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Abstract
The ice-type model proposed by Linus Pauling to explain its entropy at low
temperatures is here approached in a didactic way. We first present a theo-
retically estimated low-temperature entropy and compare it with numerical
results. Then, we consider the mapping between this model and the three-colour
problem, i.e. colouring a regular graph with coordination equal to 4 (a two-
dimensional lattice) with three colours, for which we apply the transfer-matrix
method to calculate all allowed configurations for two-dimensional square lat-
tices of N oxygen atoms ranging from 4 to 225. Finally, from a linear regression
of the transfer matrix results, we obtain an estimate for the case N →∞ which
is compared with the exact solution by Lieb.

Keywords: ice-type model, transfer-matrix method, graph colouring, didatic
alternatives in statistical physics

(Some figures may appear in colour only in the online journal)

1. Introduction

Counting problems are part of our daily lives, normally disguised in the format of probability
calculation. There is no way to estimate probabilities (at least within the Laplace definition)
without enumerating all possibilities (the sample space), which is why lottery apportionment
is frequently postponed to later weeks. In addition to challenging gamblers, this type of game
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often resists the cleverness and intelligence of mathematicians, statisticians, and physicists.
This is what happened with the so-called ice-type model, the subject of this article. It can be
summarized with a simple question: how many different ways can hydrogen bonds be arranged
if water is frozen to T = 0 K? In the nomenclature of thermodynamics, what is the residual
entropy of the ice, i.e. S = kB lnΩ? Here, kB is the Boltzmann constant, Ω is the number of
accessible configurations to the system with N oxygen atoms. This is not only a curiosity. Such
problem appeared in 1933 when Giauque and Ashley [1] measured the entropy of ice at low
temperatures and found the molar entropy to be s = 0.82 ± 0.05 cal (mol−1 K−1), remembering
that 1 cal ≈ 4.18 J. The molar entropy corresponds to the product of the Avogadro num-
ber (N0) by the entropy per site, which is S/N = kB

1
N ln Ω = kB ln Ω1/N or kB ln W, where

W = Ω1/N .
It is important to note that the answer depends on the spatial dimension in which the H2O

molecules are inserted.
The first theoretical estimate for the residual entropy of ice was published in 1935 by

Linus Pauling who obtained s = 0.805 cal (mol−1 K−1) [2]. This value is in good agreement
with the experimental value, despite the several approximations used by Pauling. In Lieb’s
own words [3], ‘this calculation must be considered as one of the more fortunate applica-
tions of statistical mechanics to real substances’. Only in the 1960s Nagle [4] performed
more precise numerical estimates for the entropy for a three-dimensional lattice and taking
into account interaction among the vertices in a structure that simulates the ice and obtained
s = 0.8145 ± 0.0002 cal (mol−1 K−1). Both results are in complete agreement with the
experimental estimate obtained by Giauque and Ashley [1].

Considering a two-dimensional version for the ice, Nagle obtained
s = 0.8580 ± 0.0013 cal (mol−1 K−1) [4, 5]. Lieb [3] obtained an exact solution for
the problem in two dimensions (s = 0.856 cal (mol−1 K−1)).

It is important to mention that the ice has a tetrahedral three-dimensional structure with
oxygen atoms occupying the vertices. Thus, each oxygen atom is linked by hydrogen bonds to
four other oxygen atoms. This means that the two-dimensional version of the model preserves
a fundamental characteristic of the real structure which is the fact of each oxygen atom has
four neighbours, with hydrogen atoms between them. Since each water molecule has only two
hydrogen atoms, in the real structure, two of these hydrogen atoms must be in the nearest
equilibrium position (d = 0.95 Å) and the two other at the larger distance (d = 1.81 Å), which
belong to the neighbouring oxygen atoms. We shall come back to this subject and show that it
corresponds to consider neutral molecules, giving rise to the well-known six-vertex model in
statistical mechanics.

As the note added in proof of the paper by Lieb due to an observation of Lennard [3], this
problem is equivalent, except by a factor 3, to discover how many ways exist to paint a square
map using only three colours. A proper colouring of a map means that two neighbour countries
cannot have the same colour, for if two countries have the same colour the border between them
would disappear, i.e. the two countries would be merged into one.

In the next section we introduce the ice-type model and reproduce the calculation pre-
sented by Linus Pauling. In section 3, we show the equivalence between this problem and the
three-colouring map. In the same section, we also enumerate the acceptable configurations for
small systems and present the numerical solution of the problem using a ‘brute force’ method
motivating our next section.

In section 5 we present an original numerical calculation developed for the colouring version
of the problem which allows to proceed to the systems with N = 225 atoms. In addition, after
an extrapolation to the thermodynamic limit (N →∞), our numerical estimate is compared
with the exact result by Lieb [3]. Finally, we present some conclusions in section 4.
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Figure 1. The 16 possibilities of the vertex-types with only the six first vertices satisfying
the ice rules, i.e. satisfying the conservation law where two and only two arrows are
coming in (which means two and only two arrows coming out) (the allowed vertices
outlined in blue).

2. The estimate of Linus Pauling

Since each hydrogen atom can be in two distinct positions, Pauling used an arrow to indicate
if it is near (arrow comes in) or far (arrow exits of) each oxygen atom. The percentages of ions
H3O+ and OH− are taken as zero which means that each oxygen atom (site in the lattice) must
necessarily have two and only two hydrogen atoms next to it (two arrows arriving and two
arrows departing from a site). The consequence is that from 16 possible types of vertices in
figure 1, only six (the first six vertices in that same plot, outlined in blue) satisfy the so-called
‘ice rules’ introduced by Bernal and Fowler [5] in 1933 and improved by Pauling.

This problem gave rise to the so called six-vertex model which was solved exactly in the
1960s. Returning to Pauling’s calculation, there is a fraction of 6/16 allowed vertices in each
site and the total number of configurations of the lattice (when one randomly chooses the direc-
tion of the 2N arrows starting from the N oxygen atoms) is 22N . Thus, assuming statistically
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independent sites (which is not true) and that in all N vertices the ice rules are satisfied, we
have

Ω ∼= 22N

(
6
16

)N

(1)

or

W ∼=
3
2

,

which leads to an entropy per mol equal to

s = N0kB ln W ∼= R ln (1.5) = 0.805 cal (mol−1 K−1),

where N0 is the Avogadro number, kB is the Boltzmann constant and R = N0kB = 1.985 cal
(mol−1 K−1) is the universal gas constant.

3. The language of colours

In this section we will show how the six-vertex model can be mapped onto the three colour
problem.

Let us familiarize with the problem of colouring maps by analysing a small ‘world’ with
only 4 countries. There are 81 ways of painting the map with three colours4, resulting from
the operation with the product (3 × 3 × 3 × 3) = 34 since each country can be painted (in
principle) with any of the three colours. However, many of these 81 ways do not satisfy the
condition according to which two adjacent countries cannot be painted with the same colour.
This condition destroys the independence between events, thus prohibiting the multiplica-
tion 3 × 3 × 3 × 3 = 34 and drastically reducing the number of acceptable paintings. There
is no simple reasoning to calculate this number because the events are not independent, but
we may nevertheless solve the problem for a small number of countries. Let us consider that
the countries are coloured with yellow (Y), green (G), and red (R). Figure 2 shows the coun-
tries labelled as P1, P2, P3 and P4, starting from the upper left corner and rotating clockwise.
The arrangement in figure 2(a) does not satisfy the constraint as two neighbour countries are
painted with the same colour (P3 = P4). In contrast, the constraint is fulfilled in figure 2(b)
where all neighbours are painted with distinct colours.

We can now enumerate the number of distinct paintings keeping in mind that after painting
one of the countries, its neighbours can be coloured with one of the two remaining colours.
For instance, if yellow is chosen to paint country P1, country P2 can only be painted with
colours red or green. In addition, country P4 has to satisfy the same constraint which means
that choosing the colour of country P1 one has 2 + 2 = 4 ways to paint countries P1, P2 and
P4. For the remaining country P3, there are the following alternatives: either its two neighbours
(P2 and P4) are painted with the same colour (both with the colour red or both with the colour
green) or they are painted with different colours. In the first case country P3 can be painted
with colour yellow, the same colour of P1, or with a remaining colour (G or R). Therefore, the
two first possibilities are multiplied by 2, leading to four possible configurations. In the second
case (P2 and P4 with different colours) there is no other way to paint P3: it must be painted
with the colour yellow (the same colour of P1). The total number is then six, the same found

4 One may think that the correct value would be 43 but this is not true. Using the analogy of rolling two dices, the total
number of different outcomes is 62 = 36 and not 26 = 64. Each of the six faces of the first dice can appear together
with any of the six faces of the second dice. Therefore, one has 6 × 6 = 62 possibilities. With three dices, one has
6 × 6 × 6 = 63 possibilities. Thus, the correct is to take as basis the number of possible states for each entity: (dice
face, country colour, etc) and as exponent the number of entities (number of dices, number of countries, etc).

4
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Figure 2. (a) Improper colouring, (b) proper colouring. (c) Example of a proper
colouring of a map with 8 × 8 countries.

by Pauling for the number of vertices that satisfy the iced-type rules. However this is not yet
the final result for the case of colours. We obtained six paintings by choosing yellow to paint
P1. There are six more possible colourings starting with red for P1 and another six by painting
the first country with green. Therefore, the total number is 3 × 6 = 18 different ways to colour
a four-country world with three colours.

But, why is this problem interesting to us? How does it work for larger worlds? In the next
subsection we will show that the 3-colouring problem is equivalent to the six-vertex problem
except by a multiplicative factor. It is important to notice that the colouring can contemplate
more complex structures than simply maps (regular graphs) and using a different number of
colours which is known graph-colouring. For the interested readers we strongly suggest read
the appendix A. In this appendix we present the problem in the light of the graph theory by
showing extensions. In addition a report about analytical results related to the 3-colouring
problem.

3.1. Mapping the six-vertex problem onto the three-colouring problem

Let us attribute the same three colours (yellow, green, and red) to countries in larger maps with
the restriction that neighbouring countries cannot have the same colour. Figure 2(c) shows an
example of a proper colouring of a map with 8 × 8 countries.

We shall use a cyclical convention for the colours: Y follows G, G follows R, and R follows
Y (YGRYGRYGR. . . ). Every time that, rotating clockwise in relation to a perpendicular axis
to the lattice plane, passing by the common point to the neighbouring 4 countries (the black
points in figure 2(c)), and let us considering all worlds of the 4 countries in the L × L worlds.

Starting for example by convention from P1 in each of these small worlds of the four
countries, if we change from yellow to green (or from green to red or from red to yellow)
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Figure 3. Examples of colourings of worlds with four countries translated to the possi-
ble six configurations of arrows. We start from P1 and rotate clockwise until P1 again
following the cyclical convention established, considering blue (arrow in) and orange
(arrow out). Any other configuration of colours is translated into one of these possible
six configurations of arrows.

the arrow in the boundary will be directed to the common point (blue arrow), while the chang-
ing from red to green (or from green to yellow or from yellow to red) it will be exiting from the
common point (orange arrow), and this for both situations: horizontal and vertical boundaries.

This common point that resembles the position of oxygen atoms will always have two arrows
in and two arrows out. Figure 3 shows the six possible configurations of the arrows. Let us
consider the first colour configuration in that same figure 3. We start in P1 with Y and P2 with
G, and following the clockwise orientation there is a blue vertical arrow pointing to the black
point. From P2 to P3, one has G to Y, following the counter-clockwise direction, and thus there
is an orange horizontal arrow out from the black point. From P3 to P4 there is an orange vertical
arrow out of the black point, and from P4 to P1 there is a blue horizontal arrow pointing to the
black point. The other colourings in this translation only can lead to the one of possible arrow
configurations represented in figure 3

It is reminded that each configuration of arrows corresponds to three possible colourings
since there are three possible colours to start in P1.

Thus we can write

Ωcolours(N) = 3WN (2)

and the factor 3 links the number of configurations of six-vertex problem to the three-colour
problem.

However to solve this problem using a computer should be interesting to know if we can
perform this calculation for larger values of N. In the next section we start this task first using
an algorithm which calculates Ωcolours(N ) using brute force (BF).

4. Computers and brute force: preliminary numerical results

A table can be generated by showing the increasing of the number of possibilities Ωcolours(N )
when the number of countries increases, which can be done by enumerating all possibilities of
painting discarding the ones that do not satisfy the condition of the problem. A Fortran program
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Table 1. A brute force algorithm.

Program: colouring a small world with 4 countries using exhaustive enumeration (‘BF’)

0 Integer P1, P2, P3, P4, Icount
1 Icount = 0
2 Do P1 = 0, 2
3 Do P2 = 0, 2
4 Do P3 = 0, 2
5 Do P4 = 0, 2
6 If (P1.ne.P2.and.P1.ne.P4) then
7 If(P2.ne.P3.and.P4.ne.P3) then
8 Icount = Icount + 1
9 Endif
10 Endif
11 Enddo
12 Enddo
13 Enddo
14 Enddo
15 Write(∗,∗)´Numberofconfigurations =´, Icount
16 Stop
17 End

Figure 4. Configuration with N = 9 countries. The red lines correspond to neighbour-
hood relations created for periodic boundary conditions. Such connections must be
removed for free boundary conditions.

(with Fortran 77), which can compiled in any Fortran compiler, with a few lines is sufficient
to calculate Ωcolours(N ) for a world with four countries (see table 1). This is carried out using
‘BF’, i.e. checking all possible colourings in the map. In these programs we consider that G
becomes 0, R becomes 1, and Y becomes 2.

There is no increase in difficulty to replace a world of four countries to another with nine.
The program will enumerate 39 = 1.9683 × 104 configurations for nine countries, using one
of two alternatives: free boundary conditions (FBC) or periodic boundary conditions (PBC) in
one of the directions to perform the counting. This was not important for four countries because
in that case there was no difference between FBC and PBC. However, for N = 9 countries this
is not the case. For example, P1 is neighbour to P3, or P7 is neighbour to P9 with PBC but such
neighbourhood relations are not considered for FBC, i.e. the red links in figure 4 are removed.

7
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Table 2. ‘Brute force’ algorithm for N = 9.

Program: colouring ‘BF N = 9’
0 Integer P1, P2, P2, P3, P4, P5, P6, P7, P8, P9, Icount
1 Icount = 0
2 Do P1 = 0, 2
3 Do P2 = 0, 2
4 Do P3 = 0, 2
5 Do P4 = 0, 2
6 Do P5 = 0, 2
7 Do P6 = 0, 2
8 Do P7 = 0, 2
9 Do P8 = 0, 2
10 Do P9 = 0, 2
11 If (P1.ne.P2.and.P1.ne.P4) then
12 If (P2.ne.P3.and.P2 .ne.P5) then
13 If (P4.ne.P5.and. P4.ne.P7) then
14 If(P5.ne.P6.and.P5.ne.P8) then
15 If(P3.ne.P6.and.P6.ne.P9.and.P9.ne.P8.and.P8.ne.P7) then
16 ∗∗ Inclusion of the conditions for the PBC in one direction:
17 If(P1.ne.P3.and.P4.ne.P6.and.P7.ne.P9) then
18 Icount = Icount + 1
19 Endif
20 Endif
21 Endif
22 Endif
23 Endif
24 Endif
25 Enddo
26 Enddo
27 Enddo
28 Enddo
29 Enddo
30 Enddo
31 Enddo
32 Enddo
33 Enddo
34 Write(∗,∗)´Numberofconfigurations =´, Icount
35 Stop
36 End

Note, for instance, how the brute force algorithm for N = 9 with PBC (table 2) demands a lot
more of ‘BF’ compared to the case of N = 4.

For N = 16 there are 316 = 4.30 46721 × 107 colour configurations to select among them
the acceptable colourings, which increase to 325 or 8.47 28860 9443 × 1011 for N = 25.

And how long would it take a personal computer to generate all those configurations? Well,
it depends on the time it takes to generate each configuration. Actually, nowadays we have very
fast personal computers and they can execute small operations in thousandths of billionths of
a second. Technically, the computational performance is measured in FLOPS (floating-point
operations per second) and so actually the computers operate in the scale of GIGAFLOPS and
beyond.

8
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Table 3. Time spent to enumerate the acceptable configurations to paint a map with nine
countries by the ‘brute force’ method.

N Ω(FBC)
colours Time Ω(PBC)

colours Time

4 18 <O(10−2) 18 <O(10−2)
9 246 <O(10−2) 24 <O(10−2)
16 7812 ≈0.17 s 4626 ≈0.18 s
25 580 986 ≈41 min 38 880 ≈39 min

For N = 25, even thinking in GIGAFLOPS, the task is not easy, since it will be necessary
at least Δt � 1012 × 10−9 = 103 s, or 103/(60) � 17 min which is only a rough estimate. So
the task gets more and more complicated even in faster computers. And there is not point in
arguing that in faster computers will be possible to advance much more. For example, in order
to enumerate the configurations of a map with 6 × 6 = 36 countries in the same time that we
today perform the computation of the configurations for a map 5 × 5 it will be necessary to
build a computer 170 000 faster than these which we are considering. Well, but the things are
no so bad!

We already have in hands some exact results from small systems using the ‘BF’ method
(see table 3). In that table, we show the execution of the algorithm using FBC and PBC. We
also present the time required for the execution by using a processor Intel i7-8565 U for both
situations. Sure, the time depends a lot on situations and we present the results of one execution
only for an idea of the order of magnitude. Such times are impracticable since from N = 16
to N = 25, which are very small systems, the time changes from fraction of seconds approx-
imately to spent times about hours. Thus, it is mandatory to find a numerical alternative for
working with larger systems which permits to us to do an extrapolation to the thermodynamic
limit: N →∞. This will be performed in the next section.

5. Elegant numerical results: the transfer-matrix method

For larger systems one has to resort a strategy very useful in statistical physics, which reduces
a two-dimensional problem to a succession of one-dimensional problems. This approach is
particularly useful for problems with cylindrical or toroidal geometry [6], infinite in one of
the directions. The first attempts to work with finite systems in two directions were made by
Binder [7]. However, it was Creswick [8] who obtained in 1995 the most efficient way to
apply the technique to this geometry. Herein, we present this procedure in a system which is
probably the most simple case where the technique can be applied, without requiring any prior
knowledge of magnetic models and statistical mechanics. For that, we used functions of the
programming language Fortran (similar functions exist in C language) and the task involves
passing from one line (of countries) to the next. In the context of computer science this type
of algorithm is known as greedy, since it discards the previously analysed instances. To apply
this technique we also use PBC in one of the directions exactly as Creswick, which leads to a
faster convergence at limit N →∞ when compared with FBC.

The calculation begins by choosing the possible colourings (configurations) for any line of
countries. A country can be coloured with one of the three colours (from now on substituted by
numbers 0, 1, and 2) and two adjacent countries cannot have the same colour (the last country
cannot have the colour of the first one due to PBC in the horizontal direction). Since L is the
width of the map there are

Nmax = (3 − 1)L + (−1)L(3 − 1) = 2L + 2(−1)L

9
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Figure 5. Exclusive OR (XOR) operation between two configurations. A double zero
occurs only if one has the same bits occupying the same position in the lines.

possible different colourings to colour a line of countries, as shown in equation (5) in the
appendix A.

There are L loops and (L/2 + 1) decision commands (if’s) to discover the possible config-
urations during evolution. Next, we move to the second line that can also present only one of
these acceptable configurations in the initial step. Among them, we need to discover which are
the compatible colourings with each configuration of the first line, i.e. those with no two coun-
tries in the same position, coloured with the same colour. This operation can be performed
associating each configuration of a line to an integer number, using a binary language. This
integer has 2L bits since each country needs two bits to store its colour (00 corresponds to
the colour 0, 01 corresponds to colour 1, and 10 to colour 2). We then apply the operation
exclusive OR or simply XOR (IEOR for Fortran compilers) to the two integers representing
the configurations of the first and second lines. Since XOR (exclusive OR) works on all bits
(see figure 5), then the result is 0 if the bits are equal in the same position, and 1 if they are
different. A double zero occurs only if one has the same bits occupying the same position in
the lines, corresponding to two countries with the same colour.

Thus, L decision commands (if’s) between bits of the integer resulting from operation
IEOR(line1, line2) are enough to detect the existence of adjacent countries with the same
colour. In this case, a configuration of the second line will not be compatible with the first
line. After performing this selection, a comparison is made between the second and third lines
and so on until the last line is considered, since the PBC condition does not apply in this direc-
tion. This is important to make the algorithm faster; it is thus greedy, i.e. information of past
lines is discarded by using the subroutine transfer accessed from the main algorithm (shown
in appendix B of this paper for N = 225). The results with this algorithm in table 4 are the
same obtained by direct counting BF in the simpler cases (N = 9, 16 and 25) but now it can be
readily extended to N = 225. It is then possible to perform an extrapolation to N →∞, shown
in figure 6. According to equation (2) it is expected that lnΩcolours = ln 3 + N ln W, and a plot
of lnΩcolours as function of N suggests a linear behaviour with a slope numerically equal to
ln W , which is exactly observed in the figure 6.

A linear fitting leads to Wnum = 1.5421 ± 0.0054 which must be compared with the result
obtained by Lieb in 1967 [3]:

W = (4/3)(3/2) ≈ 1.539 6007.

Additional points about this result can be observed in appendix A. After this problem treated
by Lieb, actually based on the work of Lee and Yang [9], other works involving six-vertex

10
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Table 4. Results obtained with the transfer matrix method. The saving in processing
times using this method when compared with BF method is notorious. One can run in
a few minutes colourings with 225 countries. From N = 100 onwards, the zeros are
placed only to complete the power obtained in the numerical result since one has at most
18 significant digits in double precision.

N Ω(PBC)
colours Time (s)

4 18 <O(10−2)
9 24 <O(10−2)
16 4626 <O(10−2)
25 38 880 <O(10−2)
36 37 284 186 <O(10−2)
49 1886 476 032 <O(10−2)
64 9527 634 436 194 ≈0.016
81 2825 260 002 442 752 ≈0.047
100 77 048 019 386 428 981 200 ≈0.14
121 132 046 297 983 569 476 000 000 ≈0.66
144 19 698 820 973 096 973 600 000 000 000 ≈2.06
169 193 554 351 965 523 488 000 000 000 000 000 ≈12
196 159 147 870 862 109 172 000 000 000 000 000 000 000 ≈64
225 8920 091 695 709 351 210 000 000 000 000 000 000 000 000 ≈333

Figure 6. Plot of lnΩ obtained by the transfer matrix method as function of N. It is
expected that the slope of this curve gives an estimate to ln W .

models were explored in the literature. The novelty about these problems is that vertices are
not equally probable (they have no the same weight) since they represent energetically distinct
situations. These models present phase transition even in one dimension when one changes
the temperature [10] since they do not obey the Mermin–Wagner theorem. But this is another
history for other opportunity!

6. Conclusions

The problem of residual entropy of the ice was revisited by using a useful procedure in sta-
tistical mechanics. To employ this method, it was necessary to use a mapping of the ice-type
model onto the problem of three colours.

11
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The results with the transfer-matrix method indicate that even working with small systems
and considering periodic boundary conditions in only one direction according to Creswick
ideas, it is possible to obtain a good estimate by performing an extrapolation to the thermo-
dynamic limit of the residual entropy. The use of the binary language in the representation of
the configurations and the possibility of comparing two configurations, by using only simple
operations with bits, is the other point that must be highlighted.

We call the attention of the reader, mainly that one who is interested in the combinatorics and
number theory, for the exact result obtained by Lieb for W = limN→∞ Ω1/N given by fraction
of integers (4/3) raised to (3/2) with Ω corresponding to the number of the proper colourings of
square lattices/maps with three colours. The colouring with more colours of the same square
lattices, on the other hand, does not have an exact solution, only an upper and a lower bound
are known in the thermodynamic limit5 as demonstrated by Biggs in 1977 [11].

Finally, the residual entropy of the ice is, no doubt, an interesting problem of the Physics
and our main pedagogical contribution is to show that the transformation of the problem into
the colouring map problem, makes possible an elegant numerical solution, accessible by under-
graduate students and with only a basic knowledge in Mathematics and Computer Program-
ming. In addition, more interested readers can go beyond considering more technical aspects
in graph theory found in the first appendix, and that ones that desire to explore the computer
codes by using transfer matrix method.
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Appendix A. Understanding a little bit about graph theory and the problem of
map colouring

Looking from a graph theory point of view, we can observe maps as a set of countries as
vertices, while the borders between the countries representing edges linking these vertices. We
can observe a map with four countries and its respective graph in the figures A1(a) and (b).

It is important to mention that the graph represented in figure A1(c) does not correspond
to the map observed in figure A1(a) since the country P1 is not a neighbour of P3, and P2 is
not a neighbour of P3. Since we studied as properly colouring with three colours a graph/map
with four vertices/countries, the Graph theory is much more general and we can extend this
for x colours and even for more general graphs, which consists in an interesting and important
illustration for readers that want to understand a little more about graph colouring.

In graph theory the number of ways to properly colour a graph with x colours is so called
the chromatic polynomial of this graph which is here denoted by φ(x), and you will see that for
the figure A1(b) it is an easy step since you have understood the case of 3 colours previously
performed in this paper.

First there are only two possibilities: P1 and P3 have the same colour, or they have different
colours. In the first case, one has x ways to put the same colour simultaneously in P1 and P3

in this case you can colour P2 with x − 1 colours while P4 one also has x − 1 ways since they

5 For the interested readers, a brief review about graph colouring and other important support results to this paper can
be observed in appendix A.
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Figure A1. Plot (a) map with four countries. Plot (b) corresponding graph of the map rep-
resented in (a). Plot (c) this graph does not correspond to situation (a) since the country
P1 is not a neighbour of P3, and P2 is not a neighbour of P4.

are not neighbours, so one has in this first case

φ1(x) = x(x − 1)(x − 1) = x(x − 1)2.

On the other hand (second case) one has P1 and P3 painted with different colours. There
are x(x − 1) ways to perform this task. For each of these possibilities, one can paint P2 with
x − 2 colours and P4 also with x − 2 colours, resulting in this second case a total number of
ways calculated by

φ2(x) = x(x − 1)(x − 2)(x − 2) = x(x − 1)(x − 2)2.

Thus the total number of colouring the figure A1(b) is

φ(x) = φ1(x) + φ2(x)

= x(x − 1)2 + x(x − 1)(x − 2)2

= x(x − 1)(x2 − 3x + 3).

(3)

A fast test of this formulae is to perform the particular case x = 3, and according to our pre-
vious calculations we must obtain φ(3) = 18, which is exactly the result previously obtained.
Please see the graph in figure A1(c). In this case we have all vertices connected to all vertices,
and graphs that satisfy this condition are known as complete graphs and are denoted by Kn.
The particular case of figure A1(c) corresponds to K4 (complete graph with n = 4 vertices)
and it must be observed that only the number of vertices define the graph since they have all
possible edges (a total of

( n
2

)
edges for Kn). With some effort, one can observe that a proper

colouring of this graph demands x � n colours. Thus, the chromatic polynomial of the graph
K4 is easily calculated:

φK4 (x) = x(x − 1)(x − 2)(x − 3)

and the result can be extended for Kn, using the fundamental counting principle:

φKn (x) = x(x − 1)(x − 2) . . . (x − n + 1).

Actually, these graphs are much more “sui generis” than we can imagine, since for example
for n � 5 they have not a planar representation (or in simple words, a map representation), i.e.
we cannot draw a planar representation of these graphs without necessarily having two or more
edges intersecting. Let us better explain this point. For example, one observes that K4 has a

13
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Figure A2. (a) K4 is a planar graph, (b) K5 is not a planar graph. (c) K3,3 is not also a pla-
nar graph. Both K5 and K3,3 are the small graphs non planar and represent fundamental
structures for the graph theory.

notorious planar representation (see figure A2(a)), we are able to draw this graph as a map (in
this case with 3 regions) or yet, without the edges intersecting (of course, unless the vertices
themselves).

On the other hand, we are not able to draw K5 in a planar way. For example in figure A2(b)
we observe two attempts (two isomorphic graphs of K5–i.e. roughly speaking are the same
graph K5 drawn in a different way). No one of them leads to a planar representation. The graph
K5 is a kind of ‘minimal non planar graph’. Other similar structure is the graph K3,3 (complete
bipartite graph on six vertices, three of which belonging a set only connect to each of the three
belonging to the other set) that can be observed in figure A2(c). Actually, any non-planar graph
cannot have a subgraph which is a subdivision of the K5 or K3,3. But why the planarity is an
important concept if we are talking about graph colouring? Because a fundamental theorem
says that any planar graph can be properly coloured with a maximum of 4 colours. The theorem
was demonstrated for the first time by 1976 by Kenneth Appel and Wolfgang Haken (see, for
example, [12]), by using an IBM 360, the first accepted proof by using a computer. For example
φK5 (x) = x(x − 1)(x − 2)(x − 3)(x − 4). If we make x = 4, φK5 (4) = 0 which corroborates
the theorem, since K5 is a non-planar graph. On the other hand φK4 (3) = 0, but φK4 (4) = 24
ways, which also corroborates the theorem since K4 is a planar graph.

Let us go back to our world with four countries. As we saw, it is more complicated to colour
this map than the graph K4. We also can observe that a world with four countries is a particular
case of colouring a disk of n sectors/countries (figure A3(a) ), where the figure A3(b) is a graph
representation of the this world where the countries are placed as disk sectors. This graph is
known as a circular disk.

The idea is the same, for example, fixing two countries P1 and P3, or any couple of coun-
tries (non-adjacent sectors) separated by only a sector or neighbour a common sector (in this
particular choice, P2). In this situation we have two options, that these countries (P1 and P3)
can be coloured with the same colour (situation I) or with two different colours (situation II).

14
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Figure A3. (a) Circular sector, (b) graph representation of a circular sector, (c) a gen-
eralization of map with N = L2 countries (a two-dimensional lattice), (d) graph corre-
sponding a world with six countries, (e) a particular configuration of colours Y (yellow),
G (green), and R (red) to the vertex of the lattice represented in (c) where the blue balls
are changed by square cells (countries).

Denoting φn(x) the number of ways to properly colour this sector can be described by the
recurrence relation

φn(x) = (x − 2)φn−1(x) + (x − 1)φn−2(x) (4)

which demands some explanation. In situation I, i.e. P1 and P3 have the same colour works
as if these two sectors were merged in a same sector. Thus, for each colouring of the disk of
n − 2 sectors composed by the sector originated from the fusion of the sector P1 with sector
P3 and by other all sectors n − 3 sectors (except by sector P2), one has x − 1 ways to paint the
sector P2 which cannot have the same colour of P1 neither P3. On the other hand (situation II),
we have that for each colouring of a disc with n − 1 sectors composed by all sectors except by
the sector P2, and for each painting of this disk we have x − 2 options to the sector P2 which
necessarily has a colour different of the colours attributed to neighbouring sectors P1 and P3,
which justify the recurrence relation (4).

An interesting answer for this recurrence relation is ϕn(x) = αn, by direct substitution one
has

α2 − (x − 2)α− (x − 1) = 0

that has two distinct roots: α1 = p− 1 and α2 = −1, and a general solution is given by the lin-
ear combination: φn(x) = A(x − 1)n + B(−1)n. Such equation requires two initial conditions
which we know. First a disk with two sectors has φ2(x) = x(x − 1) ways to be coloured, since
the colour attributed to P1 necessarily have a colour different of P2. In a disk with 3 sectors,
all of them are neighbours, thus similarly φ2(x) = x(x − 1)(x − 2). So with these two initial
conditions we can conclude that A = 1 and B = x − 1, which results in

φn(x) = (x − 1)n + (−1)n(x − 1). (5)
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It is important to mention that such equation recovers the map with four countries (disk with
four sectors) since φ4(x) = (x − 1)4 + (−1)4(x − 1) = x(x − 1)(x2 − 3x + 3), exactly as we
obtained in equation (3). After this tour across the graph theory and its connection with the
colouring of the graphs, let us come back to the colouring of worlds with many countries.
We already study the simple case of world with four countries described by figure A1(a) and
represented by figure A1(b). In the case of many countries which is represented by the two-
dimensional lattice (figure A3(c)), the colouring is not easy. We can start extending the world
of four countries to six countries (figure A3(d)). An important theorem in graph theory is the
deletion-contraction theorem. This theorem says that for example choosing the edge between
the countries P1 and P6 in the original graph (G), the chromatic polynomial of G is the poly-
nomial of the graph obtained by deletion of this edge (G1) minus the polynomial of the graph
obtained by contraction of this edge (G2). To calculateφG1 (x), we can observe that it is obtained
multiplying φ4(x) times the ways of properly colouring the vertex P3, which occurs in x − 1
possible ways, times the ways of properly colouring the vertex P6 which also occurs in x − 1
possible ways, so

φG1 (x) = φ4(x).(x − 1)(x − 1)

= x(x − 1)3(x2 − 3x + 3).

On the other hand, we must observe that the vertex P3,6 has a stronger restriction, it can be
coloured with colours different of P2 and P4 that always have different colours, thus

φG2 (x) = φ4(x)(x − 2)

= x(x − 1)(x − 2)(x2 − 3x + 3).

So, one has

φG(x) = φG1 (x) − φG2 (x)

= x(x − 1)3(x2 − 3x + 3) − x(x − 1)(x − 2)(x2 − 3x + 3)

= x(x − 1)(x2 − 3x + 3)2.

With x = 3 colours, we obtain φG(3) = 54 ways. In a more general case, one can attribute
three colours (the same previous colours: yellow, green, and red) to the vertices in the lattice
(figure A3(c)) such that neighbouring vertices cannot have the same colour, exactly as coun-
tries in a map, by following our convention where vertices (little balls) correspond to cells
(countries), as for example we can observe in figure A3(e).We should naively imagine that
recursively an expression for the lattice with N = L2 countries should be obtained. But is is
not true! Actually we have no an analytical expression for an arbitrary N.

In [11] for example it is shown that for N →∞ upper and lower bounds are obtained:

1
2

(x − 2 +
√

x2 − 4x + 8) � φ(x) � x2 − 3x + 3
x − 1

.

However for x = 3, both bounds are the golden ratio 1
2 (1 +

√
5) and 3/2. However Lieb in

a brilliant work has obtained an exact result for x = 3 at limit N →∞: φ∞(3) = ( 4
3 )3/2. But

is x = 3 an important case to us? Absolutely, since we can show that three-colouring problem
is exactly the six-vertex problem (ice-type model) except by a multiplicative factor, which is
exactly our original problem as we show in the the next subsection.
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Appendix B. Transfer matrix algorithm for L = 15 using PBC in one of the
directions

1. Main algorithm
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2. Subroutine
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