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1 INTRODUCTION

The Maximally Diverse Grouping Problem (MDGP) requires grouping a set of

elements into disjoint subsets (or groups) in order to maximize the overall diversity be-

tween elements of the same group, given some measure of diversity (or distance) between

those elements. MDGP can model a variety of problems in real life. It can be used, for

example, to construct reviewer groups in the process of reviewing an article. We would

like the reviewers to have a diverse background to reduce biases and improve the quality

of the review (Chen et al. 2011). It is also used for assigning students to work groups, so

that they are immersed in a diverse environment. The problem also has many applications

in VLSI design, where we need to group highly connected modules onto the same circuit

(Weitz and Lakshminarayanan 1997).

We propose to study the instances of the MDGP by relating their features to how

long several runs of a heuristic take to agree on a solution for them. We interpret this

time as a measure for the hardness of the instances. We chose in particular the Iterated

Maxima Search (or IMS) heuristic. Although we treat IMS mostly as a black box and

how it works is not too relevant, we must emphasize that measures of instance hardness

are always relative to a particular algorithm and in our case it is IMS.

This work is structured as follows. In Sections 1.1 and 1.2, we present notions

of theoretical and empirical hardness of problems and their instances. In Section 1.3,

we present a formal definition of MDGP and properties. In Section 1.4, we outline the

IMS algorithm. In Section 2.1, we describe the measure for hardness used in this work

and our methodology for obtaining it. In Sections 2.2.1 and 2.2, we use an optimizer to

analyze our methodology. In Section 2.3, we describe how we generate instances for our

experiments. Finally, in Chapter 3, we describe the results of these experiments, which

are summarized together with points of improvement for this work in Chapter 4.

1.1 Theoretical Hardness

Turing (1937) showed that there are decision problems which cannot be solved by

a computer. A decision problem is one that asks a “yes” or “no” question. For example,

we can ask, given a program and an input to that program, if the program halts on that

input. This is known as the Halting Problem. Turing showed that there is no algorithm

that could answer this question for any program and input combination, thus making the
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problem undecidable. Other problems are known to be undecidable, see for example

Berger (1966), S. Paterson (1970), Cassaigne et al. (2014), and for a more comprehensive

list, Poonen (2012). Problems that ask a “yes” or “no” question which an algorithm can

answer are called decidable.

If we focus on decidable problems, we can take the number of steps an algorithm

performed to solve their instances as a measure of how hard they are. The theory of com-

putational complexity, formalized by Hartmanis and Stearns (1965), studies the resources

necessary to solve computational problems (Sipser et al. 2006). The most important re-

sources studied are the number of steps (time) and the amount of memory (space) an

algorithm needs to run on a given input. For this introduction, we will refer mostly to

time complexity.

The time complexity for an algorithm expresses the largest amount of time (steps)

it takes to compute an answer to the problem in terms of the input size. For example,

performing a linear search on an array of size n takes roughly n steps at most. Performing

a binary search on a sorted array of size n takes approximately log2 n steps at most.

Breaking a numeric password with n digits can take up to 10n steps. We usually denote

worst case complexity using the Big-O notation. Let f(n) be the maximum number of

steps an algorithm executes on an input of size n. We say that f(n) is O(g(n)) if there

exist constants c and n0 such that f(n) ≤ cg(n) when n ≥ n0. This is called asymptotic

complexity, in light of the fact that we only care for the condition when n ≥ n0. We would

then say that the linear search complexity is O(n) while binary search has complexity

O(log n) (and, by the definition, also O(n), but we usually consider only the “tightest”

known complexity). Going back to our search examples, we can say that deciding if an

item is in an unsorted list is a problem that belongs to the class of problems solvable in

O(n) steps, while doing the same in a sorted list belongs to the class solvable inO(log2 n).

It is important to notice that there are also optimization problems, which instead

of a “yes” or “no” question as in decision problems, ask for a solution that maximizes (or

minimizes) some quantity. For example, given a list of cities and the distances between

them, the Travelling Salesman Problem (TSP) asks for the shortest route that visits all of

the cities exactly once and returns to the starting point. In this case, we have an optimiza-

tion problem because we want to minimize the path distance. Most optimization problems

have a decision version. For instance, TSP’s decision version is as follows: given a real

number k, is there a tour with length of at most k?

The notion of complexity is used to categorize problems into classes. We call a
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complexity class the set of decision problems that can be solved given the same amount of

resources. Although this characterization is limited to decision problems, the framework

it provides is very expressive and useful for optimization problems too (Arora and Barak

2009). There are two very important complexity classes: P and NP. Class P are problems

which can be solved in O(p(n)) steps, where p(n) is some polynomial function. NP

class comprises of decision problems whose positive solutions (with a “yes” answer) have

“proofs” (or “certificates”) of correctness that can be verified in polynomial time. The

proof is any succinct information necessary to check the solution is correct. For a problem

that asks “is there a solution to this Sudoku grid?”, the proof would be the numbers in

the solution and their positions in the grid. Notice that, although problems in NP have

solutions verifiable in polynomial time, it might not be possible to find those solutions in

polynomial time. It is easy to notice that P ⊆ NP : if we can find a solution in polynomial

time, we can also verify that it is correct in polynomial time. A more “machine-based”

definition of NP is that it contains problems that can be solved by a non-deterministic

Turing machine in polynomial time (NP stands for “non-deterministic polynomial”). A

non-deterministic machine is one that can take more than one computational path at a

time. Such a machine could enumerate all possible solutions to a problem and use their

certificates to determine the right one. Since it could try all of them in parallel, if each

verification takes polynomial time, the answer would be found in polynomial time. Of

course, these machines do not exist in reality.

In 1971, Cook showed that any problem in NP could be “reduced” to the SAT

problem in polynomial time. Given a boolean formula, the SAT problem asks whether

there is an assignment for the variables such that the formula evaluates to true. To reduce

a problem A to a problem B means we translate instances of problem A into instances of

problem B, such that the “yes” or “no” answer to B’s instance is the same as that for A’s

(Karp 1972). This means that, if we find an algorithm for solving problem B, we can use

that same algorithm for solving problem A. If we can reduce a problem to SAT, we can

use SAT’s algorithms to solve that problem. But if we can reduce in polynomial time any

problem in NP to SAT, then if SAT is found to be in P, all problems in NP will also be in

P. In that sense, Cook proved SAT is “at least as hard” as any other problem in NP. We

say it is complete for NP, or NP-complete. An NP-complete problem is an NP problem

to which all problems in NP can be reduced in polynomial time. Problems to which an

NP-complete problem can be reduced are called NP-hard. NP-hard problems may or may

not be decision problems. To this date, decision problems have been either proven to be
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in P or proven to be NP-complete, but not both. One of the biggest open questions in

computer science is whether NP-complete problems can be solved in polynomial time

(that is, if P = NP).

Any problem can be found to be in P if a previously unknown polynomial algo-

rithm is found for that problem. In 1965, Edmonds presented a new algorithm for the

Matching Problem. A matching in a graph G = (V,E) is a subset of E in which no

two edges meet at the same vertex. The matching problem asks, given a graph and an

integer k, if there is a matching on this graph with k edges or more. A brute force algo-

rithm that enumerates all possible subsets of E to find such matching has running time

O(2|E|). If this was the only known algorithm for that problem, we would say it is in NP,

but not necessarily in P. We can verify a positive solution in polynomial time, but not find

one. However, the algorithm proposed by Edmonds runs in polynomial time O(|E||V |2),

which means the Matching Problem is indeed in P. In that same paper, he suggested a

distinction between “efficient” and “inefficient” algorithms based on whether their com-

plexity is polynomial or not, respectively, remarking that this difference was often very

important when practical application was considered.

The line between “efficient” and “inefficient” algorithms in terms of polynomial

time complexity is even more useful when we turn to the empirical fact that when a

polynomial algorithm is discovered for a problem, its complexity may be high at first

(e.g., n100), but optimizations often follow so that this number is decreased significantly

(e.g., to n4) (Arora and Barak 2009, Cormen et al. 2009, Sipser et al. 2006). Using

polynomial time complexity as the division between practical and impractical, we would

say problems in P are tractable and those that are NP-complete are intractable in scenarios

of practical application. However, the classification of problems into complexity classes

is done in terms of the worst case performance of their best algorithms, i.e., based on

the problem’s hardest possible instance. The analysis is usually done in terms of a simple

measure of instance size, but as problems and instances become more complex, the formal

hardness analysis becomes much harder.

In practice, one usually deals with certain “typical” instances of a problem. We

can take the Vertex Cover Problem as an example. The problem asks, given a graph, if a

subset of size k of its n vertices exists such that all edges touch at least one of the vertices

in this subset. There is an algorithm that answers the question in O(kn + (4/3)kk2)

(Balasubramanian, Fellows, and Raman 1998). It is an exponential algorithm, which is

expected from an NP-complete problem such as the Vertex Cover Problem. However, if
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we are dealing with instances of small values of k, the algorithm runs quickly for any n.

Parameterized complexity is a sub-field of complexity theory which divides the input of a

problem into size and parameters (Downey and Fellows 1999). In our example, n would

be the size and k a parameter. This theory formalizes the notion that when instances

are confined to a certain parameter ranges, the problem might be tractable, although the

general problem is NP-hard. However, we may not be interested in a simple parameter

such as size or we may want an average complexity instead of worst case complexity.

As our questions about instance structure become more complex, calculating hardness

exactly and formally becomes more difficult. In some cases, we may turn to alternative

ways of analyzing hardness.

1.2 Empirical Hardness

Many typical instances of NP-hard problems that arise in practice can be solved

rather quickly. For example, polynomial-time algorithms can be used to solve the Graph

Coloring Problem with high probability of optimality, even though the problem is NP-

hard (Turner 1988, Coja-Oghlan, Krivelevich, and Vilenchik 2010). SAT is another NP-

complete problem that is often considered tractable for many propositional formulas –

sometimes with millions of variables – derived from industrial applications (Vizel, Weis-

senbacher, and Malik 2015). The Knapsack Problem is solved so unexpectedly quickly

in its domains of application that finding its hard instances is actually a subject of study

(Pisinger 2005). In contrast, the Vehicle Routing Problem is known for being hard to

solve exactly even for what would be considered a small instance in many applications

(Laporte 1992).

Cheeseman, Kanefsky, and Taylor (1991) showed that some measures of structure

in the instances correlate with what we can call the empirical hardness, a measure of

how hard certain instances are based on past algorithm performance. Among other exam-

ples, they generated random graphs and used an algorithm to decide whether there was

a Hamiltonian cycle in the graph or not. A Hamiltonian cycle is a closed path through

all nodes in a graph where no node is visited twice. The problem of determining if a

graph contains a Hamiltonian cycle is NP-complete. What Cheeseman et al. found was

that the number of steps the algorithm took to compute an answer to each of the random

graphs (their measure of empirical hardness) has a sharp change when plotted against the

average degree (i.e., how many edges per node the graph has). The graph average degree
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of the graph is then called the order parameter that governs a hard-easy phase transition

of the problem, much like we use the density to tell apart liquid-vapor phases of water

in physics. In that same study, they showed the same behavior occurred for other NP-

complete problems (each with their own order parameter) such as graph coloring, SAT

and TSP.

Much research has been done on the effect of the structure of the instance and

their hardness (e.g., Prosser 1996, Mitchell, Selman, and Levesque 1992, Achlioptas,

Naor, and Peres 2005, Smith-Miles, Hemert, and Lim 2010, Kromer, Platos, and Kudelka

2017). To cite an example, Kanda et al. 2011 analyzed how the performance of several

algorithms for solving the TSP related to graph features. They study the influence of

several parameters, such as the number of vertices, number of edges, average of edge

costs, etc.

Characterizing the structure of hard instances can be used, for example, to build

algorithm portfolios, a method that combines several algorithms and chooses the one

that is most likely to be efficient for the instance at hand based on its features (Gomes

and Selman 2001). SATzilla (Xu et al. 2008) is an example of a tool for building such

portfolios for the SAT problem. The tool takes as input a set of instances and a set of

algorithms. It then constructs a portfolio by optimizing some objective function, like

runtime, solution quality, etc. On a new instance, this portfolio is used to choose which

of the input algorithms to use. The process of choosing the algorithm uses an empirical

hardness model, a computationally inexpensive predictor of the algorithm performance

based on the instance features and on the past performance of those algorithms. As a

bonus, the study of instance features that relate to hardness for an algorithm also aids us

to build better algorithms by making us understand better the problem structure.

1.3 The Maximally Diverse Grouping Problem

The Maximally Diverse Grouping Problem (MDGP) consists of grouping nodes

in an edge-weighted graph maximizing the “in-group” weights while respecting some

restrictions on group sizes. It is usual to call those weights distances, representing a

dissimilarity measure (hence the name MDGP). More formally, using [k] to denote the set

{1, 2, . . . , k}, consider the edge-weighted, complete graph G = (V,E), where V = [n]

are the nodes (or vertices), E = {{i, j} | i, j ∈ V, i 6= j} are the edges and D is a

symmetric matrix whose entries dij ≥ 0 represent the edge weights between nodes i and
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j for i, j ∈ [n], with diagonal entries equal to zero. The problem is to partition V into into

m disjoint sets, forming a solution S = {Vg | g ∈ [m]}, while maximizing

∑
g∈[m]

∑
i,j∈Vg

dij. (1.1)

Additionally, the size of each subset Vg is constrained by lower bounds a =

(a1, a2, . . . , am) and upper bounds b = (b1, b2, . . . , bm), such that the solution must have

ag ≤ |Vg| ≤ bg for all g ∈ [m].

1.3.1 NP-completeness

The decision version of MDGP is NP-complete. It asks, given an instance, if there

is a solution with a value of at least k. To prove that this problem is NP-complete, we must

(1) prove a solution is verifiable in polynomial time and that (2) we can reduce another

NP-complete problem to it.

Proof. For the first step, note that, if given a solution for an instance of the MDGP,

we can verify it has a value of k or more in polynomial time by simply performing the

summation in (1.1) and checking if the number of nodes in each groups is within bounds.

For the second part of the proof, consider the problem of m-Dimensional Matching on

a graph (mDM). mDM is NP-complete (Feo and Khellaf 1990) and asks the following

question. Given an edge-weighted, complete graph G = (V,E), where the number of

vertices |V | = mr for some integer r > 2, is there a partition of V into m groups of r

vertices each, such that the sum of the weights of all edges between vertices in the same

group is k or more? We can see that this is a special case of MDGP when ag = bg = r,

for r > 2. �

1.3.2 Multiplicative Invariance

MDGP has the property that, for a given instance, we can multiply all of its dis-

tances dij by some positive constant awithout changing the optimal partitioning of nodes.

This property will be useful in the analysis at Section 1.3.3. The proof is quite simple,

we just notice that any solution S for the original instance will have a value for the new

instance that is equal to
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a×
∑
g∈[m]

∑
i,j∈Vg

dij.

That is, the order of all solutions when ranked by quality is unchanged, but the

absolute value of their quality is multiplied by a.

1.3.3 An Easy Subcase

We found an easy subcase of the MDGP that can be solved in polynomial time. It

occurs when all distances are equal. If distances are all zero, any solution is trivial and

has value zero. Otherwise, we can use the multiplicative invariant to normalize them such

that all dij = 1, for all i, j ∈ [n]. For this simple subcase, we do not need to distinguish

between nodes, so we can refer to a solution simply by the number of nodes in each group.

Thus, for now, we will refer to the number of nodes in group g as xg and to all of them

them as the vector x. Let us consider two simple algorithms for this subcase:

A1 Satisfy the lower bound requirements of all groups by setting xg = ag, and then

assign the remaining n−
∑

g ag items in order of non-decreasing lower bounds ag.

A2 Satisfy the lower bound requirements of all groups by setting xg = ag, and then

assign the remaining n−
∑

g ag items in order of non-decreasing slacks bg − ag.

The following two examples show that these algorithms do not always yield the

optimal solution. In the case of A1, consider the instance wherem = 2, n = 2, a = (0, 1)

and b = (1, 2). Following the algorithm, we arrive at the solution x = (1, 1) (Figure 1.1a),

while the optimal solution in this case would be x = (0, 2) (Figure 1.1b). For A2, consider

the instance where m = 2, n = 2, a = (0, 1), but b = (100, 2). Following the algorithm,

we arrive at the solution x = (1, 1) (Figure 1.2a), while the optimal solution is actually

x = (0, 2) (Figure 1.2b).

We next state optimality conditions and then show how to compute an optimal

solution in polynomial time.

Proposition 1.3.1 At optimality, if there are two groups g1 and g2 with sizes x1 and x2, if

x1 ≥ x2, then x1 = b1 or x2 = a2.

Proof. Suppose our proposition is false and we have an optimal solution where

x1 < b1 and x2 > a2, but x1 ≥ x2. In that case, we could remove one node from the

second group and add it to the first one. Let c be the part of the solution value contributed
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Figure 1.1: Counter example for polynomial algorithm A1

a2 = 1

b2 = 2

a1 = 0

b1 = 1

(a) Solution found by algorithm A1

a2 = 1

b2 = 2

a1 = 0

b1 = 1

(b) Optimal solution

Figure 1.2: Counter example for polynomial algorithm A2

a2 = 1

b2 = 2

a1 = 0

b1 = 100

...

(a) Solution found by algorithm A2

a2 = 1

b2 = 2

a1 = 0

b1 = 100

...

(b) Optimal solution

by the groups not involved in the exchange (i.e., g 6= 1, 2), and let x′1 = x1 + 1 and

x′2 = x2 − 1 in the new solution. The new solution has value

c+

(
x′1
2

)
+

(
x′2
2

)
= c+

(
x1 + 1

2

)
+

(
x2 − 1

2

)
= c+

(
x1

2

)
+ x1 +

(
x2

2

)
− (x2 − 1)

= c+

(
x1

2

)
+

(
x2

2

)
+ x1 − x2 + 1

> c+

(
x1

2

)
+

(
x2

2

)

That is, by reassigning one node, we get a better solution, which is in contradiction with

the optimality of x1 and x2 assumed at the beginning. �

This tells us that in an optimal solution, if x1 ≥ x2, then either x1 = b1 or x2 = a2.

That is, if one group has a size larger than another, either the first is at its upper bound

or the second at its lower bound. Therefore, an optimal solution must have every group

– except one – at either its lower or upper bound. This suggests a dynamic programming

approach to compute the optimal solution. ConsiderD(k, g) the maximum value obtained
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in a solution by distributing k nodes to groups g, . . . ,m. Because of our proposition, the

distribution can leave at most one group with xg 6= ag or xg 6= bg. Let us define now that

only the last group is allowed to be in this situation when we are computing D(k, g). We

will deal with the consequences of this restriction later. The optimal solution in that case

has a value D(n, 1), i.e., the value when we distribute n nodes into groups 1, . . . ,m. We

can make the following conclusions about D:

• The value of D(k,m) is the maximum value we can get when distributing k nodes

into only one group, the “last” one (group m). If am ≤ k ≤ bm, then all k nodes

fit into the group and D(k,m) =
(
k
2

)
. If k < am or k > bm, we define D(k,m) =

−∞, since the nodes do not fit and the subproblem is invalid.

• The value ofD(k, g), when g < m, is the maximum value we can get by distributing

k nodes into groups g, . . . ,m. When k < ag, there are not enough nodes to satisfy

the lower bound of group g, so a solution is impossible and we define D(k, g) =

−∞ in this case. When k ≥ ag, we have enough nodes to satisfy its lower bounds.

By our proposition, optimal solutions have all but one group with the number of

elements equal to the upper or lower bounds. By our definition of D, only group m

is allowed to be in this situation. Therefore, if k ≥ ag, we have two options:

• First, we can assign ag nodes to group g, in which case the best solution has

value
(
ag
2

)
+ D(k − ag, g + 1). If k < bg, this is our first and only option

because of our proposition that says xg must be either ag or bg.

• Second, we may also have the option to assign bg nodes to this group if k ≥ bg.

The best solution in this case has a value of
(
bg
2

)
+D(k − bg, g + 1).

Therefore, we arrive at the following expressions for D:

D(k,m) =


(
k
2

)
, am ≤ k ≤ bm,

−∞, otherwise,
(1.2)

and, for i < m,

D(k, i) =


−∞, k < ag,(
ag
2

)
+D(k − ag, g + 1), ag ≤ k < bg,

max
{(

ag
2

)
+D(k − ag, g + 1),

(
bg
2

)
+D(k − bg, g + 1)

}
, k ≥ bg.

(1.3)
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We can compute D(n, 1) in polynomial time and space O(mn) via dynamic pro-

gramming. As we can see from its definition, D(k, g) is relative to a particular ordering

of the groups. Only the last group is allowed to have the number of elements not equal to

its lower or upper bound. This means we have to repeat this process m times, each time

leaving a different group as the last group (of index m) to find the maximum value. This

yields an algorithm that runs in O(m2n) time and O(mn) space.

1.4 Iterated Maxima Search

Iterated Maxima Search (IMS) is a heuristic search to solve MDGP instances (Lai

and Hao 2016). IMS works by improving upon an initial solution doing the following

steps:

1. Starting from the current solution, perform a local search and obtain a new current

solution.

2. Perturb the current solution to obtain a new current solution.

3. Repeat until a cutoff time is reached.

For the purposes of this research, IMS can be treated as a black box, therefore we

only give a brief description of it. For more details, we advise looking into the original

paper by Lai and Hao (2016). Algorithm 1 describes the IMS procedure, which consists of

two levels of local search and perturbation. The lower level search (Algorithm 2) slightly

perturbs the current solution and performs a complete local search in its neighborhood.

Meanwhile, the upper level search (Algorithm 1) strongly perturbs the current solution

and calls the lower level search.

Algorithm 1: IteratedMaximaSearch
input : I , an instance of the MDGP

α, the depth of Maxima Search
ηs, the magnitude of the strong perturbation
tmax, the cutoff time for the algorithm

output: S∗, the best solution found for I
S ← InitialSolution(I)
keep the best solution found in S∗

while runtime < tmax do
S ← MaximaSearch(S, α)
S ← StrongPerturbation(S, ηs)

end
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Algorithm 2: MaximaSearch
input : α, the depth of Maxima Search

S, the initial solution
output: S∗, the best solution found for I
S ← CompleteLocalSearch(S)
keep the best solution found in S∗

while iterations without improvement < α do
S ← WeakPerturbation(S)
S ← CompleteLocalSearch(S)

end

The algorithm InitialSolution(I) returns the best solution found by run-

ning CompleteLocalSearch on 10 random solutions for I and returning the best one

found. The algorithm CompleteLocalSearch(S) finds a locally optimal solution by

making a complete search over two neighborhoods of S. The first neighborhood, called

N1(S), consists of all solutions obtained by transferring any one node in S to a different

subset of V , respecting the group boundaries. This is commonly referred to as a “shift”

neighborhood. The second neighborhood, N2(S), consists of all solutions obtained by

exchanging any two nodes of different subsets in S. This is referred to as a “swap” neigh-

borhood.

The two perturbation methods also make use of N1(S) and N2(S). The algo-

rithm StrongPerturbation(S) starts from a solution S and chooses a random so-

lution in N1(S) ∪ N2(S) to be the new solution. It repeats this for ηs steps, where ηs

is called the strength of the strong perturbation. Lai and Hao (2016) empirically arrive

at the values for ηs, setting it to n/m if n < 400 and to 1.5 × n/m otherwise. The

WeakPerturbation(S) algorithm also starts from a solution S and repeats the fol-

lowing steps ηw times:

1. Select at random a solution in N1(S) ∪N2(S) to be the new current solution S.

2. Pick the best solution S ′ of |V | random solutions in N1(S) ∪ N2(S). If S ′ has

greater value than S, S ′ becomes the new current solution.

The value ηw is called the strength of the weak perturbation and is set to n by Lai

and Hao (2016). In this work, we use the same values of ηs and ηw as the original authors.
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2 METHODOLOGY

We use the number of iterations IMS takes to find a solution for an instance of the

MDGP as a measure for how hard that instance is for the algorithm. We use the following

methodology in order to find features of the instance that influence this number.

In Section 2.1, we describe the process we use to measure hardness, called “solu-

tion stabilization”. In Section 2.2, we analyze the stabilization process by comparing it’s

results with the results of an optimizer for instances that it can solve exactly in feasible

time. In Section 2.3, we describe a method to generate our own instances in order to have

more control over their features. With that, we can keep parameters fixed and only vary

the ones we are interested in seeing the influence over hardness. Finally, in Chapter 3, we

present the experimental results regarding the impact of instance features.

2.1 Solution Stabilization

To gauge how hard it is for IMS to find a solution, we use a procedure we call

solution stabilization. In each run of solution stabilization, we take an instance of the

MDGP and let IMS run as long as it is making progress. We stipulate that the algo-

rithm stops making progress when the last iteration that found a new, better solution is

15 times smaller than the current iteration. We use this number of iterations as a measure

of hardness. We use iterations instead of absolute time because it is independent of the

computing environment.

Figure 2.1 shows 6 runs of IMS for the same instance with n = 100 and m = 8.

The figure shows the value for the best solution as a function of the number iterations of

the main loop of Algorithm 1. Note the x-axis has a logarithmic scale. We call the highest

value found by any run the best known value (BKV). For most instances in this work,

a great majority of the runs will converge to the BKV. We can also see the curves have

different lengths, as indicated by the X marks. This is a result of our stopping criteria,

which makes all runs have their plateaus 15 times longer than the total length of the curve

on the x-axis. For those runs that reached the BKV, we call the total amount of iterations

taken to reach that value iterations to BKV (ITB). Those that did not reach the BKV are

analyzed separately in cases where their number is significant.

From several runs of solution stabilization, we can extract statistical measures of

the ITB. We take the median as a measure of how hard it is for IMS to find a good solution
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Figure 2.1: 6 runs of the stabilization procedure for an instance of size n = 100 and
m = 8.

0 100 101 102 103 104 105 106

iteration

398

400

402

404

406

408

qu
al

ity

BKV (407.22)

run
1
2
3

4
5
6

for that instance. It is clear that not reaching the BKV means the solution found is sub-

optimal. However, the BKV is not necessarily optimal. In the next sections, we will

compare the solution stabilization method with exact solutions for small instances of the

MDGP to gain confidence that the BKV represents a good solution.

2.2 Comparison of Solution Stabilization and Exact Results

For small enough instances, we can find optimal solutions for MDGP using a

integer programming solver. In order to gain some confidence on the results produced by

the solution stabilization procedure, we compare its output with the exact results found

by the CPLEX solver.

2.2.1 Exact Solutions

We can model the MDGP as a quadratic integer programming problem as follows.
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maximize
∑
g∈[m]

∑
i∈[n−1]

∑
j∈[i+1,n]

dijxigxjg (2.1)

subject to
∑
g∈[m]

xig = 1, i ∈ [n], (2.2)

ag ≤
∑
i∈[n]

xig ≤ bg, g ∈ [m], (2.3)

xig ∈ {0, 1}, i ∈ [n], g ∈ [m]. (2.4)

Here xig is a binary variable – as per Constraint (2.4) – that is 1 if node i belongs

to group g and 0 otherwise. Function (2.1) is the quality of the solution, which we want

to maximize. Constraint (2.2) ensures each node is in only one group. Constraint (2.3)

makes sure upper and lower bounds are respected. In this formulation, the problem has

nm variables and n+m constraints. To run this on a integer programming solver, we need

to eliminate the quadratic objective function in (2.1). We can reformulate the problem by

introducing a new variable yijg = xigxjg and rewrite the objective function as

∑
g∈[m]

∑
i∈[n−1]

∑
j∈[i+1,n]

dijyijg.

In our model, it suffices to add the constraints that yijg ≤ xig and yijg ≤ xjg to

represent the relation that yijg = xigxjg, since if either xig or xjg are 0, yijg is also 0. Also,

if xig and xjg are both 1, the objective to maximize makes sure yijg is 1. This yields the

constraints

∑
g∈[m]

xig = 1, i ∈ [n],

ag ≤
∑
i∈[n]

xig ≤ bg, g ∈ [m],

yijg ≤ xig, i ∈ [n], j ∈ [n], g ∈ [m],

yijg ≤ xjg, i ∈ [n], j ∈ [n], g ∈ [m],

yijg ∈ {0, 1}, i ∈ [n], j ∈ [n], g ∈ [m],

xig ∈ {0, 1}, i ∈ [n], g ∈ [m].

In this formulation, there are n2m+ nm variables and 2n2m+m+ n constraints.
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This is the formulation used in the next section when we compare exact, optimal results

and those of the stabilization procedure detailed in Section 2.1.

2.2.2 Comparison of results with CPLEX

We use CPLEX 12.9 – a software for solving integer programming problems –

to find exact solutions and gaps, and then compare them to the output of our solution

stabilization process. Since finding the exact optimal solution is costly, we are only able

to run CPLEX for relatively small instances. The comparison of the results for both

methods is shown in Table 2.1.

Table 2.1: Comparison between results found by CPLEX and those found by the stabi-
lization procedure.

m n stabilization CPLEX difference (%) CPLEX gap (%) time (s)

2 5 2.67 2.67 0.00 0.00 0.01
2 10 13.15 13.15 0.00 0.00 0.07
2 15 30.12 30.12 0.00 0.00 0.14
2 20 53.01 53.01 0.00 0.00 0.98
2 25 85.28 85.28 0.00 0.00 10.65
2 30 119.90 119.90 0.00 0.00 80.59
2 35 160.35 160.35 0.00 0.00 1684.7
4 5 1.00 1.00 0.00 0.00 0.01
4 10 6.83 6.83 0.00 0.00 0.37
4 15 15.37 15.37 0.00 0.00 17.95
4 20 28.81 28.81 0.00 0.00 454.42
4 25 46.87 45.49 2.94 64.93 mem. lim.
4 30 67.41 64.04 5.00 103.31 mem. lim.
4 35 90.64 85.18 6.02 129.68 mem. lim.
5 5 0.00 0.00 0.00 0.00 0.0
5 10 4.44 4.44 0.00 0.00 0.7
5 15 11.69 11.69 0.00 0.00 11.4
5 20 23.18 23.18 0.00 0.00 1569.38
5 25 36.94 34.64 6.23 94.06 mem. lim.
5 30 54.44 50.81 6.67 130.68 mem. lim.
5 35 74.48 70.26 5.67 158.33 mem. lim.
8 10 1.96 1.96 0.00 0.00 0.1
8 15 6.27 6.27 0.00 0.00 7.47
8 20 14.14 14.03 0.78 117.53 mem. lim.
8 25 22.58 21.50 4.78 189.74 mem. lim.
8 30 35.14 31.81 9.48 279.28 mem. lim.
8 35 48.04 40.64 15.40 376.99 mem. lim.
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Each row of the table represents one instance of the MDGP. It shows the number

of groups m and number of nodes n for each of them. The next columns show the BKV

found by the stabilization procedure, the quality of the solution found by CPLEX, and

the relative difference between them. For each of the instances in the table, all 15 runs of

solution stabilization converged to the BKV. Since CPLEX may stop before it can prove

optimality of the solution, we also display the gap between the best value and the upper

bound for the optimal solution it could find. The gap is shown as a percentage of that best

value. For example, for m = 4 and n = 25, the best solution found by CPLEX had a

value of 46.87, and the upper bound found for the optimal solution was 64.93% greater

than that. The last column in the table shows the time it took for CPLEX to find such

results. The solution stabilization procedure ran in less than a second for all these small

instances.

We can see from the table that the difference between the results from the stabi-

lization and CPLEX are zero for all values where the CPLEX gap is zero. That is, for

those instances, the BKV is the optimal value. We assume that this general behavior

continues for larger instances, meaning the stabilization result is reasonably close to the

optimal solution if many runs converge to the BKV.

2.3 Generating Instances

In order to have control over instance features, we generate the instances through

the following steps:

1. Choose values for n and m.

2. Define the distance matrix D.

3. Define lower and upper bounds a and b.

We would like to be in full control of how bounds are distributed among groups,

and also how the distances are generated. Sections 2.3.1, 2.3.2 and 2.3.3, respectively, go

over each of these three steps in more detail.
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2.3.1 Values for n and m

We must choose a value for the number of nodes n and number of groups m our

instance will have. We can pick any positive values. The instances in this work usually

have n a few times larger m, such that there are at least a few nodes per group, which is

often the case in practical applications.

2.3.2 Defining the Distances

To define the distance matrix D of our instance, we only need to make sure is

that dij ≥ 0 for i, j ∈ [n]. We define the algorithm used to generate those distances as

a parameter for our process of generating instances. We call this parameter the distance

generation algorithm. We now review the algorithms we use in this work.

2.3.2.1 Random Integer Distances

Algorithm GenerateRandomIntegerDistances(vmin, vmax) simply gen-

erates distances by assigning a uniform random integer in the range [vmin, vmax] to each

edge weight.

2.3.2.2 Normally Distributed Distances

Algorithm GenerateRandomIntegerDistances(µ, σ) is similar to the pre-

vious one, but samples from a normal distribution instead of a uniform distribution with

mean µ and standard deviation σ.

2.3.2.3 Distances Limited to a Set of Values

Algorithm GenerateDistancesLimitedToValues(c) limits the number

of possible values that distances can have to only c different values, and assigns those

values randomly to all edges in the same ratio (or as close as possible) to all edges.

2.3.2.4 Unitary Distances Forming a Tree

When two nodes have distance 0 between them, it does not matter for the final

solution if they are in the same group or not, but it does when the distance between them
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is positive. To analyze how this connection between nodes plays into the hardness of the

instance, Algorithm 3 generates instances that have edges of weights 0 or 1. It has the

number of unitary edges Nu as a parameter and generates the distances by performing the

following steps. It repeatedly connects a random node that already has unitary edges with

another random node that has not, thus forming a tree if we take into account only unitary

edges. It stops once the number of unitary edges is equal to N . Notice that for simplicity,

we implicitly assume that dji is updated whenever dij is. We hope to see the effect of this

“dependency” between them as the number of unitary edges increases.

Algorithm 3: GenerateDistancesWithUnitaryTree
input : Nu, the number of unitary edges
output: D, the matrix of distances
dij ← 0, ∀i, j
K ← {1}
while |K| < Nu + 1 do

i← a random node in K
j ← a random node not in K
dij ← 1
add j to K

end

2.3.3 Defining Bounds

We must define the lower and upper bounds a and b of our instance. In order to

do that, we partition n into m capacities s = (s1, s2, . . . , sm), called space of each group,

such that the total space is
∑

g sg = n. We then define a slack up as u = (u1, u2, . . . , um)

and a slack down as l = (l1, l2, . . . , lm) such that a = s− l and b = s+u. The values in

a and b have the following restrictions:

∑
g∈[m]

ag ≤ n, (2.5)

∑
g∈[m]

bg ≥ n, (2.6)

ag ≤ bg, ∀g ∈ [m], (2.7)

ag ≥ 0, ∀g ∈ [m]. (2.8)

Constraint (2.5) ensures there are enough nodes to fill the groups. We satisfy that
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constraint by making sure the slack down is non-negative (lg ≥ 0):

∑
g∈[m]

ag =
∑
g∈[m]

sg − lg ≤
∑
g∈[m]

sg = n

Constraint (2.6) guarantees there is enough overall space for the nodes. We satisfy

those constraints by making sure the slack up also is non-negative (ug ≥ 0):

∑
g∈[m]

bg =
∑
g∈[m]

sg + ug ≥
∑
g∈[m]

sg = n

Constraint (2.7) ensures the lower bounds are smaller than the upper bounds,

which is ensured by our conditions that lg ≥ 0 and ug ≥ 0:

ag = sg − lg ≤ sg + ug = bg

Finally, Constraint (2.8) can be satisfied by making sure lg ≤ sg:

ag = sg − lg ≥ 0

We generate the upper and lower bounds of our instances indirectly by distributing

a total amount of space n into s. How we distribute this quantity is described by an algo-

rithm that we will call the space distribution algorithm, which defines how we distribute

the total space n between the m groups.

After that step, we must choose a value for the total slack up U =
∑

g ug and the

total slack down L =
∑

g lg and distribute these two quantities among the m groups. The

distribution of slack up into ug and slack down into lg is described by two algorithms:

slack up distribution algorithm and slack down distribution algorithm. Similar to the

space distribution algorithm, those algorithms define how we distribute the total slack up

or down into each group.

Notice that an algorithm that distributes a total space of n into m groups can also

be used to distribute the total slack up U and down L into those m groups. We call the

algorithms used to distribute a generic quantityQ intom groups a distribution algorithms.

Their output are the amounts q = (q1, q2, . . . , qm) out of Q assigned to each group. We

will now go over the two algorithms used in our experiments. In their description, we will

call the quantity to be distributed (space or slack) Q.
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2.3.3.1 Uniform Distribution

Algorithm DistributeUniformly(Q) is a distribution algorithm that assigns

Q as evenly as possible to each of the m groups, such that |qg − qh| ≤ 1 for any two

groups g, h ∈ [m].

2.3.3.2 Geometric Distribution

Algorithm DistributeGeometrically(Q) distributesQ such that qg is pro-

portional to p(1 − p)g−1 for each group g ∈ [m], where 0 < p ≤ 1 is a parameter that

controls how even the distribution is. For example, suppose we haveQ = 100 andm = 5.

If p = 0.05, then q = (22, 21, 20, 19, 18), a very even distribution. However if p = 0.9,

then q = (90, 9, 1, 0, 0), a very uneven distribution.



28

3 EXPERIMENTS

In order to test our hypothesis about what features of the instance are important to

predict its hardness for IMS, we conducted a series of experiments. All experiments fol-

low the same structure. We generate instances using the method described in Section 2.3.

We keep all but one parameter fixed, the parameter we are interested to see the effect on

hardness. We then run solution stabilization – described in Section 2.1 – a total of 15

times for each instance to obtain a BKV and each run’s ITB, our metric for hardness. The

only exception is the next experiment, for which we have data of 30 solution stabilization

runs per instance left from tests to see if ITB statistics would improve, however it was

not worth the cost for all experiments. We then compare runs of different instances to

see if the feature has any effect on ITB. Since we use stochastic methods to generate the

instances, we replicate the experiment for a few sets of instances with different values for

m or n to see if the effects are consistent.

3.1 Influence of the Number of Nodes

To illustrate the process followed in all experiments, let us take the simplest one as

an example. It tests the hypothesis that a larger number of nodes makes it harder for IMS

to find a good solution. We generate 70 instances split into 5 different sets with different

values of m, keeping all parameters fixed, but varying n between instances with same

m. The results are presented in Figure 3.1. The plot shows the median ITB of 30 runs

of solution stabilization for a single instance, and error bars indicate the first and third

quartiles. Notice the y-axis is in what is called a “symmetric logarithmic” scale, which

allows us to plot zeroes by taking a linear scale in a small range around zero (Matplotlib

2020).

As we can see, as n increases, there is a tendency for the ITB to increase too.

This can serve as a sanity check for our methodology, since this behavior is expected.

However, we can see it is not always the case that the ITB increases with an increment in

n. For example, when m = 6 and n = 150, we recorded lower ITBs than for n = 140.

This may be due to the stochastic nature of our instance generation process, as we will

see in Section 3.3.

As mentioned in Section 2.1, not necessarily all runs of solution stabilization will

converge to the BKV. Therefore, when presenting the experiments, we only show the
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Figure 3.1: ITB vs. n. Each point on the plot represents 15 runs of solution stabilization,
median ITB defines the point’s center, while the first and third quartiles define the error
bars.
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ITB of solution stabilization runs that reached the BKV. Those runs that did not reach

the BKV are described in a summary, as shown in Table 3.1 for this experiment. The first

column of the table identifies the set of instances. The second column shows how many of

the solution stabilization runs for those instances reached the BKV. The third and fourth

columns show the average ∆ and standard deviation σ∆ of the percent distance between

the BKV and the quality of the solution found by those runs that did not reach the BKV. In

this specific case, form = 2, only one solution stabilization run did not converge (99.76%

did), hence σ∆ is not shown.

To generate the instances, we use the parameters shown in Table 3.2. Values that

do not apply are marked with a bar (–), such as arguments for algorithms that take none.

The slack is arbitrarily set to 0. We’ve also chosen the simplest distribution algorithm

DistributeUniformly – described in Section 2.3.3.1 – for distributing space among

groups. The different values of n were chosen by some trial and error to be in a range

where ITB varies a fair amount (around 6 orders of magnitude in this case). Replicat-

ing the experiment with different values of m lets us see if behaviors are consistent for

instances with a different number of groups. In all experiments we chose m and n in

a range that produces a significant amount of iterations for IMS to avoid making all in-

stances easy. However, since experiments take many runs of IMS, m and n must not be
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too large, so that we can compute all those runs in feasible time. We must also take into

account the trial and error nature of choosing ranges for parameters in order so see any

significant pattern of change in ITB. For similar reasons, solution stabilization was run 15

times for each instance in other experiments, instead of 30 we used in this one.

Table 3.1: Summary of solution stabilization runs that did not reach the BKV for the
experiment on number of nodes.

m Reached BKV (%) ∆ (%) σ∆ (%)

2 99.76 0.01 –

4 95.00 0.02 0.01

6 88.81 0.08 0.06

8 81.67 0.10 0.09

10 85.13 0.14 0.12

Table 3.2: Parameters for the experiment on the number of nodes.

Parameter Value

n 10 + 10× [14]

m 2× [5]

Total slack up (U ) 0

Total slack down (L) 0

Space distribution algorithm DistributeUniformly

Space distribution parameters –

U distribution algorithm DistributeUniformly

U distribution parameters –

L distribution algorithm DistributeUniformly

L distribution parameters –

Distance generation algorithm GenerateRandomIntegerDistances

Distance generation parameters vmin = 0, vmax = 10

Random seed 0
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3.2 Influence of the Number of Groups

Just like the number of nodes, we want to see the influence of the number of groups

on ITB. Figure 3.2 shows the median ITB as a function of m for a series of instances with

different values of n. We can see that there is a tendency for ITB to increase as the number

of groups becomes larger. There is also a significant amount of variation in the behavior

for different values of n. For example, for the set of instances with n = 30, ITB is in the

range of hundreds of iterations at m = 14, but only tens at m = 16. This variation is

present for the other values of m larger than 30. We study this behavior more closely in

Section 3.3.

For the smaller values n = 20 and n = 25, ITB decreases in the higher range

of values of m until it reaches practically zero iterations. This is likely due to the fact

that, since we have few nodes per group, and a total slack of zero, instances become over-

constrained and the problem becomes easier, as observed in other optimization problems

(Cheeseman, Kanefsky, and Taylor 1991)

Figure 3.2: Runs that converged to the BKV.
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Finally, Table 3.3 shows a summary of the solution stabilization runs for this ex-

periment. Most of the runs converge to the BKV. For n = 80, a more significant portion

of the runs didn’t converge to the BKV, which can be attributed to the size of the problem.

The parameters used for this experiment are shown in Table 3.4.
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Table 3.3: Summary of solution stabilization runs that did not reach the BKV for the
experiment on the number of groups.

n Reached BKV (%) ∆ (%) σ∆ (%)

20 100.00 – –

25 100.00 – –

30 99.05 0.09 0.04

40 90.95 0.14 0.14

50 89.09 0.24 0.17

80 78.79 0.25 0.32

Table 3.4: Parameters for the experiment on the number of groups.

Parameter Value

n 20, 25, 30, 40, 50, 80

m 2 + 2× [11]

Total slack up (U ) 0

Total slack down (L) 0

Space distribution algorithm DistributeUniformly

Space distribution parameters –

U distribution algorithm DistributeUniformly

U distribution parameters –

L distribution algorithm DistributeUniformly

L distribution parameters –

Distance generation algorithm GenerateRandomIntegerDistances

Distance generation parameters vmin = 0, vmax = 10

Random seed 0

3.3 Influence of the Randomness in the Instance Generation Procedure

Since instances are generated using random numbers – as described in Section 2.3 –

there is variation between instances generated from the same parameters but with a differ-

ent random seed. We would like to know the impact of this randomness on the ITB. Take

for example the instance in Figure 3.1 with m = 4 and n = 90. This instance’s ITB is
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an order of magnitude larger than the ITB of the instance with m = 4 and n = 100, even

though the parameter is smaller in the first instance n.

To assess how much of this variation can be attributed to randomness, we gener-

ated instances in the region of n ∈ [79, 101] using 6 different random seeds and applied the

same experimental procedure described in Section 3.1. Results are shown in Figure 3.3a.

Error bars were omitted for legibility, but they are roughly the same size as those in Fig-

ure 3.1. The variation is substantial even among instances with equal number of nodes,

which explains some of the noise in the experiments. Instances also appear to be easier

around values of n which are multiples ofm. Figure 3.3b shows the solution stabilization

runs for all seeds combined. It is clear from the combined data that the median ITB tends

to increase with n. The low ITB around values of n divisible by m is also clear. We can

observe a similar behavior repeating the experiment for instances with m = 5, as shown

in Figures 3.3c and 3.3d. The results are analogous to those with m = 4, presenting the

same behavior around n mod m = 0 and – although not as clear and pronounced in this

short range – a slight tendency for the ITB to be higher for larger values of n.

All experiments in the following sessions run solution stabilization 15 times for

each instance generated from a single set of parameters. Ideally, this process should be

repeated for instances with different random seeds and the results combined like it was

done in this experiment. However, since 15 runs of solution stabilization runs can take

more than a day to compute for larger instances, replicating them for many seeds was not

possible due to time constraints.
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Figure 3.3: Effect of the randomness in the instance generation procedure on the ITB for
instances built with different random seeds.
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(a) Solution stabilization results for in-
stances of each seed (m = 4).
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(b) Combined solution stabilization results
for all seeds (m = 4).
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(c) Solution stabilization results for in-
stances of each seed (m = 5).
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(d) Combined solution stabilization results
for all seeds (m = 5).
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3.4 Influence of the Slack

A positive slack in an instance increases the number of possible solutions com-

pared to an instance that’s identical except with a slack of zero. Slack allows a group to

contain more or less than a certain amount of nodes. An instance with slack zero would

only allow groups to have a fixed number of nodes. To test the influence of the slack

parameter, we generated instances varying the size of the slack in the range [0, 20] for

instances with n = 100. In terms of the instance generation parameters of Section 2.3, we

set slack up U and slack down D to values in [0, 10] and distribute those quantities using

the distribution algorithm DistributeUniformly (Section 2.3.3.1) for simplicity.

The results are shown in Figure 3.4. As we can see, the influence of slack is not

clear cut. For m = 8, we can see a small tendency for the ITB to decrease, although we

have many instances that did not converge to the BKV, as shown in Table 3.6. There are

two factors that could contribute to this low rate of convergence to the BKV. The first is

the value ofm, which makes the problem harder as seen by the influence of the number of

groups in Section 3.2. Adding slack to groups increases the number of possible solutions,

therefore it makes it more likely that IMS will settle on a local maximum.

Parameters used to generate the instances for this experiment are shown in Ta-

ble 3.5. Other experiments set slack arbitrarily to 0, since it appears to have no major

effect on ITB.
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Figure 3.4: Runs that converged to the BKV.
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Table 3.5: Parameters for the experiment on slack.

Parameter Value

n 100
m 2, 4, 6, 8
Total slack up (U ) [0, 10]
Total slack down (L) [0, 10]
Space distribution algorithm DistributeUniformly
Space distribution parameters –
U distribution algorithm DistributeUniformly
U distribution parameters –
L distribution algorithm DistributeUniformly
L distribution parameters –
Distance generation algorithm GenerateRandomIntegerDistances
Distance generation parameters vmin = 0, vmax = 10
Random seed 0

Table 3.6: Summary of solution stabilization runs that did not reach the BKV for the
experiment on slack.

m Reached BKV (%) ∆ (%) σ∆ (%)

2 100.00 – –
4 96.83 0.04 0.03
6 75.87 0.08 0.06
8 73.02 0.14 0.12
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3.5 Influence of the Difference in Group Sizes

This experiment tests the effect of the difference in size between groups. We

use the algorithm DistributeGeometrically – described in Section 2.3.3.2 – to

distribute space into the groups, varying the parameter p to obtain instances with many

degrees of discrepancy between group spaces. Results are presented in Figure 3.5a. Re-

member that a value of p close to 1 generates instances with a very uneven distribution

of space among groups, while a value of p close to 0 yields a more even distribution. All

instances present similar behavior. In the range of p close to zero, we see a tendency for

the ITB to increase. ITB starts to decrease after some point and quickly drops to zero

when p is close to 0.8 (i.e., when groups sizes are very uneven).

Given the distribution of space (sg), with a slack of zero, the number of possible

solutions P is:

P =
n!∏

g∈[m] sg!

Figure 3.6 shows P versus p in logarithmic scale for the instances of m = 5 used

in this experiment. As we can see, the number of possible solutions quickly drops, which

could explain the rapid drop to zero of the ITB when p is very large. In that region,

the problem becomes overconstrained, since we have less possibilities when there are

extremely small groups. The summary in Table 3.7 tells us almost all solution stabilization

runs converged to the BKV. Runs that did not reach the BKV are concentrated in the

region of small values of p, as shown in Figure 3.5b. This can also be explained by the

high number of possible solutions in that region. In Table 3.8 are the parameters used to

generate the instances for this experiment. Slack is set to zero since, as we’ve seen, it

doesn’t seem to influence ITB vey much.

Table 3.7: Summary of runs that did not reach the BKV for the experiment on difference
in group sizes.

m % converged to BKV mean ∆ σ∆

2 100.00 – –
3 97.67 0.03 0.02
4 97.33 0.06 0.05
5 93.67 0.11 0.09
8 86.67 0.15 0.15

10 89.80 0.12 0.09
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Figure 3.5: ITB vs. group size discrepancy
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(a) Runs that converged to the BKV.
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(b) Runs that did not reach the BKV are con-
centrated in the region where p is close to
zero.

.

Figure 3.6: The general shape of the number of possible solutions vs. the parameter p of
the algorithm DistributeGeometrically (Section 2.3.3.2). The number decreases
quickly as p approaches 1. This plot specifically takes the group sizes of the instances with
m = 5 of this experiment.
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Table 3.8: Parameters for the experiment on the difference in group sizes.

Parameter Value

n 100
m 2, 3, 4, 5, 8, 10
Total slack up (U ) 0
Total slack down (L) 0
Space distribution algorithm DistributeGeometrically
Space distribution parameters p ∈ 10−6 + 0.5× [0, 19]
U distribution algorithm DistributeUniformly
U distribution parameters –
L distribution algorithm DistributeUniformly
L distribution parameters –
Distance generation algorithm GenerateRandomIntegerDistances
Distance generation parameters vmin = 0, vmax = 10
Random seed 0

3.6 Influence of the Number of Unitary Edges Forming a Tree

For this experiment, we use GenerateDistancesWithUnitaryTree (Al-

gorithm 3) to generate the distances in a way such that a group of nodes is connected by

edges of weight 1 forming a tree, while all other edges have weight 0. The principle be-

hind this method of generating instances is that if two nodes have a distance of 0 between

them, the value of the solution is not affected by them being on the same group or not.

However, if two nodes have a positive distance between them, it matters for the solution

quality that they are in the same group. We want to see the effect of making nodes “de-

pendent” of each other in this sense by seeing the influence of the number Nu of edges of

weight one in the graph.

Figure 3.7a shows the ITB as a function of Nu, the number of edges of weight

1, shown as a ratio of n. No nodes are connected by unitary edges when Nu = 0. ITB

generally increases as number of unitary edges increases. WhenNu = 0 (i.e., all distances

are zero), the ITB is practically zero. Since we generate instances starting from the same

random seed, the unitary edges in an instance with, say, Nu = k are a subset of those in

instances with Nu > k. This makes the instances more comparable, since they only differ

on the extra or missing unitary edges. Even with that, we see significant variation among

similar instances. Parameters used to generate instances for this are shown in Table 3.9.
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Figure 3.7: ITB vs. number of edges in unitary tree
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(a) Runs that converged to the BKV.
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Table 3.9: Parameters for the experiment on number of unitary edges forming a tree.

Parameter Value

Experiment ExperimentNumEdgesInUnitaryTree

n 100

m 5, 10, 15, 20

Total slack up (U ) 0

Total slack down (L) 0

Space distribution algorithm DistributeUniformly

Space distribution parameters –

U distribution algorithm DistributeUniformly

U distribution parameters –

L distribution algorithm DistributeUniformly

L distribution parameters –

Distance generation algorithm GenerateDistancesWithUnitaryTree

Distance generation parameters N ∈ [0, 100]

Random seed 0

Many instances did not converge to the BKV for this experiment, as can be seen

in Table 3.10. The median number of iterations for those runs is shown in Figure 3.7b.
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Table 3.10: Summary of the runs of solution stabilization that did not reach the BKV for
the experiment on the number of unitary edges forming a tree.

m Reached BKV (%) ∆ (%) σ∆ (%)

5 46.06 3.34 1.60
10 60.61 2.61 1.07
15 56.36 3.12 1.49
20 60.61 2.84 0.75

In most cases, this number is roughly an order of magnitude smaller for runs that did not

reach the BKV than for the ones that did. This is a reflex of our stopping criteria for IMS,

which stops the search after no improvement has been made for more than 93% (15/16)

of the iterations (Section 2.1). This means IMS found a solution with quality less than

the BKV, but was not able to make further improvements to the solution before reaching

the stopping criteria. The high number of runs not reaching the BKV, and high variance

of the quality among those runs, indicate the algorithm found many good local maxima

solutions for those instances. This points to the possibility that this procedure generates

instances that are hard for IMS.

3.7 Influence of the Standard Deviation of Distances

We now look at the effect of the distribution of the values for distances. The

relevant parameter in our instance generation procedure is the distance generation algo-

rithm. We use the algorithm GenerateNormallyDistributedDistances (Sec-

tion 2.3.2.2), to distribute distances according to a normal distribution. We set the mean of

the distribution µ to 100 and vary the standard deviation σ of the distribution. We normal-

ize the distances according to the results of Section 1.3.2. We can see ITB as a function

of the standard deviation of distances in Figure 3.8. The standard deviation has minimal

influence on ITB, since almost all points are within each others’ error bars. We again see

that larger values of m make it more difficult for IMS to converge to the BKV, as shown

in Table 3.11. The parameters for these instances is shown in Table 3.12. Parameters used

for this experiment are listed in Table 3.12.
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Table 3.11: Summary of solution stabilization runs that did not reach the BKV for the
experiment on standard deviation of distances.

m % converged to BKV mean ∆ σ∆

2 100.00 – –
4 99.05 – –
5 65.71 0.00 0.01
8 65.71 0.04 0.05

10 61.90 0.04 0.06

Figure 3.8: Runs that converged to the BKV.
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Table 3.12: Parameters for the experiment on standard deviation of distances.

Parameter Value

n 100
m 2, 4, 5, 8, 10
Total slack up (U ) 0
Total slack down (L) 0
Space distribution algorithm DistributeUniformly
Space distribution parameters –
U distribution algorithm DistributeUniformly
U distribution parameters –
L distribution algorithm DistributeUniformly
L distribution parameters –
Distance generation algorithm GenerateNormallyDistributedDistances
Distance generation parameters µ = 100, σ ∈ {0.5, 1, 2, 4, 8, 16, 32}
Random seed 0

3.8 Influence of the Diversity of Distance Values

In other experiments we came to the conclusion that MDGP instances that have

all distances equal are easy for IMS to solve. Those same instances can be solved in poly-

nomial time using the algorithm proposed in Section 1.3.3. In this experiment, we want

to see how the problem becomes harder for larger sets of possible values for distances.

If instances are easy when all distances have the same value, then we want to see if hav-

ing two (three, four, etc.) possible values for distances makes the problem harder. We

generate instances with a fixed set of possible values for distances between nodes using

the algorithm GenerateDistancesLimitedToValues (Section 2.3.2.3), varying

the parameter c – the number of possible values for distances, or distance diversity. For

example, if c = 3, distances between nodes are assigned values of 1, 2 and 3 in the same

proportion (or as close as possible). Here we also normalize the distances according to

the results of Section 1.3.2.

The solution stabilization runs for this experiment can be seen in Figure 3.9. When

distances are all equal, we have ITB close to zero as we’ve seen before in other experi-

ments. If we allow distances to have two possible values instead of one (c = 2), instances

have a sharp rise on hardness. We attribute this to the fact that the problem is solvable in

polynomial-time when c = 1, as seen in Section 1.3.3, but in the general case it is NP-

complete. Adding more possible values (c > 2) does not produce any significant effect

on hardness. Table 3.14 shows the parameters used in the instances for this experiment.
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Table 3.13: Summary of solution stabilization runs that did not reach the BKV for the
experiment on diversity of distance values.

m Reached BKV (%) ∆ (%) σ∆ (%)

2 100.00 – –
4 99.17 0.01 –
5 92.50 0.07 0.05
8 66.67 0.17 0.15

Figure 3.9: Runs that converged to the BKV.

1 2 4 8 16 32 64 128

diversity

0

100

101

102

103

104

105

IT
B

m
2
4

5
8



45

Table 3.14: Parameters for the experiment on diversity of distance values.

Parameter Value

n 100

m 2, 4, 5, 8

Total slack up (U ) 0

Total slack down (L) 0

Space distribution algorithm DistributeUniformly

Space distribution parameters –

U distribution algorithm DistributeUniformly

U distribution parameters –

L distribution algorithm DistributeUniformly

L distribution parameters –

Distance generation algorithm GenerateDiverseDistances

Distance generation parameters c ∈ {1, 2, 4, 8, 16, 32, 64, 128}

Random seed 0
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4 CONCLUSIONS AND PERSPECTIVES FOR THE FUTURE

In this research, we have created a methodology to investigate the influence of

features of instances of the MDGP on the solving time of the IMS heuristic. Our method-

ology involved the solution stabilization procedure to measure hardness, an instance gen-

eration procedure to control the features of the instances, and experiments combining

those two procedures. We were able to confirm our intuitions that hardness is propor-

tional to the number of groups and number of nodes. We saw the size of connected group

in Section 3.9 is a parameter that produces interesting behavior. Differences in group

size also have some influence over ITB. Other features are not clearly tied to, or have no

influence over, the hardness of the instance.

A point of improvement upon this work would be to investigate more clearly the

source for variations in ITB for even similar instances, as mentioned in Section 3.3. We

could run the experiments with more than one instance with the same parameters, but

different random seeds and observe the behavior. More fundamentally, reducing the in-

fluence of randomness in the instance generation procedure described in Section 2.3 could

be another approach to sharpen the results of these experiments. One approach could be

to generate one instance and use it as a basis for the construction of others in the same

experiment, instead of generating entirely new instances from a set of similar parameters.

This could help reduce the effect of the random generation of distances, and distribution

of space and slack.

An explanation of why ITB presents a periodic behavior sometimes – as seen in

Section 3.3 – is still lacking. It is possible that this is tied to some peculiarity of IMS,

such as the way nodes are exchanged between groups during the search. A replication of

this experiment with other heuristics to see if the behavior persists could bring some light

into this matter.

More simulation time can be spent on experiments with many instances not con-

verging to the BKV, such as the one presented in Section 3.6. The stopping criteria for

IMS could be altered to allow more runs to converge to the BKV and have a more accurate

estimate of the ITB.

Future work could rely on this methodology and apply it to heuristics other than

IMS. It would be interesting to compare two different heuristics to map on which instances

each heuristic works better. The instance generation procedure gives us an easy way to

control the parameters of instances. It is also possible that analogous methodologies can
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be created for optimization problems other than MDGP.
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