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“Don’t let anyone rob you of your imagination, your creativity, or your curiosity.

It’s your place in the world; it’s your life.

Go on and do all you can with it, and make it the life you want to live.”

— MAE JEMISON



ABSTRACT

We introduce a method for identifying short-duration reusable motor behaviors, which we

call early-life options, that allow robots to perform well even in the very early stages of

their lives. This is important when agents need to operate in environments where the use

of poor-performing policies (such as the random policies with which they are typically

initialized) may be catastrophic. Our method augments the original action set of the agent

with specially-constructed behaviors that maximize performance over a possibly infinite

family of related motor tasks. These are akin to primitive reflexes in infant mammals—

agents born with our early-life options, even if acting randomly, are capable of producing

rudimentary behaviors comparable to those acquired by agents that actively optimize a

policy for hundreds of thousands of steps. We also introduce three metrics for identifying

useful early-life options and show that they result in behaviors that maximize both the

option’s expected return while minimizing the risk that executing the option will result in

extremely poor performance. We evaluate our technique on three simulated robots tasked

with learning to walk under different battery consumption constraints and show that even

random policies over early-life options are already sufficient to allow for the agent to per-

form similarly to agents trained for hundreds of thousands of steps.

Keywords: Reinforcement Learning. Options. Early-Life Options. Primitive Reflexes.



Identificando Early-Life Options Reutilizáveis

RESUMO

Neste trabalho, introduzimos um método para identificar comportamentos motores reuti-

lizáveis e de curta duração, que chamamos de early-life options. Esses comportamentos

permitem com que robôs tenham boa performance mesmo nos momentos iniciais de suas

vidas. Isso é importante quando agentes precisam interagir em ambientes nos quais o

uso de políticas ruins (por exemplo, as políticas aleatórias com as quais os agentes geral-

mente são inicializados) pode ser catastrófico. Nosso método estende o conjunto de ações

original do agente com comportamentos especialmente construídos para maximizar a per-

formance em uma família possivelmente infinita de tarefas motoras relacionadas. Esses

comportamentos são similares a reflexos primitivos em mamíferos, presentes no início

de suas vidas. Agentes que iniciam suas vidas com a possibilidade de utilizar early-life

options, mesmo quando agindo aleatoriamente, são capazes de produzir comportamentos

rudimentares comparáveis a comportamentos de agentes que otimizaram suas políticas

por centenas de milhares de passos. Nós introduzimos três métricas para identificar early-

life options úteis e mostramos que elas resultam em comportamentos que maximizam o

retorno esperado da option, ao mesmo tempo em que minimizam o risco de obter perfor-

mance significativamente baixa ao executá-la. Nós avaliamos o método proposto em três

robôs simulados, cuja tarefa é aprender a caminhar sob diferentes restrições de consumo

de bateria. Nós mostramos que mesmo políticas aleatórias sobre o conjunto de early-life

options já são suficiente para que o agente tenha performance similar a de agentes que

foram treinados por centenas de milhares de passos.

Palavras-chave: Aprendizado por Reforço. Options. Early-Life Options. Reflexos Pri-

mitivos.
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1 INTRODUCTION

Using Reinforcement Learning (RL) algorithms to solve high-dimensional control

problems may require a number of samples that is prohibitively large. Solving Atari

games, for instance, often requires an agent to interact with its environment for hundreds

of millions of timesteps. This is in sharp contrast with the level of performance achieved

by humans and other animals when interacting with new tasks. One of the reasons why

RL algorithms cannot yet achieve these performance levels is that they solve each new

problem tabula rasa; then, if an agent is faced with the same or similar problem, many

times throughout its life, it has to repeatedly learn to solve it from scratch. Humans, on

the other hand, have a multitude of prior knowledge, either innate or acquired throughout

their lifetimes, that allow for more rapidly learning to solve new tasks.

Developmental psychologists have studied the prior knowledge that humans of-

ten use when interacting with their environments, both in terms of visual biases [Spelke

1990] and in terms of developmental processes for acquiring reusable motor skills, such

as reaching or grasping [Berthier and Keen 2006]. From a computational perspective, pre-

vious works have investigated the different ways in which the performance of RL agents

is hurt due to the lack of prior knowledge—e.g., lack of innate visual biases and biases

towards exploring objects [Doshi-Velez and Ghahramani 2011, Dubey et al. 2018].

In the RL community, a common way of equipping agents with motor priors for

accelerating learning is through the use of options, or temporally-extended actions [Sut-

ton, Precup and Singh 1999]. Options are reusable behaviors defined in terms of primitive

actions or other options. One of the motivating principles underlying this idea is that sub-

problems recur, so that options can be reused when solving a variety of related tasks

throughout an agent’s lifetime. As an example, consider an agent tasked with driving.

During this task, an agent has to repeatedly execute particular types of actions, or se-

quences of actions, such as signaling right/left when turning or changing lanes. It would

be useful, then, to have the complete behavior (sequence of actions) necessary for signal-

ing encoded as one extended action—an option. That way, at each turn, the agent would

be able to select the corresponding option—a single decision—instead of having to indi-

vidually select all primitive actions that are required to describe the signaling behavior.

Most of the existing state-of-the-art methods for learning options focus on iden-

tifying (during an agent’s lifetime) useful recurring behaviors that help it to acquire op-

timal policies to solve a task more rapidly. Popular approaches are based on two main
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ideas. The first class of methods is based on creating options for reaching states deemed

to be important, such as subgoals. Several different approaches to how these subgoals

can be achieved and leveraged in the learning process have been proposed. Goals could

be defined, for instance, by finding commonalities between different paths to a solu-

tion [McGovern and Barto 2001] or by analyzing properties of the transition graph [Bacon

2013, Şimşek, Wolfe and Barto 2005]. Different methods also explore the concept of rel-

ative novelty in order to find subgoals [Şimşek and Barto 2004]. More recently, the use

of Proto-Value Functions, which capture the geometry of the state space and are capable

of finding bottlenecks, has been explored [Machado, Bellemare and Bowling 2017].

Other techniques for defining options are based on directly optimizing the pa-

rameters of an option’s policy, so that an agent can more efficiently solve a given task.

In [Bacon, Harb and Precup 2017] the authors derive policy gradient theorems that allow

an agent to learn both intra-option policies and policies over options. This method has

been extended to take into account the concept of deliberation costs—the costs of chang-

ing from one option to another while planning [Harb et al. 2018]. More recently, this

family of methods has been combined with the idea of Proto-Value Functions, as in [Liu

et al. 2017], in order to exploit properties of the geometry of the state space. Other ap-

proaches that have been explored include techniques that aim to generate a set of options

that are as diverse as possible [Eysenbach et al. 2018], and approaches that make use of

compression techniques to find the best set of reusable options [Garcia, Silva and Thomas

2019].

The methods discussed above are certainly relevant contributions to the problem

of learning reusable behaviors. However, they focus on the problem of learning options

that are best at improving the agent’s performance throughout its entire lifetime. In this

work, by contrast, we do not wish to identify options that help an agent to per-

form well throughout its entire lifetime. We, instead, wish to identify options that

allow robots to perform well in the very early stages of their lives. This is important

whenever agents may need to operate in environments where the use of poor-performing

policies (such as the random policies with which they are typically initialized) may be

catastrophic. We call these behaviors early-life options and consider them to be similar

to primitive reflexes—such as the sucking reflex or the Moro reflex—in infant mammals.

The Moro reflex [Berk 2009] is a particularly relevant example to the setting we tackle: it

is present at birth and causes an infant’s legs and head to extend, while the arms jerk up,

whenever the infant experiences sudden shifts in its head position. In human evolutionary
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history, this reflex may have helped infants to hold on to their mothers while being carried

around. Importantly, this reflex is useful only in the very early stages of an infant’s life

and disappears after about six months.

The Moro reflex, briefly discussed above, is an example of a safety and survival

early-life behavior, but other types of primitive reflexes exist. One relevant early-life re-

flex, present in some mammals, is the walking reflex—a type of reflex that assists not with

safety or survival, but which is a type of learning bias. This reflex makes an infant attempt

to walk by putting one foot in front of the other whenever placed standing on a surface.

Similarly to the Moro reflex, this one also disappears after some months, when the infant

actually starts to walk. This reflex is part of a sequence of innate behaviors present during

the developmental stages that infants go through when learning to walk. First, a child

learns to sit without support; then, to stand without assistance, to crawl, to walk with

assistance, and so on. Importantly, this sequence of developmental stages implies that

it is necessary for the child to acquire primitive/low-level capabilities before being able

to learn more complex ones. Without such developmental stages and its corresponding

sequence of increasingly more complex behaviors (built over previously-acquired simpler

behaviors), it would be extremely hard to directly learn how to walk. This is the biologi-

cal inspiration and intuitive motivation that underlies the definition of early-life options:

simple behaviors that (i) act as the basis for making it possible to learn more complex

ones; and (ii) are no longer necessary once the agent makes sufficient learning progress.

In this work, we introduce a method for identifying short-duration reusable early-

life options that allow robots to perform well in the very early stages of their lives. Our

method augments the original action set of the agent with specially-constructed options

akin to primitive reflexes in mammals, so that agents equipped with them are capable

of achieving high performance on a possibly infinite family of related motor tasks—i.e.,

they are reusable across many tasks. We propose an offline optimization process for gen-

erating, evaluating, and selecting candidate options that maximize specially-constructed

performance metrics. We propose three metrics for evaluating the usefulness of candi-

date options and show that they identify behaviors that maximize both the expected return

of an option while also minimizing the risk that executing it will result in extremely poor

performance. We evaluate our technique on three simulated robots tasked with learning to

walk under different battery consumption constraints and show that even random policies

over early-life options are already sufficient to allow for the agent to perform similarly to

agents that are trained for hundreds of thousands of steps.
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The following chapters are organized as follows: Chapter 2 discusses the technical

background relevant to our work. Chapter 3 explores related works in the literature and

discusses similarities and differences with respect to our proposed approach. Chapter 4

introduces the proposed method for learning early-life options. Experiments are presented

in Chapter 5. Finally, in Chapter 6 we present our conclusions and ideas for future work.
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2 BACKGROUND

In this chapter, we provide a discussion on the techniques and ideas necessary to

understand our proposed method. In Section 2.1 we discuss Reinforcement Learning and

a few selected learning methods. In Section 2.2 we introduce the options framework. Fi-

nally, in Section 2.3 we discuss primitive reflexes in mammals and discuss the reasons

why they are a biologically-inspired motivation underlying the idea of the early-life op-

tions.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a computational approach to goal-directed learn-

ing and decision making. It is different from other machine learning approaches given its

emphasis on learning based on the interactions of an agent with its environment, without

requiring any type of supervision or complete models of the environment. Consider an

agent in a gridworld, where the agent is tasked with arriving at a specific location. In

RL, the only information made available to the agent are numerical reward signals that it

receives after each action—these could, for instance, be positive when the agent reaches

the goal position and zero otherwise. To define agent-environment interactions in terms

of states, actions, and rewards, the problem is typically modeled as a Markov Decision

Process (MDP).

An MDPM is a tuple (S,A, r, p, γ), where S is a set of states,A is a set of actions,

r : S × A → R is a function returning (expected) scalar rewards for executing action a

in state s, p is a transition function specifying the probability p(s′|s, a) of transitioning

to s′ after taking action a in state s, and γ ∈ [0, 1) is a discount factor. A policy π :

S ×A → [0, 1] is a mapping specifying the probability Pr(a|s) of selecting action a when

in state s. The goal of an RL agent is to learn a policy that accumulates as much reward as

possible. Let the reward received at time t be the random variable Rt and the cumulative

reward (or return) from time t be the random variable Gt
.
=
∑T−1

i=0 γ
iRt+i, where T is a

time horizon. A value function vπ(s) is defined as the expected returned achieved when

following policy π and starting in state s: vπ(s)
.
= E[Gt|St = s]. An action-value function

qπ(s, a) is defined as the expected return achieved when following policy π, starting in

state s, and taking a particular action a: qπ(s, a)
.
= E[Gt|St = s, At = a]. Solving an

MDP M consists of finding a policy π∗ that maximizes the agent’s expected return.
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Several methods have been proposed in the literature to solve this optimization

problem. There are two main approaches: tabular RL methods, and function approxima-

tion RL methods. The former are simpler methods that typically assume environments

with state and action spaces small enough to represent value or action-value function us-

ing tables, and can often find optimal solutions. The latter approximate value functions

using some class of approximators (e.g., linear value function approximators), and can

typically find approximate solutions to the optimal-policy problem. They can, however,

be applied to much larger problems. In what follows, we will present a few sample model-

free methods of each category. These are called model-free since they do not require prior

knowledge of the reward and transition functions.

2.1.1 Tabular Methods

A well-known tabular method for reinforcement learning is Q-learning [Watkins

1989]. This method is a temporal-difference learning method, where the agent learns

from raw experiences and updates its estimate of an action-value function based on the

experiences themselves and on its current estimate of that function. This is known in the

literature as bootstrapping. Another characteristic of Q-Learning is that it is off-policy—

the agent can improve its behavior towards an optimal policy, π∗, even if it behaves and

collects samples according to any other policy1.

It is known that every optimal policy for an MDP shares the same action-value

function, called the optimal action-value function, q∗:

q∗(s, a) = max
π

qπ(s, a), (2.1)

for all s ∈ S and a ∈ A(s). From the optimal action-value function, it is straightforward

to find the optimal action when in a given state: for any state s, the agent can simply

choose any action a ∈ A(s) that maximizes q∗(s, a).

The objective of Q-learning is to learn a (typically tabular) estimator Q(s, a) for

the optimal action-value function. In the tabular case, Q is represented by a |S| × |A|

matrix, called a Q-table. In order to update the matrix, at each step of the episode, the

agent chooses an action a based on its current state, s, using a policy derived from Q.

Then, the agent executes the action and observes the next state, s′, and the reward, r.

1Under mild assumptions regarding the exploratory process induced by the policy.
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With that, it is possible to update the corresponding Q(s, a) term in the matrix according

to a learning rule based on the Bellman equation2:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′

Q(s′, a′)). (2.2)

Given sufficient timesteps and the possibility of updating all state-action pairs of the Q-

table, the update rule given by Eq. 2.2 will converge to q∗.

2.1.2 Approximate-Solution Methods

Tabular methods often perform well when dealing with small discrete environ-

ments. However, for many tasks in which we may like to apply RL, the state and/or ac-

tion spaces are very large or even infinite. In such cases, it is not possible to find π∗ using

tabular methods. To address this limitation, one wishes to find approximate representa-

tions of the action-value functions (or of the policy), which allow the agent to generalize,

across states, estimates of the return achievable from different situations. This generaliza-

tion process is often called function approximation—it allows the agent to collect samples

from a given function of interest (e.g. a value function) and construct an approximation of

the true underlying function based on those samples. One approach to deal with function

approximation is through policy gradient methods. These methods directly approximate

the optimal policy for a given problem, and may or may not depend on also estimating

(approximate) value or action-value functions. Methods that learn and update both a pol-

icy and a value function are often called Actor-Critic methods. Policy gradient methods

are based on computing or estimating the gradient of the expected return of the agent with

respect to policy parameters, and then updating a parameterized policy in the direction of

the gradient; i.e., in the direction that maximizes the expected return.

A recently-proposed policy-gradient algorithm is called Proximal Policy Opti-

mization (PPO) [Schulman et al. 2017]. This method is based on the idea of using a

history of agent experiences to determine the largest policy improvement step possible,

while ensuring that such a step will not be too large and overshoot the target policy pa-

rameters that maximize performance. The policy update involves a constraint representing

how different the new and old policies are allowed to be, in order to avoid overshooting.

In particular, the update rule of PPO involves a clipping procedure that keeps the policy

2For an historical introduction to this concept, see [Bellman 1957, Bellman 1957].
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from changing too fast, and therefore removes incentives for the new updated policy to

get too far from the current one.

The PPO learning rule for updating a policy πθ, parameterized by θ, is the follow-

ing:

θk+1 = arg max
θ

E[L(s, a, θk, θ)|s, a ∼ πθk ], (2.3)

where θk are the parameters of the current policy, θk+1 are the parameters of the updated

policy, and where the maximization problem on the right-hand side of Eq. 2.3 is usually

solved by taking steps of stochastic gradient descent to maximize the objective, L. Here,

L is defined as:

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip
( πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε
)
Aπθk (s, a)

)
,(2.4)

where ε is a hyperparameter that specifies how different the new policy (πθ) is allowed to

be with respect to the current one (πθk), and where Aπθk (s, a) is the advantage function

given by Aπθk (s, a) = Qπθk
(s, a)− Vπθk (s). Note that the clipping procedure, in Eq. 2.4,

serves as a regularizer by removing incentives for the policy to change dramatically. Most

implementations of PPO estimate the advantage function via the Generalized Advantage

Estimation procedure [Schulman et al. 2016]. This often requires representing the value-

function using a parameterized approximator—e.g., a neural network trained to minimize

the mean-squared error between estimated state values and empirical returns.

In our experiments (Chapter 5), which involve high-dimensional continuous states

and actions, value function approximation and policy gradient methods are required. In

all of our experiments, we use the PPO algorithm to learn near-optimal policies.

2.2 Options

As previously discussed, in this work we introduce a method for identifying reusable

behaviors that help a robot to perform well in the early stages of its life. A standard way

of representing reusable, temporally-extended behaviors in RL is via the Options frame-

work [Sutton, Precup and Singh 1999]. This framework describes a set of formalisms for

learning and using temporally-extended actions, or options. Intuitively, options represent

sequences of primitive actions (or other options) that encode high-level behaviors that
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may be reusable by the agent in different situations. They are akin to motor skills.

One of the motivating principles underlying this idea is that subproblems recur, so

that options can be reused while solving a task or even in a variety of similar tasks. As

an example, consider the task of walking from one room to another in a given building.

In order to leave the first room, the agent needs to open a door. Then, when the agent

arrives at the other room, it needs to open a second door. In this case, opening doors is

a recurrent behavior that could be represented by an option. Once this option has been

acquired by the agent, the entire corresponding temporally-extended behavior is defined

and made available to the agent, which keeps the agent from having to repeatedly re-learn

(from scratch) such a skill every time that a new door is encountered. This facilitates and

accelerates both the exploration process executed by the agent and the policy-learning

process. As previously-mentioned, options can be defined in terms of primitive actions

or other options. This leads to the possibility of creating hierarchies of options, where,

for example, the behavior of opening a door could be defined in terms of other options—

options for grabbing the doorknob, turning the doorknob, and pushing a door.

In the Options framework, a Markovian option o consists of three components:

(1) a policy πo(s, a) describing the probability of taking action a while executing option

o in state s; (2) an initiation set Io specifying the states s ∈ S in which the option can

be initiated; and (3) a termination condition βo(s) specifying the probability of the option

terminating at a state s. Let us continue discussing the example of an option for opening

a door. The initiation set of the option would include all states in which it is possible to

reach the doorknob; it would make no sense, by contrast, for the option to be available

from states where the agent is in the middle of a park. The policy of the option would

correspond to a mapping from states to actions that would move the agent’s hand and arm

in a reasonable manner in order to open the door. Finally, the termination condition of

the option would be set to one in all states where the door is opened, and zero otherwise.

When the agent chooses an option for execution, it repeatedly selects and executes prim-

itive actions according to the option’s policy, until the option’s termination condition is

reached. Option policies can be represented in an open-loop manner (in which case they

are known as macros). This involves a fixed sequence of actions. Alternatively, options

policies can be closed-loop, in which case the particular actions that are executed at a time

are based on the current state of the environment.

When options are available to the agent, the standard formalism of MDPs can be

extended to a more sophisticated framework known as Semi-Markov Decision Processes,
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or SMDPs [Sutton, Precup and Singh 1999]. In an SMDP, the policy of an option can

rely on the complete history of experiences since the option was initiated. The SMDP

formalism allows for agents to use the same learning and planning techniques as those

used when only primitive actions are available. This is achieved by defining a corre-

sponding Bellman equation for options. As an example, the Q-learning method can be

extended to allow for options to be executed, in which case option-action values need to

be learned [McGovern and Sutton 1998]. Under this method, when updating the q-value

of primitive actions, the update is the same as that of standard Q-learning (Section 2.1).

When updating options, by contrast, the update is given by:

Q(s, o)← (1− α)Q(s, o) + α(ro + γn max
a′∈Ast+n

Q(st+n, a
′)), (2.5)

where ro = rt+1 + γrt+2 + γ2rt+3 + . . .+ +γn−1rt+n, and where n is the number of steps

during which the option o was executed. Furthermore, s is the state where the option

was initiated, st+n is the state where the option terminated, and Ast+n is the set of actions

available in state st+n. We provide further details on how the options framework is used,

in our work, in Section 4.1.

2.3 Early-Life Options in Mammals

The proposed idea of this work—to learn early-life options helpful in the very

early stages of an agent’s life—is inspired by the observation of similar behaviors in

many infant mammals, where such behaviors were optimized/discovered by natural se-

lection. Such behaviors are often called primitive reflexes: innate reactions that happen

automatically in response to a given stimulus. These reflexes can be of various types,

ranging from survival behaviors to parenting reflexes (that help create a connection be-

tween an infant and their parents) and learning-bias reflexes that accelerate the acquisition

of learned behaviors [Berk 2009].

An example of a primitive reflex that holds a survival value is the rooting reflex,

which helps an infant find the mother’s nipple in order to breastfeed. This reflex is only

activated when babies are hungry and are touched by another person. The Moro reflex

[Berk 2009] is another example of a survival-based reflex. It causes an infant’s legs and

head to extend, while the arms jerk up, whenever the infant experiences sudden shifts in

its head position. In human evolutionary history, this reflex may have helped infants to
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hold on to their mothers while being carried around.

Other primitive reflexes help to establish a connection between the infant and their

parents, such as the sucking reflex, which is linked to the rooting reflex, and that assists

in breastfeeding. Another relevant reflex is the palmar grasp reflex, which is often en-

countered in infant mammals: it causes a child to close their hands around any objects

placed on their palms. The palmar grasp reflex encodes one of the first readily recogniz-

able fine motor skills that are crucial to the normal development of a child. Other than

having survival value, both of these reflexes encourage parents to interact with, and react

to an infant’s actions, responding with love and affection and allowing parents to comfort

children in case of distress.

Besides providing survival value, primitive reflexes can also provide learning bi-

ases that accelerate the acquisition of learned behaviors. One example is the walking

reflex, which is present at birth and provides a bias to help to learn walking gaits—even

though infants, at this young age, cannot yet support their own weight. With this reflex,

when the soles of an infant’s feet touch a flat surface, they attempt to walk by placing one

foot in front of the other [Siegler, DeLoache and Eisenberg 2003].

One important characteristic of the above-mentioned reflexes (Figure 2.1) is that

they are only useful at the very beginning of an infant’s lifetime. Most of them disappear

by the age of six months. The walking reflex, for instance, becomes weaker around 5-6

months of age, as the infant starts to attempt to walk.

Primitive reflexes are inherently related to another inspiration for our work: the

observation of motor developmental stages in mammals. These are changes in motor be-

havior that occur over the lifespan of a child and that represent the sequential, age-related

processes that an infant undergoes. Figure 2.2 illustrates the milestone achievements that

a child undergoes while learning to walk. It illustrates that a given task—learning to

talk—may be too complex to be tackled directly. Instead, natural selection facilitates the

acquisition of this behavior by imposing a sequence of ever more complex motor capa-

bilities that a child needs to acquire, sequentially. Without such developmental stages, it

would be extremely hard for (some types of) mammals to directly learn to walk.

Primitive reflexes in mammals, and the existence of motor development stages,

illustrate how learning can often be seen as a hierarchical process, starting from simpler

innate behaviors3 and converging to more complex learned ones. These, therefore, are

the biological inspirations and motivation for the definition of early-life options (ELOs).

3Which disappear when no longer necessary.
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Figure 2.1: Sample primitive reflexes in mammals.

Source: [A.D.A.M. 2019 (accessed 11/13/2020)]

Figure 2.2: Developmental motor stages that a child undergoes when learning to walk, as
a function of age.

Source: [Onis 2006]
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ELOs, as previously discussed, are simple behaviors that act as the basis for making it

possible for an agent to learn more complex ones. They are also removed from an agent’s

repertoire when no longer needed—i.e., after the agent makes sufficient learning progress.
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3 RELATED WORK

In this chapter, we discuss existing methods related to option learning. There are

two main strategies for identifying and learning options. The first one, briefly discussed in

Section 3.1, is based on finding useful subgoal states for solving a particular task, and then

creating an option for reaching each subgoal. The second strategy, discussed in Section

3.2, is based on directly learning option policies that result in maximal return, without

having to identify subgoals.

Notice that all methods presented in this chapter are related, but orthogonal to our

proposed objective. Both our method, and the related techniques discussed here, intend to

discover and optimize options. Existing related methods, however, are designed to iden-

tify options that are useful over the entire lifetime of an agent. We, by contrast, wish to

identify options that are useful during the early moments of the agent’s lifetime. Because

the option-discovery techniques discussed here are orthogonal to our objective, they can

be combined with our method to provide useful options once the agent has acquired suf-

ficient basic knowledge about how to interact with its environment. As an example, it

would be possible to use our technique to identify survival behaviors and reflexes, and

to use the methods discussed in this chapter to build upon early-life options to construct

more sophisticated behaviors, useful in the latter parts of an agent’s lifetime.

3.1 Goal-Based Options

A common heuristic for defining useful options is to create options specialized in

reaching particular subgoal states. In the RL literature, subgoal states are often defined as

bottleneck states. Intuitively, these are states considered important for solving a particular

task since they allow the agent to move between well-connected regions of the state space.

Consider, for instance, a problem where the agent has to move from one room to another.

In this environment, doors are examples of bottleneck states: no matter where within a

given room the agent is, or where it wishes to go, all solutions need to pass through the

door state.

In [McGovern and Barto 2001], the authors proposed one of the first methods

to automatically discover subgoals in RL. The proposed technique is based on identify-

ing similarities between different paths that the agent may take to a given solution. In

particular, the idea involves finding bottleneck states from an ensemble of trajectories
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accumulated by the agent while interacting with the environment. To find such common-

alities, the authors pose option discovery as a multiple-instance learning problem: the

agent needs to classify each trajectory as positive (reached the goal) or negative (did not

reach the goal). The objective, then, is to find the region of states that appears in every

successful trajectory but that does not appear in unsuccessful ones. The authors use the

concept of diverse density to find such solutions. The process of identifying subgoal states

occurs online, while the agent learns to solve a task. After each new subgoal state is iden-

tified, an option to reach that state is created and added to the set of actions available to

the agent. By using this technique, the agent is capable of learning faster, when compared

to the setting with no options. Furthermore, this method also allows the agent to transfer

and reuse knowledge of the learned options in order to more rapidly solve different, but

related tasks.

A different approach to identify subgoal states was introduced by Bacon [Bacon

2013]. Here, the author proposed analyzing a graph representation of the state space in

order to define which states are bottlenecks. The assumption underlying this technique

is that desirable subgoals lie on paths that connect different densely-connected regions of

the state space. The author constructed a graph based on sample trajectories, where states

are nodes and where a transition between states produces an edge. Each edge has a weight

corresponding to the number of times that the corresponding transition occurred. The au-

thor then used a community detection method, where a community is defined as a group

of nodes that is heavily connected within themselves, but that has sparse links connecting

it with other communities. Subgoal states are defined as the edges that connect different

communities. Each option’s policy is learned using Q-learning. The initiation set of each

option is defined as the set of states within the corresponding community, and the termi-

nation probability is one at the subgoal state and zero otherwise. This approach results in

a more principled way of defining initiation sets, compared to the diverse density-based

techniques discussed previously. However, it is heavily dependent on setting hyperparam-

eters of the underlying community detection mechanism.

Similarly, in [Şimşek and Barto 2004] the authors argue that subgoals should be

defined as states that allow for the transition between different regions of the state space.

The authors proposed using a method based on the concept of relative novelty in order

to identify such states. The novelty of a state is defined as how frequently the state is

visited; the relative novelty of a state is the ratio between the novelty of states that follow

it in a given trajectory, and the states that precede it. The task of finding subgoals, then,
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Figure 3.1: Relative novelty goal discovery: (a) The Six-room gridworld environment.
(b) Subgoals identified by the method. (c) Mean steps to the goal.

Source: [Şimşek and Barto 2004]

can be formulated as a classification problem, where the objective is to classify a state as

a subgoal or not based on its relative novelty score. This method allows for subgoals to

be identified without requiring access to the reward function, which implies that it can be

used even if the agent is following an exploratory policy and even if the agent does not

complete the task. Figure 3.1 depicts the subgoals identified by this method when applied

to a gridworld environment, as well as its performance when compared with Q-learning.

In [Şimşek, Wolfe and Barto 2005], the authors also investigate a method based

on analyzing a graph of transitions, and make similar assumptions that subgoals should

connect different regions of the state space. Here, however, the authors used local parti-

tioning techniques and applied them to graphs constructed based only on the most recent

experiences of the agent. After constructing such a graph, the method finds bottleneck

states by identifying cuts of the graph. In particular, it identifies recurring low-probability

edges that connect subgroups of nodes of the graph. Subgoals are defined as the states

that are endpoints of such edges. This technique is capable of identifying subgoals based

on local information (i.e., given only information about the states that surround them)

instead of requiring metrics that are defined over the entire state space.

A different goal-based technique was introduced by Machado et al. [Machado,

Bellemare and Bowling 2017], where the authors argued that options can be defined

by analyzing the Laplacian of the transition graph associated with an MDP. The Lapla-

cian of a graph is known to capture geometric information about the underlying state

space, such as its symmetries and bottlenecks. Based on this idea, the authors compute

Proto-Value Functions, or PVFs [Mahadevan 2005], which encode information about the

graph’s Laplacian and can be used to specify intrinsic reward functions called eigenpur-
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poses. Such functions, when used to define rewards given to the agent, incentivize it to

traverse the state space, and explore it, by following the directions of the PVF. From each

eigenpurpose, a corresponding eigenbehavior can be computed: an eigenbehavior is the

policy of the option that maximizes the reward given by the corresponding eigenpurpose

reward function. Since these options are defined by taking into account only the transition

dynamics of the environment, they can arguably be reused when solving different tasks

defined over the same state space, where each task is associated with a particular reward

function.

More recently, the method of Successor Options was introduced by [Ramesh,

Tomar and Ravindran 2019]. This method leverages the idea of successor representa-

tions [Dayan 1993]. A successor representation (SR) assigns a new set of features to each

state, where the features encode information about which future states are expected to

follow from the state, given a particular policy. Since nearby states are expected to have

similar successors, their SRs are also similar. Importantly, since SRs reflect information

about the expected trajectories that may follow from a given state, they can be used to

build a model of the state space and to capture the temporal structure between states in a

graph. Based on computing success representations, subgoals can be defined as states that

have maximally different SRs; i.e., states from which the agent is expected to visit very

different regions of the state space. The overall method consists of building a successor

representation of the state space, identifying subgoals, building policies for reaching each

subgoal, and then using such options to solve a collection of related tasks. A related tech-

nique was proposed in [Goel and Huber 2003]. In this approach, a subgoal state is defined

as a state that can be reached by trajectories originating from many different states, and

such that its successors do not have this property.

Even though the methods discussed so far allow agents to autonomously identify

options, we emphasize that they differ with respect to our objective in two main ways:

(1) we do not require the identification of subgoals to define early-life options; and (2)

we do not wish to discover options that are useful in the long-term, throughout an agent’s

lifetime. By contrast, we wish to identify one particular set of options—those that help to

maximize return in the very early stages of an agent’s lifetime, when it operates under a

nearly random initial policy.
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3.2 Direct Option Policy Optimization

In contrast to the related work introduced in the previous section, existing literature

also considers identifying options by directly optimizing option policies that result in high

return. This is akin to directly discovering reusable behaviors by tuning their parameters

(typically via gradient ascent), instead of assuming that useful behaviors are those that

necessarily lead to one or more subgoal states.

In [Bacon, Harb and Precup 2017], for instance, the authors derived policy gra-

dient theorems for learning options. In particular, they introduced the Option-Critic

architecture, which allows agents to learn intra-option policies, termination conditions,

and also policies over options, without ever requiring the definition of intrinsic reward

functions or subgoals. The proposed method aims to optimize the option-value function

QΩ(s0, o0), where s0 and o0 denote the agent’s initial state and option. The option-value

function QΩ(s, o) is defined as:

QΩ(s, o) =
∑
a

πo,θ(a|s)QU(s, o, a) (3.1)

where πo,θ(a|s) is the policy of option o, parameterized by θ, and QU(s, o, a) is the value

of executing an a action in the context of a given state-option pair:

QU(s, o, a) = r(s, a) + γ
∑
s′

p(s′|s, a)
[
(1− βo,ϑ(s′))QΩ(s′, o) + βo,ϑ(s′)VΩ(s′)

]
(3.2)

where βo,ϑ(s) is the termination function of option o, parameterized by ϑ. From these

equations, the authors were able to obtain the gradient of expected return with respect to

θ and ϑ. This allows agents to perform gradient ascent in order to directly optimize option

policies and option termination conditions. The Option-Critic architecture requires that

the user set the number of desired options. This architecture has shown good performance

in several different environments, ranging from gridworlds to Atari games.

In [Harb et al. 2018], the authors proposed an important extension to the Option-

Critic architecture. This work was motivated by empirical results that indicate that the

original Option-Critic method often converges to options that are equivalent to execut-

ing only one primitive action. In order to minimize the probability of single-action op-

tions, the authors assumed a cost associated with switching between options, so that the

optimization algorithm is incentivized to discover longer, more temporally-extended be-
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haviors. In particular, the authors introduced a deliberation cost that is incurred upon

switching to a new option. They then formulate the problem by extending the Option-

Critic architecture in a way that subtracts deliberation costs from the rewards achieved by

the agent. The authors derived gradient-based learning algorithms to optimize this new

objective. This approach resulted in good performance in many different domains and

is capable of discovering longer-lasting options that—unlike in the original Option-Critic

work—do not shrink over time.

Another work for option discovery that extends the Option-Critic architecture was

proposed in [Liu et al. 2017]. Here, the authors introduce the idea of eigenoptions—

related to eigenbehaviors, discussed in the previous section. The resulting algorithm

is called the Eigenoption-Critic algorithm. This technique modifies the original reward

function and combines it with an intrinsic reward derived from the eigenpurposes func-

tions introduced in [Machado, Bellemare and Bowling 2017]. This mixed reward signal

is used to update an option’s policy; the policy over options is updated based only on the

original extrinsic reward. The benefits of this extension of the Option-Critic architecture

is that it can better deal with non-stationary environments, and that it often results in a

more diverse set of options.

Yet another technique for directly optimizing option policies was introduced in

[Eysenbach et al. 2018]. The authors work under the hypothesis that a set of skills

is useful if it maximizes the coverage over the set of possible behaviors that an agent

may need to execute. The proposed method learns options by maximizing an objective

function under a maximum entropy policy. The intuition underlying this method is that

its objective encodes the idea that skills should be as diverse as possible—they should be

able to consistently take the agent to a large set of different states. This implies that the

set of states that are reachable by each skill is what distinguishes the (maximally diverse)

behaviors discovered by this method.

Another approach for discovering options was proposed in [Garcia, Silva and

Thomas 2019]. Here, the authors proposed creating options by identifying recurrent

action patterns in trajectories drawn from well-performing policies. They introduced a

three-step framework that begins by sampling trajectories from near-optimal policies. The

method then identifies sequences of actions that recur in the trajectories by compressing

them. Intuitively, this associates a symbol to each recurring subsequence of actions. Each

such symbol, and its corresponding sequences of actions, is then used to define an option.

Notice that, by construction, the options that allow for the maximum compression of tra-
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jectories are also maximally reusable options: chunks of behaviors that appear in many

trajectories observed while executing well-performing policies. After identifying a set of

candidate recurring options, the algorithm performs option evaluation: the value of an

option is defined as its expected Q-value over all states in a given set of tasks/MDPs. The

last step performed by the algorithm is option selection, where options that lead to higher

rewards (and that are dissimilar from the other discovered options) are selected. This

method has a similar structure to the technique that we introduce in Chapter 4. However,

it uses different underlying techniques (e.g., compression algorithms) and has a different

objective—to optimize options for the entire lifetime of the agent, instead of optimizing

early-life behaviors in particular.

The methods discussed in this section offer a different perspective to option dis-

covery: to directly optimize the policies of a set of options in order to maximize return.

As previously mentioned, they are related to our goal—to discover reusable options—

but they differ with respect to our objective in that they aim at identifying options that are

useful throughout an agent’s lifetime. We, by contrast, are interested in discovering early-

life options that mimic the types of safety and learning-bias behaviors often observed in

infants’ primitive reflexes.
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4 LEARNING EARLY-LIFE OPTIONS

In this chapter, we introduce our proposed method for learning early-life options.

This chapter is organized as follows: Section 4.1 presents the setting of our problem.

In Section 4.2 we elaborate on the mathematical objectives of our proposed technique.

We then introduce, in Section 4.3, three metrics based on which early-life options with

different characteristics may be optimized. Finally, in Section 4.4 we provide details

about a complete algorithm to identify sets of reusable early-life options.

4.1 Setting

We assume an RL agent that needs to solve not a single problem (task), but that

may be presented with a sequence of tasks drawn from some task distribution. This is the

setting typically tackled by methods dealing with learning options in multi-task problems

[Kober et al. 2012, Silva, Konidaris and Barto 2012, Stulp et al. 2013]. Each task is

modeled as an MDP, and we assume that the MDPs have dynamics and reward functions

similar enough so that they can be considered variations of the same task. A family

of similar and related tasks could be constructed, for instance, by assuming the same

transition dynamics, but by associating different reward functions with different tasks.

In Chapter 5 we expand on this point and introduce an infinite family of related MDPs

corresponding to motor problems where robots need to learn to walk efficiently while

operating under different power consumption constraints.

Let Ψ be the set of possible tasks that an agent may need to solve. Each element

of this space is an MDP which we assume can be compactly described by a vector τ

of parameters. Learning to grasp a particular object, for instance, is a task that may be

compactly characterized by parameters specifying the object’s shape and weight. Assume,

furthermore, that problems in Ψ occur in an agent’s lifetime with probabilities given by

some distribution P .

Similarly to how we defined the value vπ(s) of a state s (see Section 2.1), let us

now define the value vd0,P (π) of a policy π when evaluated over a distribution P of tasks

and different initial states from which it may be deployed—where initial states are drawn
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from some distribution d0:

vd0,P (π)
.
=

∫
P (τ)

∑
s∈S

d0(s)vπ(s, τ)dτ. (4.1)

Here, vπ(s, τ) is defined similarly to vπ(s) but makes it explicit that the policy is being

evaluated in a particular task, τ . In what follows we omit the dependence on d0 and P to

simplify the notation, and refer to the performance of a policy over a distribution of tasks

and initial states simply as v(π). Importantly, note that v(π) is an expected value. In this

work, however, we will be concerned not only with optimizing the expected performance

(return) of a policy or option, but with optimizing more sophisticated properties of its

distribution of its possible returns. This will be achieved by introducing three option-

evaluation metrics (see Section 4.3 for more details).

Let a context C .
= (τ, s0) be a random variable denoting a tuple containing a task

τ , drawn from P , and an initial state s0, drawn from d0. Let V (π) be the random variable

denoting the possible returns obtained by executing π in a random context. It should

be clear, then, that v(π) = Ed0,P [V (π)]. Our method requires evaluating not only the

performance of individual early-life options, but of sets of options. In what follows we

abuse notation and extend the definition of the value of an option, V (πo), to the value of

a set of options, V (πo1 , . . . , πoK ), where K is the number of options in the set. This is a

random variable denoting the average of the corresponding options’ returns:

V (πo1 , . . . , πoK )
.
=

1

K

K∑
i=1

V (πoi). (4.2)

In our setting, to keep our formalism simple, we assume that options can be initi-

ated from any state (i.e., Io = S), and assume that they last a short pre-defined number of

timesteps, T , so that their termination condition βo = 1 iff the option has been executed

for T steps. This latter decision is justified by the observation that while learning with

longer options may be more sample-efficient, if a given option set is not well-fitted for

a particular task (e.g., it does not allow for optimal policies over primitive actions to be

represented exactly), then shorter options are more flexible and may result in better so-

lutions [Harutyunyan et al. 2017]. Due to these assumptions, we henceforth refer to an

option o simply by its policy πo and leave its other components implicit.
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4.2 Mathematical Objective

Consider an agent tasked with learning to solve a family of tasks that require ex-

ecuting slightly different walking gaits. Instead of learning each walking pattern from

scratch—which could be hard—we argue that such an agent would benefit from being

born with primitive behaviors similar to the walking reflex in infant mammals. Such a re-

flex, or early-life option, would serve as a learning bias that leads the agent to visit states

and to perform actions that facilitate learning correct walking behaviors. Access to such

a learning bias would allow for more rapid policy acquisition when compared to starting

the learning process completely from scratch. Additionally, if we assume that the agent of

interest is a physical robot—which may suffer critical hardware damage by falling—then

the importance of innate balancing and primitive walking reflexes is made even clearer.

Our goal is to identify a set O∗ = {πo1 , . . . , πoK} of options that can be used to

augment A, the set of actions, so that the resulting agent has access to behaviors that

are akin to primitive reflexes in infant mammals. In particular, agents born with such

options, even when acting randomly in the early stages of their lives, should be capable of

producing rudimentary behaviors with performance comparable to that of agents that are

allowed to optimize a policy for hundreds of thousands of steps. We call these early-life

options, since their goal is to guarantee good performance in the early stages of an agent’s

life where the use of initial near-random policies may be catastrophic.

One way of characterizing this set is by identifying a set of options whose expected

return, when evaluated over a distribution of possible tasks and initial states (contexts) is

maximal:

O∗
.
= arg max

πo1 ,...,πoK

1

K

K∑
i=1

E[V (πoi)]. (4.3)

This definition makes an important assumption: it evaluates a set of candidate options

based on their individual performances. Usually, however, options cannot be evaluated

by the individual returns that they provide, but by the benefits that they jointly provide

to an agent throughout its entire lifetime (e.g., [Bacon, Harb and Precup 2017, Machado,

Bellemare and Bowling 2017]). This is not our objective, however. We, by contrast, wish

to identify options that help agents in the early stages of their lives, possibly when they

are still operating under near-random initial policies. The criterion expressed in Eq. 4.3

models this worst-case scenario precisely: it represents the average return achieved by

an agent acting under a random policy over options, as the returns come from executing
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each option in random tasks and random states. A set of options with a high expected

return even in this case—i.e., when the agent is not learning and is acting under an initial

random policy—is considered to be a good set of early-life options. Such a set of options

enables the agent to maximize performance even when executing a near-random policy,

and before it acquires sufficient knowledge about how to complete a particular task.

4.3 Quantifying the Performance of Early-Life Options

Eq. 4.3 defines an optimal set of options as one that, if used by a near-random

agent, results in maximal expected return. We are interested, however, in defining more

sophisticated option evaluation metrics that take into account not only the option’s mean

return, but also properties of the tails of its return distribution. This is useful, for instance,

so that we can identify ELOs that maximize expected performance while minimizing the

probability that they may produce risky behaviors. In what follows, we introduce three

metrics to evaluate a candidate early-life option, πo, based on more general properties of

its return distribution:

1. the Maximum-Mean metric ψµ(πo). This is the simplest way of evaluating an option

πo. It directly estimates the expected value of the option’s return distribution. This

metric does not take into account return variance or the negative tails of its distri-

bution (i.e., the risks associated with executing the option). This metric is useful in

situations where there are no risks for the agent and the only objective is to obtain as

much reward as possible. Consider, for instance, an agent tasked with learning how

to ride a bike, but assume that the bike has training wheels. As the risk of falling is

low, the agent is allowed to follow somewhat riskier policies (but which may result

in faster learning) as long as those policies yield higher expected returns.

2. the Negative Tail-Averse metric ψ−(πo). This metric takes into account not only

the expected (mean) performance of an option, but also the area under the curve of

the negative tail of its return distribution. This metric favors options with both high

expected return and with a low probability of producing significantly poor (possibly

catastrophic) returns. It is useful in situations where there are non-negligible risks

that the agent wishes to avoid. Consider, once again, an agent tasked with learning

how to ride a bike, but now assume that the bike has no training wheels. Even

though we would like the agent to make fast learning progress (i.e., achieving high
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expected return), we also wish to prevent, as much as possible, that the agent falls

and gets damaged—thereby achieving low return. This setting requires maximizing

expected return while minimizing the probability of risky behaviors, which yield

low return, such as those associated with the negative tail of the option’s return

distribution.

3. the Positively-Skewed metric ψ+(πo). This metric takes into account not only the

expected performance of an option, but also the area under the curve to the right

of the mean of the option’s return distribution. It favors options with a high ex-

pected return and that maximize the probability that they will produce behaviors

with above-average quality—even if at the risk of sometimes producing behaviors

with subpar performance. This metric is useful in situations where it is acceptable

that the agent executes risky actions that, if successful, result in high-performance

behaviors. Consider an agent tasked with learning to ride a bike under a given

time constraint. We would like the agent to make as much progress as possible

towards learning a high-performing policy, even if that implies that the agent may

sometimes fall and get hurt.

Based on the definitions of these metrics, we can now re-write Eq.4.3 in a more

general form so that the value of each option can be defined with respect to a selected

metric, ψ, and not necessarily with respect to its expected return. The set of optimal

options O∗ψ with respect to a given metric, ψ, then, is:

O∗ψ
.
= arg max

πo1 ,...,πoK

1

K

K∑
i=1

ψ(V (πoi)). (4.4)

Note that Eq. 4.4 is equivalent to Eq. 4.3 if the Maximum-Mean metric ψµ is used.

As previously discussed, the Maximum-Mean metric ψµ directly measures the ex-

pected value of an option’s return distribution, and is thus defined as:

ψµ(πo)
.
= E[V (πo)]. (4.5)

Given this definition, it is possible to see that O∗ψµ is simply the set of K options with

the highest average return. Let us denote the mean and standard deviation of this option

set as µ∗ .
= E[V (O∗ψµ)] and σ∗ .

= (Var[V (O∗ψµ)])
1
2 , respectively. Note, again, that these

statistics are defined with respect to the set of early-life options selected solely to maxi-

mize expected return, but without taking into account any risks associated with executing
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the options. To account for this possibility, we introduce two risk-aware metrics for eval-

uating the performance of candidate early-life options, so as to quantify both how well

they perform over a wide range of possible contexts (tasks and initial states), as well as

the possible risks involved with executing them.

A common way of incorporating the notion of risk, when evaluating policies, is

via the Markowitz mean-variance model [Markowitz 1959]. According to this model, one

should prefer policies π that maximize E[V (π)]−βVar[V (π)], where β ∈ R regulates the

penalty on return variability. This criterion imposes a trade-off that penalizes expected

return in favor of policies with a lower variance. It does not care, however, whether

the variance is equally caused by above-average and below-average returns, or whether,

e.g., most of the variance results from extremely positive (above-average) returns. In this

latter case, it should be intuitively clear that return variance is desirable and should not

be penalized. To more carefully model the different ways in which return variability may

positively or negatively affect the desirability of a candidate option, we introduce two

novel metrics for evaluating their performances:

ψ−(πo) = E[V (πo)]− kPr
(
V (πo) < (µ∗ − ασ∗)

)
, (4.6)

which we call the Negative Tail-Averse metric; and

ψ+(πo) = E[V (πo)] + kPr(V (πo) > µ∗), (4.7)

which we call the Positively-Skewed metric. The Negative Tail-Averse metric ψ− (Eq. 4.6)

takes into account both the mean return of an option and the probability that its execution

will result in returns that are α standard deviations below the mean of O∗ψµ . Intuitively, it

first characterizes the negative tail of the return distribution of the options set constructed

greedily solely based on options’ mean returns (via the ψµ criterion). Then, it trades-

off between achieving a high expected return while minimizing the probability that the

returns of the option may fall in that tail. This metric favors early-life options that are

similar in nature to the ones identified by ψµ (in terms of large expected returns) but

that also are risk-aware—they would only get selected by Eq. 4.4 if they are unlikely to

produce extremely poor performances. The Positively-Skewed metric ψ+ (Eq. 4.7), by

contrast, favors early-life options that have both a large expected return and whose re-

turns tend (with high probability) to be situated above the mean of O∗ψµ . Intuitively, it

cares about the mean return of an option and also about maximizing the probability that
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its execution will, most of the time, produce better-than-expected returns—even if at the

risk of sometimes (with low probability) producing behaviors with subpar performances.

These are risk-seeking early-life options since they favor behaviors that tend to gener-

ate extremely positive returns while accepting the risk of a possibly longer negative tail.

This metric results in options with a return distribution that is positively-skewed—thus

its name. The preference for actions with positively-skewed returns has been extensively

studied in Prospect Theory. Evidence exists, for instance, that when losses are costlier

than gains, investors tend to favor stocks with positively-skewed returns [Kumar, Mota-

hari and Taffler 2018].

4.4 Constructing Early-Life Option Sets

We approximate the solution to Eq. 4.4 using a three-step procedure: (a) gen-

eration of a set containing N candidate early-life options; (b) approximation of each

candidate option’s return distributions by evaluating its return over Z different random

contexts; and (c) selecting the top K highest-ranking options according to a given metric

ψ. The generation of candidate options is done by sampling N possible random contexts

Ci = (τ, s0) in which the agent could have to perform in the early stages of its life. We

place the agent in such a context and record a short trajectory of optimal actions drawn

from a near-optimal policy for τ . The action trajectory is then used to construct a can-

didate option’s policy πo capable of (approximately) reproducing the behavior observed

in the trajectory. This can be achieved via imitation learning algorithms or standard su-

pervised learning techniques. The process of approximating a candidate option’s return

distribution is simpler: for each candidate option πo, we generate a large number Z of

possible random contexts and execute the option in each one. We then use the resulting

Z return observations of πo to construct an approximation of the return distribution of the

option; this can be achieved, e.g., by using kernel density estimation techniques over the

returns. Finally, the process of selecting the top K best options according to a metric ψ

requires only that we use the estimated return distribution of each option πo to compute

its corresponding metric ψ(πo). The K highest-ranking candidate options w.r.t. ψ can

then be used to define the set O∗ψ.

Notice that the process above requires solving at most Z sample tasks, which may

be costly. However, these costs are amortized in the long-term. In particular, after a set of

early-life options has been defined, it can be used, without any additional costs, in order
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to optimize policies for any other tasks drawn from a possibly infinite task distribution.

Furthermore, the identified early-life options are, by construction, task-agnostic: they re-

sult in reflexes that can prevent the agent from executing poor-performing behaviors at

the early stages of its lifetime, even when used in a wide range of possible tasks and situa-

tions. For more details on the process of constructing early-life options, see Algorithm 1.

Algorithm 1 Construction of Early-Life Option Sets

(a) Generate Candidate Options
1. Draw a small set W of tasks {τ1, . . . , τM} from P
2. Compute a near-optimal policy π∗τi for each task in W
for i from 1 . . . , N do

- Sample a random context Ci = (τ, s0)
· (τ is uniformly drawn from W ; s0 is drawn from d0)

- Execute π∗τ for T steps, starting in s0

- Record the resulting action trajectory hi = (a1, . . . , aT )
- Define an option πoi that reproduces the behavior in hi

end for
3. Return the set of candidate options {πo1 , . . . , πoN}

(b) Estimate Return Distribution of Candidate Options
for each candidate option πoi do

for j from 1 . . . , Z do
- Sample a random context Cj = (τ, s0)
· (τ drawn uniformly from W ; s0 is drawn from d0)

- Execute πoi for T steps, starting in s0

- Record the return Rj achieved by πoi in T steps
end for
- Let R(i) = {R1, . . . , RZ} be the returns of πoi
- Use R(i) to approximate the return distribution of πoi

end for
- Return the approximate return distribution of each option

(c) Select Top K Candidate Early-Life Options
1. Let ψ be the option evaluation metric of interest
2. Compute ψ(πoi) for each candidate option πoi
3. Return the set O∗ψ with the K highest-ranking options
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5 EXPERIMENTS

In this chapter, we empirically show that our method succeeds in identifying a set

of reusable early-life options that generalize across many tasks, and that these options al-

low for the agent to perform well in the early stages of their lives, even when no learning is

taking place. We evaluate our proposed method in three simulated robotics tasks selected

due to their sensitivity to poor-performing initial policies (see Section 5.1). We also show,

in Section 5.2, that an agent equipped with a set of optimized early-life behaviors, even

if acting randomly, is capable of reproducing the behavior of agents that were allowed to

train for hundreds of thousands of steps.

5.1 Setting

We evaluate our method, as previously mentioned, on three simulated robots. Ant

is a quadruped robot with 13 rigid links, including four legs and a torso, along with 8

actuated joints. Half-Cheetah is a planar biped robot composed of two legs, a torso, and

6 actuated joints. Walker2D is a planar biped robot consisting of two legs and a torso and

with 6 actuated joints. They are illustrated, respectively, in Figure 5.1. The state space

of all robots includes information about its current position and velocity; the action space

corresponds to decisions about joint torques. The reward functions of all robots incen-

tivize proper walking while consuming as little energy as possible. More specifically, the

reward function is a combination of five terms that balance different objectives: not falling

down; making progress towards walking forward; keeping electricity costs under control;

keeping joints within their allowed safe configurations; and limiting the costs associated

with hitting the ground. In our experiments, we are interested, in particular, in defining

different a family of walking tasks, each one corresponding to the problem of learning

to walk under a given electricity cost. Let A = [a1, . . . , aJ ] be the set of robot actions,

which in this case corresponds to the torques applied to each of the J actuated joints. Let

Υi be the velocity of the i-th joint. Then, the electricity cost, EC, at a given timestep, is

defined as:

EC = e_cost
∑J

i=1 |aiΥi|
J

+ st_cost
∑J

i=1(ai)
2

J
, (5.1)

where e_cost is a constant representing the cost for applying a torque to a given joint/motor

(defined, by default, as −2.0); and where st_cost is a constant representing the cost for
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Figure 5.1: From left to right: the Ant robot; the Half-Cheetah robot; and the Walker2D
robot.

running an electric current through a motor/joint (defined, by default, as −0.1).

In our experiments, we define the family of tasks Ψ that each robot may face

by defining an infinite number of MDP variations; these were obtained by modifying

the reward function of each robot by varying the constant e_cost along the continuous

range of [−2.4,−1.4]. Higher costs keep the robot from moving efficiently, while lower

costs often create unstable walking movements since the robot has no incentive to pursue

parsimonious movements. We train all agents using the Proximal Policy Optimization

algorithm, described in Section 2.1. We define the task distribution P to be uniform over

the range of possible electricity costs and the initial state distribution d0 to be the one that

results from initializing the agent in a standard pose and running a random policy over

primitive actions for a random amount t of steps, where t ∼ U [0, 100]. In all experiments,

we generatedN = 600 candidate early-life options and estimated their return distributions

by evaluating each option in Z = 300 possible contexts. Option policies were open-

loop sequences lasting T = 200 steps and were constructed in order to directly mimic

each sampled action trajectory, hi. Return distributions in our analyses were obtained

via kernel density estimation over the set of Z returns collected for each option. All

experiments consider the case where we optimize option sets of size K = 5.

5.2 Results

Our first experiment aims at demonstrating that our method is capable of learn-

ing behaviors akin to primitive reflexes in infant mammals: our “infant agent”, born with

early-life options, is capable of directly producing rudimentary behaviors with perfor-

mances comparable to those acquired by learning agents optimizing a policy for hundreds
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Figure 5.2: [Ant Robot] Return distribution achieved with early-life options vs. two
learning agents at different moments in their lifetimes.

Source: The Authors

of thousands of steps. Figures 5.2 and 5.3 depict the distribution of returns achieved

by different agents when evaluated over Z = 300 random contexts, where each context

specifies a random task (a random setting of the electricity cost) and a random initial

state. Figure 5.2 shows the performance achieved by our Ant agent, when equipped with

early-life options identified via the Maximum-Mean metric ψµ, and when evaluated dur-

ing the hardest period of its lifetime: immediately after it is initialized, when it has not yet

learned a policy, and when its behavior is still essentially a random policy over primitive

actions and options. We compare the distribution of returns achieved by our agent with

the distributions achieved by two other agents: a learning agent operating under its initial

random policy over primitive actions; and a learning agent acting under a policy acquired

after 500k training steps. The mean performance of our agent (which is not learning, but

merely selecting early-options at random) is comparable to that of an agent trained with

PPO for approximately 200k steps.

Figure 5.3 presents a similar analysis but for the Half-Cheetah robot. We again

observe that our optimized early-life options allow the agent—even when selecting uni-

formly at random from the options set—to perform similarly to an agent trained with

PPO for approximately 190k steps. As expected, early-life options allow the agents to

perform well (even before any learning has taken place) in the very early stages of their

lifetimes. Here, we once again emphasize that our objective is not to construct options

that accelerate the acquisition of an optimal policy, but to identify options that provide a

type of motor bias that allows agents to perform well and to avoid catastrophic failures at

the early stages of their lifetimes.
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Figure 5.3: [Cheetah Robot] Return distribution achieved with early-life options vs. two
learning agents at different moments in their lifetimes.

Source: The Authors

Our second experiment analyzes the properties of different metrics for evaluating

early-life options: the Negative Tail-Averse metric, ψ−, and the Positively-Skewed metric,

ψ+. Figure 5.4 compares the return distribution achieved by the best option set w.r.t. ψµ,

and the best option set w.r.t. ψ−. It highlights, in particular, the improvement (decrease)

in the area under the curve (AUC) of the distribution’s left tail that results from using ψ−.

This confirms that ψ− is capable of identifying options with both high mean return and

with a smaller negative tail—thereby producing behaviors that minimize the probability

of extremely poor performances. Detailed numerical results regarding improvements to

the negative tail’s AUC are shown in Table 5.1. Interestingly, the use of a metric that

trades off mean return and negative tail minimization often resulted in options with a

higher mean return, compared to that achieved by greedily constructing options based on

ψµ.

Table 5.1: Mean return & negative tail’s AUC under ψµ and ψ−.
Return

under ψµ
Return

under ψ−

Mean AUC Mean AUC
AUC

Improvement
Ant 0.328 0.133 0.332 (k = 0.05) 0.097 27.0%

Cheetah 0.082 0.143 0.079 (k = 0.75) 0.127 11.1%
Walker 0.122 0.243 0.115 (k = 0.75) 0.192 20.9%

Source: The Authors

Figure 5.5 presents a similar analysis but regarding the use of the Positively-

Skewed metric, ψ+, for selecting options. As previously discussed, ψ+ cares not only

about the mean return of an option, but also about maximizing the probability that its exe-



41

Figure 5.4: Negative tail’s AUC improvement due to the use of the ψ− metric.

Source: The Authors

Figure 5.5: Above-the-mean AUC improvement due to the use of the ψ+ metric.

Source: The Authors

cution will, most of the time, produce better-than-expected returns. This figure highlights

the improvement (increase) in the area under the curve (AUC) to the right of the distri-

bution’s mean. It confirms that the use of this metric is capable of identifying options

with both high mean return and that favors behaviors that tend to generate positive returns

while accepting the risk of a possibly longer negative tail. Detailed numerical results of

the above-the-mean AUC improvement resulting from ψ+ are shown in Table 5.2. Once

again, the use of a risk-aware metric often resulted in options with higher mean return,

compared to that achieved by greedily constructing options based on ψµ.

Finally, we study the distribution of values generated by one of our metrics (ψ+).

Figure 5.6 shows that very few of the candidate options have large metric values: only

0.67% of all options have performance within 10% of the performance of the best op-
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Table 5.2: Mean return & above-the-mean AUC under ψµ and ψ+.
Return

under ψµ
Return

under ψ+

Mean AUC Mean AUC
AUC

Improvement
Ant 0.328 0.533 0.334 (k = 0.05) 0.597 12.0%

Cheetah 0.082 0.550 0.082 (k = 0.05) 0.550 0.0%
Walker 0.122 0.563 0.125 (k = 0.10) 0.595 5.7%

Source: The Authors

tion. This is surprising since all option policies were generated by sampling directly from

optimal policies for each given task (Algorithm 1). This observation implies that it is

unlikely that such options, if selected randomly from the set of candidates, would directly

generalize over a wide range of contexts, and further reinforces the need for a careful op-

timization process for identifying efficient early-life options, such as the one performed

by our algorithm.

Figure 5.6: Distribution of the ψ+ metric values over candidate options.

Source: The Authors
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6 DISCUSSION

In this chapter we discuss our conclusions (Section 6.1) and then point out future

research directions (Section 6.2).

6.1 Conclusions

We have introduced a method for identifying short-duration reusable motor behaviors—

early-life options—that allow robots to perform well in the very early stages of their lives.

Most of the existing work in the area of option generation focuses on identifying options

that help an agent throughout its entire lifetime [Bacon, Harb and Precup 2017,Machado,

Bellemare and Bowling 2017, McGovern and Barto 2001, Harb et al. 2018]. We, by con-

trast, are motivated by the observation that many infant mammals have primitive reflexes

that are key to guarantee their safety and to facilitate learning in the early stages of their

lives.

In this work, we introduced a method capable of generating early-life options by

optimizing different performance metrics that take into account both an option’s mean re-

turn and the potential risks that its execution may cause. We introduced three performance

metrics after which ELOs may be optimized: one that only takes into account the expected

performance, one that tries to maximize the expected performance while minimizing the

risk of poor performance, and one that tries to maximize the expected performance while

maximizing the chance of having better-than-expected performance.

Although identifying early-life options may incur additional costs (in terms of

sample complexity), such costs are amortized in the long-term. In particular, after a set of

early-life options has been defined, it can be used, without any additional costs, in order

to optimize policies for any other tasks drawn from a possibly infinite task distribution.

Furthermore, the identified early-life options are, by construction, task-agnostic: they

result in reflexes that can prevent the agent from executing poor-performing behaviors

at the early stages of its lifetime, even when used in a wide range of possible tasks and

situations.

We evaluated our option-discovery technique on three simulated robots operat-

ing under different battery consumption constraints. We showed that random policies

over learned early-life options are sufficient to produce performances similar to those

of policies trained for hundreds of thousands of steps. We empirically observed that our
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technique is capable of discovering meaningful early-life options: short-duration reusable

behaviors that generalize across tasks and that, once identified, can ensure performance

(expected return) similar to that of agents which were allowed to train for hundreds of

thousands of steps.

6.1.1 Publication and Awards

The method introduced in this work was published in the 9th Joint IEEE Inter-

national Conference on Development and Learning and on Epigenetic Robotics (ICDL-

Epirob) 2019 [Weber et al. 2019]. It also received two university-wide awards, both for

Best Artificial Intelligence Undergraduate Research Project and Best Natural Sciences

Undergraduate Research Project.

6.2 Future Work

A natural future research direction involves extending our method to generate

early-life options expressed in terms of closed-loop policies, so that they can represent

not only fixed, short-duration reflexes, but also reflexes that can adapt to the current state

of the environment. In this section, we briefly discuss an initial idea (which we are cur-

rently investigating) to achieve this objective. We argue that modifying our optimization

setting to one that supports closed-loop policies will naturally allow us to consider, and

optimize for, additional properties that are desirable in early-life options:

• to result in good performance (expected return) even when the agent deploys an

initial nearly-random policy over options. In other words, we wish to maintain our

original definition of useful early-life behaviors: behaviors that, by construction,

are helpful in the very beginning of an agent’s life, before any kind of learning has

taken place;

• to be reusable across tasks drawn from a family of different but related problems;

• to have initiation sets and termination conditions optimized to ensure that each

early-life option is available only in specific situations, thereby ensuring that each

option will represent a different and specialized behavior. Consider, for instance,

an early-life option/reflex for moving the agent’s hand away from fire. This ELO

should be executable if and only if the agent is in a corresponding situation where
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it is touching a hot surface;

• to have bounded minimum and maximum complexity, where complexity is mea-

sured as the average number of timesteps involved in executing a particular option.

In particular, we wish to be able to discover ELOs with minimum and maximum

expected durations. This would ensure that the discovered early-life options would

not converge to single-action options (as often occurs, e.g., under the Option-Critic

framework), neither would converge to policies that solve an entire task (since these,

by definition, would not be reusable across different tasks).

Having intuitively defined our new objectives, we propose to incorporate them in

a cost function adapted from the work introduced in [Khetarpal et al. 2020]. In this work,

the authors present an extension to the Option-Critic architecture (discussed in Section

3.2) where agents learn not only option policies, termination conditions, and policies over

options, but also interest functions, which encode initiation sets of options. The proposed

introduced in [Khetarpal et al. 2020], however, does not directly result in options with

the properties that we outlined above. First, it only optimizes options that are useful over

the entire lifetime of an agent, while our objective is to learn early-life options. Secondly,

it does not allow for the agent to optimize behaviors that are reusable across many tasks;

they only consider the single-task setting. Finally, it does not explicitly enforce mini-

mum and maximum option complexity bounds, which is necessary to guarantee that the

resulting technique will avoid learning degenerate or non-reusable options.

Let Io : S → R be an interest function associated with option o, which indicates

the preference of the agent for initiating option o when in state s. This is a soft represen-

tation of an initiation set. In what follows, we argue that the objectives outlined in the

beginning of this section can be captured by the following cost function:

J(θ) =
∑
τ∈Ψ

∑
s∈S

∑
o∈O

πI(o|s)Qθ(s, o|τ)− λφ(ε), (6.1)

where τ ∈ Ψ is a possible task that the agent may have to solve; s ∈ S is a possible

state; o ∈ O is an early-life option; and θ = [θI , θπ, ε] are the parameters being optimized.

In particular, let θI = [θIo1 , . . . , θIoK ] be the parameters encoding the interest function

Ioi associated with each option oi; let θπ = [θπo1 , . . . , θπoK ] be the parameters that rep-

resent the policy of each policy oi; and let ε be a real-valued parameter associated with

the termination condition of options. Furthermore, let Qθ(s, o|τ) be the expected return
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achievable by option o, when initiated in state s, while solving task τ . Finally, let λ and φ

be regularization terms related to bounding to the complexity of each option; we discuss

these later.

In this setting, a stochastic policy over options, πI(o|s), can be defined as:

πI(o|s) =
π(o|s)Io(s)∑

o′∈O
π(o′|s)Io′(s)

(6.2)

where Io : S → R is the interest function indicating the preference of the agent for

initiating the option o in state s, and where (by our definition of early-life options) we

assume that π(o|s) is an uniform random policy. Hence, πI(o|s) can be rewritten as:

πI(o|s) =
Io(s)∑

o′∈O
Io′(s)

. (6.3)

We defineQθ(s, o|τ) similarly to the corresponding formulation of expected option return

introduced in the Option-Critic paper:

Qθ(s, o|τ) =
∑
a∈A

πo(a|s)Qθ
U(s, o, a|τ) (6.4)

where Qθ(s, o|τ) is the option-value function of option o, when in state s, while execut-

ing task τ ; where πo(a|s) is the policy of option o (defined over primitive actions); and

where Qθ
U(s, o, a|τ) is the action-value function associated with action a, when executing

a particular early-life option o in the state s of task τ :

Qθ
U(s, o, a|τ) = r + γ

∑
s′∈S

p(s′|s, a)((1− ε)Qθ(s′, o|τ) + εV θ(s′|τ)) (6.5)

Here, r is the reward for the current timestep, p(s′|s, a) is a transition probability function,

and V θ(s′|τ) is the expected return from state s′ while solving task τ .

Finally, recall that, as outlined previously, we wish to constrain the minimum and

maximum expected duration of the early-life options being optimized. In order to do that,

we define ε as the (fixed) per-timestep termination probability of any early-life option.

Notice that this is one of the parameters in θ, the vector of parameters being optimized by

our cost function (Eq. 6.1). If ε is the probability that an ELO will terminate at any given

timestep, then the random duration of each option follows a geometric distribution with

the expected value given by (1 − ε)/ε. Based on this observation, we can define φ to be
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a problem-specific, duration-dependent regularization function that penalizes too-short or

excessively long ELOs. Let us assume, for instance, that we wish to guarantee that early-

life options will have an average duration of ρ timesteps. Then, a trivial definition of φ

would be:

φ(ε) = (ρ− ((1− ε)/ε))2, (6.6)

where this option-complexity cost can be incorporated as part of our objective function

(Eq. 6.1) and weighted by a regularization term λ.

We are currently designing gradient-based methods capable of efficiently optimiz-

ing the above-described mathematical objective, which we hope will allow agents to learn

reusable closed-loop early-life options. We believe that this is a non-trivial extension of

the method introduced in Chapter 4, and hope that it will contribute to advancing the state-

of-art in option-discovery techniques. We expect to submit this novel idea for publication

within the next few months.
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