gerencia-
mento centralizado, onde um dispositivo conhecido como Gerenciador de Rede é responsável
pela configuração geral, definição de rotas e alocação de recursos de comunicação. Os algoritmos
de roteamento precisam garantir a redundância de caminhos para as mensagens, e também
reduzir a latência, o consumo de energia e o uso de recursos. O roteamento por grafos é usado
para alcançar estes requisitos. A dinamicidade das redes sem fio tem sido um desafio para o ajuste
e o desenvolvimento de algoritmos de roteamento, e modelos de Aprendizado de Máquina como
o Aprendizado por Reforço têm sido aplicados de maneira promissora nas Redes de Sensores
Sem Fio para selecionar, adaptar e otimizar rotas. O conceito básico do Aprendizado por Reforço
envolve a existência de um agente de aprendizado que atua em um ambiente, altera o estado do
ambiente e recebe recompensas. No entanto, as abordagens existentes não atendem a alguns dos
requisitos dos padrões das IWSN. Nesse contexto, esta tese propõe a abordagem Q-Learning

Reliable Routing, onde o modelo Q-Learning é usado para construir os grafos de roteamento.
Duas abordagens são propostas: QLRR-WA e QLRR-MA. A abordagem QLRR-WA utiliza um
agente de aprendizado que ajusta os pesos da equação de custo de um algoritmo de roteamento de
estado da arte, com o objetivo de reduzir a latência e aumentar a vida útil da rede. A abordagem
QLRR-MA utiliza diversos agente de aprendizado de forma que cada dispositivo na rede pode
escolher suas conexões tentando reduzir a latência. Outras contribuições desta tese são a com-
paração de desempenho das abordagens com os algoritmos de roteamento de estado da arte e a
metodologia de avaliação proposta. As abordagens do QLRR foram avaliadas com um simulador
WirelessHART, considerando aplicações de monitoramento industrial com diversas topologias.
O desempenho foi analisado considerando a latência média da rede, o tempo de vida esperado
da rede, a taxa de entrega de pacotes e a confiabilidade dos grafos. Os resultados mostraram
que, quando comparado com o estado da arte, o QLRR-WA reduziu a latência média da rede
e melhorou o tempo de vida esperado, mantendo alta confiabilidade, enquanto o QLRR-MA
reduziu a latência e aumentou a taxa de entrega de pacotes, ao custo de uma redução no tempo
de vida esperado da rede. Esses resultados indicam que o Aprendizado por Reforço pode ser útil
para otimizar e melhorar o desempenho destas redes.

Palavras-chave: Redes de Sensores Industriais sem Fio. Roteamento. Aprendizado por Reforço.
Q-Learning.
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1 INTRODUCTION

Industrial Wireless Sensor Networks (IWSN) are an attractive technology for communi-
cations in process automation and allow the incorporation of Internet of Things (IoT), Industrial
Internet of Things (IIoT) and Industry 4.0 (I4.0) concepts (SHA et al., 2017; XU; HE; LI, 2014).
Flexibility, mobility, expansion, ease of maintenance and reduced wired infrastructure are the
main advantages of IWSN (WINTER et al., 2014). The global IWSN market size is anticipated
to reach USD 8.67 billion by 2025, and it is expected a reduction of infrastructure costs between
50 % to 90 % when compared to wired solutions (WANG; CHAI; WONG, 2016; GVR, 2018).

IWSN consist of a set of wireless field devices (nodes) connected to a gateway through
Access Points (AP). The gateway provides a connection with the automation network. A device
known as Network Manager (NM) is connected to the gateway and is responsible for the
management of the network, admission control, configuration, routing, and scheduling. Auxiliary
devices such as routers, adapters and handhelds are used to increase the network range, connect
wired devices to the wireless network, and configure field devices, respectively. Figure 1 depicts
an IWSN topology.

Figure 1 – An IWSN example.

Access 
Point
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IWSN applications often require reliable, low-latency, and real-time communications.
Low energy consumption is another requirement as batteries are often used to power devices
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(SHA et al., 2017). Meeting these requirements while optimizing the network performance is
often complex because of the characteristics of the devices, topologies, and the wireless network
properties (shared medium, interference, signal reflections, and signal strength) (SHEN et al.,
2014; IKRAM et al., 2014; NIU et al., 2014).

Standards such as WirelessHART (WH), ISA SP100.11a and WIA-PA were introduced
in the last decade for process monitoring and control, and have been used in IWSN applications
(WINTER et al., 2015). They are based on the IEEE 802.15.4 standard, suitable for applications
with battery-powered devices (SHA et al., 2017). These standards usually form a mesh network,
where nodes may act as routers to increase path availability for communications (NOBRE; SILVA;
GUEDES, 2015b). Centralized management is used to better control the network operation and
to simplify the hardware and software of the nodes (CHEN; NIXON; MOK, 2010).

Routing is an essential task of the NM. The routes built by the NM are used by the devices
to send data through the network. The paths used for sending data must be carefully chosen
to ensure the desired network performance and meet the requirements of IWSN applications
(NOBRE; SILVA; GUEDES, 2015b). To increase the reliability of the communications, path
redundancy is used to build routes and is implemented through graph routing. A graph is a route
that connects nodes on the network, and each intermediate node on a route to the destination may
have multiple neighbors to forward a message to. If the communication with a neighbor fails, a
node can try to send the message through another neighbor (SHA et al., 2017; HAN et al., 2011).

Graph routing algorithms for centralized management protocols were described over the
last decade in Jindong, Zhenjun and Yaopei (2009), Han et al. (2011), Künzel (2012), Zhang,
Yan and Ma (2013), Memon and Hong (2013), Zhang et al. (2014), Wu et al. (2015), Wu et
al. (2016), Sepulcre, Gozalvez and Coll-Perales (2016), Künzel, Cainelli and Pereira (2017),
Künzel et al. (2018), Han, Ma and Chen (2019), Madduma-Bandarage (2020). These algorithms
try to increase reliability through path redundancy while reducing latency, energy consumption,
transmission errors and resource usage. Parameters, heuristics, and weighted cost equations are
used to choose the connections in the graphs. Usually, the parameters and weights are statically
defined and suitable only for certain network operation conditions (NOBRE; SILVA; GUEDES,
2015b).

1.1 MOTIVATION

It is inconvenient to manually adjust the parameters of the routing algorithms, aiming to
improve the network performance. This task requires several tests, the periodic monitoring of the
network status, the user must know about the properties of the algorithms, and a network system
representation is often unavailable for tests (KÜNZEL et al., 2018). These adjustments could be
made in a way that achieves an adaptation according to the current network operational conditions
while balancing or optimizing some performance metrics. Centralized routing algorithms that
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can optimize the performance of the IWSN are a relevant research topic and have not been widely
explored in the literature (NOBRE; SILVA; GUEDES, 2015b).

The use of Machine Learning (ML) for creating and adjusting routes may be useful for
IWSN and future IoT, IIoT, and I4.0 protocols (XU; HE; LI, 2014; SAVAGLIO et al., 2019).
Machine Learning (ML) provides a system with the ability to learn and improve from experience,
and Reinforcement Learning (RL) relies on the existence of an agent that acts in an environment
and receives rewards based on the results of its actions. By exploring the environment, it learns
which behavior it must take to maximize its rewards (SUTTON; BARTO, 2018). RL demands low
computational resources and implementation efforts, thus providing high flexibility to topological
changes and near-optimal results, without requiring any apriori network model (SAVAGLIO et
al., 2019).

RL algorithms like Q-Learning have been used in centralized and decentralized routing
approaches in general-use network technologies and also in Wireless Sensor Networks (WSN),
as presented in the works and surveys of Al-Rawi, Ng and Yau (2015), Habib, Arafat and Moh
(2019), and Mammeri (2019). In decentralized approaches, each node is modeled as a learning
agent that selects routes to forward its packets. The decentralized approaches are not suitable for
the current IWSN protocols since they require nodes to exchange information independently,
reconfigure, and decide its routing strategies (KÜNZEL et al., 2018). It would be necessary
to change the current IWSN protocol stacks to use these approaches. Similarly, the available
centralized approaches are not suitable for IWSN since they are intended to be used with other
protocols and do not build graphs or routes with path redundancy.

The use of Q-Learning for creating graphs and routes in a centralized fashion may be
useful for IWSN protocols and future wireless IoT, IIoT and I4.0 protocols (KÜNZEL et al.,
2018). Routing algorithms that can optimize the performance of IWSN using RL techniques,
adapting to changes in the operational conditions, are a relevant research topic not widely
explored in the literature. The growth of the IWSN market and the use of IoT, IIoT, and I4.0
motivates the research in this field because these technologies still have aspects to improve to
become attractive. Besides, the state-of-the-art graph routing algorithms are evaluated using
different scenarios and protocols. The parameters and operational conditions vary (the quantity
and characteristics of the devices used, spatial distribution, topologies, signal propagation and
error models, metrics, and methodologies used for comparing results, among others). In general,
the simulation tools used for comparison do not have a complete stack implementation of a IWSN
protocol. In this sense, it is also relevant to identify the available simulators for a given protocol
and to compare and analyze the performance of the graph-routing algorithms considering the
same operational conditions.
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1.2 OBJECTIVES

In this context, this thesis has as general objective to propose the application and perfor-
mance evaluation of RL techniques such as Q-Learning for routing in centralized-management
IWSN standards.

The following specific objectives are necessary to achieve this general objective:

• To analyse and classify the state-of-the-art, identifying contributions in the fields related to
this thesis;

• To propose centralized approaches to build routing graphs using Q-Learning;

• To discuss the use of RL for routing in IWSN protocols;

• To propose procedures, scenarios, and metrics to evaluate the performance of graph-routing
algorithms;

• To compare the performance of the new approaches against the state-of-the-art routing
algorithms;

• To identify future research possibilities.

1.3 CONTRIBUTIONS

The main contributions of the thesis are:

• The presentation, classification, and analysis of the state of the art;

• The routing algorithms proposed for the creation of graphs using RL;

• The performance comparison of state-of-the-art routing algorithms;

• The procedure and scenarios used for performance comparison;

• The improvements in the simulation environment;

• The discussion of the use of RL for routing in IWSN;

• The discussion of future works.
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1.4 THESIS STRUCTURE

The thesis is structured as follows. Chapter 2 presents the main theoretical concepts
such as Graph Theory, Wireless Mesh Networks (WMN), Reinforcement Learning, Q-Learning,
WirelessHART and WirelessHART simulators. Chapter 3 analyzes the state of the art. Chapter
4 presents two new routing algorithms using Q-Learning. Chapter 5 presents the performance
evaluation and discusses the results. Finally, chapter 6 presents the conclusions and future works.
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2 GRAPHS, WMN, RL, WIRELESSHART
AND SIMULATORS

This chapter presents the theoretical concepts used throughout the thesis. A definition of
graphs and WMN is presented, followed by the concepts of RL, Q-Learning, and the relevant
details of the WirelessHART protocol and WirelessHART simulators.

2.1 GRAPHS

The graph model is used for the representation of communication networks since it
allows a natural and intuitive mapping of these. Formally, a graph G = (V,E) is a structure
composed by vertices V and edges E. The vertices represent devices in the network (also
known as nodes in wireless networks), whereas edges represent the connections between the
devices. An edge between two devices exists only if they can communicate with each other. The
definitions presented here are the same used in Künzel (2012) and Han et al. (2011). Figure 2
depicts the topology of a network through a graph. This topology will be further used along for
exemplification purposes.

Figure 2 – Topology of a network represented by graphs.
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2.1.1 Graph classification

The following graph classification is used in this work:

a) By orientation: Graphs can be classified as directed or non-directed. They are directed
when edges have a direction associated with them. The direction of an edge is represented
by an arrow indicating the flow of data;
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b) By value: In valued graphs, vertices and edges may have values which represent costs
associated with some characteristics.

2.1.2 Graph concepts

The following concepts are used in this work:

a) Neighbors: two vertices are neighbors if they have an edge that connects them in the graph;

b) Incident edge or vertex: an edge or vertex is incident to another vertex when the latter is
the destination or origin of the edge. Since the source node is represented as v and the
destination node is u, the edge is represented as ev,u;

c) Successor: is the vertex u that is the destination of the edge ev,u outgoing from v;

d) Chain: is a sequence of edges of a graph (directed or not), such that each edge has a vertex
in common with the preceding edge (except for the first) and another vertex in common
with the subsequent edge (except for the least);

e) Path or route: corresponds to a chain in which all the edges have the same direction or
destination;

f) Cycle: it is a chain in which some nodes are connected in a way that they form loops.
In networks, cycles may cause a message to propagate indefinitely and never reach the
destination;

g) Hop: each movement of a message (or packet) from one device to another within a route is
called a hop (HCF, 2009). The distance between the source node and the destination node
is usually determined by the number of hops that a message needs to travel;

h) Symmetry: An edge is symmetric if the transmitter node can send a message through the
edge and the receiver node can respond with an acknowledgment. An edge will only exist
in a graph in this work if it is symmetric.

2.1.3 Structural features

The following structural features of graphs are used in this work:

a) A graph is connected when a chain can connect every pair of vertices of the graph;

b) A tree is a directed graph that has no cycles.
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2.2 WIRELESS MESH NETWORKS

In WMN, all nodes in the network may act as routers. They must be able to receive
messages originated from other nodes in the network and forward them towards the destination.
WMN have characteristics as self-organization and self-configuration, where nodes automatically
establish their connections with neighbors. In some WMN, a central manager is responsible for
configuring nodes. Such features bring advantages such as easy maintenance of the network,
easy insertion of new nodes, robustness and reliability (AKYILDIZ; WANG; WANG, 2005).

Two message delivery mechanisms are typically used in WMN:

a) Unicast: when a source node sends a message to a specific destination node;

b) Broadcast: when a node sends a message that all nodes in the network should receive.

In WMN, the data traffic generally flows from the nodes towards a central device and vice
versa (YE; ZHANG; YANG, 2015). Typically, the central device is known as a gateway, base
station, or sink. In WMN, many of the devices are connected to a continuous source of power (to
the electrical grid, for example) and form a fixed infrastructure of communication, while other
devices have limited resources and may have mobility (LI et al., 2011). These limitations often
define several aspects related to the configuration and organization of these networks (KÜNZEL,
2012).

Three types of routing graphs are commonly used in mesh networks that have a gateway,
and are exemplified in Figure 3:

a) Broadcast: connects the gateway towards all devices and is used to disseminate common
configurations and control messages;

b) Uplink: connects all devices towards the gateway, and is used to send responses to configu-
ration commands, requests, and sensor readings;

c) Downlink: Connects the gateway towards a specific device, and is used to send configura-
tions, commands, and setpoint values to actuators.

2.3 REINFORCEMENT LEARNING

RL is a machine learning approach where a software agent acquires knowledge by
exploring their environment without the need for external supervision. With RL, an agent can
obtain information from the environment, learn, adapt, and make efficient decisions over time
(SUTTON; BARTO, 2018). By performing different actions on the environment, in a trial-
and-error concept, the agent causes changes in the state of the environment and seeks to learn
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Figure 3 – Graph types.
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which actions maximize their long-term reward. (KOSUNALP et al., 2016). The reward is a
numerical value that represents the goal of an RL problem. These two characteristics (trial and
error and rewards) distinguish RL from the other ML approaches (SUTTON; BARTO, 2018).
The interaction of an agent i with its environment is presented in Figure 4 and the basic model of
RL is described in the following paragraphs.

Figure 4 – Agent interaction with the environment in RL.
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The RL problem is modeled as a Markov Decision Process (MDP). The Markovian
property implies that the selection of an action by an agent at an instant t is dependent on an
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action-state pair at the instant t − 1 only (AL-RAWI; NG; YAU, 2015). In MDP, an agent is
modeled by a tuple (S,A, P,R), where S is the set of all possible states of the environment. A
contains all actions available to the agent. P is a probability matrix that represents the transition
probability of a state in the instant t to another state in the instant t+ 1. Finally, R represents
a reward function of the environment. The agent determines an optimal policy by evaluating
the states and actions of the MDP and determining the actions that maximize the expected
cumulative rewards (TOZER; MAZZUCHI; SARKANI, 2017).

In RL, the agent must be able to estimate the current state of the environment and to
act by altering this state. The actions chosen will provide an immediate reward, but will also
affect the accumulated rewards. Besides, there is a policy associated with transition probabilities,
known as π, that defines the choice of the next action. The policy balances the exploration of
actions not yet taken or with little knowledge about the rewards, and the exploitation of actions
with knowledge about the rewards (KAELBLING; LITTMAN; MOORE, 1996). The balance
between exploration and exploitation is described in section 2.3.2.

The concepts of states, actions and rewards are described below.

• States: An agent i has a set of states S that represents situations of its operating environment.
At a given instant t, the agent i observes the state sit ∈ S. The determination of which
states will exist in the model are made at project time. In network communications, a state
can represent internal factors such as buffer occupancy and transmission error rates, or
external, such as delivery times and destination node;

• Actions: An agent has a set of actions A. Based on the observed state, the agent i learns to
select an action ait ∈ A, which will cause the transition in the environment from a state
sit to another state sit+1 and will maximize its immediate and future rewards. In network
communications, an action may represent, for example, the choice of the next node to
forward a message;

• Reward: Whenever an agent i performs an action ait ∈ A, it receives a reward rit+1(s
i
t+1)

from the environment. The reward function has a scalar value that represents some perfor-
mance metric observed in the environment in state sit+1. Cost equations can be constructed
to represent the reward. The reward rit+1(s

i
t+1) is known as immediate or delayed reward,

since it is received from the environment at the instant t+ 1. The discounted reward (or
accumulated or future reward) represents the rewards expected to be received from the
environment at discrete times t+ 1, t+ 2, ....

2.3.1 Q-Learning

Q-Learning is an approach to RL and has been applied in several works to improve some
network characteristics (YAU; KOMISARCZUK; TEAL, 2012; AL-RAWI; NG; YAU, 2015;
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GUO; YAN; LU, 2019; MAMMERI, 2019). Q-Learning defines a Q-function Qi
t(s

i
t, a

i
t), also

known as a state-action function. The Q-function estimates Q-values, which are the long-term
rewards that an agent expects to receive by taking a given action ait in a given state sit. The
Q-values are updated at each iteration of the algorithm, taking into account the previously stored
value and the new reward received. Each agent maintains a Q-table with |S| × |A| records
where the Q-values are stored for each state-action pair. When the Q-values are learned in a
non-dynamic environment, the π policy can be constructed simply by selecting the action ait
which has the largest Q-value in each state sit (AL-RAWI; NG; YAU, 2015).

Equation 2.1 represents the Q-value update function. 0 ≤ α ≤ 1 is the learning rate
and 0 ≤ γ ≤ 1 is the discount factor. High values of α lead to faster learning and are usually
dependent on the dynamism of the environment but may cause fluctuations in Q-values. When
α = 1, the agent only uses the new value given by rit+1

(
sit+1

)
+ γmaxa∈AQ

i
t

(
sit+1, a

)
, and

forgets the current value stored in Qi
t(s

i
t, a

i
t). In practical terms, α = 0.1 is generally used for all

t (SUTTON; BARTO, 2018).

Qi
t+1

(
sit, a

i
t

)
← (1− α)Qi

t

(
sit, a

i
t

)
+ α

[
rit+1

(
sit+1

)
+ γmax

a∈A
Qi

t

(
sit+1, a

)]
(2.1)

The discount factor γ allows an agent to adjust its preference for long-term rewards.
When γ = 0, the agent considers only immediate rewards, whereas when γ = 1, the immediate
and discounted rewards have the same relevance.

As Q-Learning is an iterative algorithm, it assumes an initial condition before the first
update of the values occurs. The Q-table initialization is done during the project phase. Usually,
Q-table is initialized with zero or random values. Algorithm 1 presents the traditional approach
for implementing Q-Learning (AL-RAWI; NG; YAU, 2015).

2.3.2 Action selection: Exploration or exploitation in Q-Learning

One of the challenges of using RL is the choice between exploration and exploitation.
The exploit selects the action ait = argmaxa∈AQ

i
t(s

i
t, a

i
t), which has the highest Q-value: when

an agent exploits its environment, it chooses actions that it already knows that extend its rewards.
The exploration selects a random action ait ∈ A to extend the knowledge regarding the Q-values
for all the state-action pairs (AL-RAWI; NG; YAU, 2015).

The balance of exploitation and exploration helps to increase the rewards accumulated
over time, and the agent must try a variety of actions and progressively favor those that seem
to be better (SUTTON; BARTO, 2018). For the convergence of the Q-values, the exploitation
can receive a higher priority, since the exploration may not discover better actions all the time.
Several approaches have been proposed to balance exploration and exploitation:
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Algorithm 1: Q-Learning algorithm. Adapted from Al-Rawi, Ng and Yau (2015).
Start sit ∈ S; ait ∈ A; α = [0.0, 1.0]; γ = [0.0, 1.0]; Qi

t(s
i
t, a

i
t) = [Qmin, Qmax];

repeat
Observe the state sit;
Select an exploitation or exploration action ait ∈ A following policy π;
if exploitation then

choose the best-known action ait = argmaxa∈AQ
i
t(s

i
t, a

i
t);

end
else

choose a random action ait ∈ A ;
end
perform the action ait on the operating environment;
observe the next state sit+1 and reward and reward rit+1(s

i
t+1) at the next time

instance t+ 1;
update Q-value Qi

t(s
i
t, a

i
t) using Equation 2.1;

until;

a) Greedy approach: the agent will always select the action with the highest Q-value. This
approach leaves no room for exploration, and the agent will take a long time to adapt to
changes (KOSUNALP et al., 2016).

b) ε-greedy: the agent probes with a probability 0 ≤ ε ≤ 1 every possible action, to know the
rewards of those actions. In tasks where bad actions exist, this approach can select actions
with very low Q-values, which are unsatisfactory to the application. Even so, the approach
tends to increase the long-term accumulated rewards in some applications (AL-RAWI; NG;
YAU, 2015; SUTTON; BARTO, 2018). The exploration can be controlled by changing the
value of ε. At the start of execution, ε may have a higher value, allowing deep exploration,
and as time passes, or some performance parameter is reached, ε may be reduced to allow
exploitation (KOSUNALP et al., 2016).

c) Softmax: the agent increases the probability of choosing actions that have a higher Q-value
based on a Gibbs or Boltzmann distribution to determine the probability (DOWLING et
al., 2005; SUTTON; BARTO, 2018).

2.3.3 Episodes

In some RL problems, the concept of an episode can be used. An episode has a limited
number of iterations. At the end of an episode, a predefined initial state is set, and a new episode
begins taking into account the previous learning. In problems where there is a well-defined initial
and final state, the use of this concept allows the agent to make better use of his learning while
exploring the environment and learning (SUTTON; BARTO, 2018).
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2.4 THE WIRELESSHART PROTOCOL

This section describes the main features of the WirelessHART protocol focusing on
specifications related to routing, as well as the simulators available for performance evaluation
of the protocol.

2.4.1 WirelessHART devices

This section describes the devices specified by the standard. Figure 1 shows a rep-
resentation of the devices and the typical connection of a WH network with an automation
plant.

2.4.1.1 Field Devices

The field devices are the sensors and actuators connected to the process. Most of them
are battery-powered, allowing quick installation and commissioning.

2.4.1.2 Adapters

The adapters have the function of connecting conventional (wired) HART devices to the
WirelessHART network.

2.4.1.3 Routers

Routers are devices that have the task of forwarding messages. They are generally not
required since all field devices have routing capability. However, they may be beneficial in
expanding the size of the network and increasing the lifetime of battery-powered field devices
(KÜNZEL, 2012).

2.4.1.4 Handheld

The handheld is used for commissioning the devices of the network.

2.4.1.5 Access point

The Access Point is a device that physically connects the wireless network to the gateway.
The AP, gateway and NM are usually a single piece of equipment.

2.4.1.6 Network Manager

The NM is responsible for the management of the WirelessHART network and the
configuration of the devices. Management is accomplished through several commands exchanged
with the network nodes. Its main functions and characteristics are:
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a) To initialize the network and provide means for the devices to join the network;

b) To monitor the network, obtaining information about the health conditions of the devices
and communications;

c) To provide means for the network administrator to obtain run-time data and change the
NM configuration;

d) To manage the network topology and routes used for data exchange;

e) To schedule communication resources according to the application;

f) To have a direct connection with the gateway, which enables it to communicate with the
devices of the network;

g) To establish secure connections between devices, providing security keys used to encrypt
information exchanged between NM, gateway, and devices. Typically, a software module
known as Security Manager (SM) is responsible for these features.

2.4.1.7 Gateway

The gateway connects the WirelessHART network to the industrial automation plant. Its
main characteristics are:

a) To have one or more APs that will make the physical connection to the wireless network;

b) To be the point of origin and destination for the data traffic of the WirelessHART network;

c) To connect the automation plant network to the wireless network through an interface
containing different protocols;

d) To have a connection to the NM;

e) To forward commands generated and directed to NM (alarms, commands, health reports);

f) To store process data locally;

g) To be the clock synchronization source of the network;

h) To support WirelessHART adapters;

i) To support universal and common standard HART commands.

2.4.2 WirelessHART layers

Figure 5 presents the architecture of the WirelessHART protocol according to the ISO /
OSI model. The protocol has five layers: physical layer, data-link layer, network layer, transport
layer, and application layer (HCF, 2007).
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Figure 5 – WirelessHART ISO/OSI layers.
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2.4.2.1 Physical Layer

The physical layer of the protocol is responsible for transmitting and receiving data and
incorporates most of the physical layer requirements of the IEEE 802.15.4 standard. The protocol
operates over the Industrial, Scientific, Medical (ISM) frequency band in the range of 2.4 to
2.4835 GHz at a rate of 250 kbps. The channels are numbered from 11 to 25, with a 5 MHz
bandwidth for each channel. Channel 26, available in IEEE 802.15.4, is not used because it is
not allowed in some countries. All devices must have a transmitting power configurable between
-10 and +10 dBm and a minimum sensitivity of -85 dBm (HCF, 2007).

Table 1 shows the expected communication distances at indoor and open environments,
with and without a line of sight. Distances are estimated considering a unit-gain omnidirectional
antenna with a transmission error rate of less than 1 %, without interference and reflective or
obstacle attenuation effects, and with reception power of -82 dBm (HCF, 2007).

Table 1 – Communication distance.

Transmission
power

Open field with
line of sight

Indoor without line
of sight

+10 dBm 200 m 75 m
0 dBm 100 m 35 m

Source – HCF (2007).
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2.4.2.2 Data-Link Layer

This layer defines reliable means for packet transmission between two devices, detecting
transmission errors that may occur on the physical layer (HCF, 2008a). It can be split into
two sublayers. The Logical Link Control (LLC) layer controls frame format, device address
structure, security services to ensure message integrity and error detection. The Medium Access
Control (MAC) layer controls when devices can transmit messages. The data-link layer uses
Time Division Multiple Access (TDMA) to provide collision-free, deterministic communication.
The communication channels are divided into 10 ms time frames (timeslots) in which the
communications between the devices are performed. The MAC layer also keeps control of the
number of timeslots that have already occurred since the network startup. This number is known
as Absolute Slot Number (ASN).

2.4.2.2.1 Superframes

A superframe describes a sequence of consecutive timeslots repeated periodically. The
period of a superframe is given by its length in timeslots. Figure 6 depicts an example of a
superframe with a length of 25 timeslots. The cycle period has, therefore, 250 ms.

Timeslots can be simultaneously allocated in a superframe on different channels. It is
assigned a channel offset number that associates the timeslot with a communication channel.
A WirelessHART network can have multiple superframes active simultaneously, with different
lengths. The superframe sizes must follow a harmonic chain. Multiple superframes can be used
to allocate resources with different communication rates (HCF, 2008c).

Figure 6 – Superframe example.
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Source – Adapted from HCF (2008a).

2.4.2.2.2 Timeslots

The NM allocates the timeslots available in a superframe for communication according
to the configured routes and device demands. When two devices have a timeslot configured to
communicate with each other, they have a link. Within the timeslot period, the transmitter is
allowed to send a packet, and the receiver is allowed to send an acknowledgment (ACK) packet



Chapter 2. Graphs, WMN, RL, WirelessHART and Simulators 32

back to confirm the reception correctness. A device sends a packet through a link if there are
pending packets in its transmission stack.

Each link has the following properties:

a) Superframe number: the identifier (ID) of the superframe to which the link belongs;

b) Number: defines the index or position of the link timeslot within the superframe;

c) Type: defines the purpose of the link (normal, neighbor discovery, advertisement);

d) Origin and destination: identifies the transmitter and receiver nodes;

e) Options: defines, within the transmitter and receiver, if the link is used for transmission,
reception or is shared;

f) Channel offset: provides the logical channel to be used in the link.

Shared links can be configured to save communication resources, where several devices
compete for transmission to a receiving device. In this case, if two devices transmit simultane-
ously on the shared link, a collision will occur and will invalidate the contents of the received
packet. The receiver will not send the ACK, and the transmitters will retry at the next available
link. In broadcast links, receivers do not send the ACK.

The standard uses a mechanism to synchronize the clocks of nodes to ensure the operation
of TDMA. Channel blacklisting is used to disable channels affected by interference. Each device
has a table containing the active channels of the network. Channel hopping is also used, in
which channel jumps are performed at each timeslot, which provides a diversity of frequencies
that reduce the effects of attenuation by reflections and obstacles. Based on the active channel
table, the channel offset value configured for the link and the ASN, the device can determine the
physical channel to be used.

2.4.2.2.3 Timeslot structure

Figure 7 presents the detailed time structure of a timeslot, from the transmitting device
and the receiver. Table 2 describes the utility of each of the fields within the timeslot.

2.4.2.2.4 Communication tables

The devices maintain a series of tables at the data-link layer. Superframe and link tables
indicate the timeslots available on each superframe. Neighbor tables provide statistics on the
transmissions and receptions for each neighbor and store information about potential neighbors
discovered in the network. Graph tables contain IDs for different routes. Graph-neighbor tables
associate the graph IDs with the neighbors. Data buffers store incoming and outgoing packets.
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Figure 7 – Timeslot structure.

Source – HCF (2008a, p. 44).

Table 2 – Timeslot timing components.

Field Definition
TsCCAOffset Time for the timeslot start

TsCCA Clear Channel Assessment (CCA), to check if the channel is available
TsRxTx Radio switch between reception and transmission

TsTxOffset Time between the timeslot start and the preamble transmission
TsMaxPacket Maximum transmission time (133 bytes)

TsRxAckDelay Wait for ACK reception start
TsAckWait ACK reception time

TsError TDMA synchronization reference
TsRxOffset Time between timeslot start and reception activation
TsRxWait Minimum time to wait for a packet

TsTxAckDelay ACK generatiom time
TsAck ACK transmission time

Source – HCF (2008a, p. 47).

The minimum size of these tables is shown in Table 3, and specifies the minimum number of
data structures that a device should be able to support.

2.4.2.2.5 Frame types

The data layer of the link layer is also known as the Data-Link Protocol Data Unit
(DLPDU). Advertise DLPDUs are used to disseminate network information to devices that want
to join. ACK is used to confirm packet reception. Data DLPDUs are used to send application
layer information. Keep-Alive (KA) DLPDUs are used for the devices to verify the conditions
of the connection with linked neighbors and for synchronization. Disconnect DLPDUs indicate
when a device is leaving the network.
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Table 3 – Memory Requirements for Data-Link Layer Tables.

Table Minimum number
Neighbors 32

Superframes 16
Links 64

Graphs 32
Graphs-neighbors 128
Message Buffers 16

Source – HCF (2008a, p. 47).

2.4.2.3 Network layer

The network layer provides functionality for reliable end-to-end communications be-
tween network devices. All devices must be able to forward messages on behalf of other devices.

WH networks can be constructed with different topologies. The protocol is flexible
and allows the combination of star and multi-hop topologies in the same network (ZAND et
al., 2014b). A star topology, with the AP positioned in the center of the network, allows high-
performance applications with low latency. A multi-hop topology can be used when large areas
must be covered, and low latency is not a concern.

There are four types of routing available in the protocol: Graph, superframe, source, and
proxy. The standard does not specify algorithms for constructing routes. The only recommenda-
tion is that redundancy of paths should be available in the routes used (HAN et al., 2011). The
network layer header of a message contains information about the routing mechanism to be used.

2.4.2.3.1 Graph routing

Graphs consist of a collection of paths that can be used to route a package from its source
to the destination. To send a message the source device adds the graph ID to be used in the
network layer header. The NM must configure devices on the destination path with information
that specifies the neighbors to forward the packet with a given ID.

Figure 8 depicts the concept of graph routing. On the left, two graphs used by device 1
to send messages to device 6 (graph ID = 1) and to device 4 (graph ID = 2). On the right side,
the neighbors configured in device 2 for the graph ID = 1 are shown.

As shown in Figure 8, this type of graph allows path redundancy, since more than one
neighbor can be configured for sending messages to a destination node. At most, four neighbors
can be used as next-hop for the message. Devices transmit packets using the first available link
with any of the next neighbors, on any of the superframes. A representation of the typical graphs
used was presented in Figure 3.
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Figure 8 – Graph IDs and neighbors configured in node 2 for a given Graph ID.
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2.4.2.3.2 Superframe routing

Superframe routing is a special case of graph routing. Packets are designed to be sent by
the device on any available link within a specific superframe. All existing links in a superframe
must form a path that reaches the destination node. Figure 9 depicts an example of an uplink
graph and the links configured in the superframe.

Figure 9 – Superframe routing example.
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When superframe routing is used, the superframe ID is placed in the network layer
header of the message. Superframe IDs have values different from those used for graph IDs.

2.4.2.3.3 Source routing

In this type of routing, the source device adds to the message header an ordered list of
up to eight nodes through which the packet is routed. Each intermediate device reads the list
to identify the next neighbor. Figure 10 depicts two possible source routes between devices 1
and 7. Routing by source provides a non-redundant path for sending the message. If one of the
connections between the neighbor list is no longer available, the message is lost. This type of
routing is mostly used by NM, which knows the complete topology of the network, to send
configuration commands. Like graphs routing, source routing uses the first available link in any
of the superframes. It is not used for process data.
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Figure 10 – Source routing.
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2.4.2.3.4 Proxy routing

This type of routing is only used when a device is joining the network. Another device,
already in the network, is called proxy and has the function of mediating the communications
between NM and a joining node.

2.4.2.3.5 Network tables

The devices maintain several tables at the network layer, which are also used in the
transport layer. Session tables manage the security of the communications. Transport tables allow
nodes to ensure message delivery. Route tables indicate the graphs and superframe IDs to be
used for communication. Source tables contain the list of intermediate nodes that should be used
when source routing is used. Service tables associate services with the routes for sending data,
such as process variables. The minimum size of these tables, specified in the standard, is shown
in Table 4.

Table 4 – Memory requirements for the network layer tables.

Table Minimum number
Sessions 8
Neighbor 1 by session
Transport 2 by session

Routes 8
Source routes 2

Services 16
Source – HCF (2009, p. 66)
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2.4.2.3.6 Routing requirements for the NM

Some of the NM tasks and recommendations regarding routing and specified in the
standard are described below (HCF, 2008c, p. 117).

• NM keeps an updated internal representation of the topology of the network. This internal
representation is used to generate the routes;

• NM collects network statistics and neighbors information through periodic reports and
uses this information to choose between existing connections and make decisions about
the formation of new ones;

• NM constructs graph routes. Graph routing is ideal for process data like sending sensor
readings, reporting alarms, and sending commands to actuators;

• NM constructs a broadcast graph for all devices;

• NM constructs a downlink graph for each device;

• NM constructs source routes;

• NM avoids building routes with cycles.

The standard recommendands that there should be no cycles in the graphs, in order to
prevent messages from circulating indefinitely in the network. However, some routing algorithms
found in the literature insert cycles in the neighbors of the recipient in downlink graphs to
increase reliability (HAN et al., 2011), as can be seen in Figure 3.

2.4.2.3.7 Comparison between the routing methods provided in WirelessHART

A comparison of the graph, source and superframe routing is presented by Künzel (2012)
using four comparison criteria: traffic isolation; latency predictability; path redundancy; and
memory resource usage. Table 5 presents a comparative summary between the routing methods.

Table 5 – Comparison between the routing methods provided in the WirelessHART standard

Routing
method

Traffic
isolation

Latency
predictability

Path
redundancy

Resource
usage

Graph Low Low Yes Mean
Souce Low Low No Low

Superframe High High Yes High
Source – Adapted from Künzel (2012).
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One of the differences pointed out is that in the graph and source methods the packets
will use any link configured in the transmitter. Superframe routing can then be used to isolate
traffic from management messages and process variables by creating, for example, an exclusive
superframe for the flow of messages from devices to the gateway (sensor data) and from
devices to the NM (configuration and command responses). The same concept can be used to
communication from the gateway towards the devices (commands to the actuators) and from
NM to devices (configuration and commands) (KÜNZEL, 2012).

The predictability of the latency is higher in the superframe routing since the process data
traffic can be isolated in a superframe. The latency also depends on the number of links allocated
between neighbors. The more links allocated, the more opportunities for communication a device
will have. However, in networks with many devices, allocating too many links increases the
channel occupancy, leads to higher power consumption, and reduces the expansion capacity of
the network (KÜNZEL, 2012; CHEN; NIXON; MOK, 2010).

The redundancy is related to the reliability of communications, and is greater in graph
and superframe routing since several neighbors can be configured, whereas in the source routing
only one neighbor is used.

The utilization of memory resources of the devices in each routing method is analyzed
using Tables 3 and 4. Resource utilization is higher in superframe routing because devices have
a limited number of superframe entries in their memory, and more links must be allocated for
communications. Resource use for graph routing is smaller, since the nodes have more entries for
graphs and neighbor pairs in its memory, and a smaller number of links needs to be configured.
Finally, source routing has the lower resource utilization, considering that the source node sends
the list of nodes and that the NM must configure a small number of links between the list of
nodes in the path.

2.4.2.4 Transport layer

The transport layer has the function of ensuring that packets are successfully routed
between source and destination nodes. It also aggregates commands and multiple requests and
responses into a single packet. The protocol supports services with and without acknowledgment
of delivery. According to the standard, delivery confirmation services are used primarily in
management commands. Packages with process data are generated periodically and do not
require delivery confirmation.

2.4.2.5 Application layer

The application layer is based on commands, which are sent by the gateway or by the
field devices. Devices must support some of the native HART commands, and there are specific
commands for WH. Commands 768-1023 are used for network management and gateway
functions and can be classified into the following categories: management of superframes and
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links; management of graphs and source routing; management of bandwidth and services; status
reports, and device diagnostics (ZAND et al., 2014b).

Several commands defined in the protocol are relevant for use in configuring and defining
routes. Table 6 presents commands that provide relevant information to the definition of routes.
These commands can be classified in dynamic, when they are periodically sent to NM and can
change their parameters over time, or static when they do not change (characteristics of the
device, for example).

Table 6 – Application layer commands related to route definition

Command Feature Description Information Available
777 - Read
Wireless
Device

Capabilities

Static
Device

characteristics

Power source type, Received Signal
Level (RSL) sensitivity, maximum
number of neighbors, buffers sizes

and message interval
778 - Read
Battery Life

Dynamic Battery level Remaining battery in days

779 - Report
Device Health

Dynamic Device status
Power source status, packets sent
and received, data-link, network

and transport layer failure counters
780 - Report

Neighbor
Health List

Dynamic
Status of neighbors

with links
Neighbor’s RSL, packets sent,

received and failed

787 - Report
Neighbor

Signal Levels
Dynamic

Discovered
neighbors (without

links)
Neighbor’s RSL

788 - Alarm
Path Down

Dynamic
A neighbor

connection is
unavailable

Neighbor

789 - Alarm
Source Route

Failed
Dynamic Source routing failed Neighbor

790 - Alarm
Graph Route

Failed
Dynamic Graph routingfailed Graph ID

2.4.3 Single-box architecture for the gateway and the NM

The standard also presents possible implementations for the WH gateway. One of the
suggested implementations integrates gateway, AP, NM, and SM functionalities into single
hardware (single-box). Figure 11 presents the single-box architecture with its main elements.
This architecture is used in the WH simulator presented by Zand et al. (2014b).

A virtual gateway (implemented purely in software) has the function of interconnecting
all the other elements. It stores process data, events, and diagnostic data. It has connections with
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Figure 11 – Single-box architecture.
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one or more APs, through which the transmission and reception of messages from the wireless
network take place.

The virtual gateway has a connection to the NM, through which NM exchanges com-
mands to the wireless network. The NM stores topology, routing, scheduling, and diagnostic
data in its memory and has a connection with the SM to provide access to the keys used in the
encryption of the messages.

The server interface provides, through different automation protocols made available by
the manufacturer, access to the data of the sensors and actuators in the wireless network. Data
exchange between the interface and the gateway is done through HART commands or through
an Extensible Markup Language (XML) file.
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2.4.4 The tasks of the Network Manager

As mentioned before, protocols such as WirelessHART use centralized management,
where the NM is responsible for the overall configuration of the network. However, the WH
standard does not define a specific algorithm or sequence of tasks for management. In general,
management routines are performed when the network topology changes (whenever a node joins
or leaves the network or a path down alarm occurs), when a node requests a service to the NM,
or periodically, to optimize the use of network resources. In the works of Han et al. (2011) and
Zand et al. (2014b), the network management routines follow the steps shown in Figure 12.

Figure 12 – Management routine of the NM according to Han et al. (2011), Zand et al. (2014b).
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Source – The author.

The current topology is used by the routing algorithms to build the different routes
and graphs needed, which are then translated by the scheduler into links, superframes, and
graphs. Finally, the routes and schedules are converted into a sequence of commands sent to
the nodes to update the network configuration (SHA et al., 2017; HAN et al., 2011). Sending
these commands causes a communication overhead. NM reduces this overhead by comparing the
old and new routes and schedules and by updating the changes only. To ensure path availability
during reconfiguration, the new routes and schedules are first configured, and only then the old
ones are removed (ZAND et al., 2014b).
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2.5 THE WIRELESSHART SIMULATORS

This section present the WirelessHART simulators that have been developed over the
past years to evaluate the performance and the applicability of the standard. The simulators were
divided into subsections by frameworks and platforms, highlighting the development details and
the limitations of each simulator.

In general, these simulators have a partial implementation, focusing on the physical and
data-link layer to evaluate energy consumption, medium access control and synchronization.
Other simulators have a complete implementation of the WirelessHART stack, allowing studies
related to routing and scheduling, data transmission, security, protocol improvements and appli-
cations. To the best of our knowledge, the implementation developed by Zand et al. (2014b) over
the NS-2 is the most complete approach, in terms of stack implementation.

2.5.1 Simulators using the COOJA framework

The work of Konovalov (2010) makes use of the discrete event-oriented operating system
Contiki (DUNKELS; GRONVALL; VOIGT, 2004) and the COOJA simulation framework
(OSTERLIND et al., 2006). It creates a hybrid simulation tool, which allows simulating a
network with several WH devices, while real WH devices can communicate with the simulated
devices. The COOJA simulator was installed on a computer to simulate some nodes and a
bridge device operating on the physical and link layer of the WH was developed to interface the
simulator and the real devices. In the bridge, Contiki was used to reach the timing requirements
of the WH. A commercial NM was used with the simulator and the actual devices to validate the
system.

2.5.2 Simulators using the OPNET framework

The OPNET simulator (CHANG, 1999) was used for the development of the simulation
platform proposed in Gao, Zhang and Li (2012). Authors implemented the MAC mechanisms
to evaluate performance, resource allocation, and scheduling. A comparison with the ZigBee
standard was made to analyze the platform feasibility. Another work that uses OPNET is
presented in Wang and Barac (2013). It implements the MAC layer and proposes an improvement
in the standard through the use of the Carrier Sense Multiple Access - Collision Avoidance
(CSMA/CA) mechanism in some shared slots.

2.5.3 Simulators using the Network Simulator 2 and 3 frameworks

The Network Simulator 2 (NS-2) is an open source framework environment for simulating
discrete events for networks (MAHRENHOLZ; IVANOV, 2004). This simulator uses C++ for
programming the protocols, and the Object-Oriented Tool Command Language (OTCL) to
configure static and dynamic parameters of the simulation scenario.
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Zand et al. (2014b) implement the complete WirelessHART stack in NS-2. It is possible
to build a complete topology with NM, APs, and nodes. This simulator allows the collection of
files and reports containing information about the nodes like energy consumption, neighbors
list, connection list, latency, graphs, among others. The Han algorithms (routing and scheduling)
are implemented in the NM. The simulator was validated through comparison with a real WH
network, where authors evaluated different network parameters over time, such as transmission
failure rates, RSL in some links and command response times. The implementation does not have
realistic models of power consumption and transmission errors (NOBRE; SILVA; GUEDES,
2014). Authors in (BAYOU et al., 2015) also mention that the Zand simulator does not have a
proper implementation of the security layer.

The Network Simulator 3 (NS-3) is an evolution of the NS-2. It was used by Nobre, Silva
and Guedes (2015a) to develop a WH physical layer module. According to the authors, NS-3 has
better scalability, memory management, documentation, and simulation-time performance when
compared to NS-2. The developed physical layer module includes the Gilbert/Elliot transmission
error model along with a signal attenuation model, battery consumption model, and a node
positioning tool. The module was validated through simulation with different WH topologies.
Routing and scheduling were statically configured in the experiments.

2.5.4 Simulators using the OMNET++ framework

The OMNET++ environment (VARGA; HORNIG, 2008) was used as the basis for
several WH simulators. In Liu et al. (2016), the stack was partially implemented to integrate
the network with a control system, allowing the study of the interactions between these two
components and the evaluation of the system performance during design. In Bayou et al. (2015),
authors partially implements the stack to investigate the security mechanisms used in the standard.
Authors in Ferrari et al. (2013) develop a tool that combines OMNET++ with the MATLAB’s
TrueTime library (HENRIKSSON; CERVIN; ÅRZÉN, 2003), allowing the simulation of control
systems using WH. The tool was used to analyze the performance of a control system and the
coexistence with other wireless networks.
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3 ROUTING AND REINFORCEMENT
LEARNING IN IWSN

This chapter presents the analysis of the state of the art in the subjects of graph routing
algorithms and RL approaches for routing in wireless networks. Each section of this chapter
analyses one subject. The analysis is conducted in the following sequence: Initially, the main
criteria used to define the pertinence of the works are described. Then, a description of each work
is presented. A comparison is made by observing the main characteristics of each one. Finally,
open aspects and possible contributions to the subjects are identified.

3.1 ROUTING IN IWSN

This section presents an analysis of the works related to reliable routing in IWSN, em-
phasizing those related to the WirelessHART and ISA SP100.11a protocols. The WirelessHART
standard suggests that there may be path redundancy in the routes, making the network more
reliable (CHEN; NIXON; MOK, 2010). The works considered in this analysis are mostly those
that construct graphs or routes with redundant paths. In section 3.1.1, a comparison of the works
is made observing the criteria used in the construction of routes, types of routes created, metrics
used, experiments and validation forms used. Section 3.1.2 presents the considerations about the
algorithms and identifies possible contributions.

Jindong, Zhenjun and Yaopei (2009) present the Exhenced Least-Hop First Routing
(ELHFR) algorithm, which receives as input the topology graph and builds an uplink graph. A
Breadth-First Tree (BFS) algorithm is used to find a tree that has the smallest path for each node
to the gateway. BFS is also using to assign a level for each node, where the number of hops from
the gateway is identified. Subgraphs with redundancy are generated using the smallest paths
from a node to a destination. RSL information is used to choose connections.

Han et al. (2011) present algorithms for the construction of reliable broadcast, uplink
and downlink graphs, and a scheduling algorithm for those graphs. According to Nobre, Silva
and Guedes (2015b), it is one of the most relevant works for the WH protocol. The algorithms
are of the greedy type, where each graph is constructed iteratively. At each iteration, a node in
the topology is selected and added to the resulting graph, along with connections to its neighbors.
The average number of hops from the gateway is used to choose nodes and connections. This
criterion, also known as degree, reduces the number of hops between the gateway and devices,
thus reducing the latency and the use of communication resources. Figure 3 presents examples
of the graphs constructed by the Han algorithms. The routing algorithms are evaluated using
criteria such as the number of reliable nodes and graph construction success rates. Subsequent
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works such as Künzel (2012), Zand et al. (2014b), Wu et al. (2016), Cainelli, Künzel and Pereira
(2017), Künzel et al. (2018) and Madduma-Bandarage (2020) use the Han algorithms in the
comparisons.

Künzel (2012) proposes an environment for the evaluation of graph routing algorithms.
Graphs are evaluated based on the connections and node characteristics. Topologies can be
captured from an operational network or created in the environment. The author analyses the
Han algorithms and identifies that in denser networks (with many devices), the algorithm causes
an imbalance in the network, concentrating routing in a few devices. This concentration is not
suitable for practical applications since the devices have memory and energy limitations. The
Han algorithm is adapted to use a cost equation with weights that consider characteristics such
as the power source of the devices, the distance from the gateway and the current number of
neighbors in the graph.

Memon and Hong (2013) propose a load-balanced routing algorithm, splitting the routing
responsibility between nodes and increasing network lifetime while maintaining path redundancy
and a reduced number of hops. Routing is done through a division of the network topology into
levels related to the distance from the gateway. With the level information, uplink, downlink,
and broadcast graphs are built through the connection of devices of different levels. An equation
defines the value of the routing responsibility of each device.

The Joint Routing Algorithm for Maximizing Network Lifetime (JRMLR) is presented
by Zhang, Yan and Ma (2013) to maximize the lifetime of a WH network. An exponent-weighted
cost function uses the energy consumption of a single transmission, the communication load
factor of the nodes, and the destination’s residual energy to choose routes. The best route to a
node is the one in which the communication load and transmission power are minimal and the
residual energy is maximum (NOBRE; SILVA; GUEDES, 2015a). The algorithm is implemented
in a MATLAB simulator and then compared to the ELHFR.

The Re-Add algorithm, proposed by Zhang et al. (2014), is similar to JRMLR. The
algorithm defines a priority for each link, using criteria such as link quality, residual energy and
level differences between devices. A moving average estimator is used to define the quality of
the link. Through a judgment matrix, weights are assigned to each criterion to determine the
priority given to each link. The highest priority links are added to the graph. The performance is
compared with the Han algorithms and JRMLR.

Wu et al. (2015) propose a real-time routing method for Wireless Sensor and Actuator
Networks (WSAN) when there are conflicts between the transmissions (data flows). Conflicts
between the transmissions that share a common router device contribute significantly to the
communication delays in networks such as WH. By incorporating the conflicts in the routing
decisions, a WSAN can support a greater number of real-time flows and to fulfill its deadlines.
The source routing method is used in this work. The validation of the algorithms is based
on simulations and practical experiments that use a TDMA protocol on the physical layer of
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802.15.4. The work analyses parameters such as latency and acceptance rate, of greater relevance
in the scheduling.

In the work of Wu et al. (2016), the authors formulate the problem of the maximization
of the network lifetime using routing by graphs taking into account aspects of the scheduling
and the flows of information. Three solutions are presented: an optimal solution based on integer
programming; a relaxed approach using linear programming; and another with greedy heuristics.
The heuristic solution builds the graph with the lowest normalized load, which is calculated
based on the expected energy consumption rate divided by the initial capacity of the battery in
each device. The main idea is to allow devices with higher battery capacity to carry more traffic
when using graph routing. The authors mention that the approach with linear programming is
complex and takes a long time to execute, which makes it unsuitable for practical applications.

Hong et al. (2015) propose an Energy-Balancing Graph-Routing (EBGR) algorithm that
achieves longer network lifetimes by graph reshaping. The algorithm uses BFS to divide the
WH network into levels and then uses a graph reshaping algorithm to redistribute the energy
consumption to nodes with smaller routing responsibility.

A Multipath Routing Algorithm (MPAR) is proposed by Sepulcre, Gozalvez and Coll-
Perales (2016). It identifies redundant routes that are needed to satisfy the end-to-end reliability
and the latency of an application. MPAR uses probabilistic estimates of reliability and latency
to guarantee the Quality of Service (QoS). Three types of routes are built: Routes that may
have nodes and links in common; without links in common; and without nodes in common.
The paper also mentions the need to change the WH standard so a message can be transmitted
simultaneously to different neighbors. The approach was compared with other protocols with
single and multiple paths and with a WH-based protocol.

The work of Cainelli, Künzel and Pereira (2017) adapts the broadcast algorithms of
Künzel (2012) and Han et al. (2011) to build graphs using four characteristics: power type of
devices, RSL, distance from the gateway, and the number of neighbors. A cost equation with
weights adjusts the relevance of each parameter used in the graph construction. It is possible to
prioritize the construction of graphs with the following characteristics: reduction of the routing
function in battery-powered nodes, which increases the network lifetime; higher RSL between
neighbors, which reduces possible transmission errors; smaller distance in of hops between
gateway and device, which reduces latency and communication resources usage; and network
balance, distributing the communication load between the devices. Different sets of weight
values are evaluated on static topologies containing battery-powered and line-powered devices
using the simulation tool of Künzel (2012).

Han, Ma and Chen (2019) present the EBREC algorithm. The BFS algorithm is used to
define a network hierarchy, then the routing path is generated according to the energy consump-
tion of each layer. Using criteria as the minimum hops and redundancy of paths, it balances the
energy consumption of the whole network, prolonging the lifetime.
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The work of Madduma-Bandarage (2020) present a routing and scheduling algorithm to
improve the performance of IWSN. The Frame Level Optimized Reliable Graph (FLO-RG) is a
graph-routing algorithm based on the approach for lifetime optimization in IWSN of Herrmann
and Messier (2018). The FLOR-RG consists of primary path and backup paths. A MAC protocol
is introduced to reduce the wasted energy in idle listening in backup slots. A petroleum refinery
wireless sensor network model complying with WirelessHART/ ISA100.11a industrial standards
is simulated using the Network Simulator 3 (NS-3) package to evaluate the proposed FLO-RG
algorithm.

3.1.1 Algorithm comparison

A classification of the state-of-the art routing algorithms is made by Nobre, Silva and
Guedes (2015b) with the following criteria: routing construction objectives; route definition
criteria; constructed routes and graphs (downlink, uplink and broadcast); use of historical
information (packet transmission statistics); and ways of implementation, presentation and
validation of the algorithms. The authors pointed out that the (HAN et al., 2011) algorithms
were the most complete, considering the evaluated aspects. This affirmation is reinforced by the
number of citations of the paper in recent works.

To complement the analysis in this thesis, other characteristics were included in this
comparison, which are described below:

a) Primary path: if the routing algorithm defines a primary path for each node, that is, the
one by which a node will make the first attempt to send a packet, and what is the criterion
for this choice. This feature is important because some scheduling algorithms use this
information to allocate more links in the primary path;

b) Implementation on an industrial protocol: whether the algorithm was implemented in
a simulation environment or in a real network that has the complete stack of an IWSN
protocol. This feature is relevant because it indicates if the results of the experiments were
obtained in a IWSN protocol;

c) Parameters and scenarios used: parameters such as area, number of devices, network
layout, power characteristics of devices, communication range, among others used in the
evaluation;

d) Performance metrics evaluated: information collected regarding the performance of the
algorithms, such as latency, packet loss, network lifetime, reliability, energy consumption,
among others.

Table 7 presents the comparison of the algorithms concerning their constructed routes
and graphs, route construction objectives, route definition criteria, use of historical data and
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the definition of a primary path for each node. It is observed that most of the works do not
implement all the graphs suggested in the WH standard. Most algorithms aim to increase the
network lifetime, since the use of battery-powered devices in predominant in IWSNs. The main
route definition criterion uses the degree (distance in hops) from the gateway, because this metric
reduces latency and the use of communication resources. Besides, some of the works define
weights in equations that will determine the cost of each neighbor or route chosen. These weights
are defined off-line, before running the simulations. Only one work presents an approach to
adjust the weights automatically. Historical data such as link quality and packet delivery rates
are used in three works. Finally, many works define the existence of a primary path.

Table 7 – Graphs, objectives and criteria used in the routing algorithms

Algorithm Routes Objectives
Construction

criteria
Historical

data
Primary

path
(JINDONG;
ZHENJUN;

YAOPEI, 2009)

Uplink,
downlink

Redundancy Degree No
Highest

RSL

(HAN et al.,
2011)

Uplink,
downlink,
broadcast

Lifetime,
resource

usage
Degree No

Lowest
Degree

(KÜNZEL,
2012)

Uplink,
broadcast

Lifetime,
load balance

Degree, power
source, load

No
Lowest

Cost

(MEMON;
HONG, 2013)

Uplink,
downlink,
broadcast

Lifetime Degree, load No No

(ZHANG;
YAN; MA,

2013)
Uplink Lifetime

Residual energy,
transmission

energy and traffic
load

Yes
Lowest

Cost

(ZHANG et al.,
2014)

Uplink
Lifetime,

robustness

Residual energy,
transmission

energy, degree
No

Highest
flow

priority
(WU et al.,

2015)
Source

Real time re-
quirements

Conflict delays in
the flows

No No

(WU et al.,
2016)

Uplink,
downlink

Lifetime
Battery

consumption rate
No

Highest
flow

priority
(HONG et al.,

2015)
Uplink Lifetime Traffic load No Load

(SEPULCRE;
GOZALVEZ;

COLL-
PERALES,

2016)

Source,
downlink

QoS
Latency, packet
delivery ratio

Yes
Lowest
latency
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Table 7 - continued

Algorithm Routes Objectives
Construction

criteria
Historical

data
Primary

path
(CAINELLI;
KÜNZEL;
PEREIRA,

2017)

Broadcast
Lifetime,

transmission
errors

Degree, power
source, load, RSL

No
Lowest

cost

(HAN; MA;
CHEN, 2019)

Uplink Lifetime
Residual energy,

RSL, degree
No

Highest
energy

(MADDUMA-
BANDARAGE,

2020)
Uplink Lifetime

Packet reception
ratio, expected

energy
consumption,

normalized load

Yes

Lowest
degree, bit
and level
optimiza-

tion

Table 8 presents characteristics about the presentation, validation and implementation of
the algorithms. The algorithms are all implemented in simulation environments and only two
works presenting experiments using a TDMA protocol on the data-link layer of the 802.15.4
stack. The Han et al. (2011) algorithm was implemented in the Zand et al. (2014b) simulation
environment over the WH stack. The experiments.

Table 8 – Presentation, validation and implementation of the routing algorithms

Algorithm Presentation Validation
Implementation in
an IWSN protocol

(JINDONG;
ZHENJUN;

YAOPEI, 2009)
Textual description

Simulation in
OMNET++

No

(HAN et al., 2011) Pseudocode Own simulator
WH in (ZAND et al.,

2014b)
(KÜNZEL, 2012) Pseudocode Own simulator No

(MEMON; HONG,
2013)

Fluxogram Own simulator No

(ZHANG; YAN;
MA, 2013)

Textual description Author’s simulator No

(ZHANG et al.,
2014)

Textual description Author’s simulator No

(WU et al., 2015) Pseudocode
Own simulator and real

experiment
No

(WU et al., 2016) Pseudocode
Own simulator and real

experiment
No

(HONG et al.,
2015)

Textual description,
fluxogram

Simulation in
MATLAB

No
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Table 8 - continued

Algorithm Presentation Validation
Implementation in
an IWSN protocol

(SEPULCRE;
GOZALVEZ;

COLL-PERALES,
2016)

Fluxogram
Simulation in

MATLAB
No

(CAINELLI;
KÜNZEL;

PEREIRA, 2017)
Textual description Künzel (2012) tool No

(HAN; MA;
CHEN, 2019)

Pseudocode
Simulation in
MATLAB tool

No

(MADDUMA-
BANDARAGE,

2020)

Pseudocode,
fluxogram

Simulation in NS-3
Yes

Table 9 presents the main parameters of the scenarios used for validation, as well as the
performance metrics used in the analyses. All works use from 0 to 300 devices. The arrangement
of the devices is generally random, and the communication range is defined by a distance in
meters, or by a signal strength threshold. For the latter case, it is used a propagation model with
specific parameters (not presented in this comparative table). The performance metrics evaluated
are latency, network lifetime, packet delivery ratio, reliability and average characteristics of the
generated graphs. Most of the works present the performance results using an average of several
experiments or simulations.

Table 9 – Main parameters and performance metrics used for performance evalu-
ation of the routing algorithms

Algorithm Parameters Performance metrics
(JINDONG;
ZHENJUN;

YAOPEI,
2009)

Area: 1000 x 600 m; Communication
range: 200 m; Nodes: 0 - 300; Node

position: random
Latency; packet loss; bandwidth

(HAN et al.,
2011)

Area: 450 x 450 m; Communication
range: 25 - 200 m; Nodes: 50 - 150;
Node position: random; Failed links:

0 - 95 %

Rate of successful route
construction; Percentage of reliable
nodes; Broadcast graphs: average
number of links per node, number

of connected nodes; Downlink
graphs: average number of links
and nodes per graph; Latency.
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Table 9 - continued
Algorithm Parameters Performance metrics

(KÜNZEL,
2012)

Area: 450 x 450 m; Communication
range: 100 m; Nodes: 150;

Battery-powered nodes: 50 %;
Gateway position: center.; Node

position: random

Average and maximum number of
hops of the graph; Percentage of

reliable nodes in the graph; Distant
nodes (greater than 4 hops);
Percentage of routing nodes;

Percentage of routing
battery-powered nodes.

(MEMON;
HONG, 2013)

Area: 250 x 250 m; Communication
range: 50 m; Nodes: 100; Node

position: uniform; Simulation time:
First battery-powered node down.

Energy consumption per node.

(ZHANG;
YAN; MA,

2013)

Area: 200 x 200 m; Nodes: 30 - 100;
Gateway position: top left corner.

Network lifetime; Average
transmission power.

(ZHANG et
al., 2014)

Area: 450 x 450 m; Communication
range: 100 m; Nodes: 50 - 150.

Number of edges; Number of
success transmissions; Average

residual energy; Latency; Packet
loss ratio.

(WU et al.,
2015)

Area: Building floor; Nodes: 63;
APs: 2; Channel number: 4, 8, 12, 16

(simulations), 8 (experiments).

Latency max. and min.; Accept
ratio.

(WU et al.,
2016)

Area: Building floor; Nodes: 63;
APs: 2; Channel number: 4, 8, 12, 16

(simulations), 8 (experiments).
Network lifetime; Delivery rate.

(HONG et al.,
2015)

Area: 150 x 150 m; Communication
range: 50 m;

Energy consumption; Network
lifetime.

(SEPULCRE;
GOZALVEZ;

COLL-
PERALES,

2016)

Area: 200 x 200 m; Nodes: 50 - 150;
Node position: random;

End-to-end reliability; Latency;
Number of redundant routes to

reach the desired reliability.

(CAINELLI;
KÜNZEL;
PEREIRA,

2017)

Area: 450 x 450 m; Communication
range: 100 m; Nodes: 150;

Battery-powered nodes: 50 %;
Gateway position: center.

Average and maximum number of
hops of the graph; Percentage of

reliable nodes in the graph; Distant
nodes (greater than 4 hops);
Percentage of routing nodes;

Percentage of routing
battery-powered nodes; Average

network RSL.
(HAN; MA;

CHEN, 2019)
Area: 300 x 300 m; Communication

range: 100 m; Nodes: 40-130;
Network lifetime; Remaining

energy.
(MADDUMA-
BANDARAGE,

2020)

Area: 84 - 276 m; Channel number:
1; Nodes: 25 - 50; Battery-powered

nodes: 100 %

Average latency; Network lifetime;
Energy consumption; Average hops;

Reliability; Reachability.
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3.1.2 Contributions identified

The following items indicate possible contributions and future works in the area of
routing for IWSN:

a) The implementation and evaluation of the state-of-the-art algorithms in a simulation
environment that has the whole stack of a standard IWSN protocol, to make experiments
and comparisons in similar conditions;

b) To define scenarios (benchmarks) that may represent common applications of IWSN,
allowing further works to have a baseline for comparisons. Examples of scenarios are, for
example, open areas, offices, and factory floors;

c) The use of data collected over time in a real network to feed a simulated scenario. Data
collection could be done, for example, using the passive monitoring tool presented in
Künzel (2012). Health reports sent by the devices could be used to access characteristics
such as RSL and the packet delivery ration over time, and use this data to feed the
simulation;

d) The development of NM architectures that allow the implementation of the state-of-the-art
algorithms and the performance comparison;

e) As indicated in the work of Nobre, Silva and Guedes (2015b), to dynamically execute
weight adjustments of the routing algorithms dynamically, through heuristics or other
methods;

f) To use ML models to create and optimize routes according to the demands of the appli-
cation. These methods can be used to adjust the weights of the routing algorithms or to
choose the routes and neighbors.

3.2 RL APPLIED TO ROUTING IN WIRELESS NETWORKS

This section presents an analysis of works related to the construction of routes using
RL. Relevant works were found for WSN, mobile ad-hoc wireless networks, underwater sensor
networks, among others. Section 3.2.1 presents a comparison of the works according to their
characteristics, and section 3.2.2 identifies possible contributions in the area.

Al-Rawi, Ng and Yau (2015) review the use of routing RL models in ad-hoc wireless
networks, WSNs, cognitive networks, and delay-tolerant networks. Three models relevant to
routing in wireless networks are described: Q-routing, Multi-Agent Reinforcement Learning
(MARL) and Partial Observable Markow Decision Process (POMDP). In Q-routing, states
represent the destination node, while actions represent the next-hop neighbor to forward the
message towards the destination. MARL provides global optimization across the network. Agents
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learn local information using the traditional RL model and share their rewards with neighbors.
It allows nodes to consider their own performance and also of the other nodes. In this way, a
global optimization problem is decomposed into a set of locally-solved problems. The POMDP
model extends both Q-routing and MARL. In POMDP, a node may not be able to clearly observe
its environment. As the state is unknown, the node can estimate the state by incorporating, for
example, neighbor parameters such as residual energy, congestion level, and others.

Ye, Zhang and Yang (2015) present a multiagent framework that aims to improve WSN
performance regardless of the protocol used. A two-layer architecture is proposed: the first layer
represents the complete topology of the network, while the second layer represents a cooperation
network between agents, as shown in Figure 13. Each device has an agent who, using local
information, decides on the best routes for their messages. Each node in the network builds
a cooperation group with some of its neighbors based on their characteristics and the routing
transmissions experienced over time with its group.

Figure 13 – Two-layer architecture. Network topology and agent cooperation network.

Source – Ye, Zhang and Yang (2015).

The relationships between the agents and their cooperation group are defined considering:
the energy consumption, related to the distance and the size of packets being transmitted; storage
consumption, related to the quantity and the time that the messages are stored in the transmission
buffers and the number of neighbors cooperating; and sensing coverage, which relates the area
covered by the sensors to the total area of interest. With these metrics, the authors sought to
address the three types of routing approaches mentioned above in a single framework. Agents
exchange information and calculate a reward for cooperation. Therefore, each agent is able
to decide with which neighbors it cooperates and to which ones it should forward its packets.
Different weights can be applied to the three performance metrics, depending on the application.
A Q-Learning algorithm with ε-greedy exploration was used in the decision-making of the agents.
The use of this learning algorithm allows agents to explore other possibilities for cooperation
beyond those that only maximize their reward. The framework was implemented in a simulator
developed by the authors in Java language. The performance was compared with traditional
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algorithms for each type of routing approach in two scenarios: a static topology, where all devices
are already in the topology and do not move; and a dynamic topology, where devices may join
and move over time. The comparison evaluated the changes over time in communications latency,
packet delivery rate, number of active nodes and total network coverage.

Kiani et al. (2015) propose a protocol that uses RL in WSN to reduce the energy
consumption, balance the load and reduce latency. The learning and the route definition are
carried out simultaneously in order to reduce the wasted energy in the learning phase, and
consequently the communication overhead. Devices close to the AP are grouped into small
clusters, as shown in Figure 14, reducing the power consumption on nearby devices when
compared to a division into equal-size clusters. The cluster heads are chosen using Q-Learning,
where Q-values are determined from an equation that balances the residual energy and the
distance from the AP, and the nodes exchange information to know their costs and rewards.
The simulations show an increase in packet delivery and lifetime compared to other traditional
routing algorithms for WSN.

Figure 14 – Cluster divisions used in Kiani et al. (2015).

Source – Kiani et al. (2015).

In Debowski, Spachos and Areibi (2016) a routing protocol for WSN based on gradients
using Q-Learning is presented. The rewards at each node are calculated by taking into account
the average number of transmissions performed between a node and the base station as well
as the residual energy. Each node maintains a Q-value for itself and sends it to its neighbors.
When deciding a neighbor to forward a packet, a node will choose the neighbor that will bring
the highest Q-value to itself. Compared with other protocols based on gradients, it was possible
to reduce the latency in the communications and increase the network lifetime.

A multiagent Q-Learning-assisted backpressure routing algorithm is presented in Gao
et al. (2017). Each node has multiple Q-Learning agents, and each agent continually updates
its estimates of route congestion using queue length and congestion information from neighbor
nodes. Based on the estimated congestion, each node routes packets through less-congested routes.
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As the main advantages of this approach, the authors mention the distributed implementation,
low complexity of computation, and optimization of transfer rates.

In Ghaffari (2017), Q-Learning is used in Mobile Ad-Hoc Networks (MANET). MANET
consist of a set of mobile nodes, and the routes used for packet transmission are not static. RL is
used to predict the node behavior and reduce packet transmission delays. The states of the agents
are defined by the destination node, and the actions are defined from the division of the neighbors
into groups. The purpose of grouping nodes is to reduce the number of available actions. When
selecting actions, the agent first selects a group as a transmitter among the other available groups.
The reward is an estimate of the delay and packet transmission success rate that is obtained from
the nodes available in the group. After selecting a group that has the best performance in packet
transmission, the node with the lowest number of hops is selected as the next neighbor. In this
way, the probability of selecting a better performing node is improved. The results obtained in
simulation indicate that, over time, delays decrease and packet delivery rates increase.

In Jin et al. (2017), Q-Learning Based Delay-Aware Routing (QDAR) is proposed to
extend the lifespan and reduce latency in underwater sensor networks. When a node wants to
send a packet to the sink, it first sends a request to the sink to indicate the future transmission.
The sink device collects some information and plot a virtual topology between the source node
and the sink. The sink then applies the QDAR algorithm to choose the route and sends a virtual
packet through this route so that all intermediate nodes are aware of the future transmission. In
QDAR, each packet can be viewed as an agent, where states are mapped as the current node
where the packet is located, and the actions are the next neighbors to forward the message.
The reward is calculated in the sink through cost equations associated with the latency and
residual energy of the intermediate nodes, as well as the history of transmissions. The Q-table
is maintained in the sink and updated with each new transmission. The QDAR mechanism is
adaptive and can be distributed in the dynamic underwater environment.

Tozer, Mazzuchi and Sarkani (2017) use Q-Learning in problems where there are multiple
and conflicting objectives for the selection of paths and routes. The authors present an adaptation
to the Q-Learning model, known as Voting Q-Learning (VoQL). Q-value vectors store a value
for each objective. For a given state, all possible actions are identified as well as the Q-values
associated. These vectors are mapped from actions to objectives and then sorted from largest to
smallest, as shown in Figure 15. Through this transformation, it is possible to identify which
actions are most interesting to be taken for each objective. This information is then used with
different voting systems. In the experiments, a robot chooses a path inside an area and has five
conflicting objectives, which are presented in Table 10. The results indicate that all the voting
methods exceed the compared works in the quality of the solutions found, in the total reward
obtained and in the time to define the route.

An agent changes the value of the weight of the power source type of nodes in a cost
equation used to build a broadcast graph in (KÜNZEL et al., 2018). States store the current



Chapter 3. Routing and Reinforcement Learning in IWSN 56

Figure 15 – Transforming a Q-value vector to actions a1, ..., a4 and objectives O1, ..., O3.

Source – Tozer, Mazzuchi and Sarkani (2017).

weight, actions keep or change the state, and rewards are given only when the agent reduces
latency and increases lifetime. The use of actions that lead to the same state, and the given
rewards, increase the worst-case complexity of the RL problem and require more exploration
(KOENIG; SIMMONS, 1992). Also, link quality information is not used to define routes, the
simulations do not use an error model in the physical layer, and therefore do not provide proper
information about reliability.

In Lu et al. (2020), Q-learning is utilized in a new protocol for underwater sensor
networks to learn and adapt to the dynamic environment. Factors such as residual energy, empty
spaces and depth difference of sensor nodes are used to calculate the Q-value. The simulation
demonstrates that the approach improves the performance in terms of energy efficiency, packet
delivery ratio and average network overhead.

Surveys on RL routing approaches for networks and protocols were presented by Mam-
meri (2019) and Habib, Arafat and Moh (2019), but the centralized approaches described are not
related to IWSN and does not consider graph routing.

3.2.1 Comparison of RL approaches for routing in wireless networks

The works described were compared using the following criteria:

a) Centralized approach: if the work addresses the definition of routes in a centralized way,
where a single device is responsible to define the routes;

b) Route type: if the work uses graph routing, source routing or defines the next neighbor to
forward messages;

c) Reward exchange: if the nodes share information about their current rewards, Q-values or
Q-tables;

d) Rewards: the metrics used to calculate the rewards;

e) Performance metrics: information and statistics collected regarding the performance of the
approaches, such as latency, packet loss, packet delivery rates, network lifetime, power
consumption, rewards, among others.
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Table 10 – Comparison of RL applications in routing in wireless networks

Work
Centralized
approach

Route type
Reward

exchange
Rewards

Performance
metrics

(YE;
ZHANG;
YANG,
2015)

No Next hop Yes

Energy and
storage

consumption,
sensor coverage

Latency,
delivery ration,

number of
active nodes,
coverage area

(KIANI et
al., 2015)

No Next hop Yes
Residual energy,

degree

Lifetime,
delivery ratio,
latency, load

balance
(DEBOWSKI;
SPACHOS;

AREIBI,
2016)

No Next hop Yes
Residual energy
and transmission

number

Minimum
battery level,

average latency

(GAO et al.,
2017)

No Next hop No
Packet queue size,

neighbor
congestion levels

Latency

(GHAFFARI,
2017)

No
Next hop

(in a
group)

No
Latency, delivery

ratio

Average
latency,

delivery ratio

(JIN et al.,
2017)

Yes Next hop No
Average latency,
residual energy

Network
lifetime, total

energy
consumption,

average latency
(TOZER;

MAZ-
ZUCHI;

SARKANI,
2017)

Yes
Next

quadrant
(hop)

No

Distance, signal
loss, travel time,

energy used,
adversary
avoidance

Total rewards,
episode time

(KÜNZEL et
al., 2018)

Yes
Broadcast,

uplink
graph

No
Average network
latency, expected
network lifetime

Network
latency,
network
lifetime

(LU et al.,
2020)

No Next hop Yes
Residual energy,
voids and depth

Energy
consumption,

packet delivery,
delay, overhead

The comparison shows that most of the works are decentralized, where each node has
a learning agent responsible for choosing the routes to be used. Generally, states represent a
recipient and actions the next-hop neighbor. In the centralized approaches, the agent knows the
topology, chooses the routes, and distributes them to be used by the nodes. None of the works
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creates path-redundant graphs or routes. In some works, the agents share their Q-tables and
rewards with the neighbors, similar to the MARL approach. Regarding rewards, most of the
works reward agents when they reduce energy consumption, latency, and network congestion.
The performance metrics involve latency, network lifetime, packet delivery ratio, similar to the
works presented in section 3.1.

To the best of our knowledge, the current decentralized approaches are not suitable for
centralized IWSN, since they require nodes to choose routes independently. Also, the available
centralized approaches are used for other communication technologies or do not build uplink
graphs suitable for IWSN applications.

3.2.2 Contributions identified

The following contributions were identified for RL approaches for routing in IWSN:

a) To use of RL for the construction of uplink, broadcast and downlink graphs in a centralized
manner, allowing their application in IWSN protocols;

b) To develop approaches with RL that can build graphs with path redundancy, increasing
network reliability;

c) To develop RL approaches to adjust weights of the state-of-the-art routing algorithms;

d) To develop case studies that involve the evaluation of these approaches in IWSN protocols,
in applications such as process monitoring and control;

e) To discuss expected results, considerations that must me taken, reward, and the possible
limitations of RL approaches in a protocol such as WH;

f) To evaluate and compare the performance of these approaches with the state-of-the-art
routing algorithms presented in section 3.1.1.
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4 THE Q-LEARNING RELIABLE ROUT-
ING APPROACHES

The main contribution identified in the state-of-the-art analysis involves the development
of approaches to build reliable graphs in a centralized fashion using RL models such as Q-
Learning, trying to enhance or balance the IWSN performance. Other relevant contributions
are: the discussion of the aspects that impact the use of RL for graph routing in IWSN; the
comparison of these new approaches with the state-of-the-art graph routing algorithms; and the
use of a simulation environment that provides a complete IWSN protocol stack for performance
evaluation.

To give detailed information about how the contributions are achieved, this thesis is
divided into two chapters. This chapter details two novel routing algorithms. Section 4.1 presents
the scope, definitions and overall characteristics of the approaches developed. Sections 4.2
and 4.3 describe two algorithms to build the uplink graphs using Q-Learning. Section 4.4
discusses the use of the QLRR approaches in IWSN. Chapter 5 presents the improvements in
the WirelessHART simulator, simulation parameters and scenarios, details of the performance
evaluation methodology, and discussion of the results.

4.1 SCOPE AND DEFINITIONS

It is considered that in centralized IWSN protocols such as WH and ISA SP100.11a,
the management routines are executed as the sequence previously presented in Figure 12. The
NM runs the management routines when a node joins or leaves the network, when the topology
changes (based on reports and alarms sent by nodes), or periodically for optimization. The NM
maintains a complete representation of the network topology as well as information about the
network nodes and operation conditions (HAN et al., 2011; ZAND et al., 2014b)

The NM routines have four basic steps:

• to build the routes that will be used for data transmission based on the current network
topology;

• to build the data communication schedule;

• to compare the new routes and schedule with the ones currently being used in the network;

• and to send commands through the network to update routes and schedule.
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This thesis is focused on the construction of the uplink graph that will be used by nodes
to send sensor readings towards the gateway in IWSN monitoring applications. The approach
can be further developed for the construction of the broadcast and downlink graphs.

The proposed algorithms will be named Q-Learning Reliable Routing (QLRR). The
QLRR algorithms execute as a function that receives as input a graph G(V,E) that contains the
complete network topology. Set V contains the vertexes that represent the devices in the network
(gateway g, the set of access points VAP , and the nodes). Set E contains the edges representing
the connections available between devices.

Figure 16 depicts the QLRR data flow used to build the uplink graphs. Updated informa-
tion about the topology graph, nodes and neighbors, latency, lifetime and Q-Learning tables are
available to the QLRR algorithms.

Figure 16 – QLRR data flow used to build the uplink graph
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Source – The author.

At the end of the execution, QLRR returns the uplink graph GU(VU , EU), where VU is
the set of nodes added during the uplink graph construction, and EU is a subset of E with edges
connecting the nodes towards the gateway. QLRR is a greedy algorithm, which means that GU is
built iteratively. At each iteration, QLRR adds a node and the selected edges with neighbors to
GU , until VU = V .

The connection between g and VAP is considered wired and therefore not prone to
transmission failures (NOBRE; SILVA; GUEDES, 2015b). It is assumed that the graph G(V,E)
is connected, that is, all nodes have at least one edge with a neighbor. Nodes disconnected from
the topology must be removed fromG prior running the QLRR algorithms because they represent
devices that are still joining or are no longer available in the network. It is considered that the
network has a fixed topology during the operation, since IWSN topologies are typically planned
for each application.

As IWSN are subject to different conditions of the wireless channel, it is considered a
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general path loss model for RSL estimation and a packet loss probability associated with the
RSL. Nodes can inform the NM about poor connections with any linked neighbors through path
down alarms. NM permanently removes these connections from the network topology, and do
not allow the QLRR algorithms to use them anymore. The discussion of the use of other loss
models and the processing of path down alarms is beyond the scope of this thesis.

A percentage of nodes is considered to be powered by batteries, while the others are line
powered. Battery-powered nodes can estimate their battery lifetime, and they start the simulations
with the battery level at 100 %. It is considered that no nodes will be powered down during the
simulation because IWSN nodes typically use batteries that are intended to provide an expected
lifetime up to ten years (CHEN; NIXON; MOK, 2010).

The exploration phase of the QLRR algorithms starts at the beginning of each simulation
and ends after a given period of simulation time. During the exploration phase, the NM will
make several reconfigurations over the network. No exploration will occur during the last hours
of simulation, allowing the network to stabilize in a certain operation condition that will allow
the measurement of the performance metrics used for comparison.

A description of the main characteristics and objectives is made for each QLRR approach.
The execution sequence for the construction of GU , the mapping of the Q-Learning states and
actions and the rewards given to the learning agents are also presented.

4.1.1 Metrics used for performance evaluation

QLRR is evaluated considering three requirements of IWSN applications: low latency,
low energy consumption, and reliable communications (SHA et al., 2017; NOBRE; SILVA;
GUEDES, 2015b). They were chosen because they are the most relevant performance measure-
ments identified in the literature review when considering IWSN monitoring applications. The
metrics are described in the following subsections because of the necessity to explain some
details of the algorithms and rewards.

4.1.1.1 Average Network Latency (ANL)

The latency of a data packet is defined here as the time between the generation of a data
packet at the sensor’s Network Layer and the reception at the gateway’s Medium Access Control
layer (CHEN; NIXON; MOK, 2010).

To measure the Average Network Latency, the NM stores the latency of all data packets
received from all nodes at the gateway over the last time interval ts. The current ANL is denoted
by dt+1 and is obtained from the average value of the samples collected over ts. An array D is
used to store the last k measurements of d. The D array keeps a trace of the ANL over time and
can be used to give rewards based on the network’s historical information.
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The average latency of a specific node or agent v is calculated in the same way as the
ANL, but considering only the latency of the data packets sent by v to the gateway over ts. The
current average latency of v is denoted by dvt+1. An array Dv also keeps the last k measurements
of dv.

4.1.1.2 Expected Network Lifetime (ENL)

The Expected Network Lifetime is defined as the minimum expected lifetime value
between all battery-powered nodes (WU et al., 2016). For the measurement of the ENL, NM
periodically requests the current lifetime expectation of all battery-powered nodes. The current
ENL is denoted by lt+1, and NM stores in an array L the last k measurements of l.

The battery lifetime of a node is expected to reduce at each measurement because of the
energy consumption pattern of the nodes, but it is assumed that the battery life is reported through
an integer value that represents days and does not reduce significantly from one measurement to
another (HCF, 2008c).

4.1.1.3 Packet Delivery Ratio (PDR)

The Packet Delivery Ratio is defined as the ratio between all data packets generated at
the sensors and those effectively received at the gateway (WU et al., 2016). Packets may be
discarded at the MAC layer of a node after several retransmission retries from a node to the next
neighbor (ZAND et al., 2014b).

4.1.1.4 Percentage of Reliable Nodes (PRN)

The Percentage of Reliable Nodes is calculated as a ratio between the number of nodes
that have at least two neighbors to forward data on the uplink graph and the total number of
nodes on the uplink graph (HAN et al., 2011).

4.2 Q-LEARNING RELIABLE ROUTING WITH A WEIGHT-

ING AGENT

In this approach, called Q-Learning Reliable Routing with a Weighting Agent (QLRR-
WA), a single learning agent is used to adjust the set of weights of a state-of-the-art routing
algorithm that builds the uplink graph. The weights are related to a cost equation used to define
how nodes and successors will be selected during the uplink graph construction. The agent will
act globally, searching for a set of weights that optimizes the overall performance of the network.
The agent takes actions that increase or decrease the weights at each execution of the QLRR-WA
algorithm, measures the performance metrics and receives a reward.
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In Section 4.2.1, it is explained how GU is built and how the weights influence the
construction of the uplink graph. In Section 4.2.2 it is described how the Q-Learning model is
applied to adjust the weights.

4.2.1 QLRR-WA Uplink Graph Construction

QLRR-WA uses the routing algorithm in Künzel, Cainelli and Pereira (2017) as a
baseline, which is a greedy algorithm that builds reliable broadcast and uplink graphs. During
the uplink graph construction, nodes and edges with successors are iteratively added to GU and
selected through a cost equation. The pseudo-algorithm of QLRR-WA is presented in Algorithm
2. Further details of the execution sequence, pseudoalgorithm, and related equations can be
found in Han et al. (2011), Künzel, Cainelli and Pereira (2017).

Algorithm 2: Q-Learning Reliable Routing with a Weighting Agent
Input: G(V,E) // topology graph
Output: GU(VU , EU) // uplink graph

1 Calculate reward rt+1 according to Eq. 4.3
2 Update Qt+1(st, at) according to Eq. 2.1
3 Select action at+1 ∈ A using ε-greedy
4 Take action at+1, changing the weights according to the new state st+1

5 VU = g ∪ VAP and EU contains all edges from VAP to g.
6 while VU 6= V do
7 Find S ′ ⊆ V − VU : ∀v ∈ S ′, v has at least two outgoing edges to VU
8 if S ′ 6= ∅ then
9 forall v ∈ S ′ do

10 Store in Ev the outgoing edges to VU
11 Store in Uv the destination vertexes of Ev

12 Sort Uv according to Eq. 4.1
13 Choose ev,u1 and ev,u2 from Uv

14 hv = 1 +
hu1+hu2

2

15 end
16 Find v ∈ S ′ with smaller c according to Eq. 4.1
17 VU ⊆ VU ∪ v and EU ⊆ EU ∪ ev,u1 ∪ ev,u2

18 end
19 else
20 Find S ′′ ⊆ V − VU : ∀v ∈ S ′′, v has one outgoing edge to VU
21 forall v ∈ S ′′ do
22 hv = hu1 + 1
23 Determine nv, the number of ingoing edges from V − VU to v
24 end
25 Find v ∈ S ′′ with smaller cost according to Eq. 4.2.
26 VU ⊆ VU ∪ v and EU ⊆ EU ∪ ev,u1

27 end
28 end
29 Return GU
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In Line 5, g, VAP and the edges from the APs to the gateway are added to GU , as depicted
in Fig. 17a. The algorithm looks for candidate nodes in V − VU to be inserted in GU until all
nodes in V are added to VU in Line 6. The algorithm adds first nodes considered reliable, which
have at least two possible neighbors (successors) in GU , as exemplified in the sequence of Fig.
17b-17f. These reliable nodes are identified in Line 7. The cost c of the candidate nodes and their
possible successors are calculated using Equation 4.1.

Figure 17 – Construction sequence of GU in QLRR-WA.

(a) Initial GU (VU , EU )

G

A1 A2

(b) G(V,E) and a reliable candidate v

G

A1 A2

2

5

8

1

4

9

7

3

6

(c) Insertion of v and edges in GU (VU , EU )

G

A1 A2

2

(d) Candidates and edges on the 2nd iteration

G

A1 A2

2

5

8

1

4

9

7

3

6

(e) Insertion of the lowest cost node and edges
in GU (VU , EU ) in 2nd iteration

G

A1 A2

2
1

(f) Finished GU

G

A1 A2

2

5

8

1

4

9

7

3

6

Source – Adapted from Künzel, Cainelli and Pereira (2017).

The costs of the possible successors of a candidate node are calculated in Line 8. When
evaluating a successor, the parameters of Equation 4.1 are considered as follows. The average
number of hops h of a successor u is given by the average hops of its successors in GU plus 1
(HAN et al., 2011). hmax stores the largest value of h of all the successors of a candidate node. p
is a constant value that is associated with the energy source type of the successor. s is the RSL
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value of the edge between the candidate node and the successor. sd is a constant value which
gives a desirable level for the RSL. When all successors have their costs evaluated, they are
sorted and then the two lower-cost successors u1 and u2 are chosen for the candidate node in
Line 13. The average number of hops of node v is then calculated in Line 14.

c = wh
h

hmax

+ wpp+ wsmin

(
s

sd
− 1, 0

)
(4.1)

Then, the candidate nodes are evaluated to select one of them to be added to GU with the
edges to its selected successors as described in Line 16. For the evaluation of a candidate node v,
h is given by hv, hmax is the maximum number of hops of the candidate nodes, p is associated
with the energy source type of the node, and s is given by the average RSL of the edges with
its selected successors. The lowest cost candidate node is then added with the selected edges in
Line 17.

By changing the values of the weights wh, wp and ws, it is possible to define how
the topology and node characteristics will influence the costs and the connections established:
increasing wh will reduce the distance in hops from nodes to the gateway and thus the use of
communication resources (HAN et al., 2011); increasing wp will cause nodes to avoid forwarding
data to battery-powered nodes; increasing ws will make nodes connect to successors with greater
RSL, thus reducing the probability of packet transmission failures.

If a reliable candidate is not found, the algorithm then identifies the candidates with a
single successor towards the current GU in Line 20. The costs of the candidates are calculated us-
ing Equation 4.2, which will assign lower costs to candidates that do not have energy restrictions
and increase the probability of finding a higher number of reliable nodes in the next iteration. In
this equation, n is the number of edges that the nodes have with V − VU , which indicates how
many nodes may connect to the candidate in the next iteration. nmax is the highest value for n
for all candidates. p is the power restriction of the candidate.

c = wn

(
1− n

nmax

)
+ wpp (4.2)

By increasing the values of the weight wn, it is possible to choose candidates that will
have a greater number of connections with the nodes in V − VU . By increasing wp, battery-
powered candidates will be avoided, so as the use of battery-powered nodes to act as routers. In
this thesis, the weights of Equation 4.2 were fixed. The agent will focus only on adjusting the
weights of Equation 4.1.

4.2.2 Q-Learning and the Weighting Agent

A set of states was defined for the Q-Learning model, where each state has a fixed set of
values for wh, wp and ws, and wh + wp + ws = 1 on each state. Nw is the set of weights being
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used in the cost equation. For our approach, |Nw| = 3 because Nw = wh ∪ wp ∪ ws.

A weight factor 0 ≤ Wf ≤ 1 defines how much the value of the weights may change
from state to state and is given by Wf = 1

M
, where M is an integer number that represents

how many transitions between values each weight will have in the model. Actions represent the
increment or reduction of the weights from one state to another, but actions available in one state
allow transitions only for states where the values of the weights change at maximum ±Wf . Fig.
18 depicts an example of the states, actions, and weights when M = 4 and |Nw| = 3 and Table
11 presents the number of states and actions of the model for different values of M and |Nw|.

Figure 18 – Actions and states when M = 4, |Nw| = 3
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A higher value of M increases the possibility to find an optimal set of weights. However,
a lower value of M reduces the number of states and thus the exploration time, because it reduces
the number of iterations required for the learning process and the worst-case complexity of the
RL problem (KOENIG; SIMMONS, 1992). Another concern is that the costs of the candidates
will change abruptly from one state to another when M has a lower value, thus increasing the
number of changes in the connections in GU from one execution of QLRR-WA to another.
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Table 11 – Number of states and actions for different values of |Nw| and M .

|Nw| M Wf |S| |A|
2 2 0.50 3 2
2 3 0.33 4 2
2 4 0.25 5 2
3 2 0.50 6 6
3 3 0.33 10 6
3 4 0.25 15 6

Source – The author.

4.2.3 Reward calculation

Every time the QLRR-WA algorithm is executed, it first calculates the rewards in Line 1.
The rewards given to the agent in this approach have as main objectives to reduce the ANL of
process data sent from sensors to the gateway and to increase the ENL of the network. These
two metrics are the most used for evaluating the performance of the routing algorithms presented
in section 3.1. To determine the reward, it is necessary to measure the ANL and ENL at each
execution of the QLRR-WA during the NM management tasks.

Equation 4.3 describes the rewards given to the agent. A positive reward of value R is
given if the ANL has decreased and the ENL has increased in comparison with min(D) and
min(L); a positive reward of value R/2 is given if ANL has decreased or ENL has increased; no
reward otherwise. This reward will cause the agent to explore the action-state pairs and discover
a state that it should go to increase its rewards.

rt+1 =


R, if lt+1 > min(L) and dt+1 < min(D)

R
2
, if lt+1 > min(L) or dt+1 < min(D)

0, otherwise

(4.3)

In Line 2 of Algorithm 2, the Q-values regarding the last action and state are updated.
Then, a new action is chosen in Line 3 and the action is taken on Line 4, changing the current
state. The values of the weights are updated according to the weight values of the new state.

4.3 Q-LEARNING RELIABLE ROUTING WITH MULTIPLE

AGENTS

In this approach, called Q-Learning Reliable Routing with Multiple Agents (QLRR-MA),
each node v has a learning agent. During the construction of GU , each agent performs actions
that define the successors that will be used to send messages towards the gateway.
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4.3.1 States and actions mapping

The states and actions are based on the Q-routing model. In Q-routing, each destination of
a message corresponds to a state and actions represent the successor chosen to send the message.
However, QLRR-MA has differences regarding Q-routing: as the focus is the construction of GU ,
the state sv ∈ Sv of a node will always represent the gateway destination; each action av ∈ Av

has a pair of successors u1 and u2; each agent selects an action av ∈ Av and adds the node v and
the edges ev,u1 and ev,u2 of the selected action to GU ; some actions may be enabled or disabled;
finally, the approach is centralized, returning GU at the end of the algorithm execution. These
characteristics will be clarified in the following sections.

4.3.2 Uplink graph construction

The QLRR-MA pseudocode is presented in Algorithm 3. This algorithm was based on
some aspects of the ELHFR and Han algorithms (JINDONG; ZHENJUN; YAOPEI, 2009; HAN
et al., 2011). NM keeps a global Q-table Q(S,A), which has all Q-values, states, and actions
currently stored for all agents.

In Line 1, the algorithm performs a search using BFS to identify the level of each node v
in the topology. The BFS level represents the minimum number of hops hv from v to g. This
information will be needed to define to which neighbors each node can connect and the set
of actions Av available in the later steps of the algorithm. Figure 19 depicts the levels for the
example topology.

Figure 19 – BFS levels for the example topology
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In Line 2, the algorithm adds into GU the gateway g, the VAP and the edges from VAP to
g. This step is similar to the Han algorithm and is depicted in Figure 17a. Then, the algorithm
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enters a loop that will insert all the nodes present in V to VU and the edges are chosen by the
agents to EU .

Algorithm 3: QLRR-MA uplink graph construction
Input: G(V,E) // Topology graph
Input: Q(S,A) // Q-table of all agents
Output: GU(VU , EU) // Uplink graph

1 ∀v ∈ V , store in hv its level using BFS
2 VU = g ∪ VAP and EU has the edges from VAP to g
3 while VU 6= V do
4 forall v ∈ V − VU do
5 Find Uv ⊆ V : ∀u ∈ V , ∃ev,u ∈ E and hu ≤ hv and u has at least two outgoing

edges to V − v with level ≤ hu and ev,u don’t create cycles in GU if added
6 Sort all successors in Uv by power source type cost p
7 if |Uv| > 2 then
8 Calculate reward rvt+1

9 Update Qv
t+1(s

v
t , a

v
t ) according to Equation 2.1

10 Disable all actions in Av

11 Create actions related to the successor pairs combinations in Uv not yet in Av

12 Enable the actions in Av related to the successor pairs combinations in Uv,
limiting to Nu the number of enabled actions

13 Select next action av between the enabled ones in Av using ε-greedy
14 VU ⊆ VU ∪ v and EU ⊆ EU ∪ ev,avu1 ∪ ev,avu2
15 end
16 else
17 VU ⊆ VU ∪ Uv and EU ⊆ EU ∪ ev,u∀u ∈ Uv

18 end
19 end
20 end

The neighbors Uv, which are potential successors of v to send their messages towards g
are identified in Line 5. Some rules have been defined so that a neighbor u can be considered a
possible successor for v:

a) There must be an edge in E from v to u, otherwise it is not possible to use u as a successor;

b) The BFS level of u must be equal to or less than the level of v, avoiding messages to be
sent to higher levels, farther from g;

c) u must have at least two edges towards V − v in G, and the vertices of these edges must
have a level less than or equal to hu. This is because, if u is added in a later iteration, it
will not be able to guarantee the path redundancy, thus reducing the reliability of GU ;

d) If hu = hv, it is necessary to check if cycles will be created at this level if the edge ev,u is
inserted into GU . In some cases, the neighbor u or some of its successors may be sending
messages to v, then closing a cycle that can cause the propagation of messages indefinitely
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in the network. It is also avoided, along with Rule b, that all devices connect to neighbors
only of the same level, and that the graph GU is disconnected or does not have as final
destination g.

Once all the potential successors Uv are identified, they are sorted by their power source
cost p on Line 6. Line-powered successors may have attributed a lower cost value, while
battery-powered may have a higher cost. When |Uv| is high, this will allow node v to avoid the
battery-powered successors.

If |Uv| > 2, the algorithm begins to perform the steps related to the agent of node v. If
|Uv| <= 2, this indicates that only one action is available for node v, and can not explore other
possibilities of connections.

In Line 7, the reward rvt+1, corresponding to the execution of the last action at the instant
t, is calculated. In Line 8, the Q-table is updated according to the equation 2.1.

Each pair of neighbors in the set Uv will be combined to create an action. Each action
will have two components: The two successors (u1 and u2) and an action condition (enabled or
disabled). To clarify, Figure 20a depicts a possible set Uv for node 5 and Figure 20b the possible
actions arising from the Uv set.

Figure 20 – Example of set Uv for node 5 and actions available
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Line 10 disables all actions Av available in the state sv. If an action for a specific pair of
successors does not exist yet in Av, it must be created in Line 11. Then, in Line 12 all actions
available relative to the neighbors in Uv and existing in Av are enabled. This activation control
has two main objectives: first, it prevents node v from choosing actions that are not allowed due
to changes in the topology or because the action has a successor that doesn’t respect the rules
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stated in Line 5; second, the number of available actions for a specific node at a given instant t
depends on |Uv|. In highly connected topologies the number of enabled actions for a node can be
limited to Nu. As Uv is sorted by p on Line 6, the actions related to successors with lower power
costs will be activated first.

Then, on Line 13, the agent v selects the next action avt+1. On Line 14 it inserts the v
node in VU and the edges for the neighbors that belong to avt+1 in EU . Finally, in Line 17, if
|Uv| <= 2, the node v will be connected to the one or two successors available. In this case, the
learning agent is not executed.

4.3.3 Reward calculation

QLRR-MA will try to reduce the average latency of communications in the network by
reducing the average latency of each node. Latency measurement is performed at each iteration
of the Q-Learning algorithm, but the reward of each v agent is given by measuring the average
latency of its process data only. The reward rvt+1 is proposed as follows:

rvt+1 =

R, if dvt+1 < min(Dv)

0, otherwise
(4.4)

This reward makes each node explore the available actions, and finds one where it can
reduce its latency.

4.4 USING QLRR IN IWSN

The characteristics of the application and the selected communication protocol must be
analysed when using QLRR. GU may change at each execution of QLRR during the exploration
phase, and the NM must send reconfiguration commands over the network. In the current IWSN
protocols, the reconfiguration time will take from seconds to tens of minutes. The reconfiguration
time must be considered to define the time interval between the actions of the agent.

Fluctuations in the latency will occur during the reconfiguration because of the following
reasons: the overhead caused by messages with commands; the commands may have priority
over data process messages (SHEN et al., 2014); the number of hops that a message takes to
reach the gateway may change; the number of messages waiting in the transmission stacks of the
nodes may increase; the Q-Learning parameters used; and the exploration randomness.

Several data process messages should be received to measure the ANL, considering these
fluctuations and the wireless characteristics. The time interval between the iterations of the agent
should allow the network to reconfigure correctly and the measurements to represent stabilized
conditions for the data process messages.
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The reconfiguration will also reduce the ENL because of the energy spent with overhead,
and this influence will be more significant when low-capacity batteries are used. At the same
time, battery-powered nodes closer to the gateway will have their batteries depleted first, as they
may work as routers.

Another observation regarding the current topology is that the changes in the topology
are usually informed by health reports and path down alarms, thus influencing the time needed
for detecting changes (CHEN; NIXON; MOK, 2010).

The fluctuation in ANL caused by exploration may be tolerable only during the network’s
startup and maintenance, but not during process monitoring and control. In applications where
variations in the ANL are tolerable, the agent can continuously explore. When using ε-greedy
to control exploration, it is possible to stop the exploration by changing the ε value to 0 during
execution.

The complexity of the learning model also depends on the number of states, actions,
and rewards given (SUTTON; BARTO, 2018; KOENIG; SIMMONS, 1992). The agent should
explore several times the available actions in each state. Learning, therefore, may require many
iterations to converge (MAMMERI, 2019; WANG; CHAI; WONG, 2016; KOENIG; SIMMONS,
1992). When using QLRR-WA, the value of M allows a trade-off between reducing the need for
exploration and avoiding abrupt changes in the weights, consequently reducing the number of
significant changes in GU from state to state. When using QLRR-MA, the value of Nu can limit
the number of available actions for each node.

The choice of the reward function also influences the behavioral pattern of the agent
and must be defined based on the metrics that want to be enhanced (SUTTON; BARTO, 2018;
AL-RAWI; NG; YAU, 2015; WANG; CHAI; WONG, 2016).

The actions of the agent will also be associated with the schedule changes because the
changes in GU will cause different reconfiguration patterns on the timeslots depending on the
scheduling algorithms. The scheduling algorithms will also influence performance because of
the strategy used for the allocation of timeslots. Thus, a proper combination of routing and
scheduling algorithms is needed to enhance the performance, as indicated by (NOBRE; SILVA;
GUEDES, 2015b).
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5 QLRR PERFORMANCE EVALUATION

This chapter discusses details of the performance evaluation and the results. Section 5.1
presents the changes of the WirelessHART simulator used. Section 5.2 describes the performance
evaluation methodology and Section 5.3 the simulation parameters used. Section 5.4 presents the
results for the 20 and 40-node topology examples depicted in Figure 22. Section 5.5 presents the
general results for several random topologies.

5.1 IWSN PROTOCOL AND SIMULATION ENVIRONMENT

The WirelessHART protocol was chosen for the development of the simulations, taking
into account the following criteria: this protocol is widely known and used in industrial appli-
cations; the experience of the Graduate Program in Electrical Engineering (PPGEE) group of
Federal University of Rio Grande do Sul (UFRGS), recognized through publications on various
aspects of the protocol; the availability of official documentation, equipment for experiments
and data collection at UFRGS’s laboratories, and open software tools for simulation.

The simulator of Zand et al. (2014b) version 9.4.1 was chosen to conduct the performance
evaluations. The main advantages of this simulator are: the complete implementation of the
WirelessHART stack; the availability of source codes, documentation, examples, scenarios; the
use of object-oriented language; the validation compared to real experiments; the academic
relevance; the complete implementation of the routing and scheduling algorithms of Han et al.
(2011); and the ease of implementation of new algorithms.

However, as pointed out by Nobre, Silva and Guedes (2014), this simulator lacks more re-
alistic models for power consumption and transmission errors. The initial simulations performed
during the thesis development also identified that some relevant application layer commands
were not implemented, while others were partially implemented according to the standard, as
discussed in section 2.5.

Changes and adaptations were proposed in the simulator in order to perform simulations
that provide a better representation of an operational WH network. Some features have been
added for the execution of the routing algorithms and for the automated generation of reports.
These adaptations and improvements in the simulator are other contributions of this thesis since
they will allow subsequent studies and performance analysis over different aspects of the protocol.
The main changes in the simulator are described in the following subsections, according to the
layers of the protocol where they were implemented.
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5.1.1 Data-link Layer

5.1.1.1 Energy consumption model

It was necessary to adapt the simulator to the use of an energy model that allows a more
accurate comparison and evaluation of the power consumption of the devices. The new model is
based on the work of Nobre, Silva and Guedes (2015a), where the power consumption of the
CC2500 radio transceiver was considered. This radio has four operating states: Sleep, when the
radio is with its clock off and waiting to be turned on; Idle, when the clock is active; Tx, when
the radio is transmitting; and Rx when the radio is receiving data. The possible state transitions
are shown in Figure 21, as well as the power consumption in each state and during the transitions
considering a 1.8 V battery.

Figure 21 – CC2500 energy model

Source – Adapted from Nobre, Silva and Guedes (2015a).

The time spent on each state is influenced directly by the data-link layer, more precisely
by the scheduling algorithm. At each timeslot, a device may be transmitting or receiving a packet,
or if it has no allocated task, the device remains in Sleep mode. When transmitting or receiving
a packet, transitions between states occur according to the timeslot time structure, previously
shown in Figure 7.

This model has some limitations and unclear aspects related to the size of the packets and
the destination of a packet (unicast or broadcast). They influence some of the state transitions of
the radio:

• The model assumes that whenever there is a transmission, the packet’s source node will
send a packet of data equal to 90 bytes. In practice, data packets may vary in size;

• The model assumes that even for received broadcast packets, a node will send an ACK;
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• The size considered for an ACK packet is 9 bytes in the model while is 26 bytes in the
standard;

Considering these limitations, the following improvements are proposed:

• The calculation of energy consumption in a timeslot, for the transmitter, takes into account
the size of the packet;

• The calculation of power consumption in a timeslot, for the transmitter, takes into account
if the packet is of the broadcast type. In this case, after sending the data, the radio goes to
the Sleep state. Otherwise, it waits in the Idle state and the then transitions to the Rx state
and waits for the ACK to be received;

• The calculation of power consumption in a timeslot, for the receiver, takes into account
the size of the received packet;

• The energy consumption calculation in a timeslot, for the receiver, takes into account the
size of the ACK defined in the standard;

• The calculation of the power consumption in the receiver takes into account if the packet
is of the broadcast type. In this case, after receiving the data, the radio goes to the Sleep
state.

5.1.1.2 Battery Lifetime Calculation

The data-link layer of the nodes was adapted to allow them to estimate the battery lifetime.
Each node monitors its activity on each timeslot and calculates the total energy consumed during
that timeslot. With this information, the battery life is estimated as follows: Every time the node
receives a Read Battery Life command (778) from the of NM, it calculates the amount of energy
consumed since the last command received. Using the time interval between the commands,
the amount of energy spent in this time interval and the residual energy of the battery, it can
determine the expected battery lifetime and respond to the NM.

The WH standard does not define any method for estimating power consumption and
only indicates that the manufacturer must take the necessary precautions in the design so that the
information is consistent with the characteristics of the batteries (HCF, 2008b).

5.1.1.3 Transmission Error Model

A probability of failure for transmission of a packet was added to the simulator, following
the study carried out by Bildea et al. (2013). This model was experimentally obtained using the
same radio transceiver family of the CC2500. In this study, experiments were conducted to relate
the RSL between to nodes with the probability of communication failures.
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5.1.2 Application layer

The application layer of the devices was also adapted so that some information and
characteristics of the nodes could be obtained by the NM. Some commands were also not
properly implemented in version 9.4.1 of the simulator Zand et al. (2014b). These commands are
listed below.

• Command 777 (Read Device Capabilities) - implemented;

• Command 778 (Read Battery Life): - implemented;

• Command 779 (Report Device Health): - adapted to the standard;

• Command 780 (Report Neighbor Health List): adapted to the standard;

• Command 787 (Report Neighbor Signal Levels): - adapted to the standard;

• Command 788 (Alarm Path Down): - implemented.

• Command 799 (Request Service): - adapted to the standard.

Using the Alarm Path Down command, nodes can report to the NM any broken links with
neighbors. A broken link with a neighbor is detected when a node does not receive a Keep-Alive
message during a specified time interval defined in the standard (HCF, 2008b).

The nodes were configured to start sending the process data immediately after receiving
the response to the Request Service command when the NM confirms the allocation of resources
for sending process data. To evaluate PDR in the simulations, a sequence number was used in
the data field of the process data packets sent from nodes to the gateway, so the gateway can
identify missing packets. A data packet is considered missed when it is not received in the proper
sequence by the gateway.

5.2 PERFORMANCE EVALUATION

The performance evaluation has the following objectives:

• To compare the performance of QLRR approaches with state-of-the-art routing algorithms,
using the defined metrics;

• To evaluate how the Q-Learning parameters influence the performance of QLRR;

• To evaluate the performance using simulation parameters similar to those used in the
state-of-the-art works and, at the same time, representing process monitoring applications
of IWSN;
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• To use statistical analysis to verify if the performance enhancements are significant.

The metrics considered in the performance evaluation are ANL, ENL, PDR, and PRN of
the uplink graph. These metrics were already defined in Section 4.1.1.

During the thesis development, several repetitions of the simulations were conducted for
a given set of topologies and routing algorithms. For each topology tested, samples of the metrics
were collected during the last simulation hour. These samples were collected in the last hour
to ensure that the measurements were stable, with no perturbations and changes in the routes
caused by the learning agents. The analysis of these samples, for a given topology, indicated
that they follow a normal distribution, while the variance presented similar values for all the
routing algorithms. The average values and variances were different between each topology
tested (KÜNZEL et al., 2018).

Analysis of Variance (ANOVA) is one of the statistical tools available for the analysis of
data prone to errors (variations in the measurements). The basic assumptions of ANOVA are that
errors are random variables that follow a normal distribution and are independent and that the
variance is considered constant or similar for all levels of controllable factors (MONTGOMERY,
2006).

ANOVA defines that the outputs of an experiment (response variables, or in this case,
the performance metrics) depend on a set of controllable factors (input variables) that can be
applied at different levels (values). Each combination of levels for the controllable factors is
known as a treatment. By collecting samples of the response variables for each treatment, it is
then possible to verify the hypothesis that the controllable factors affect the response variables in
a statistically-significant way (MONTGOMERY, 2006). The controllable factor is the routing
algorithm used by the NM.

The main hypothesis verified was if the QLRR algorithms presented a statistically
significant difference for ANL, ENL, PDR, or PRN, when compared to the state-of-the-art
routing algorithms for a given topology. If a significant difference is verified between two
treatments for a given response variable, the average value of this response variable is used to
indicate the reduction or increase of the performance metric.

Once the hypotheses are tested for each topology, it can be calculated a ratio related to
how many topologies (of a given set of topologies) QLRR enhanced the response variables, when
compared side-by-side with each state-of-the-art routing algorithm. ANL is enhanced when it
has a reduction, ENL, PDR, and PRN are enhanced when they have an increase in the average
value.

With the information of the ratio (percentage) of topologies where QLRR presented
significant enhancements, it is also possible to calculate an average percentage of reduction or
increase of the performance metrics, allowing an estimation of the enhancements that a given
routing algorithm gives when compared to another.
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It is also verified if the QLRR algorithms present enhancements when the network has
a different density of nodes (the number of nodes per area unit). In denser networks, more
possibilities of connections will be available in the topology, thus providing more routing options
for the nodes. Two different numbers of nodes per area are used in the simulations.

Another hypothesis verified is if the α and ε parameters of the Q-Learning algorithm
significantly influenced the performance metrics on each algorithm. Sets were defined for α and
ε. It was then identified the sets that presented significant enhancements for each topology.

The sample collection of the response variables was performed during a simulation time
where the agents were not exploring and the network topology was not changing, and thus no
reconfiguration was occurring. The last hour of the simulation was chosen for these measurements
because the values of the response variables do not suffer significant variations since it is defined
that the exploration phase will not happen during the last hours of the simulation.

As mentioned by Han et al. (2011), in a few cases, some topologies may have schedula-
bility problems caused by the topology characteristics and because the communication resources
(timeslots) may become unavailable during the scheduling process. In this case, the simulations
finish before expected. If this situation occurs on a given test, the samples of this repetition are
discarded from the evaluation.

5.3 SIMULATION PARAMETERS

The parameters used in the simulations represent typical WH industrial monitoring
applications, where nodes are scattered over an industrial plant. The simulation parameters and
the number of nodes used are also related to works described in Section 3.1. Table 12 presents
the parameters used in the simulation environment, according to the layers of the WH protocol.
Subsection 5.3.1 describes the parameters related to QLRR algorithms.

The results are analyzed from a set of 30 topologies, which allows generalizing the
performance of the algorithms. The number of tests for each topology was defined as 15, based
on the sample size formula considering z = 1.96 , s = 0.2 s, e = 0.1 s for the ANL measurement.

The gateway is positioned in the center of the area along with the APs, and the connection
between the gateway and the APs is considered to be wired and reliable (HAN et al., 2011). This
positioning favors the formation of star topologies. However, as one of the objectives of the
experiments is to allow the exploration of routes by the agents, the formation of more complex
topologies must occur, where some nodes will act as routers. Wireless nodes are positioned
randomly within the area.

Simulations were conducted with 20 and 40 nodes to verify the performance when IWSN
have a different density of nodes. Nodes were numbered according to the distance from the
gateway. The number of nodes used in the scenarios is defined based on the argument that
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Table 12 – Parameters of the simulation

Statistical parameters
Number of random topologies for each node density 30

Number of tests (simulation repetitions) for each topology 15
Number of ANL, ENL, PDR and PRN samples collected over

the last hour of simulation
6 samples

Node and area parameters
Area 100 x 100 m

Number of nodes (node density) 20, 40 nodes
Number of APs 2

Gateway position Center
APs positions 5 m left and 5 m right from

gateway
Nodes positions Random

Nodes enumeration and startup sequence According to gateway
distance

Battery-powered nodes 50 %
Battery capacity 3.6 V 17 Ah

Physical layer parameters
Channel number 16

Propagation model Two-Ray Ground Model
Transmission power 0 dBm

Communication range 40 m
Signal level sensibility threshold -85 dBm

Transmission error model Bildea et al. (2013)
Time parameters

Gateway startup time 0 min
APs startup time AP1 = 2 min, AP2 = 4 min
First node startup 5 min

Nodes startup interval 1 min
Process data publish interval 32 s

Total simulation time 12 h
Health report interval (787, 779, 780) 15 min
Battery lifetime reading interval (778) 1 min

NM’s periodic tasks interval 10 min

Source – The author.

IWSN applications generally have a maximum number of 50 nodes since latency is the main
parameter in these applications, not the scalability (ÅKERBERG; GIDLUND; BJöRKMAN,
2011). The simulator used has limitations of scalability due to the availability of timeslots for the
communication demands of the nodes and the scheduling algorithm used (ZAND et al., 2014b).

A proportion of 50 % of the nodes was powered with industrial-standard batteries (3.6 V,
17 Ah) with an expected lifetime of 10 years (CHEN; NIXON; MOK, 2010). The other nodes
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were considered to be line powered.

Fig. 22 depicts the 20 and 40-node topologies used as examples for the performance
evaluation, where black nodes are line-powered nodes, gray nodes are battery-powered nodes
and lines represent that nodes are within the communication range of each other. The selected
topologies presented the best results for the QLRR algorithms.

Figure 22 – 20 and 40-node topologies used for performance evaluation
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The Two-Ray Ground-Reflection model with power transmission of 0 dBm was used for
RSL estimation (ZAND et al., 2014b). The packet transmission error model used in the physical
layer follows the analytic model for indoor environments by Bildea et al. (2013). The maximum
communication range is a parameter required by the simulator and represents a value close to the
RSL sensitivity threshold defined in the WH standard (-85 dBm) and also the point where the
probability of failures is maximum in the fault model used. It was considered that two devices
that are within the communication range of each other are able to send and receive messages to
each other, following the same criteria of (HAN et al., 2011).

Each simulation starts with the startup of the NM/gateway and APs. The first node is
turned on after 5 minutes, and then each node is turned on in one-minute intervals, according to
the sequence number given during the topology construction. A new node listens the channels
looking for an advertisement packet from its neighbors, and then starts the join process. When its
join process is over, the node requests bandwidth to NM for sending process data. After receiving
configurations from the NM (graphs, routes, superframes, links), it starts sending sensor readings
towards the gateway. The period for sending process data was set to 32 seconds, following the
work of (ZAND et al., 2014a). The health reports (787, 779, 780) are sent every 15 minutes and
command 778 is polled by NM in one-minute intervals. The NM runs the management routines
when a new device joins the network or in 10-minute intervals. The simulations run for 12 hours
for each topology.
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The QLRR-WA agent and the QLRR-MA agents will have the opportunity to perform an
action in the environment only when the management routines are performed by period. This
prevents reconfiguration from occurring in the graphs during the join process of the nodes, which
may cause routes to be unavailable for sending configuration to the new nodes.

5.3.1 QLRR parameters

Table 13 presents the QLRR parameters. The ε - greedy policy is used because it is a
commonly used strategy in the related works in Section 3.2. The exploration phase starts at
the beginning of the simulation, where ε assumes the value of the set of learning parameters
being used. The exploration ends when the simulation reaches 8 hours, when ε = 0. After the
exploration phase, the agents go to the next state related to the state-action pair with greater
value in Q(s, a). For QLRR-WA, this means that the agent exploits the best set of weights found
for Equation 4.1. For QLRR-MA, this means that an agent will connect to the pair of successors
that provided the lowest average latency.

This exploration time was chosen for two reasons: it represents a feasible exploration time
for practical applications, considering protocol characteristics, network setup and maintenance;
and it represents the average number of iterations needed considering the complexity of RL
problems for goal-oriented domains (KOENIG; SIMMONS, 1992). Considering 6 iterations per
hour (due to the NM periodic tasks each 10 min), and the exploration time of 8 hours, it allows
the agents to iterate approximately 48 times per simulation.

5.3.2 QLRR-WA parameters

It was considered M = 7 and all states that have weights with value 0 were removed in
order to avoid abrupt changes in GU that may occur by changes in the cost value. The initial state
was set to s7. States and actions used are depicted in Fig. 23. The value of sd was adjusted so
that neighbors with very low signal levels presented a higher cost. Equation 4.2 had the weights
wn and wp set to 0.5, following the previous work of Künzel, Cainelli and Pereira (2017).

5.3.3 QLRR-MA parameters

The number of pairs of successors created from Uv was limited to a maximum of 15,
to avoid a large number of available actions that would require an agent to explore for a long
time. The successors in Uv are sorted according to the type of power supply, giving preference
for line-powered successors. Nodes with no energy restrictions are preferably used and the
battery-powered nodes are included in Uv only if the number of pairs is lower than 15.
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Table 13 – QLRR parameters

QLRR common parameters
Policy ε-greedy

Exploration period 0 to 8 h
Exploitation period 8 h to 12 h

Q-table initial values Q(s, a) = 0,∀a ∈ A, s ∈ S
Reward value, R 1

ts 5 min
k 2

Power energy cost p 1 (battery-powered), 0 (line-powered)
γ 0.80

QLRR-WA
M 7
sd -45 dBm
Nw 3 (wh, wp, ws)

Initial state s7 (wh = 0.28, wp = 0.42, ws = 0.28)
Equation 4.2 wn = 0.5, wp = 0.5

Set of α and ε parameters
Set A α = 0.10, ε = 0.30
Set B α = 0.20, ε = 0.10
Set C α = 0.20, ε = 0.20
Set D α = 0.20, ε = 0.30
Set E α = 0.20, ε = 0.05
Set F α = 0.30, ε = 0.10
Set G α = 0.50, ε = 0.10
Set H α = 0.50, ε = 0.20

Source – The author.

5.3.4 Q-Learning Parameter Sets

Table 13 also shows the sets A-H of parameters used in the simulations to evaluate how
α and ε influence the results. The selected values are based on the related works.

5.3.5 State-of-the-art uplink graphs compared

The performance of QLRR was compared with the following baseline uplink algorithms:

• Han (HAN et al., 2011), which builds graphs trying to reduce the number of hops from the
gateway;

• ELHFR (JINDONG; ZHENJUN; YAOPEI, 2009), which builds graphs based on the RSL
of neighbors;
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Figure 23 – States and actions used for QLRR-WA (rounded values)
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• Künzel (KÜNZEL; CAINELLI; PEREIRA, 2017), where weights were set to wh =

0, wp = 1, ws = 0 on all related equations trying to build graphs that avoid battery-
powered nodes as routers;

• The previous work in (KÜNZEL et al., 2018) was also used for comparison.

5.3.6 Downlink graphs used in the experiments

Downlink graphs were created using a BFS tree, where edges are chosen based on the
RSL of neighbors. Downlink graphs without path redundancy were used in the experiments
to reduce the number of links required during the scheduling process to ensure scalability, as
scalability is a known limitation of the simulator (NOBRE; SILVA; GUEDES, 2015b).

5.3.7 Scheduling algorithm used in the experiments

The Han’s scheduling algorithm was used for the allocation of links (HAN et al., 2011).
It allocates each link on the paths from the source to the destination in a depth-first manner and
splits the traffic from a node among all its successors by reducing the bandwidth requirement
on each successor. The communication schedule of the successors is designed so that their
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combination has the same pattern as the original node (NOBRE; SILVA; GUEDES, 2015b; HAN
et al., 2011).

Links are allocated in the path between a source node u and a destination v through a
depth-search algorithm on a constructed graph. For each link of u, the first timeslot ti available
in the superframe F in the position i is allocated, where the superframe has size lF , equal to the
data transmission period (DICKOW, 2014).

Considering that a WH network is typically multihop, the bandwidth required to perform
the scheduling of all links from source to a recipient is large. This dramatically reduces scheduler
performance and resource availability across the network. To solve this problem, the Han
algorithm proposes a particular strategy when a device has more than one neighbor to route
its data. Such strategy consists of creating a parallel F ′ superframe, with size l′F = 2lF , and
allocating links in this superframe, reducing the publication period of the data. Therefore, only
two paths are created for the neighbors of u and not for all possible paths from the node to the
recipient (DICKOW, 2014).

Figure 24 represents an allocation of the Han scheduling algorithm to an example graph.
The superframe F repeats twice while the superframe F ′ repeats only once in the same time
period. Both are active simultaneously, and it turns out that there are no timeslot conflicts. The
superframe F ′ is only used when the device to be scheduled has two successors. In the example
above, only devices 4 and 5 have two successors, and therefore only such communications appear
in the superframe F . The F superframe is used when the device has only one successor, or for
routing communications using DFS.

Figure 24 – Han scheduling for an uplink graph
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It is worth noting that when the downlink and uplink graphs change, graphs and links
must be reconfigured in the WirelessHART network, causing a significant communication
overhead. The implementation of Han’s scheduling algorithm by (ZAND et al., 2014b) tries to
reduce the overhead by keeping in the schedule the links already allocated for a path that did not
change, releasing links that are no longer necessary, and writing the links of the new paths. The
NM allocates links in the schedule in the following sequence:

• Advertisement links are allocated for all devices currently in the network with a period
tADV . They are used for neighbor discovery and for new nodes to join the network. The
total number of advertisement links for each node is nADV ;

• Permanent links are allocated in the downlink graph with a period tDP . These links are
used for management communication and to keep a minimum connection between the
gateway and a node. They are constrained to nDP links between two nodes in the downlink
graphs;

• Normal links are allocated in the downlink graph with a period tDN . These links are used
for management communication. They are limited to nDN links between two nodes in the
downlink graphs;

• Permanent links are allocated in the uplink graph with a period tUP . These links are also
used for management communication and to keep a minimum connection with the gateway.
They are limited to nUP links between two nodes in the uplink graphs;

• Normal links are allocated in the uplink graph with a period tUN . These links are used
for management communication. They are limited to nUN links between two nodes in the
uplink graph;

• Normal links are allocated for the requested services (send process data) according to the
service’s data transmission period.

The scheduling periods of these links are presented in Table 14.

Table 14 – Scheduler parameters

tADV = 8 s tDP = 4 s tDN = 2 s tUP = 4 s tUN = 2 s
nADV = 3 nDP = 1 nDN = 6 nUP = 1 nUN = 6

Source – The author.



Chapter 5. QLRR Performance Evaluation 86

5.4 RESULTS FOR THE 20 AND 40-NODE EXAMPLE TOPOLO-

GIES

The results presented in this section are related to two topology examples. Samples of
ANL, ENL, PRN, and PDR were collected over the last simulation hour (1 sample every 10
minutes) for each topology and algorithm tested. The values presented here are the average value
of the samples collected for all the simulation repetitions for each topology.

5.4.1 Average Network Latency

Figure 25 presents the ANL boxplots for the example topologies.

Figure 25 – Average Network Latency boxplots for the example topologies
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5.4.1.1 20-node example topology

For the 20-node topology, QLRR-WA and QLRR-MA significantly reduced ANL when
compared to the state-of-the-art algorithms. It was observed that the parameter sets presented
a few differences in the final results. Sets F, G, and H presented the lowest ANL values for
QLRR-WA, although the variances in set G presented higher value. QLRR-MA showed a greater
reduction in latency compared to QLRR-WA. Sets D, G, and H presented relevant results for the
ANL in QLRR-MA.

5.4.1.2 40-node example topology

For the 40-node topology, QLRR-WA and QLRR-MA also showed significant reductions
in the ANL when compared to the state-of-the-art algorithms. Considering the ANL, the most
relevant sets for QLRR-WA were C and F, and sets B and G for QLRR-MA.
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5.4.2 Expected Network Lifetime

Figure 26 presents the ENL boxplots for the example topologies. For the 20-node
topology, QLRR-WA showed a significant improvement over the state-of-the-art algorithms. For
the 40-node topology, QLRR-WA presented an ENL higher or equal than the state-of-the-art
algorithms.

Figure 26 – Expected Network Lifetime boxplots for topology examples
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(b) 40 nodes
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In general, QLRR-MA presented the lowest ENL. This is because the reward given to
the agents prioritizes the latency reduction only, and nodes will eventually connect to battery-
powered devices to maximize the rewards. The ε and the use of one agent per node may frequently
change the uplink graph, causing greater reconfiguration and energy consumption.

It was observed that the parameter sets used in QLRR did not cause significant differences
in the ENL in both topologies. but variances presented different values in the 20-node topology.

5.4.3 Percentage of Reliable Nodes

Figure 27 presents the PRN boxplots for the example topologies. It can be seen that,
except for ELHFR, all algorithms were able to provide path redundancy in the uplink graph,
ensuring that each node had two successors for sending messages. All algorithms kept 100 % of
reliable nodes in the example topologies. ELHFR presented 80 % of reliable nodes in the 20 and
40-node topology. ELHFR presented the lowest PRN because it allows nodes to connect only to
neighbors from lower levels in the BFS tree, and usually a few neighbors are available on these
levels. No variations were identified in the PRN value in those experiments except for ELHFR.
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Figure 27 – Percentage of Reliable Nodes for topology examples
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(b) 40 nodes
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Source – The author.

5.4.4 Packet Delivery Ratio

Figure 28 presents the PDR boxplots for the example topologies. For the 20-node
topology, all algorithms had similar values for the packet delivery rate. In the 40-node topology,
QLRR-MA presented the highest PDR. The ELHFR algorithm presented the lower results,
mostly because it does not provide path redundancy for all nodes.

Figure 28 – Packet Delivery Ratio boxplots for topology examples
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(b) PDR for 40 nodes
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5.4.5 Average Network Latency over time

Fig. 29 depicts the ANL of the 20 and 40-node topologies over the simulation time.
During the startup of the network (from 0 to 4 hours), the ANL increased because nodes were



Chapter 5. QLRR Performance Evaluation 89

joining the network and exchanging commands with the Network Manager. After 6 hours, all
algorithms started to stabilize the ANL. Slight variations are presented for all algorithms, mostly
caused by packet retransmission, paths taken during packet propagation, or when a Path Down
Alarm is received by the NM, causing reconfiguration of the uplink graph.

The ANL stabilized in the Han, ELHFR, and Künzel (KÜNZEL; CAINELLI; PEREIRA,
2017) after the join process because the topology stopped changing. In QLRR, the ANL presented
slight variations from 0 to 8 hours because of the exploration phase. After the exploration, QLRR
algorithms proceeded to the best state, stabilizing the ANL in a reduced value when compared to
the other algorithms.

Figure 29 – Average Network Latency over simulation time

(a) ANL for 20 nodes

0 2 4 6 8 10 12
Simulation time (hrs)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

A
N

L 
(s

)

Han
ELHFR
Künzel-2017
Künzel-2018
QLRR-WA-F
QLRR-MA-G

(b) ANL for 40 nodes

0 2 4 6 8 10 12
Simulation time (hrs)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

A
N

L 
(s

)
Han
ELHFR
Künzel-2017
Künzel-2018
QLRR-WA-F
QLRR-MA-G

Source – The author.

5.5 GENERAL RESULTS OVER SEVERAL TOPOLOGIES

The same simulations were conducted to verify if QLRR presented a similar performance
over random topologies for each node density level (30 random topologies for the 20-node level
and 30 for the 40-node level). Each topology has unique characteristics for the performance
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metrics because of the spatial distribution and the power source of the nodes. The ANL, ENL,
PDR, and PRN samples of the last simulation hour were collected for several repetitions of
the simulations for each topology and then used One-way Analysis of Variance with a 95 %
significance to verify in how many topologies QLRR enhanced ANL, ENL and PDR on each
topology when compared side-by-side to the other routing algorithms. For this analysis, the
set F (α = 0.3, ε = 0.05) was considered for QLRR-WA, and set G (α = 0.5, ε = 0.2) for
QLRR-MA.

5.5.1 Results for QLRR-WA

Table 15 shows the percentage of topologies where QLRR-WA significantly reduced
ANL or increased ENL and PDR. We omitted the PRN because it was always over 85 % for Han,
Künzel and QLRR-WA and over 75 % for ELHFR in all topologies, not presenting significant
differences.

To clarify the information presented in Table 15, we highlighted the values of the
comparison of QLRR-WA-F with the Han algorithm, and explain below how to interpret the
highlighted information:

• For the 20-node topologies, QLRR-WA-F improved the ANL in 86 % of the topologies,
when compared to Han;

• For the 20-node topologies, QLRR-WA-F improved the ENL in 53 % of the topologies,
when compared to Han;

• For the 20-node topologies, QLRR-WA-F improved the PDR in 36 % of the topologies,
when compared to Han;

• For the 40-node topologies, QLRR-WA-F improved the ANL in 100 % of the topologies,
when compared to Han;

• For the 40-node topologies, QLRR-WA-F improved the ENL in 90 % of the topologies,
when compared to Han;

• For the 40-node topologies, QLRR-WA-F improved the PDR in 46 % of the topologies,
when compared to Han;

The results also indicate that QLRR-WA presented a better performance in denser
networks, mostly because nodes have more neighbors to provide routes.

Table 16 shows the average percentage of reduction of the ANL value and the average
percentage of increase of the ENL value of the QLRR-WA algorithm for the topologies where
QLRR-WA presented significant improvements when compared to the state-of-the-art algorithms.
The PDR improvements were less than 1 %. To clarify the information presented in Table 16, we
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Table 15 – Percentage of topologies where QLRR-WA-F improved ANL, ENL, PDR

Parameters Routing algorithm compared with QLRR-WA-F
Nodes Metric Han ELHFR Künzel-2017 Künzel-2018 QLRR-MA-G

20
ANL 86 % 83 % 70 % 80 % 6 %
ENL 53 % 23 % 33 % 43 % 80 %
PDR 36 % 66 % 43 % 36 % 20 %

40
ANL 100 % 93 % 96 % 96 % 20 %
ENL 90 % 86 % 16 % 63 % 90 %
PDR 46 % 93 % 73 % 63 % 40 %

Source – The author

highlighted the comparison of QLRR-WA-F with the Han algorithm, and explain below how to
interpret the highlighted information:

• For the 20-node topologies where QLRR-WA-F reduced the ANL when compared to Han,
the average ANL reduction was of 15 %;

• For the 20-node topologies where QLRR-WA-F increased the ENL when compared to
Han, the average ENL increase was of 29 %;

• For the 20-node topologies where QLRR-WA-F increased the PDR when compared to
Han, the average PDR increase was of 0.3 %;

• For the 40-node topologies where QLRR-WA-F reduced the ANL when compared to Han,
the average ANL reduction was of 28 %;

• For the 40-node topologies where QLRR-WA-F increased the ENL when compared to
Han, the average ENL increase was of 79 %;

• For the 40-node topologies where QLRR-WA-F increased the PDR when compared to
Han, the average PDR increase was of 0.2 %;

Table 16 – Reduction of ANL, increase of ENL and PDR with QLRR-WA-F

Parameters Routing algorithm compared with QLRR-WA-F
Nodes Metric Han ELHFR Künzel-2017 Künzel-2018 QLRR-MA-G

20
ANL -15 % -19 % -12 % -10 % -7 %
ENL 29 % 29 % 9 % 9 % 34
PDR 0.3 % 0.8 % 0.2 % 0.3 % 0.2

40
ANL -28 % -18 % -19 % -16 % -11 %
ENL 79 % 64 % 10 % 10 % 52 %
PDR 0.2 % 1 % 0.3 % 0.2 % 0.2 %

Source – The author.
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5.5.2 Results for QLRR-MA

Table 17 shows the percentage of topologies where QLRR-MA significantly reduced
ANL or increased ENL and PDR. In most cases, QLRR-MA improves ANL and PDR. The
results also indicated that QLRR-MA presented a better performance in denser networks. In all
topologies, PRN was over 85 % for Han, Künzel and QLRR-WA and over 75 % for ELHFR and
did not present significant differences between the algorithms.

• For the 20-node topologies, QLRR-MA-G improved the ANL in 76 % of the topologies,
when compared to Han;

• For the 20-node topologies, QLRR-MA-G improved the ENL in 13 % of the topologies,
when compared to Han;

• For the 20-node topologies, QLRR-MA-G improved the PDR in 70 % of the topologies,
when compared to Han;

• For the 40-node topologies, QLRR-MA-G improved the ANL in 96 % of the topologies,
when compared to Han;

• For the 40-node topologies, QLRR-MA-G improved the ENL in 63 % of the topologies,
when compared to Han;

• For the 40-node topologies, QLRR-MA-G improved the PDR in 50 % of the topologies,
when compared to Han;

Table 17 – Percentage of topologies where QLRR-MA-G improved ANL, ENL, PDR

Parameters Routing algorithm compared with QLRR-MA-G
Nodes Metric Han ELHFR Künzel-2017 Künzel-2018 QLRR-WA-F

20
ANL 76 % 80 % 70 % 66 % 53 %
ENL 13 % 3 % 3 % 0 % 0 %
PDR 70 % 73 % 43 % 43 % 26 %

40
ANL 96 % 93 % 96 % 93 % 26 %
ENL 63 % 46 % 3 % 3 % 3 %
PDR 50 % 93 % 86 % 73 % 46 %

Source – The author.

Table 18 shows the percentage of reduction of the ANL for the topologies where QLRR-
MA presented significant improvements when compared to the state-of-the-art algorithms. The
table also shows the average reduction of the ENL for the QLRR-MA algorithm. The PDR
improvements were less than 1 %.

• For the 20-node topologies where QLRR-MA-G reduced the ANL when compared to Han,
the average ANL reduction was of 22 %;
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• For the 20-node topologies where QLRR-MA-G reduced the ENL when compared to Han,
the average ENL reduction was of 19 %;

• For the 20-node topologies where QLRR-MA-G increased the PDR when compared to
Han, the average PDR increase was of 0.3 %;

• For the 40-node topologies where QLRR-MA-G reduced the ANL when compared to Han,
the average ANL reduction was of 29 %;

• For the 40-node topologies where QLRR-MA-G reduced the ENL when compared to Han,
the average ENL reduction was of 15 %;

• For the 40-node topologies where QLRR-MA-G increased the PDR when compared to
Han, the average PDR increase was of 0.2 %;

Table 18 – Reduction of ANL and ENL, increase of PDR with QLRR-MA-G

Parameters Routing algorithm compared with QLRR-MA-G
Nodes Metric Han ELHFR Künzel-2017 Künzel-2018 QLRR-WA-F

20
ANL -22 % -22 % -17 % -18 % -10 %
ENL -19 % -31 % -22 % -22 % -23 %
PDR 0.3 % 0.8 % 0.3 % 0.3 % 0.3 %

40
ANL -29 % -19 % -19 % -18 % -7 %
ENL -15 % -16 % -33 % -28 % -31 %
PDR 0.2 % 0.1 % 0.2 % 0.2 % 0.3 %

Source – The author.
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6 CONCLUSIONS

In this thesis, a Reinforcement Learning model known as Q-Learning was used to build
routes for IWSN with centralized management. Two approaches were presented, considering the
requirements of IWSN protocols such as WirelessHART. The approaches were named QLRR-
WA and QLRR-MA. Both approaches run in the Network Manager. The QLRR-WA approach
uses a learning agent that adjusts the weights of a cost equation that defines how nodes will
connect to neighbors in the uplink graph. In the QLRR-MA approach, each node has a learning
agent that chooses which neighbors to connect to.

The rewards proposed have different objectives in each approach: In QLRR-WA, the
reward aims to find a set of weights that reduces the Average Network Latency and increases the
Expected Network Lifetime. In QLRR-MA, the reward aims to reduce the average latency for
each node, consequently reducing the Average Network Latency.

One of the available simulation environments for WirelessHART was selected for the
evaluation of the QLRR approaches. The environment was improved using state-of-the-art energy
and transmission models and providing WirelessHART application layer commands that were
not yet implemented in the simulator of Zand et al. (2014a).

A methodology was presented to evaluate the performance of the approaches. The
methodology included scenarios, node configuration, timing parameters, routing, and scheduling
algorithms and statistical analysis using ANOVA. The QLRR algorithms and some of the relevant
state-of-the-art graph routing algorithms were implemented in the simulation environment to
evaluate and compare their performance.

Considering the given scenarios and simulations performed, both QLRR approaches
presented relevant results for most of the topologies tested. When compared to the state-of-the-art
algorithms, QLRR-WA maintained a lower ANL while increased or kept the ENL similar to the
other works, thus balancing these two characteristics. QLRR-MA was able to reduce the ANL to
values lower than the other approaches, but with a reduction of the ENL. QLRR-MA slightly
increased the Packet Delivery Rate in most cases, when compared to the other algorithms. Both
QLRR approaches maintained high reliability in the uplink graphs, ensuring path redundancy.

The results indicate that RL and QLRR may be useful for future centralized-management
approaches, IWSN applications, and also for other centralized protocols targeting IoT, IIoT,
and Industry 4.0. But it is important to mention that the use of RL, Q-Learning, and QLRR
for routing may require significant efforts in evaluation and simulation for each protocol and
application to ensure feasibility.

Based on the discussion and the results of this thesis, Section 6.1 presents relevant
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research possibilities and further discussion on IWSN protocols and the use of Artificial Intelli-
gence (AI) on those protocols.

6.1 FUTURE WORKS

6.1.1 IWSN protocols

The performance of RL routing approaches will be influenced by the number of itera-
tions spent in the exploration phase, the time interval between iterations of the learning agent,
parameters, rewards, and protocol characteristics. The centralized management protocols or
applications with complex topologies (with several hops from nodes to gateway) must consider
the reconfiguration times involved as a limiting factor for the use of RL, as discussed in Section
4.4. The tests conducted with WirelessHART indicated that this protocol takes long periods
to configure nodes during the joining process and to properly reconfigure after a change in
routes, as verified by (ZAND et al., 2014b). The reduction of the reconfiguration times in IWSN
centralized protocols is a relevant issue.

6.1.2 QLRR evaluation

The evaluation of QLRR can be conducted for other IWSN, IoT and IIoT protocols.
Also, the evaluation can use other topologies, scenarios, and rewards. Experiments can also be
performed in real-world applications.

6.1.3 New QLRR approaches

QLRR approaches can be further developed to cope with node mobility, transmission
power adjustments, coexistence, and interference.

6.1.4 Scheduling algorithms

The scheduling algorithms influence QLRR’s performance because of the strategy used
for the allocation of links and because the actions that are taken in the environment change the
current schedule. Thus, a proper combination of routing and scheduling algorithms is needed to
enhance the performance, as indicated by (NOBRE; SILVA; GUEDES, 2015b). Future works
can treat routing and scheduling as a single RL problem, where states and actions could represent
conditions and changes in routes and in the allocation of timeslots.

6.1.5 Network Manager architectures

Network Manager architectures can be developed to provide an optimized configuration
for a given operational network, using information about the current topology and network



Chapter 6. Conclusions 96

conditions. These architectures could include an optimization/simulation module inside the NM.
A cloud computing processing service could also be used to reduce NM’s hardware complexity.
The idea of using real data to feed a simulation is also suggested in (DEDE et al., 2018).

6.1.6 Development of routing algorithms using other Artificial Intelligence

models

Other AI models such as Deep Reinforcement Learning, Neural Networks, and Deep
Neural Networks could be used to build graphs based on data gathered and learned from the
network.

6.1.7 Analysis of the solutions provided by RL and AI

The main goal of an RL agent is to increase its rewards, and it will explore and exploit
the environment to reach this goal. Depending on the application, it can be difficult to predict
how the actions of the agent will affect the environment to increase its rewards. Eventually, it
may cause adverse situations that can compromise the functionality of a system.

An example of a situation that could happen in a centralized management IWSN would
be a case where an RL agent chooses routes that could accidentally remove some nodes from the
periphery of the network (by choosing poor links with neighbors in QLRR-WA, for example),
causing that these nodes could not send data packets anymore. These lost data packets may
not be considered during the ANL measurement. This may cause the agent to receive positive
rewards since ANL was reduced (because the nodes in the periphery usually have increased
latency in the system and are not able to send data packets anymore).

These situations must be evaluated previously and rules should be created to verify if
the agent is respecting the application requirements. This brings importance to the development
of proper simulation and experiment environments to test the RL approaches before using in
real-world applications. At the same time, RL can be used to discover and predict these problems
in the protocols and applications.

As mentioned by authors in (MAMMERI, 2019), it is difficult to guarantee or estimate
the performance gain of using RL on each application, due to the conditions of the physical
environment and the learning characteristics themselves. Again, proper simulation tools can be
useful.

Given the AI characteristics, the requirements of the application, the complexity of the
protocols and the relevant number of parameters associated with the network and devices, the
development and use of simulation tools that reproduce in detail the network operating conditions
is fundamental to evaluate new AI approaches in the future.
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SILVA, M. J. ; LIMA, J. ; KÜNZEL, G. ; PEREIRA, C. E. ; FREITAS, E. P. A Study on
Interference Between Industrial and Assistive Body Area Wireless Networks. In: XXII
Congresso Brasileiro de Automatica, 2018, Joao Pessoa;

The initial results with the QLRR-WA approach were presented in:

• KÜNZEL, G; CAINELLI, G. P. ; MULLER, I. ; PEREIRA, C. E. Weight Adjustments in a
Routing Algorithm for Wireless Sensor and Actuator Networks Using Q-Learning. In: III
IFAC Conference on Embedded Systems, Computational Intelligence and Telemat-
ics in Control (CESCIT), 2018, Faro, Portugal.

The full QLRR-WA and QLRR-MA approaches, the performance evaluation and the
comparison with state-of-the-art algorithms were presented in:

• KÜNZEL, G.; INDRUSIAK, L. S.; PEREIRA, C. E. Latency and lifetime enhancements
in IWSN: a Q-learning approach for graph routing. IEEE Transactions on Industrial
Informatics,v. 16, n. 8, p. 5617–5625, 2020;
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• KÜNZEL, G.; CAINELLI, G.P,; MULLER, I.; INDRUSIAK, L. S.; PEREIRA, C. E.
A Reliable and Low-Latency Graph-Routing Approach for IWSN using Q-Routing. In:
X Brazilian Symposium on Computing Systems Engineering (SBESC), 2020, Online
Event.

6.3 SOURCE CODES

The source codes are available at: <http://bit.do/gustavo-kunzel>.

http://bit.do/gustavo-kunzel
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