
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

BRUNO LOUREIRO COELHO

Detecting DoS Attacks Utilizing Random
Forests in Programmable Data Planes

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Alberto Egon Schaeffer-Filho

Porto Alegre
December 2020

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitoria de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Sérgio Luis Cechin
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Nowadays, most services rely on an Internet connection to be accessed by their clients.

Ergo, even a brief disruption of connection can cause considerable loss, monetary or

otherwise. Therefore, it is important that potential denial of service (DoS) attacks are

detected quickly, in order to avoid or minimize the impact they may have on the avail-

ability and quality of services. Recent technological advances in programmable networks

– specifically the programmability of data planes in switches and routers, have made

available new ways of detecting such attacks. Utilizing this newfound possibility, this

work proposes the utilization of Random Forests, a Machine Learning technique, to aid

in quickly and accurately detecting DoS attacks in a programmable switch. Random

forests utilize several procedurally generated classification trees, each of them indepen-

dently classifying an input as one of a set of classes. Here, each decision tree will classify

a network flow as potentially malicious, i.e. part of a DoS attack, or a legitimate user flow.

Despite utilizing multiple classification trees to improve accuracy, random forests are rel-

atively light-weight, with each tree requiring few and simple computations to arrive at a

classification. The simplicity of the operations executed in each tree makes this technique

a good candidate for use in programmable switches, since they have limited resources and

require fast processing to operate at line rate.

Keywords: Traffic classification. programmable data planes. random forests. artificial

intelligence. DoS attacks. networks. network security.

Detectando ataques DoS utilizando florestas aleatórias em planos de dados

programáveis

RESUMO

Hoje em dia, a maioria dos serviços dependem de uma conexão com a Internet para serem

acessados pelos seus clientes. Portanto, mesmo breves disrupções de conexão podem cau-

sar perdas consideráveis, monetária ou de outros tipos. Assim, é importante que possíveis

ataques de negação de serviço (DoS) sejam detectados rapidamente, a fim de evitar ou

minimizar o impacto que possam causar à disponibilidade e qualidade de serviços. Avan-

ços tecnológicos recentes em redes programáveis - especificamente a programabilidade

de planos de dados em switches e roteadores, tornaram disponíveis novas maneiras de

detectar este tipo de ataque. Utilizando essas novas possibilidades, este trabalho propõe

a utilização de florestas aleatórias, uma técnica de aprendizado de máquina, para ajudar

na rápida e precisa detecção de ataques DoS através de switches programáveis. Florestas

aleatórias utilizam várias árvores de classificação proceduralmente geradas, cada uma in-

dependentemente realizando a classificação de uma entrada em um conjunto possível de

classes. Neste trabalho, cada árvore de decisão irá classificar um fluxo de dados da rede

em potencialmente malicioso, isto é, parte de um ataque DoS, ou em fluxo legítimo. Ape-

sar de utilizar várias árvores de classificação para aumentar a acurácia, florestas aleatórias

são relativamente leves, com cada árvore precisando realizar poucas e simples compu-

tações para obter uma classificação. A simplicidade das operações executadas em cada

árvore fazem essa técnica uma boa candidata para o uso em switches programáveis, uma

vez que estes possuem recursos limitados e requerem processamento rápido para operar

em taxa de linha.

Palavras-chave: classificação de tráfego, planos de dados programáveis.

LIST OF FIGURES

Figure 2.1 Abstract Forwarding Model...14
Figure 2.2 Example of a Finite State Machine describing the Parser15
Figure 2.3 Representation of an example Decision Tree ..18
Figure 2.4 Approaches to building ensemble systems ..19
Figure 2.5 Example of Bootstrapping (Bagging) Technique ..21

Figure 4.1 Alternative example of nodes of a Classification Tree27
Figure 4.2 Architecture of BACKORDERS ...30
Figure 4.3 Mean values computed by different approaches..41
Figure 4.4 Comparison between our approach’s and EWMA’s obtained accuracy42
Figure 4.5 Comparison between our approach’s and EWMA’s average and mini-

mum accuracy ...42
Figure 4.6 Online Classifier Control Diagram ..45

Figure 5.1 F1 Score of different RF configurations ..51
Figure 5.2 Comparison of different metrics between best trained models53

LIST OF TABLES

Table 2.1 Representation of an example match+action table..16

Table 4.1 Example of a partial Classification Tree mapped to match+action table29
Table 4.2 Example of leaf nodes mapped to match+action table....................................34
Table 4.3 Features implemented ...35
Table 4.4 Example of the values during an execution of the approximation algorithm..39

Table 5.1 Value registers and size in bits ..48
Table 5.2 Cost analysis of different RF configurations ...54

LIST OF ABBREVIATIONS AND ACRONYMS

DP Data Plane

RF Random Forest

AI Artificial Intelligence

ML Machine Learning

NN Neural Network

CV Computer Vision

RL Reinforcement Learning

SVM Support Vector Machine

DoS Denial of Service

DDoS Distributed Denial of Service

ISP Internet Service Provider

IPv4 Internet Protocol version 4

TCP Transmission Control Protocol

UDP User Datagram Protocol

FSM Finite-State Machine

DPI Deep Packet Inspection

CPU Central Processing Unit

GPU Graphics Processing Unit

GPGPU General-Purpose Computing on Graphics Processing Unit

IoT Internet-of-Things

IAT Inter-Arrival-Time

EWMA Exponentially Weighted Moving Average

CONTENTS

1 INTRODUCTION...9
1.1 Contextualization ..9
1.2 Motivation..10
1.3 Goals...11
1.4 Outline..11
2 BACKGROUND..12
2.1 Denial of Service..12
2.2 Programmable Data Planes ...13
2.3 Random Forests...17
2.3.1 Classification Trees ..17
2.3.2 Ensemble..19
3 RELATED WORK ...22
3.1 DoS Detection on the Data Plane...22
3.2 Machine Learning on the Data Plane..23
4 BACKORDERS...26
4.1 Approach Overview ..26
4.2 RF in a Programmable Data Plane ...27
4.3 BACKORDERS Architecture ..29
4.3.1 External Components...30
4.3.1.1 Network Traffic Collector ...30
4.3.1.2 Feature Computation...31
4.3.1.3 Offline Classifier ...31
4.3.1.4 RF Trainer ...32
4.3.2 RF Mapper ...32
4.3.3 Feature Extractor..34
4.3.3.1 Simple Features...35
4.3.3.2 Approximating Means ..37
4.3.4 Online Classifier...41
5 IMPLEMENTATION AND EVALUATION ..46
5.1 Prototype..46
5.2 Methodology ..48
5.3 Results ..50
5.3.1 Learner Scores ...50
5.3.2 Scalability Analysis ...52
5.4 Applicability ..54
6 CONCLUSION ...57
6.1 Summary of Contributions ..57
6.2 Future Work ..58
REFERENCES...59

9

1 INTRODUCTION

This work focuses on the detection of malicious attacks that may affect computer

networks. In particular, we utilize a popular Machine Learning (ML) technique, Random

Forest (RF), to efficiently detect Denial of Service (DoS) attacks in the data plane of

a programmable switch. In Section 1.1, we provide further contextualization on these

issues, while in subsequent sections we present the motivation (Section 1.2) and goals of

this work (Section 1.3), along with the organization of the remaining of this document

(Section 1.4).

1.1 Contextualization

Presently, many services are offered online, having their customers access them

through the Internet. As such, networks have become an increasingly important infras-

tructure for services, seeing as it is often relied upon (KUROSE; ROSS, 2012). Not only

is it important to have Internet access, but also that it is always available, as even brief dis-

ruptions of connection can impact these services, potentially leading to economic losses

(WOLFE, 2018). Along with appropriate equipment and planning of infrastructure, an-

other concern of both Internet Service Providers (ISPs) and network administrators is the

possibility of a malicious attack.

In order to try to affect online services, perpetrators may use a group of hosts

infected with malware to attempt to slow or sever the access of legitimate users to the

victim system (KUROSE; ROSS, 2012). These attacks looking to compromise the quality

or availability of services are known as Denial of Service (DoS) attacks, with a variant

where the attack originates from multiple sources being known as Distributed Denial of

Service (DDoS) attacks (ZARGAR; JOSHI; TIPPER, 2013). These attacks have been

constantly increasing in number and size, with volumes of over 300 Gbps being reported

in 2013 (DONG; ABBAS; JAIN, 2019), while more recently a DDoS attack generated

more than 1.35 Tbps (1350 Gbps) in 2018 (AKAMAI, 2018).

Considering the importance of avoiding service downtime, it is imperative to

quickly and accurately detect potential attacks. However, that is not an easy task, as

attacks have become more sophisticated, making it harder to differentiate between legit-

imate and malicious traffic (MOORE et al., 2006). Detection can be done by different

means, with broad classes of techniques being packet-based and flow-based analysis.

10

In packet-based analysis, one of the most common techniques is Deep Packet In-

spection (DPI), where the contents of each packet are carefully examined, as opposed to

only the headers of the protocols being used (ANTONELLO et al., 2012). This analysis

can have as objective the verification of format correctness, validity, or even determining

whether it is a malicious or legitimate packet (FINSTERBUSCH et al., 2013). However,

this technique has several drawbacks: first, it has a very high processing cost, becom-

ing very difficult for high traffic networks; second, it becomes extremely complex and

inefficient when we are dealing with encrypted traffic, which has become very common

(ILIYASU; DENG, 2019); third, it raises several concerns about net neutrality and privacy

(JORDAN, 2009). On those accounts, it is not as often used in the context of real-time

DoS detection.

On the other hand, flow-based analysis tries to classify a group of packets belong-

ing to the same connection as potentially malicious or not. In order to do this, classifiers

may calculate statistical values (NOSSENSON; POLACHECK, 2015) such as the aver-

age, maximum, and minimum packet size or the time in between the arrival of consecutive

packets of a specific flow. However, even with these values available, it is not trivial to de-

termine the legitimacy of network traffic, considering modern attacks have become better

at having their flows appear seemingly harmless.

Recent breakthroughs in the field of programmable networks have allowed for fur-

ther programmability of switches and routers. As opposed to common devices that come

with a set of functionalities implemented by their manufacturers, programmable switches

allow researchers to propose and evaluate new ideas in sufficiently realistic settings. As

these devices are in the data path of both malicious flows and legitimate user flows, per-

forming the detection of DoS attacks in their programmable data planes is an interesting

alternative to traditional approaches.

1.2 Motivation

Current techniques for DoS detection generally lack in at least one of accuracy,

detection speed, or scalability (ZARGAR; JOSHI; TIPPER, 2013). This can be partially

attributed to systems being forced to decide between utilizing the limited but efficient

interfaces provided by traditional switches or utilizing more software-based approaches,

allowing more customization at the cost of efficiency (YAN et al., 2015).

With the advent of programmable data planes, however, we aim to create a system

11

capable of efficiently processing individual packets in order to classify their respective

flows into likely being part of an attack or genuine user traffic. To achieve this, we utilize

the P4 language (BOSSHART et al., 2014) to insert a pre-trained model of Random Forest

(HO, 1995) into the programmable switch, calculating statistical values and utilizing the

RF to accurately classify flows at line rate.

1.3 Goals

The goal of this work is to define, implement, and evaluate a system that combines

state-of-the-art techniques in artificial intelligence, namely Random Forest, with recently

developed programmable switches attending to the P4 language specification. Once con-

cluded, we aim to have achieved a system that can not only accurately classify malicious

DoS flows, but can also do it at line rate.

In order to reach this goal we aim to complete the following sub-goals:

• Study the related work, focusing on implementations of ML algorithms and DoS

detection techniques in programmable data planes;

• Perform classification of network flows in the data plane;

• Train a Random Forest classifier with appropriate datasets;

• Evaluate our implementation with realistic datasets.

1.4 Outline

The remaining of this work is organized as follows. In Chapter 2, we present

background on DoS attacks, highlighting the characteristics of different types of attacks;

programmable data planes, the technology utilized in this work; and random forests, the

artificial intelligence technique that is employed in our proposed system. In Chapter 3,

we discuss related work, focusing on DoS detection and relevant work on programmable

data planes. In Chapter 4, the proposed system is more thoroughly described, explaining

how several of its aspects were implemented. In Chapter 5, we show the conducted ex-

periments, relating the employed methodology and the obtained results. In Chapter 6, we

present a conclusion to this work, suggesting possible future work in order to improve the

system proposed in this work.

12

2 BACKGROUND

In this chapter, we present theoretical background on three topics: DoS attacks

(Section 2.1), as it is important to understand the differences between types of attacks, in

view of the fact that their characteristics may influence which method is more appropriate

for the detection; programmable data planes (Section 2.2), once we must know the capa-

bilities and limitations of the technology utilized; and Random Forests (Section 2.3), in

order to provide justification for employing the selected model in this work.

2.1 Denial of Service

Denial of Service is a broad class of attacks that share a common objective to

hamper or deny access from legitimate users to a target online service or server. A

large subclass of DoS attacks is Distributed Denial of Service attacks, which as the name

implies, originate from more than one source. While there are many types of DoS at-

tacks with varying characteristics, there is not a single universally agreed upon taxonomy

(SHARAFALDIN et al., 2019).

There have been many different propositions when it comes to finding a set of

criteria for organizing these types of attacks, such as the degree of automation, scan-

ning strategy, architecture (ASOSHEH; IVAKI, 2008), exploited vulnerability, source ad-

dress validity, attack rate dynamics (MIRKOVIC; REIHER, 2004), transport protocol

(SHARAFALDIN et al., 2019), among others. However, as the taxonomy of the attacks

is not the main focus of this work, we will cite a few examples while grouping them into

two major categories: high-bandwidth, flooding attacks and low-bandwidth, resource de-

pletion attacks.

In flooding attacks, the perpetrator generates a high volume of packets in order to

affect the victim’s network. This can be done utilizing protocols such as TCP, UDP, ICMP,

and DNS (ZARGAR; JOSHI; TIPPER, 2013), which normally send responses to certain

commands. However, the bandwidth required for this type of attack is extremely high,

being generally impossible for a single attacker to take down a sizeable server. As such,

these attacks tend to be distributed, i.e., DDoS attacks, utilizing several hosts infected

with malware, forming what is called a botnet.

While flooding attacks can certainly affect services, for very large services it

would take an enormous amount of malicious traffic to take it down. As such, attack-

13

ers have come up with innovative techniques, aiming to exhaust their target’s resources

while using very low bandwidth (SIKORA et al., 2020). Some of these attacks, for their

low-bandwidth and slow packet sending characteristics, are known as slow DoS attacks.

Some examples of tools utilized to create such attacks are Slowloris, GoldenEye, Hulk,

and Xerxes (DURAVKIN; LOKTIONOVA; CARLSSON, 2014). Generally speaking,

they try to establish many HTTP connections with the target server until its resources are

exhausted and legitimate clients cannot connect.

2.2 Programmable Data Planes

Traditional routers and switches come with a set of functionalities, some of which

might be optional and allow some degree of configuration. However, for new function-

ality to be added to them, it requires the manufacturers to design a new device model

with new algorithms and then for it to be implemented in hardware efficiently so it can

meet the needs of its users. This process can severely slow down the pace of innovation,

as it limits the possibility of experimenting with newly proposed ideas (MCKEOWN et

al., 2008), such as new routing algorithms, communication protocols, and other network

functionalities.

Seeking to facilitate innovation by allowing researchers to reshape the entire pro-

cess, from creating their own logic in the control plane to reprogramming the data plane,

programmable switches were designed. While it is not the only language to allow data

plane programmability, the newly proposed P4 (BOSSHART et al., 2014) programming

language and interface was designed to be used for programming protocol-independent

packet processors (thus the name P4). With it, programmers are relieved of having to

know the details of the target hardware by utilizing an abstract forwarding model.

In this abstract forwarding model used by the language, the target device can be

viewed as a pipeline with several consecutive stages: a parser, responsible for extracting

the protocol headers as defined by the programmer; an ingress processing block, where

usually most of the processing is done, commonly utilizing match+action tables; an egress

processing block, being generally but not exclusively used in the event of packet cloning;

and a deparser, where protocol headers are inserted into the forwarded packet. This

abstract model can be observed in Figure 2.1, where we see the four stages of the pipeline.

Additionally, we can observe some of the objects that compose the switch configuration,

such as the parse graph, control program, table configurations, and action set.

14

Figure 2.1: Abstract Forwarding Model

Source: (BOSSHART et al., 2014)

The programmer may define a series of data structures for protocol headers. This

includes each header’s organization, detailing what fields compose it and each of their

size in bits, while also specifying the relative order in which they appear. While these

data structures usually have a fixed shape and length, there is also support for extractions

with variable lengths, such as is the case with the Transmission Control Protocol (TCP)

options header, varying from 0 to 320 bits in size (KUROSE; ROSS, 2012).

The aforementioned header definitions are informed to the switch in the source

code, having this compiled and installed in the device before use. Once the device is

operational, whenever a packet arrives it is first sent to the parser. There, each header

is extracted following the order and logic defined by the programmer (BUDIU; DODD,

2017). This is done by defining states and rules for transitions between them, establishing

a Finite State Machine (FSM). An example of an FSM can be seen in Figure 2.2, where

we can observe conditional transitions from one state to another. A state corresponds to

the extraction of a specific header type, such as an IPv4 header, which may be followed by

a UDP header, a TCP header, or none. The final states of the FSM are accept, forwarding

the packet to the next stage for further processing, and reject, marking the packet to be

dropped.

15

Figure 2.2: Example of a Finite State Machine describing the Parser

parse_ethernet

parse_ipv4

parse_tcp parse_udp

accept reject

start

default

ethernet type = IPv4

protocol = TCP protocol = UDP ERROR or
blocked protocol

Source: Author

During the processing of each packet, the programmer may utilize match+action

tables. These units, as the name implies, attempt to match the assigned keys to values

specified in the entries of the table being applied. On a successful match, the determined

action is invoked with the appropriate parameters, according to the corresponding table

entry. Although match+action tables are not a novel concept introduced by P4, the lan-

guage allows programmers to customize exactly what keys and actions to use. Thereby,

programmers are no longer required to utilize built-in fields of common headers when

matching keys or simple preprogrammed procedures as actions, such as matching the

destination address field of an Internet Protocol version 4 (IPv4) header in order to assign

a port for the packet to be forwarded through. With P4, it is possible to utilize any key,

be it a header field value or a metadata value, along with customized actions, allowing

researchers to experiment with different algorithms. A visual example of a match+action

table can be seen in Table 2.1. In this example, we observe the representation of a

match+action table that defines some rules for IPv4 forwarding. Using the first line as

an example, we see that if the IPv4 destination address attribute of a packet matches with

10.0.1.1 (match value) in all 32 bits (match type), we invoke the action IPv4_forward,

passing as parameters the Ethernet address 00:00:00:00:01:01 and egress port 1.

When creating their custom actions, programmers may pick from a set of sim-

ple arithmetic or logical operations and from a particularly restrictive set of program

flow control primitives (LAPOLLI; MARQUES; GASPARY, 2019). Due to the nature

16

Table 2.1: Representation of an example match+action table
Match Value Match Type Action Parameters

IPv4 DST Address Ethernet DST Address Port
10.0.1.1 /32 IPv4_forward 00:00:00:00:01:01 1
10.0.2.2 /32 IPv4_forward 00:00:00:02:02:00 2
10.0.3.1 /32 IPv4_forward 00:00:00:02:02:00 2
10.0.3.0 /24 IPv4_forward 00:00:00:03:03:00 3
10.0.4.0 /24 Drop - -

Source: Author

of switches having to process a massive number of packets per second, P4 does not sup-

port traditional loop constructs, such as for and while commands, usually available in

most general-purpose programming languages, such as C, Java, and Python. Addition-

ally, seeing as most protocols work with integer representation of bits or simply raw bits,

P4 does not support floating-point numbers or operations (BUDIU; DODD, 2017), as they

are more complex and slower than operations over integers. Another important limitation

of the language is that it does not support division, as it is also a costly and complex op-

eration. These limitations must be observed when designing a system that will run on a

programmable switch, often requiring changes of functionalities or creative ways to find

workarounds for these characteristics of the language.

In the ingress processing block, the programmer may utilize match+action ta-

bles that belong to the ingress (as opposed to match+action tables that belong to the

egress), customized actions, and primitives offered by the language in order to specify

the desired packet processing behavior. This block operates over the previously extracted

headers and any other custom metadata declared by the programmer, along with stan-

dard metadata defined by the P4 language. Metadata information does not usually persist

between different packets, with a few exceptions such as cloned or recirculated packets.

Aside from a few exceptions, the only persistent data between different packets is the

match+action rules, installed by the control plane; counters, which have a very specific

semantic; meters, which can be utilized for keeping statistics about packets; and registers,

which can be read and modified by the program, however requiring very limited device

memory. The egress processing block has many similarities to the ingress block, with the

few differences of being invoked for each packet in the case of cloning, a different set of

user-defined match+action tables, and a small set of standard metadata values that can

be exclusively accessed in this block.

17

2.3 Random Forests

Random Forest is a technique in Machine Learning (ML) that combines several

different Classification Trees (CT), a specific type of Decision Trees (DT), in order to

obtain more accurate classifications (HO, 1995). In this section, we review the defini-

tions of Classification Trees and Random Forests, while also highlighting some of their

characteristics that motivated the use of these particular techniques in this work.

2.3.1 Classification Trees

Decision Tree is a technique that performs a series of chained tests or comparisons

of values in order to arrive at a decision. In ML, this technique is generally implemented in

tree-like data structures, with each node performing a test of a specific parameter against

a value, in the case of continuous numeric attributes, or a set of acceptable options in the

case of discrete attributes. The algorithm branches to a different node depending on the

result of the test, repeating this process until it arrives at a leaf node, where a decision is

obtained (QUINLAN, 1987). Classifications Trees are a subset of DT, specifically where

the target attribute, that is, the attribute the algorithm is trying to decide on, is a discrete

value, possibly indicating a class. A visual example of a Decision Tree can be seen in

Figure 2.3, representing decision-making as a series of questions that, depending on their

answer, will result in different decisions. As an example, on exam week the process would

decide that we should stay in and study. However, on a sunny day outside of exam week,

when our friends are available, the process would decide that we should play Tennis.

There are many algorithms that focus on different ways to generate classifica-

tion trees for a given input set of instances, with a particularly popular one being C4.5

(QUINLAN, 1993). This specific algorithm utilizes the idea of normalized information

gain, a value calculated for each attribute of the aggregate training samples. The value of

normalized information gain utilizes the entropy of the set of samples, calculated as:

S(D) = −
∑
i∈M

pi log2(pi) (2.1)

where S(D) is the entropy of the set D and pi is the probability of a sample to belong to

class i in the set of possible classes M . Along with the entropy of the whole set D, given

the set V of possible values j of the attribute A, we define the entropy of the set after

18

Figure 2.3: Representation of an example Decision Tree

Exam week?

Study Watch show

Study

Study Watch show Play Tennis

Outcast

Friends are... Weeks until
exams

Yes No

Sunny Rainy

Busy Watching
TV show Available

≤ 3 > 3

Source: Author

splitting it into subsets based on the value of the attribute A, generating subsets Dj , as:

SA(D) =
∑
j∈V

|Dj|
|D|
× S(Dj) (2.2)

where |Dj| is the number of samples in the subset Dj and |D| is the number of samples

in the set D. Once we have the entropy of the whole set and the subsets calculated, we

must first calculate the normalization factor as:

SplitSA(D) = −
∑
j∈V

|Dj|
|D|
× log2(

|Dj|
|D|

) (2.3)

where once again |Dj| is the number of samples in the subset Dj and |D| is the number of

samples in the set D. Once this final partial value is calculated, we can finally obtain the

normalized information gain by dividing the information gain, defined as the difference

of entropy between set and subset, by the normalization factor:

NG(A) =
S(D)− SA(D)

SplitSA(D)
(2.4)

where S(D) and SA(D) are the entropy of the dataset D before and after the split by

the attribute A, respectively, calculated as shown in Equation 2.1 and Equation 2.2, and

SplitSA(D) is the normalization factor calculated as shown in Equation 2.3. This value is

calculated for each attribute A, with the algorithm selecting the attribute with the highest

normalized information gain.

When an attribute has a continuous value, a cutoff point can be calculated and two

subsets are created, one with values that are lower than this cutoff and the other subset

19

Figure 2.4: Approaches to building ensemble systems

Source: (KUNCHEVA, 2004)

with values that are equal or greater than the cutoff. Regardless of continuous or discrete

attributes, the process of calculating the normalized information gain of each attribute

is repeated at each iteration of the algorithm, having one attribute be selected per step.

Selecting attributes with the highest normalized information gain first ensures that the

attributes that better help predict a class are selected as early as possible in the process,

improving accuracy and reducing the size of each tree.

2.3.2 Ensemble

Although Classification Trees may achieve relatively high accuracy over the sam-

ples utilized during training, they are prone to suffer from what is called overfitting. This

happens when a prediction or classification model adjusts too closely to the sample set

used, lacking in capacity to generalize its classifications to new samples that were not

present during its training stages. In order to prevent overfitting from happening while

also boosting accuracy (BREIMAN, 2001), researchers have proposed several techniques

that can be applied during the training of ML models, with a particularly competitive

option being ensemble learning (POLIKAR, 2006).

Ensemble-based machine learning systems combine multiple ML models into a

single classification system, potentially introducing diversity at different levels of the en-

20

semble system. A proposed set of approaches for building these types of systems defines

four different levels: combination, learner, feature, and data levels (KUNCHEVA, 2004).

An illustration of this division can be seen in Figure 2.4, where we observe the four afore-

mentioned levels and their order, with data being the lowest level.

At the combination level, there are different ways to combine the classification

obtained by each classifier model into a final classification. The simplest way is a major-

ity vote, where the system counts the number of votes for each classification and picks

the classification with the highest number. Other ways include weighted votes, where dif-

ferent classifiers have different weights to their respective votes. In the case of regression

trees, where we have a target attribute with a continuous value, we calculate the average

or weighted average of the values of each tree.

In the next level, we can have learner diversity, that is, utilizing different models

for classifiers. Systems with more than one learner model are called heterogeneous en-

semble systems, while the ones with only one learner model are called homogeneous

ensemble systems (KUNCHEVA, 2004). This approach can combine many different

ML techniques, such as Neural Networks, Classification Trees, Naïve Bayes classifiers,

among several other possibilities.

Diversity at the feature level is introduced by selecting a subset of the available

features. This subset can be generated based on natural grouping, present in some types

of features. For features that do not have a natural grouping, an alternative is the random

selection of a predefined number of attributes, which can be either a ratio over the total

number of attributes or a specific value. Other methods of selecting features have been

proposed, such as nonrandom selection and genetic algorithms (KUNCHEVA, 2004).

In the last level, we introduce data diversity, creating subsets of data to be used dur-

ing training by each learner. The two methods commonly used for this approach are boot-

strap aggregating and boosting. In the first method, bootstrap aggregating (also known as

bagging), we create several subsets called bootstraps based on the original dataset. Each

bootstrap is generated by randomly sampling from the original dataset, allowing dupli-

cates. Usually, it is done by sampling until we obtain a training set the size of the original

dataset, resulting in a testing set with out-of-bag samples, that is, the samples that were

left out of the training set. An illustrative example can be seen in Figure 2.5, where we

can observe each training set having as many samples as the original set, while the size of

the testing set varies depending on how many samples were not selected in that iteration.

The other method utilized in the data level is boosting, which aims to sequentially train

21

Figure 2.5: Example of Bootstrapping (Bagging) Technique

1 2 3 4 5 6 7 8 9Dataset

5 3 5 7 4 3 6 1 1Bootstrap Set 1

3 3 1 9 1 5 6 6 9Bootstrap Set 2

6 5 3 9 2 4 6 8 2Bootstrap Set 3

1 8 1 9 8 4 2 4 5Bootstrap Set 4

2 8 9

2 4 7

1 7

3 6 7

8

Training Sets Testing Sets
Source: Author

stronger classifiers by selecting relevant samples (KUNCHEVA, 2004). An improved

version of the boosting algorithm is known as AdaBoost, being more commonly utilized

than the original version.

Random Forest is an ensemble system that combines several classification trees

at the learner level. For the other levels, any of the mentioned techniques can be used,

resulting in different forests. For this work, we utilize simple majority voting at the com-

bination level,
√
n features per tree out of the n features available at the feature level, and

bootstrapping, as previously explained, at the data level.

22

3 RELATED WORK

In this chapter, we present the related work, highlighting each of the proposed

solution’s strengths and weaknesses. We focus on related work that proposes techniques

for detecting DoS attacks in the data plane (Section 3.1) and related work that presents

ways to execute Machine Learning algorithms in the data plane (Section 3.2).

3.1 DoS Detection on the Data Plane

Lapolli, Marques, and Gaspary proposed a system that estimates the entropy of

source and destination IP addresses, in order to observe variations in these values (LAPOLLI;

MARQUES; GASPARY, 2019). In particular, they observe that in scenarios where a large

group of infected hosts, also known as a botnet, targets a particular victim server, the ten-

dency of these entropy values is for the source IP addresses entropy to increase, as more

different or spoofed IP addresses are now sending malicious packets, while the destina-

tion IP addresses have their entropy decreased, as the botnet will be aiming at a particular

target. While this approach works very well, as shown in their experiments, it assumes

that there will be a large number of attackers. This can work for certain types of attacks,

but the effectiveness for slower, low-bandwidth attacks is unknown. Another difference

between this work and our proposed approach is that the system proposed by Lapolli,

Marques, and Gaspary can detect the occurrence of attacks, but not classify traffic into

malicious or legitimate.

A different approach to detecting DoS attacks was proposed by Febro, Xiao, and

Spring. In this work, the authors focus on the detection and classification of DDoS attacks

that target SIP in the application layer (FEBRO; XIAO; SPRING, 2019). While the ob-

tained results were positive, the deep packet inspection technique employed in this work

focuses on attacks that target this application only. Additionally, a major limitation of

DPI is its inability to handle encrypted traffic, which has become very popular. As such,

it is not a solution for other types of DoS attacks, whereas our proposed system can be

used to detect a wider range of attacks.

Simsek et al. propose an approach for identifying spoofing techniques, in order

to pinpoint potential hosts from where DDoS attacks originate (SIMSEK et al., 2020).

Their technique aims to detect illegitimate traffic as close to the attackers as possible, in

order to drop these packets as soon as possible in the route, preventing the victim from

23

being overwhelmed. While it is an interesting approach, this work focuses on volumetric

attacks, that is, attacks with high-bandwidth volume and a massive number of packets.

Thus, slower DoS attacks may be undetected by such a system, whereas our proposed

system can be used for the detection of this type of attack.

Musumeci et al. utilize and compare several ML classifiers with a programmable

data plane in order to detect DoS attacks (MUSUMECI et al., 2020). In the presented

solution, the authors extract statistical features from the network traffic and then forward

them to an ML module that performs the classification per se. The work compares dif-

ferent ways to realize the first part of the process, with the simplest way being packet

mirroring. Other ways include header mirroring and a more advanced metadata extrac-

tion done in the data plane. While the extraction can be done in either the controller or the

programmable device, the ML module is not implemented in the data plane. This brings

about a longer delay before classification, on top of the device not being able to take any

appropriate actions with the obtained classification.

pForest (BUSSE-GRAWITZ et al., 2019) implements several RF classifiers in the

programmable data plane. This system classifies network flows in order to detect potential

DDoS attacks. In addition to stateless features, pForest encodes several stateful features

into a single register, trying to minimize the number of bits per feature. For mean values,

which are more complex to calculate, they replace the moving average with exponentially

weighted moving average, with a weight of 1
2
, which simplifies the computation with

the limited capabilities of programmable switches. Despite their positive results, our

proposed system utilizes a single RF, diminishing resource usage. Additionally, instead

of relying on a fixed set of features for implementing the RF classifier, our work uses an

extensible feature library, partially developed within our research group (SAUERESSIG,

2020). Finally, our proposed mechanism better approximates means with an algorithmic

approximation of moving averages.

3.2 Machine Learning on the Data Plane

BaNaNa SPLIT (SANVITO; SIRACUSANO; BIFULCO, 2018) is an Artificial

Neural Network (NN) Accelerator that utilizes programmable switches to attempt to pro-

vide lower latency on online inference of a previously trained NN. Neural Networks, in

a simplified way, are several layers of artificial neurons, in which the layer i takes an in-

put, processes it, and generates an output that is then used by neurons in the layer i + 1.

24

While each neuron is usually an extremely simple activator, comparing its weighted in-

puts against a threshold, the dense structure of NNs can obtain very good results in certain

areas, such as Computer Vision (CV). This Accelerator aims to eliminate some of the in-

efficiencies of usual systems, where after receiving the packet via a network interface, the

computer has to send the data from the CPU to the general-purpose GPU (GPGPU) used

as an accelerator. While BaNaNa SPLIT does a commendable job as an NN accelerator,

we believe NNs are not an appropriate ML model for DoS detection in programmable

data planes, as the limited capabilities of programmable switches require several simpli-

fications.

SwitchML (SAPIO et al., 2019) is another system that leverages the capabilities of

programmable switches to act as a ML accelerator. This work, however, aims to accelerate

not the inference step of ML systems, but the distributed training of ML models. With

the tendency of ML models to become bigger and more complex, there are situations in

which the use of a single computer to train a system is not feasible. Therefore, a viable

option to operate over large ML models is to perform distributed training, in which we

have separate workers training different parts of the whole structure. After each iteration,

once every worker has finished its workload, the training weights must be synchronized.

SwitchML utilizes programmable switches to perform on-path data aggregation, severely

reducing network load and delay for weight synchronization, by efficiently and smartly

leveraging the physical topology of the network. It might be possible, in future work, to

utilize a system like this to perform and accelerate distributed training for DoS detection.

iSwitch (LI et al., 2019), similarly to some of the other related work, aims to

be an accelerator for distributed Reinforcement Learning (RL) training. The system can

make both synchronous and asynchronous training faster and more efficient. In the case

of synchronous training, where workers wait for the updated weights before continuing

their computations, iSwitch lowers this wait time, making the training more efficient.

While in asynchronous training workers do not wait for weight updates, thus not being

blocked during that wait, utilizing outdated weights can still slow down the pace at which

the model converges. Therefore, iSwitch can help distributed RL models undergoing

asynchronous training to converge faster, both in terms of iterations and time. On top of

that, the authors propose a hierarchical distributed training structure to further improve

training efficiency. Despite the acceleration provided by this system, RL may not be the

most appropriate model for DoS detection, as it must define states and it relies on constant

feedback.

25

IIsy (XIONG; ZILBERMAN, 2019) is a prototype that implements several ML

algorithms in a programmable switch. In this work, Decision Trees, Support Vector

Machine (SVM), K-means, and Naïve Bayes classifiers are implemented into the pro-

grammable data plane. As a testing example, the classifiers are previously trained (offline)

to classify Internet-of-Things (IoT) data into one of several categories. The authors focus

on the efficient implementation of these different models, aiming to utilize every available

feature that P4 enabled switches have to offer. Although the authors implement a DT for

network traffic classification, they employ it for a different goal than ours. Additionally,

we believe RFs to be a better model for our task, as the slight increase in computational

cost provides important refinement of predictions.

N2Net (SIRACUSANO; BIFULCO, 2018) is a proposed system that aims to im-

plement Neural Networks inference in a programmable data plane. The partial work,

published in early 2018, implements a prototype system that realizes the forward pass of

a binary NN. The authors suggest that their work may be used as a way to create a list that

allows or denies indexes, with the intent of providing a simple DoS protection. However,

their work does not include tests or results. Furthermore, blacklists are very rudimentary

forms of DoS protection. Thus, we believe the system proposed in their work does not

solve the issue of DoS detection and protection.

26

4 BACKORDERS

In this chapter, we present our proposed system, BACKORDERS (distriButed

deniAl of serviCe attacK detectOr using RanDom forEst in pRogrammable Switches),

describing its structure as a whole, as well as detailing each module’s characteristics.

In Section 4.1, we present an overview of the system, introducing its components. In

Section 4.2, we describe the operation of a Random Forest in programmable data planes.

In Section 4.3, we further detail BACKORDERS’s architecture, stating the process of

training an RF (Subsection 4.3.1.4), the technique employed for inserting an RF in a

programmable data plane (Subsection 4.3.2) and the procedure for extracting features

that are relevant for the classification of a flow (Subsection 4.3.3), as well as describing

the remaining modules.

4.1 Approach Overview

BACKORDERS (distriButed deniAl of serviCe attacK detectOr using RanDom

forEst in pRogrammable Switches) is a system for classifying network traffic, with the

main purpose of detecting DoS attacks. To achieve this goal, we utilize a Random Forest

model to aid in the process of classifying flows. As with any other system that utilizes

supervised ML learners, we must have a labeled dataset, with each sample having several

features available.

For Random Forests in particular, the training stage has high computational costs,

both in terms of CPU and memory utilization. Thus, we elect to perform this step in the

control plane, where we can realize the training of an RF on commodity servers, as they

tend to have a lot more hardware resources than programmable switches.

Despite the training being computation heavy, the evaluation of a sample is rela-

tively simple. The process of evaluating a sample consists of several comparisons being

made, comparing pre-calculated values, called thresholds, against values calculated for

each sample, called features. Although a simple Classification Tree can have up to over

a hundred nodes, the number of comparisons done is logarithmic to the number of nodes.

Thus, even a tree with a hundred (100) nodes would take no more than seven (7) com-

parisons, in the worst-case scenario. As such, an RF model can be utilized in P4-enabled

switches, performing the classification of network flows at line-rate.

After mapping the RF to a P4-friendly structure, we utilize the ML model for clas-

27

Figure 4.1: Alternative example of nodes of a Classification Tree
Root Node R

Internal Node A
IAT Max ≤ 66050000 IAT Max > 66050000

R

Total Length ≤ 114
Total Length > 114

A

E

J

B

C D

G H I

F

LK

M N O P

Feature: IAT Max
Value: 66050000

Children: A B

Feature: Total Length
Value: 114

Children: C D

Leaf Node J

Classification:
Malicious

Leaf Node O

Classification:
Legitimate

Source: Author

sifying packets of a network flow. We define a flow as a 5-tuple of Source IP, Destination

IP, Source Port, Destination Port, and Protocol. As such, for each monitored flow, we

calculate several metrics to be utilized as features in the RF. As an RF is an ensemble of

multiple Classification Trees, we perform the classification of a flow utilizing each of the

trees. Afterwards, we select the class with the highest number of votes, marking the flow

appropriately.

4.2 RF in a Programmable Data Plane

Given a Random Forest model, the first step towards performing online classifica-

tion in the data plane is to map the forest’s structure and operations to meet the restrictions

imposed by the P4 language, while also appropriately fitting the limited resources of the

hardware in programmable switches. In order to achieve these goals, we must take into

consideration both the structure of a generic classification tree and the constructs available

in the P4 language.

A classification tree is a collection of nodes. Each of these nodes can be either

28

an internal node or a leaf node. To evaluate an internal node, it is necessary to first

perform a comparison against a threshold value or a series of class values. Depending on

the result of the comparison, we must evaluate a different node, repeating this process. As

such, internal nodes must know the feature to use in the comparison, the threshold value

to compare it to (or every possible discrete value, if that is the case), and it additionally

must have a reference to each of its children, that is, each possible node that may be

subsequently evaluated. Figure 4.1 shows a visual example of an internal node ’A’, where

we can observe its feature (Total Length), threshold (114), and children (’C’ and ’D’).

For the other kind of node, we may have a leaf node. Leaf nodes are a bit simpler, as all

the information they must contain is a classification for samples whose path leads to that

leaf, as we can see for the leaf nodes ’J’ and ’O’.

Common implementations of Classification Trees in commodity servers utilize

recursion. This is done by having one instance of a class Node, while executing its own

evaluation function, invoke one of its children’s evaluation function. In order to do this, a

function must have a reference to itself in its code, being classified as a recursive function.

Algorithm 1 shows a pseudo-code with recursion, where the function Eval has a reference

to itself. Although recursive functions are often considered intuitive for certain scenarios,

they remove the ability of a compiler to know ahead of time how many times a function

is going to be invoked. As such, recursion is not currently supported by the P4 language,

given that programmable switches must meet strict time constraints to operate at line-rate.

Algorithm 1: Example of a recursive function

Eval(Node, Sample)
1 if Node is leaf then
2 return Classification
3 else if Sample’s relevant feature ≤ Node’s threshold then
4 Eval(Child1, Sample)
5 else
6 Eval(Child2, Sample)

In order to map a Classification Tree to a programmable data plane, we must

find a way to represent and sequence the evaluation of nodes successively, without using

recursion. Additionally, nodes may not contain direct references to a structure of another

node. Thus, we propose a way to map the information that each node must hold into

entries of a match+action table, fitting in the data plane.

Given a classification tree node, such as the one in Figure 4.1, we map its relevant

feature, threshold, and children to a match+action table. In our approach, each node has

29

Table 4.1: Example of a partial Classification Tree mapped to match+action table
Match Value Action Parameters

Node Identifier Threshold Child 1 Child 2
R compare_iat_max 66050000 A B
A compare_total_length 114 C D
B compare_feature_B y E F
H compare_feature_H z O P

Source: Author

a unique identifier, such as ’A’ and ’B’. Still using the example of the aforementioned

figure, we can observe that the root node has an identifier ’R’. A visual representation

of the match+action table entry that our node R would be mapped to can be seen in

Table 4.1. As such, this mapping would match its identifier ’R’, invoking the action

compare_iat_max, passing as parameters the threshold 66050000 and its children, where

the first child is ’A’ and the second child is ’B’. Once invoked, the action would compare

the appropriate feature to the threshold passed as parameter, indicating that the next node

to be evaluated is ’A’ if iat_max has a value less than or equal to 66050000, or the node

’B’ if the value is greater than 66050000.

4.3 BACKORDERS Architecture

BACKORDERS is divided into a series of modules, each one with a separate pur-

pose. Figure 4.2 shows how these modules are organized. Our system depends on a series

of external components, highlighted in the figure, which will be briefly explained in Sub-

section 4.3.1. Aside from the external components, BACKORDERS has a module that

runs on the control plane, the RF Mapper module, which will be detailed in Subsection

4.3.2. In order to realize the classification of network traffic, BACKORDERS implements

two modules in the data plane, (1) a feature extractor module, which will be thoroughly

explained in Subsection 4.3.3, and (2) an online classifier module, responsible for or-

chestrating the multiple Classification Trees implemented in the data plane, which will be

detailed in Subsection 4.3.4.

30

Figure 4.2: Architecture of BACKORDERS

Programmable Switch

Selected Forest

Network
Traffic

Collector

External
Components

Database

Offline
Classifier

(optional)

Feature
Computation

RF Trainer

Flow: ...
IAT mean: ...
IAT max: ...

Pkt Size Mean: ...
Feature: ...

Flow 1
Class: Legitimate

Algorithm
Features
Trees

Max. Depth
Bootstrap

Tree 1 Tree n

RF Mapper

Flow n
Class: ...

Control
Plane

Tree Structure
Table Structure

Node ID Action Threshold Left Node Right Node

...

...

Tree 1
Layer 1
Tree 1
Layer 2
Tree 1

Layer M

Tree N
Layer 1
Tree N
Layer 2
Tree N

Layer M

Feature Extractor

Network Packet
Ethernet IPv4 TCP Payload

Parser

parse_ethernet{}
parse_ipv4{}
parse_tcp{}
parse_udp{}

...

Registers Metadata

reg_iat_max meta.iat_max

reg_pkt_size meta.pkt_size

reg_prev_time meta.iat

... ...

code.p4 trees.json

Online Classifier

Tree 1 Layer 1
Node ID Action Threshold Left Node Right Node

...

Tree 1 Layer 2

Tree 1 Layer M

Tree N Layer 1

Tree N Layer M

Vote Tallying

Data
Plane

Tree 1 Tree n

Source: Author

4.3.1 External Components

As mentioned in Section 4.3, for the correct operation of our proposed system

we must have a series of external components, all of which execute on the control plane.

These components include a network traffic collector module, a module responsible for

feature computation, an offline classifier module, and an RF trainer module. However,

these modules are not the main contribution of this work, as they have been studied by

many different researchers in the past. Despite this, as these modules are still relevant

to BACKORDERS, we will briefly explain their purpose and general operation in this

subsection.

4.3.1.1 Network Traffic Collector

The network traffic collector module is responsible for collecting network traffic

to be used by the other modules. This is a necessary first step towards training classifier

models, such as a Random Forest. For use in ML learners, the network traffic collected

(often referred to as dataset) must be sizeable and represent the different types of traffic

that are present in the network. For this task, network operators may decide to collect

31

traffic from their organization, utilizing tools such as tcpdump or any other tool that allows

monitoring and storing network packets. In many scenarios, it is important to realize the

anonymization of the data collected. However, performing this step while maintaining

some of the important characteristics of the original data may be challenging.

4.3.1.2 Feature Computation

After enough network traffic data is collected, it is sent to the module responsible

for feature computation. There, each collected packet is aggregated into the respective

network flow that it is a part of. Afterwards, relevant features must be computed, so

that they may be utilized by the next module. The set of features to be computed and

the methods for doing so depend on the necessities of the ML learner, along with the

capabilities of the programmable switch. For instance, consider a feature that calculates

the Fourier transform of a particular statistical value (SANTOS DA SILVA et al., 2015).

While this feature may contribute to the classification of network traffic, it would be very

complex and difficult to implement in a programmable data plane, potentially having too

high of a computational cost to justify the gain in classification accuracy. As such, it is

important to keep in mind the limitations of P4-enabled switches. An example of a tool

for the extraction of features is CICFlowMeter (LASHKARI et al., 2020), offering dozens

of flow statistics.

4.3.1.3 Offline Classifier

Once enough network traffic has been collected, it must be classified before be-

ing used to train an ML model. The offline classifier module, as opposed to the online

classifier module in the programmable switch, can perform its work in parallel with the

feature computation module, if the classifier module does not require these features to

realize its task. The offline classifier module has an equally important and difficult task,

as the classifications done here will be used by the ML learner as ground-truth, ultimately

affecting its accuracy when classifying traffic in practice, after its training and evaluation.

The approaches for realizing offline traffic classification include DPI, neural networks,

and many other techniques. However, considering the difficulty and importance of this

task, there is not a de facto approach for classifying unknown traffic with extremely high

accuracy, even when done in an offline manner, where higher computational costs and

longer execution times are tolerated. As such, an approach utilized by some researchers

32

is to, rather than attempt to classify unknown traffic, generate their own traffic. An exam-

ple of a dataset artificially generated is the CIC-DDoS2019 dataset (SHARAFALDIN et

al., 2019).

4.3.1.4 RF Trainer

Following the acquisition of an appropriate dataset, we utilize it to train an RF

model in the RF trainer module. Along with the labeled network traffic and extracted

features, random forests have a number of meta-parameters, such as the number of classi-

fiers (trees) and the number of features per tree. Additionally, there are meta-parameters

for the trees, such as maximum depth and the algorithm for selecting the appropriate

number of features for each tree. These meta-parameters aim to introduce diversity in

the multiple Classification Trees that compose the trained RF, as explained in Subsection

2.3.2. The algorithm implemented in this module for performing the induction of Classi-

fication Trees aims to automatically select the most relevant features first, as explained for

the C4.5 algorithm described in Subsection 2.3.1. While in Subsection 2.3.1 we presented

only the C4.5 algorithm, which utilizes normalized information gain, there are different

approaches for classification tree induction, such as the CART algorithm (BREIMAN et

al., 1983). Although C4.5 is a very popular algorithm, there are situations where a differ-

ent algorithm may produce an RF better suited for certain datasets. However, the general

data structure of classification trees is similar regardless of the algorithm utilized for in-

duction. Thus, the algorithms are interchangeable, as long as the RF mapper module

receives the appropriate input, as it is the next module in the workflow.

4.3.2 RF Mapper

The first main module of BACKORDERS is the RF mapper module, which runs

on the control plane. This module, as briefly explained in Section 4.2, is responsible

for taking an input describing the structure of a Classification Tree and to map it into an

output match+action table to be inserted in the P4-enabled switch. As we are working

with a Random Forest, which contains multiple CTs, we repeat the process for each tree

in the forest, generating multiple match+action tables.

Recapitulating the explanations in Section 4.2, the information contained in an

internal node is its identifier, feature to be used, threshold, and children. For a leaf node,

33

however, the only information we need is its identifier and classification, as these types

of nodes do not have children or perform any comparisons.

For identifiers, our approach utilizes numeric identifiers, as opposed to what was

shown in Section 4.2 for easier understanding. Each node in a tree has a unique identifier,

starting with 0 for the root, with increments of 1 for the subsequent nodes. As such, a tree

with n nodes will have identifiers ranging from 0 to n− 1. While each node must have a

unique identifier within the tree it belongs to, nodes of different trees can have repeated

identifiers. Thus, even as the root node of a CT i will have the identifier 0, the root node

of another CT j will also have the identifier 0.

Internal nodes have their feature field mapped into a specific P4 action. Ergo,

every node that utilizes a specific feature will invoke the same action. As an example, as

shown in Table 4.1, a node that utilizes the number of packets of that flow, a feature named

’pkt_num’, will invoke the corresponding ’compare_pkt_num’ action, which will realize

the comparison of the ’pkt_num’ feature of that flow against the threshold parameter in

the match+action table entry. This will be true not only of node ’R’, in the aforementioned

example, but also of every other node that utilizes ’pkt_num’ as its feature.

Still on the topic of the information contained in internal nodes, our system only

implements numeric features at this time. While at first it may seem restrictive, we believe

that for the specific task of network traffic classification it does not affect the quality of

the learner model. This is due to the fact that fields of network protocol headers are

generally interpreted as either a number or a boolean flag, that is, a variable that only

assumes values False (0) or True (1). Thus, as the system currently only utilizes numeric

attributes, mapping a node’s threshold into the data plane is trivial, simply inserting it as

a parameter of the corresponding entry of the match+action table.

The last information that the RF mapper module must map from an internal node

into the programmable data plane is its children. As previously explained in Section 4.2,

P4 does not allow recursion. As such, we break the naturally recursive structure into

entries of a table. In order to do this, we utilize the same match+action table entry where

the other information is, passing as parameters to the compare feature action (such as

’compare_pkt_num’) the unique identifier of this node’s children. Taking into account our

proposed system’s current characteristic of strictly utilizing numeric threshold values, we

know that each internal node will always have two children. Thus, we pass two parameters

to the aforementioned action, the identifiers of the ’left’ child and of the ’right’ child

nodes.

34

Table 4.2: Example of leaf nodes mapped to match+action table
Match Value Action Parameters

Node Identifier Classification
25 classify_flow MALICIOUS
26 classify_flow LEGITIMATE
32 classify_flow LEGITIMATE
46 classify_flow MALICIOUS

Source: Author

Now that the mapping of an internal node has been explained, the only informa-

tion missing is the one contained in a leaf node. As previously explained, this informa-

tion only includes a unique identifier and a classification. The process of mapping a leaf

node’s identifier is analogous to the mapping of an internal node’s identifier, as was pre-

viously explained. The other information we must map is its classification. For this, we

use a slightly different format of a match+action table entry. Table 4.2 shows an example

of match+action table entries containing the information of leaf nodes, where we can still

observe an identifier, however now we always utilize the same action, ’classify_flow’,

passing as parameter the classification of this leaf node. While the table shows a classi-

fication being either ’MALICIOUS’ or ’LEGITIMATE’, in order to optimize the system

for higher performance in a programmable switch, we utilize the values 0 (legitimate) and

1 (malicious).

4.3.3 Feature Extractor

Unlike the previous modules that were explained, the feature extractor module is

located in the programmable data plane of a P4-enabled switch. This module realizes

computations for each incoming packet, with its first task being the identification of the

flow the arriving packet belongs to. Afterwards, it utilizes metadata information, such as

the ingress time of the packet and its packet length, along with any relevant header fields,

such as urgent and push flags of an IPv4 header, or window size value of a TCP header,

in order to extract features to be utilized by the RF. In Subsection 4.3.3.1 we enumerate

the supported features and describe the computation of the simpler ones. In Subsection

4.3.3.2 we detail the technique employed to approximate moving means, as utilized in

this work.

35

Table 4.3: Features implemented
Destination Port
Flow Duration
Packet Count

Header Length Sum
Initial Window

ACT Data Count
PSH

Flag Count
URG

Packet Length

Total
Minimum
Maximum

Mean

Inter-Arrival-Time

Total
Minimum
Maximum

Mean

Segment Size

Total
Minimum
Maximum

Mean
Source: Author

4.3.3.1 Simple Features

Our system currently supports twenty features, as shown in Table 4.3. As we can

observe, some features are based on values from the IPv4 header, such as PSH flags.

Other features utilize values from the TCP or UDP headers, such as destination port.

Additionally, there are features that utilize metadata, such as the ingress timestamp of

each packet, to calculate values such as inter-arrival-time of packets of a flow. In this

subsection, we will explain every feature in that table, as well as detail the computation

process of all of them except for means, which will be discussed in Subsection 4.3.3.2.

• Destination port is extracted from the TCP or UDP header (whichever is present) of

the current packet. This value is also stored in a register, as it is utilized to separate

different flows;

• Flow duration is the time elapsed between the arrival of the first packet of that flow

and the current time. To store the timestamp of the first packet of each flow we

utilize a register. To approximate the current time we utilize the standard metadata

ingress timestamp of the current packet;

• Packet count is the number of packets of that flow observed by the switch. This

36

value is stored in a register and is incremented by one for each arriving packet

belonging to that flow;

• Header length sum is the sum of the length of headers of each packet of that flow,

in bytes. This value is stored in a register and is incremented by the length of the

headers of each arriving packet belonging to that flow;

• Initial window is extracted from the TCP header of the first packet of a flow if the

header is present. This value is stored in a register and is not changed after the first

packet of that flow;

• ACT Data Count is the number of packets of that flow that had at least one byte

of payload. This value is stored in a register and is incremented by one for each

arriving packet belonging to that flow that has a payload length of at least one byte;

• PSH Flag Count is the number of packets of that flow that had the PSH flag set,

extracted from the IPv4 header. This value is stored in a register and is incremented

by one for each arriving packet belonging to that flow that has the PSH flag of the

IPv4 header set (not zero);

• URG Flag Count is the number of packets of that flow that had the URG flag set,

extracted from the IPv4 header. This value is stored in a register and is incremented

by one for each arriving packet belonging to that flow that has the URG flag of the

IPv4 header set (not zero);

• Packet length is calculated based on the number of bytes of each packet of that flow:

- The total packet length of a flow is the sum of the length of every packet of

that flow. This value is stored in a separate register. It is incremented by the

length in bytes of each arriving packet belonging to that flow;

- The maximum packet length of a flow is the highest value of the length of

every packet of that flow. This value is stored in a separate register. It is

updated whenever the packet length of an arriving packet belonging to that

flow is greater than the previously stored value;

- The minimum packet length of a flow is the smallest value of the length of

every packet of that flow. This value is stored in a separate register. It is

updated whenever the packet length of an arriving packet belonging to that

flow is lesser than the previously stored value;

- The mean packet length of a flow is the moving average of every packet of that

flow. This value is stored in a separate register. It is updated for each arriving

37

packet belonging to that flow. The exact method for approximating this value

is discussed in Subsection 4.3.3.2;

• Inter-arrival-time (IAT) is the time elapsed between the arrival of the previous

packet of that flow and the next, at the current time. To store the timestamp of

the previous packet of each flow we utilize a register, updated after the calcula-

tion of the IAT. To approximate the current time we utilize the standard metadata

ingress timestamp of the current packet. Each of the four different features that

refer to IAT, total IAT, maximum IAT, minimum IAT and mean IAT are analogous

to the previously explained features about packet length;

• Segment size is the length of the payload of each packet of that flow. To calculate

this value we utilize the standard metadata packet length of the packet, along with

pre-calculated values of lengths of different headers. Each of the four different

features that refer to segment size, total, maximum, minimum and mean segment

size are analogous to the previously explained features about packet length.

4.3.3.2 Approximating Means

As explained in Section 2.2, the P4 language does not support divisions. Thus,

calculating the average values is not a trivial task, as it requires the computation of the

division of a sum by its number of elements. Due to this restriction, many researchers

utilize Exponentially Weighted Moving Averages (EWMA), by setting a weight of 1
n

,

with n being a power of two. This is done because, in computer systems based on bits,

divisions by a divisor that is a power of two can be simulated by performing bit-shifts,

that is, shifting the value of the internal representation used by computers of that number.

However, EWMA is not the same as the moving averages normally calculated, and as

such it produces different results from what is used for training the classifiers of the RF.

In order to minimize the difference between the computed approximation and the

real moving average, we propose a new technique to be employed in lieu of EWMA.

Our algorithm requires the computation of the total sum of values and the number of

values, along with storing the previously computed approximated mean and an additional

auxiliary value that we refer to as "approximate sum". While it may initially seem like

a big overhead compared to utilizing a technique such as EWMA, our system already

computes and stores the total sum of values and the number of values, as they are utilized

as features for our RF. Thus, the only additional memory cost our algorithm introduces to

38

our system is an extra stored value, the approximate sum.

Given i values Vi, Se(i) is the exact sum of every value Vi (Equation 4.1). To

calculate an approximate mean Ma, we also need to calculate an approximate sum, Sa.

Each of these values is calculated at each step i, that is, as each new sample value V is

introduced. Both of these values, Ma and Sa, have conditional formulas, having their

values calculated based on Se(i) at certain i. First, we can see, in Equation 4.2, how

to calculate the approximate sum Sa for a given i. When i is a power of two, such as

1, 2, 4, and so on, Sa(i) is simply the exact sum, Se(i), which is trivial to calculate

(Subequation 4.2a). In every other case, we utilize the previous approximate sum, Sa(i−

1), the previous approximate mean, Ma(i− 1) and the new sampled value, V to calculate

the new approximate sum (Subequation 4.2b).

Se(i) =
N∑
i=1

Vi (4.1)

Sa(i) =

{
Se(i), ∃n ∈ N, 2n = i

Sa(i− 1)−Ma(i− 1) + V, @n ∈ N, 2n = i

(4.2a)

(4.2b)

Equation 4.4 shows the process for calculating the approximate mean Ma(i) at a

given step i. When i is a power of two (Subequation 4.4a), we simply calculate the "exact"

mean, by dividing the exact sum, Se(i) by i. Despite divisions not being available, we can

obtain a similar result by shifting the dividend by an appropriate number of bits. As such,

our goal is to always force divisions by a power of two. However, when i is not a power

of two, we utilize an approximate sum Sa(i), as shown in Equation 4.2. Additionally, for

approximating means when i is not a power of two, we calculate a value referred to as

prev_pow2(i). This value is calculated as shown in Equation 4.3, and it is the highest

power of two that is lesser than i.

prev_pow2(i) = max 2n < i, n ∈ N (4.3)

Considering the values calculated previously, the exact sum of i values, Se(i)

(Equation 4.1), the approximate sum of i values, Sa(i) (Equation 4.2) and the highest

power of two that is smaller than i, prev_pow2(i) (Equation 4.3), we can finally approxi-

mate means for i that is not a power of two. This is done by dividing the approximate sum,

Sa(i) by prev_pow2(i), which can be done with bit shifts, as prev_pow2(i) is a power

39

Table 4.4: Example of the values during an execution of the approximation algorithm
i Vi Se(i) Sa(i) Ma(i) Mean Formula: Sa(i) Formula: Ma(i)

8 15 160 160 20 20 Se(8) Se(8)/8
9 25 185 165 20.625 20.5 Sa(8)−Ma(8) + V9 Sa(9)/prev_pow2(9)
10 10 195 154.375 19.29875 19.5 Sa(9)−Ma(9) + V10 Sa(10)/prev_pow2(10)

Source: Author

of two, as shown in Subequation 4.4b. The idea behind utilizing an approximate sum,

Sa(i), instead of the exact sum, Se(i), is that the exact sum has i values added, whereas

we calculate the approximate sum in such a way that it has a value closer to the sum of

prev_pow2(i) values.

Ma(i) =

Se(i)

i
, ∃n ∈ N, 2n = i

Sa(i)

prev_pow2(i)
, @n ∈ N, 2n = i

(4.4a)

(4.4b)

For better understanding, we will provide an example, as shown in Table 4.4, with

step-by-step computation. As 1, 2, and 4 are powers of two, starting with the first value

would simply result in the usual calculation of moving means for three out of the four

steps. Thus, we shall start with the computation of an example with the calculation of the

eighth value. First, assume that V8 = 15 and Se(7) = 145. As i = 8 is a power of two, the

approximate sum Sa(i) will be the same as the exact sum Se(i) and the approximate mean

Ma(i) will be the simple division of the exact sum by i. Thus, Se(i) = Sa(i) = 145 + 15,

which results in 160. Consequently, Ma(i) = 160
8

, calculated as in Subequation 4.4a,

resulting in 20. This is the way to calculate exact means when i is a power of two.

However, when a new value V9 = 25 arrives, with i = 9, we must calculate

differently. Starting with Equation 4.3, prev_pow2(9) = 8, as 23 = 8, and 8 < 9. Next,

we approximate the sum for i = 9, following Subequation 4.2b, we arrive at

Sa(9) = Sa(8)−Ma(8) + V9 (4.5)

replacing the appropriate values, Sa(8), Ma(8) and V9

Sa(9) = 160− 20 + 25 = 165 (4.6)

40

and thus, following Subequation 4.4b, we obtain

Ma(9) =
Sa(i)

prev_pow2(i)
(4.7)

where, by replacing the appropriate values, as calculated previously, we can calculate the

approximate mean as

Ma(9) =
165

8
= 20.625 (4.8)

As we can see, 20.625 is relatively close to the exact mean, as shown in Table

4.4, equating to 20.5. We will briefly show the next step, with i = 10 and V10 = 10, to

highlight that, by having an approximate sum calculated by removing the previous ap-

proximate mean, our approach does a commendable job of approximating the real mean.

As the formulas were already shown and explained for i = 9, we will omit the step where

we replace the original equation with the appropriate i, and will instead only show the cor-

responding values on the right side of each equation. First, prev_pow2(10) = 8. Next,

we calculate the approximate sum, as

Sa(10) = 165− 20.625 + 10 = 154.375 (4.9)

finally, we obtain the approximate mean as

Ma(10) =
154.375

8
= 19.296875 (4.10)

which is relatively close to the exact mean, 19.5.

To further evaluate the effectiveness of our approach, we realized a comparison

between our algorithm for approximating means and EWMA, which is sometimes used

in P4-enabled systems as an alternative. For these tests, we utilized a tool (HAAHR,

2020) to generate over a hundred random numbers following a Gaussian distribution with

mean 500 and standard deviation 65.

First, in Figure 4.3, we plot the calculated value of our approach (in blue), EWMA

(in red) and the exact value (in yellow). As we can observe, our approach (in blue), better

approximates the exact value (in yellow). An often undesirable characteristic of EWMA

is its sensitivity to new values that happen to be outliers. This issue is amplified when

using a weight of 0.5, as used in (BUSSE-GRAWITZ et al., 2019). To compare that

behavior with our approach, we also utilized the weight of 0.5 for EWMA in our tests.

We can observe this behavior as the EWMA value (in red) varies abruptly, increasing its

41

Figure 4.3: Mean values computed by different approaches

of values

V
al

ue

400

450

500

550

600

25 50 75 100 125 150

Approximate mean Exponential mean Exact mean

Source: Author

value significantly higher than the exact value, observed in the curve in yellow.

In Figure 4.4, we plot the accuracy obtained by our approach (in blue) and EWMA

(in red), in relation to the exact value. This plot better shows that our approach (in blue)

has significantly higher accuracy than EWMA (in red). Additionally, we can see very

high dips in accuracy which, as previously explained, is likely due to the high sensitivity

to outliers that EWMA suffers from when utilizing a weight such as 0.5.

Lastly, Figure 4.5 shows the average and minimum accuracy obtained by our ap-

proach (in blue) and EWMA (in red). As expected from the behavior of EWMA previ-

ously explained, its minimum accuracy (in red) is significantly lower than our approach’s

(in blue). This is due to the high sensitivity to outliers when using a high value for its

weight. Additionally, we observe that even the lowest accuracy obtained by our approach

(in blue) is quite high. Thus, we conclude that our approach does a good job of approxi-

mating the real mean.

4.3.4 Online Classifier

The last module of our system is the online classifier. This module is responsible

for orchestrating the multiple Classification Trees that compose our Random Forest in

order to perform the classification of a network flow. The online classifier is located

42

Figure 4.4: Comparison between our approach’s and EWMA’s obtained accuracy

of values

80.00%

85.00%

90.00%

95.00%

100.00%

25 50 75 100 125 150

Approximate mean Exponential mean

Source: Author

Figure 4.5: Comparison between our approach’s and EWMA’s average and minimum
accuracy

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Average Minimum

Approximate mean Exponential mean

Source: Author

43

in the ingress processing block of the P4-enabled switch, where the logic for utilizing

multiple classification trees is done.

Figure 4.6 shows a representation of the control flow of our system, BACKO-

RDERS, in the programmable data plane. For the approximation of means, as previously

explained in Subsection 4.3.3, we must calculate the power of two that is smaller than i,

when i is not a power of two. To efficiently find the value of prev_pow2(i), we utilize a

match+action table, populated with values of powers of two, along with masks to appro-

priately match the value i. However, some of our features calculate features over i − 1

values, rather than over i values. An example of a feature that utilizes i − 1 values is the

inter-arrival-time, including maximum, minimum, total and mean. This is due to the fact

that the IAT is the time between the arrival of two consecutive packets. As such, there is

no IAT for a flow with a single packet.

Thus, before the online classifier requests the extraction of features, we must cal-

culate prev_pow(i) utilizing the appropriate table. However, as the features calculated

around IAT utilize i− 1 values, we first calculate prev_pow(i− 1). This calculated value

is then stored in a user-defined global metadata variable (as opposed to standard meta-

data), so that it can be used by the feature extractor to approximate the mean IAT. Next,

this process is repeated with i, calculating prev_pow(i), to be used by the feature ex-

tractor to approximate the remaining mean values, such as mean packet length and mean

segment size.

Once the feature extractor performs its function, after receiving a request from the

online classifier, we are ready to perform the classification of a network flow utilizing our

RF. The RF mapper module maps the trained RF into several tables per tree, separating

nodes by their depth. This is done because P4 does not allow the control block to invoke

the same table multiple times. Thus, by separating nodes by their depth, we ensure that

invoking the same table multiple times will never be necessary.

Revisiting Figure 4.1 as an example, we know that during the classification of a

sample, nodes ’A’ and ’B’ will never both be evaluated. This is due to the fact that after

the evaluation of node ’R’, only one of either path will be taken. Analogously, for nodes

’C’, ’D’, ’E’ and ’F’, only one of them will be evaluated. Thus, we can easily split a

single tree into multiple tables, separating nodes by layer (or depth), having every node

of a given layer L be in the same table.

As such, the online classifier must invoke each of the tables that compose each

Classification Tree in our RF. First, the online classifier sets a user-defined global meta-

44

data variable, node_id to indicate that our first node has the identifier 0, as every root

node has that specific identifier. Afterwards, we apply the table of the first tree with depth

1, where the metadata variable with value 0 will be matched with the identifier of the

root, also 0. After the values are matched in the corresponding match+action table entry,

the appropriate action compare_feature_X will be called, comparing feature ’X’ to the

threshold present in the match+action table entry. This action, after realizing the appro-

priate comparison, will set the same metadata variable, node_id, to the appropriate value.

Once again referencing Figure 4.1 as an example, after the metadata node_id matches

with the identifier of root node ’R’, the action compare_iat_max will be invoked, pass-

ing as parameters the threshold 66050000 and children ’A’ and ’B’. Thus, if the iat_max

feature of this specific flow is smaller or equal to 66050000, the action will set the next

value of node_id as the (numeric) identifier of node ’A’. Otherwise, it will set node_id to

the (numeric) identifier of node ’B’.

The process mentioned above is repeated for each layer of the first tree, invoking

as many tables as the maximum depth of the tree. However, as not every leaf node is in the

last layer of the tree, we utilize a user-defined global metadata variable, is_classified,

as a flag. This flag is checked before applying subsequent tables, avoiding unnecessary

applications of tables. Once a leaf node has its identifier matched against the global

metadata variable node_id, the appropriate classify_flow action is invoked, passing as a

parameter the classification of that node. In this action, along with setting the value of the

classification user-defined global metadata variable, we set the previously mentioned

is_classified flag as true, avoiding unnecessary processing for this tree.

The process of matching node_id against each table containing one layer of the

tree is done until a classification is obtained from that particular tree. Afterwards, we reset

node_id to 0, and start the classification of the same sample in the next tree, repeating the

entire process explained above. This is done until every tree has provided a classification

for the sample. Once that has happened, we count the votes of each tree, stored in local

variables after the classification of each tree is obtained. Lastly, we select the classification

with the highest number of votes as the final classification of that flow.

45

Figure 4.6: Online Classifier Control Diagram

Online Classifier Feature Extractor Tree 1

extract_features()

meta.features
layer_1_table.apply()

Tree N

update(node_id)
layer_2_table.apply()

update(node_id)
layer_M_table.apply()

vote(classification)
layer_1_table.apply()

update(node_id)
layer_M_table.apply()

vote(classification)

tally(votes)

Source: Author

46

5 IMPLEMENTATION AND EVALUATION

In this chapter, we present the implementation and evaluation of BACKORDERS.

In Section 5.1 we describe the characteristics of the prototype that was implemented.

In Section 5.2 we present the methodology employed in the experiments, specifying the

dataset utilized and the meta-parameters employed in each RF. In Section 5.3 we present

the results obtained, comparing different configurations. In Section 5.4 we discuss some

aspects of the real-world applicability of our system.

5.1 Prototype

To evaluate our proposed system, we implemented an initial prototype. The pro-

totype includes modules that run on the control plane and other modules that run on the

data plane. In the control plane, we utilized an available ML library in Python 3 for the

external module RF trainer, along with our own implementation of the RF mapper, also

in Python 3. In the data plane, we utilized the P4 language in order to implement the

feature extractor and online classifier modules.

In the control plane, we utilized the sklearn Python 3 library to train multiple

Random Forests in the RF trainer module. This library provides a high degree of cus-

tomization of ML learners through several parameters that can be adjusted. Additionally,

sklearn provides Python library modules to extract diverse classification metrics, which

were utilized to compare the multiple trained learners. Once the training was complete,

we exported the classifiers in text format, utilizing a method also provided by the library.

Afterwards, we implemented the logic of the RF mapper, as described in Section 4.3.2, in

Python 3. This module generates JSON configuration files for the insertion of trees and

parts of P4 code for the definition of the multiple tables that contain the trees.

In the data plane we implemented a prototype of the feature extractor and the

online classifier modules, as described in Section 4.3.3 and Section 4.3.4, respectively.

The implementation was done according to the P4-16 specification, with BMv2 as the

target model, specifically the simple_switch_grpc variation of BMv2.

In order to calculate every feature listed in Table 4.3, we utilized 23 registers for

values, along with 5 registers to store the 5-tuple that defines a flow, Source and Destina-

tion IP Addresses, Source and Destination Ports and Protocol. For the feature registers,

not including the registers to store the 5-tuple, we utilized 48 bits for features related to

47

IAT, as timestamps in P4-16 utilize 48 bits. For the remaining features, we utilized a

common value of 32 bits, in order to facilitate implementation and avoid possible over-

flow issues. Table 5.1 shows a list of values and their size in bits, while also explaining if

the value is stored in a register and if it is copied into a metadata variable. For instance,

the destination port is currently stored in a register to identify the flow. However, its value

is not copied into a metadata variable, as this information is in the TCP or UDP header.

The initial window, however, is stored in a register, as this value is only present in the first

packet. Additionally, it is copied into a metadata variable to be used by the classification

trees. The length of the current packet is already present in the standard metadata made

available by BMv2, thus it is not copied or stored. This brings our total memory usage

to 848 bits (excluding the destination port), or 106 bytes, per-flow. This number implies

very high memory usage by our system. However, we discuss possible optimizations

in Section 6.2. In this initial prototype, we aimed to provide an implementation for the

calculation of every feature, regardless if it was utilized by the inserted forest or not. A

potential optimization will be discussed in Section 6.2.

The online classifier module invokes the tables that compose each tree, repeating

the process for every tree. As trees are coded into match+action tables, we utilize meta-

data variables with the values of previously calculated features (by the feature extractor

module), so the actions that realize the comparison of a feature against a threshold can

easily access the feature’s value. The number of bits utilized by metadata variables is

similar to the number of bits utilized by registers, however, the metadata variables are not

stored per-flow. Additionally, the online classifier invokes two tables, one to calculate

prev_pow2(i − 1) and one to calculate prev_pow2(i). This is necessary as the features

related to IAT utilize i− 1 values, while the other features utilize i values for the approx-

imation of means. We utilize match+action tables populated with power of two values

(1, 2, 4, 8, ...), along with appropriate binary masks to perform the match between i (or

i − 1) and the corresponding prev_pow(i) value. Lastly, the online classifier reads the

value of additional metadata variables, containing each of the tree’s votes. Afterwards,

the module selects the classification with the highest number of votes. In order to evaluate

the prototype, we insert a custom header, containing a field for the final classification.

To simplify the implementation of our prototype, we currently do not store multi-

ple flows concurrently. In order to properly support the monitoring of multiple flows con-

currently, it would be necessary to efficiently index flows into register positions. While it

was not implemented by us, we know it is achievable by utilizing hash functions to im-

48

Table 5.1: Value registers and size in bits
Value Length (bits) Register Metadata Variable

Destination Port 16 Yes Header
Flow Duration 48 Yes Yes
Packet Count 32 Yes Yes

Header Length Sum 32 Yes Yes
Initial Window 32 Yes Yes

ACT Data Count 32 Yes Yes
PSH Count 32 Yes Yes
URG Count 32 Yes Yes

IAT 48 Yes Yes
IAT Total 48 Yes Yes

IAT Minimum 48 Yes Yes
IAT Maximum 48 Yes Yes

IAT Mean 48 Yes Yes
IAT A. Sum 48 Yes Yes

Packet Length 32 No Standard
Packet Length Total 32 Yes Yes

Packet Length Minimum 32 Yes Yes
Packet Length Maximum 32 Yes Yes

Packet Length Mean 32 Yes Yes
Packet Length A. Sum 32 Yes Yes

Segment Size Total 32 Yes Yes
Segment Size Minimum 32 Yes Yes
Segment Size Maximum 32 Yes Yes

Segment Size Mean 32 Yes Yes
Segment Size A. Sum 32 Yes Yes

Source: Author

plement a hash table (over registers). An example of a system that implements this logic

is TurboFlow (SONCHACK, 2017).

5.2 Methodology

In order to better evaluate BACKORDERS, we utilized in our experiments the

CICIDS2017 dataset (SHARAFALDIN; LASHKARI; GHORBANI, 2018). This dataset

contains a large number of labeled flows, each one with over seventy calculated features.

In particular, we utilized the subset of samples collected on Wednesday, July 5, 2017. On

that day there were several DoS attacks that were generated, making this specific subset

of higher interest for our purpose. For the subset in question, there were 692,703 flows

generated and labeled. Out of the labeled flows, 440,031 were legitimate, correspond-

ing to over 63.52% of the total number of flows. For the malicious flows, 5,796 were

49

DoS Slowloris attacks, 5,499 were DoS SlowHTTPTest attacks, 231,073 were DoS Hulk

attacks, 10,293 were DoS GoldenEye attacks and only 11 were Heartbleed attacks. For

our tests, we realized a binary division of classes, being classified as either legitimate or

malicious, which includes every DoS and Heartbleed attacks.

First, we selected a subset from the set of available features. While the dataset

contains over 70 features, we considered many of them to be too complex to be imple-

mented in a programmable switch. Thus, we focused on selecting features that were

viable to implement in a P4-enabled switch. The list of features implemented was shown

in Table 4.3, and detailed in Subsection 4.3.3. Utilizing this subset of features we train a

Random Forest model to be implemented in the data plane. As discussed in Subsection

2.3.1, the algorithm for induction of Classification Trees automatically tries to select the

best features as early as possible in the process. Thus, we simply provided the list of

available features to each RF, allowing the respective tree induction algorithm to detect

and select the most significant features.

While offline classifiers tend to utilize dozens to hundreds of trees in a forest, a

large number of learners would mean more processing time. Additionally, an excessive

number of trees would require more match+action table entries, possibly exhausting the

memory of the device. Along with the number of trees, the size of each tree should also

be taken into account, as they impact the amount of match+action table entries utilized.

As such, considering that the resources of a programmable switch are limited, we focused

on exploring different configurations of meta-parameters for the RF, aiming to find a

compromise between resource consumption and classification accuracy. In particular, we

evaluated forests with 1, 3, 5, 7, and 9 trees, and trees with a maximum depth of 3, 4, 5,

6, and 7 layers.

Regardless of the meta-parameters utilized in each trained model, we also em-

ployed stratified K-fold cross-validation, with 5 folds per model. This evaluation tech-

nique divides the dataset into K folds, in this case in 5 folds. Then, we perform K itera-

tions, where, in iteration i, we utilize fold i for evaluating and the remaining K − 1 folds

for training. By dividing the samples in K folds while preserving the original dataset’s

class proportions, we ensure that in each step we evaluate the trained model with samples

that were not used for training. Performing the evaluation with samples that were not used

for training ensures that the results obtained better represent the trained model’s perfor-

mance with unknown data. Thus, in the case of the dataset utilized, which contains nearly

700,000 samples, approximately 560,000 (4
5
, or 80%) samples are used in the training and

50

the remaining nearly 140,000 (1
5
, or 20%) samples are used for evaluating in each iteration

of the K-fold algorithm. Each of the evaluated forests executes the K-fold algorithm, re-

peating the training and evaluation 5 times, with different training and evaluation subsets

(folds) each time. To obtain the final score for each RF, we average the scores obtained in

each of the 5 iterations.

For the evaluation of the different classifiers, we compare the F1-Score metric

obtained by each classifier. This metric takes into account several aspects of the predic-

tions realized. After this initial comparison, we select the models that have obtained high

scores. For the selected learners, we compare further metrics, such as accuracy, precision,

and recall. We consider these metrics to be relevant, as they allow us to compare the

efficacy of different combinations of meta-parameters for the forests.

5.3 Results

In this section, we present the results obtained in our experiments. In Subsection

5.3.1, we present and compare the scores obtained by each trained classifier. In Subsection

5.3.2, we present an analysis of the scalability of different RF configurations.

5.3.1 Learner Scores

In this subsection, we compare the different combinations of meta-parameters that

define a Random Forest model. In particular, we present each of the model’s obtained

F1-Score, a popular metric for measuring the efficacy of ML learners. Additionally, con-

sidering legitimate traffic as the positive class, we also compare each model’s accuracy,

the proportion of samples that the classifier correctly predicted, precision, the proportion

of the positive predictions that are correct, and recall, the proportion of samples with a

positive class that was correctly predicted.

In Figure 5.1, we can visualize the F1-score obtained by each one of the trained

RF models. As we can see in the figure, every model has an F1-Score higher than 0.85,

including the forests with fewer trees and lower depth. However, by increasing the max-

imum depth, the trained forests obtain a considerably increased F1-score, even with a

small number of classifiers per forest. Thus, even a small number of trees, while also

limiting the maximum depth, can obtain reasonably good results.

51

Figure 5.1: F1 Score of different RF configurations

N-Tree

F1
 S

co
re

0.850

0.875

0.900

0.925

0.950

1 3 5 7 9

Depth 3 Depth 4 Depth 5 Depth 6 Depth 7

Source: Author

Next, we further compare a subset of the trained models, selecting only the models

with high F1-score. As we have previously observed in Figure 5.1, out of the 25 models,

the 10 following models have obtained high F1-score:

• 1 Tree, Depth 6;

• 1 Tree, Depth 7;

• 3 Trees, Depth 5;

• 3 Trees, Depth 6;

• 3 Trees, Depth 7;

• 5 Trees, Depth 5;

• 5 Trees, Depth 6;

• 5 Trees, Depth 7;

• 9 Trees, Depth 6;

• 9 Trees, Depth 7.

Thus, in Figure 5.2 we compare the accuracy, precision, and recall obtained by

each of the selected models. As we can observe, the trained models have a tendency to

have high precision. Considering that legitimate traffic is the positive class, this indicates

that the model correctly classifies the majority of flows that it predicts as legitimate. While

precision tends to be the highest metric achieved by the trained learners, the other metrics

52

are not significantly lower.

5.3.2 Scalability Analysis

In this subsection, we present a theoretical analysis of the scalability of differ-

ent configurations of Random Forests. We first present the worst-case scenario analysis

of the processing and memory usage in terms of the number of trees in the forest and

the maximum number of layers per tree. Next, we show some examples, based on the

configurations presented in the previous subsection.

In terms of processing time in the data plane, the worst-case scenario will always

be as many applications of tables as there are layers (maximum depth), multiplied by the

number of trees. Thus, a forest with 5 trees, limiting each tree’s maximum depth by 6,

will, at worse, perform 5 × 6 comparisons, so 30 in this case. Ergo, the processing time

is limited by O(NM), where N is the number of trees and M is the maximum depth.

In terms of memory, each node is mapped into a single match+action table en-

try. Thus, a tree with 1 layer will have 1 node (the root), while a tree with 2 full layers

will have 3 nodes, a tree with 3 full layers will have 7 nodes, and so on. However, not

every layer will have as many nodes as it can have, as trees generated by induction algo-

rithms may have leaf nodes in any layer, not being limited to the last layer. Ergo, in the

worst-case scenario, the memory usage by each tree is limited by O(2M), where M is the

maximum depth of the tree. As we have N trees, the total memory utilization is limited

by O(N(2M)).

As an example, we utilize the 10 learners selected in the previous subsection. Re-

capitulating, in terms of the number of trees and the maximum depth, their configurations

are:

• 1 Tree, Depth 6;

• 1 Tree, Depth 7;

• 3 Trees, Depth 5;

• 3 Trees, Depth 6;

• 3 Trees, Depth 7;

• 5 Trees, Depth 5;

• 5 Trees, Depth 6;

• 5 Trees, Depth 7;

53

Figure 5.2: Comparison of different metrics between best trained models
(a) Accuracy

Trees

P
re

ci
si

on

0.850

0.875

0.900

0.925

0.950

0.975

1 3 5 9

Depth 5 Depth 6 Depth 7

(b) Precision

Trees

P
re

ci
si

on

0.85

0.90

0.95

1.00

1 3 5 9

Depth 5 Depth 6 Depth 7

(c) Recall

Trees

R
ec

al
l

0.800

0.825

0.850

0.875

0.900

0.925

1 3 5 9

Depth 5 Depth 6 Depth 7

54

Table 5.2: Cost analysis of different RF configurations
Trees Max. Depth Comparisons/tree Total comparisons Memory/tree Total memory

1 6 6 6 63 63
7 7 7 127 127

3
5 5 15 31 93
6 6 18 63 189
7 7 21 127 381

5
5 5 25 31 155
6 6 30 63 315
7 7 35 127 635

9 6 6 54 63 567
7 7 63 127 1143

Source: Author

• 9 Trees, Depth 6;

• 9 Trees, Depth 7.

Thus, in Table 5.2 we calculate the number of comparisons and the memory usage,

based on the worst-case scenario analysis presented previously. As previously explained,

the number of comparisons per tree is limited, in the worst-case, by the maximum depth

of the tree. In the case of a forest, the total cost is the sum of each tree’s cost. As we are

assuming every tree is a complete tree (full layers in every layer), it is simply one tree’s

cost multiplied by the number of trees. Analogously, the amount of match+action table

entries, and thus memory, required by a tree is the number of nodes. For a forest, it’s the

sum of each tree’s number of nodes.

5.4 Applicability

In this section, we discuss the real-world applicability of our solution. First, we

discuss how well our approach deals with different types of DDoS attacks. Next, we

discuss the life expectancy of trained forests.

As previously discussed in Section 2.1, there are multiple types of Denial of Ser-

vice attacks. As the taxonomy of these attacks is not the main focus of this work, we sim-

ply categorized attacks in low-bandwidth, resource depletion attacks and high-bandwidth,

flood attacks. The samples utilized in this work are the subset of samples collected

on Wednesday, July 5, 2017, contained in the CICIDS2017 dataset (SHARAFALDIN;

LASHKARI; GHORBANI, 2018). In that subset, the malicious flows exploited Appli-

cation Layer vulnerabilities. Particularly, every attack was a low-bandwidth, resource

depletion or security bug attack. Our work focuses on the detection of these types of

55

attacks, as some traditional approaches have difficulty in detecting them.

However, BACKORDERS utilizes a Random Forest to perform the classification

of flows based on several statistical features, such as inter-arrival-time of packets, length

of packets, and length of packet headers. Thus, our approach may not be appropriate for

the detection of high-bandwidth, flooding attacks, such as SYN Flood attacks and ICMP

Ping Flood attacks. We believe other approaches may be more suitable for the detection of

these types of attacks. An example is the system proposed by Lapolli, Marques, and Gas-

pary (LAPOLLI; MARQUES; GASPARY, 2019). As previously mentioned in Section

3.1, their work calculates the entropy of IP addresses to detect potential DDoS attacks. It

might be possible to combine both systems, providing detection for both high-bandwidth

and low-bandwidth attacks.

Despite being more suited for the detection of a particular class of DoS attacks,

our system achieved high accuracy in the tests realized, as presented in Subsection 5.3.1.

However, as briefly mentioned in Subsection 4.3.1, supervised Machine Learning models

require a high number of previously labeled samples. Additionally, these samples must be

able to generalize the characteristics of data that was not present in the training set. Thus,

the dataset utilized to train the RF inserted into the data plane must be able to appropriately

generalize real-world network traffic. However, real-world network traffic is not static,

that is, it changes over time. For instance, the proportion of encrypted Internet traffic

started increasing over the years. Thus, techniques that required access to unencrypted

payloads started losing effectiveness.

In order to conform to the changes in network traffic profile, real-world deploy-

ments of a more robust version of BACKORDERS would require the periodic training

of updated Random Forest models. While ideally this would happen frequently, the col-

lection and (possibly offline) classification of network flow is a difficult task, as briefly

mentioned in Subsection 4.3.1. Thus, we believe there needs to be further research on the

topic of the life expectancy of trained models of RF, keeping in mind the specific goal of

classifying network flows and the dynamic nature of the Internet.

Although the exact life expectancy of RF models trained for the classification of

network flow is unknown, our current prototype allows for the reconfiguration of the Ran-

dom Forest inserted in the data plane without incurring downtime to the programmable

switch. Particularly, by utilizing match+action tables to store the nodes, it is possible to

reconfigure these tables to accommodate a new forest. However, as the number of tables

depends on the number of trees and the maximum depth of each tree, new forests are lim-

56

ited by these parameters. In order to insert a model with different parameters, the device

would need to be turned off and then re-programmed with updated P4 source code.

57

6 CONCLUSION

In this chapter, we present the conclusion of this work. In Section 6.1, we present

a summary of the contributions of this work. In Section 6.2, we discuss future work.

6.1 Summary of Contributions

In this work, BACKORDERS (distriButed deniAl of serviCe attacK detectOr us-

ing RanDom forEst in pRogrammable Switches), a system for classifying network flow

in programmable data planes was presented. The system implements a Random Forest

classifier, mapping its structure to fit in a P4-enabled switch. This process takes the in-

formation contained in each node and maps it into match+action tables. By mapping the

data structure that tends to be recursive into a set of entries of a table, we manage to

perform the evaluation of nodes sequentially. Once the learner is mapped into the pro-

grammable data plane, we calculate the features of each flow being monitored. These

features are later utilized by the Classification Trees in order to provide a classification

of the network flow, identifying whether it is a legitimate or malicious flow. By utilizing

match+action tables, a structure that is highly optimized for programmable switches, we

efficiently perform the classification of a sample by utilizing a previously trained Random

Forest.

We believe that this work shows that it is possible to utilize machine learning

models in the data plane, performing predictions with the high accuracy that ML learners

are known for, while also meeting the restrictions imposed by the limited hardware and

short processing time required by programmable switches.

Additionally, we propose, implement, and evaluate an algorithm for approximat-

ing mean values in the data plane. Despite utilizing only additions, subtractions, and

bit-shifts, our algorithm achieves an approximation that is very close to the exact value.

Thus, systems that depend on mean values as a part of their decision logic have an al-

ternative to utilizing exponentially weighted moving averages as a substitute for moving

averages.

58

6.2 Future Work

In future work, we aim to optimize some aspects of our system. In specific, in

order to perform the classification of multiple network flows concurrently, we must mini-

mize the amount of memory utilized by each flow. The amount of memory utilized by our

currently implemented features can be too high, as analyzed in Section 5.1. In order to fit

a set of features for each flow in a programmable switch, considering that the usual num-

bers of flows are in the dozens to hundreds of thousands, each feature must take a minimal

amount of memory. Thus, we believe that there are techniques that can be employed to

reduce the number of bits of multiple features of each flow.

In order to further minimize the memory utilized by our system, in future work,

we plan to implement the generation of code for the feature extractor module by using

a smarter approach. Rather than utilizing a register and metadata for every available

feature, we will only include registers, metadata variables, and actions for features that

were utilized by the inserted RF. This approach would remove some registers for features

that were not utilized by the forest, lowering the consumption of memory. As a drawback,

however, it would difficult the insertion of a new forest in the data plane while the P4-

enabled switch is operational. Thus, in future work, we plan on evaluating the trade-off

between our currently implemented approach and this proposed optimization.

As mentioned in Section 5.1, our prototype does not currently support concurrent

flows. Regardless of the maximum number of flows that can be monitored concurrently,

we plan on implementing hash tables in the future. With hash tables, we can remove the

limitation of a single flow at a time, even if the maximum number of supported concurrent

flows is not sufficiently high at first.

Additionally, we would like to explore different features, in order to attempt to find

features that better aid in the classification of network traffic. While the dataset we utilized

in our evaluation provides a high number of features, many of them are redundant, while

some of the others are extremely complex to be implemented in a P4-enabled switch.

Thus, we plan on attempting to implement the extraction of different features. The area

of feature selection has seen intense research activity in the last few years (SANTOS DA

SILVA et al., 2015). With better features, it might be possible to train smaller trees, while

retaining or increasing the accuracy of classification.

59

REFERENCES

AKAMAI. State of the Internet / security: Web Attacks. 2018. Available from
Internet: <https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/
soti-summer-2018-web-attack-report.pdf>. Accessed in: 2020-11-03.

ANTONELLO, R. et al. Deep packet inspection tools and techniques in commodity
platforms: Challenges and trends. Journal of Network and Computer Applications,
v. 35, p. 1863–1878, 11 2012.

ASOSHEH, A.; IVAKI, N. A comprehensive taxonomy of ddos attacks and defense
mechanism applying in a smart classification. WSEAS Transactions on Computers,
v. 7, p. 281–290, 04 2008.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., Association for Computing Machinery, New
York, NY, USA, v. 44, n. 3, p. 87–95, jul. 2014. ISSN 0146-4833. Available from
Internet: <https://doi.org/10.1145/2656877.2656890>.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct 2001. ISSN
1573-0565. Available from Internet: <https://doi.org/10.1023/A:1010933404324>.

BREIMAN, L. et al. Classification and regression trees. In: . [S.l.: s.n.], 1983.

BUDIU, M.; DODD, C. The p416 programming language. SIGOPS Oper.
Syst. Rev., Association for Computing Machinery, New York, NY, USA, v. 51,
n. 1, p. 5–14, sep. 2017. ISSN 0163-5980. Available from Internet: <https:
//doi.org/10.1145/3139645.3139648>.

BUSSE-GRAWITZ, C. et al. pforest: In-network inference with random forests. ArXiv,
abs/1909.05680, 2019.

DONG, S.; ABBAS, K.; JAIN, A. A survey on distributed denial of service (ddos) attacks
in sdn and cloud computing environments. IEEE Access, v. 7, p. 80813–80828, 2019.

DURAVKIN, I.; LOKTIONOVA, A.; CARLSSON, A. Method of slow-attack
detection. In: 2014 First International Scientific-Practical Conference Problems of
Infocommunications Science and Technology. [S.l.: s.n.], 2014. p. 171–172.

FEBRO, A.; XIAO, H.; SPRING, J. Distributed sip ddos defense with p4. In: 2019 IEEE
Wireless Communications and Networking Conference (WCNC). [S.l.: s.n.], 2019.
p. 1–8.

FINSTERBUSCH, M. et al. A survey of payload-based traffic classification approaches.
IEEE Communications Surveys & Tutorials, PP, p. 1–22, 12 2013.

HAAHR, M. RANDOM.ORG - Gaussian Random Number Generator. 2020.
Available from Internet: <https://www.random.org/gaussian-distributions/>. Accessed
in: 2020-11-17.

HO, T. K. Random decision forests. In: Proceedings of the Third International
Conference on Document Analysis and Recognition (Volume 1) - Volume 1. USA:
IEEE Computer Society, 1995. (ICDAR ’95), p. 278. ISBN 0818671289.

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-web-attack-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-web-attack-report.pdf
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3139645.3139648
https://doi.org/10.1145/3139645.3139648
https://www.random.org/gaussian-distributions/

60

ILIYASU, A.; DENG, H. Semi-supervised encrypted traffic classification with deep
convolutional generative adversarial networks. IEEE Access, PP, p. 1–1, 12 2019.

JORDAN, S. Some traffic management practices are unreasonable. In: . [S.l.: s.n.], 2009.
p. 1 – 6.

KUNCHEVA, L. I. Combining Pattern Classifiers: Methods and Algorithms. USA:
Wiley-Interscience, 2004. ISBN 0471210781.

KUROSE, J. F.; ROSS, K. W. Computer Networking: A Top-Down Approach (6th
Edition). 6th. ed. [S.l.]: Pearson, 2012. ISBN 0132856204.

LAPOLLI, Â. C.; MARQUES, J.; GASPARY, L. Offloading real-time ddos attack
detection to programmable data planes. 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), p. 19–27, 2019.

LASHKARI, A. et al. ahlashkari/CICFlowMeter. 2020. Available from Internet:
<https://github.com/ahlashkari/CICFlowMeter>. Accessed in: 2020-11-17.

LI, Y. et al. Accelerating distributed reinforcement learning with in-switch
computing. In: Proceedings of the 46th International Symposium on Computer
Architecture. New York, NY, USA: Association for Computing Machinery,
2019. (ISCA ’19), p. 279–291. ISBN 9781450366694. Available from Internet:
<https://doi.org/10.1145/3307650.3322259>.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., Association for Computing Machinery, New York, NY,
USA, v. 38, n. 2, p. 69–74, mar. 2008. ISSN 0146-4833. Available from Internet:
<https://doi.org/10.1145/1355734.1355746>.

MIRKOVIC, J.; REIHER, P. A taxonomy of ddos attack and ddos defense mechanisms.
ACM SIGCOMM Computer Communication Review, v. 34, 05 2004.

MOORE, D. et al. Inferring internet denial-of-service activity. ACM Trans.
Comput. Syst., Association for Computing Machinery, New York, NY, USA,
v. 24, n. 2, p. 115–139, may 2006. ISSN 0734-2071. Available from Internet:
<https://doi.org/10.1145/1132026.1132027>.

MUSUMECI, F. et al. Machine-learning-assisted ddos attack detection with p4 language.
In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC).
[S.l.: s.n.], 2020. p. 1–6.

NOSSENSON, R.; POLACHECK, S. On-line flows classification of video streaming
applications. In: . [S.l.: s.n.], 2015. p. 251–258.

POLIKAR, R. Polikar, r.: Ensemble based systems in decision making. ieee circuit syst.
mag. 6, 21-45. Circuits and Systems Magazine, IEEE, v. 6, p. 21 – 45, 10 2006.

QUINLAN, J. R. Simplifying decision trees. Int. J. Man-Mach. Stud., Academic Press
Ltd., GBR, v. 27, n. 3, p. 221–234, sep. 1987. ISSN 0020-7373. Available from Internet:
<https://doi.org/10.1016/S0020-7373(87)80053-6>.

https://github.com/ahlashkari/CICFlowMeter
https://doi.org/10.1145/3307650.3322259
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1132026.1132027
https://doi.org/10.1016/S0020-7373(87)80053-6

61

QUINLAN, J. R. C4.5: Programs for Machine Learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1993. ISBN 1558602380.

SANTOS DA SILVA, A. et al. Identification and selection of flow features for accurate
traffic classification in sdn. In: 2015 IEEE 14th International Symposium on Network
Computing and Applications. [S.l.: s.n.], 2015. p. 134–141.

SANVITO, D.; SIRACUSANO, G.; BIFULCO, R. Can the network be the ai
accelerator? In: Proceedings of the 2018 Morning Workshop on In-Network
Computing. New York, NY, USA: Association for Computing Machinery, 2018.
(NetCompute ’18), p. 20–25. ISBN 9781450359085. Available from Internet:
<https://doi.org/10.1145/3229591.3229594>.

SAPIO, A. et al. Scaling Distributed Machine Learning with In-Network
Aggregation. 2019.

SAUERESSIG, M. p4features. 2020. Available from Internet: <https://github.com/
LaironSk/p4features>. Accessed in: 2020-11-08.

SHARAFALDIN, I.; LASHKARI, A. H.; GHORBANI, A. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In: . [S.l.: s.n.], 2018. p.
108–116.

SHARAFALDIN, I. et al. Developing realistic distributed denial of service (ddos) attack
dataset and taxonomy. In: . [S.l.: s.n.], 2019. p. 1–8.

SIKORA, M. et al. Design of advanced slow denial of service attack generator. 2020
12th International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), p. 99–104, 2020.

SIMSEK, G. et al. Dropppp: A p4 approach to mitigating dos attacks in sdn. In: YOU,
I. (Ed.). Information Security Applications. Cham: Springer International Publishing,
2020. p. 55–66. ISBN 978-3-030-39303-8.

SIRACUSANO, G.; BIFULCO, R. In-network neural networks. CoRR, abs/1801.05731,
01 2018.

SONCHACK, J. jsonch/turboflow. 2017. Available from Internet: <https:
//github.com/jsonch/p4_code/tree/master/netronome/turboflow>. Accessed in:
2020-11-26.

WOLFE, S. Amazon’s one hour of downtime on Prime Day
may have cost it up to $100 million in lost sales. Business In-
sider, 2018. Available from Internet: <https://www.businessinsider.com/
amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7>. Accessed in:
2020-11-03.

XIONG, Z.; ZILBERMAN, N. Do switches dream of machine learning? toward
in-network classification. In: Proceedings of the 18th ACM Workshop on Hot
Topics in Networks. New York, NY, USA: Association for Computing Machinery,
2019. (HotNets ’19), p. 25–33. ISBN 9781450370202. Available from Internet:
<https://doi.org/10.1145/3365609.3365864>.

https://doi.org/10.1145/3229591.3229594
https://github.com/LaironSk/p4features
https://github.com/LaironSk/p4features
https://github.com/jsonch/p4_code/tree/master/netronome/turboflow
https://github.com/jsonch/p4_code/tree/master/netronome/turboflow
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://doi.org/10.1145/3365609.3365864

62

YAN, Q. et al. Software-defined networking (sdn) and distributed denial of service
(ddos) attacks in cloud computing environments: A survey, some research issues, and
challenges. IEEE Communications Surveys & Tutorials, v. 18, p. 1–1, 10 2015.

ZARGAR, S. T.; JOSHI, J.; TIPPER, D. A survey of defense mechanisms against
distributed denial of service (ddos) flooding attacks. IEEE Communications Surveys &
Tutorials, v. 15, p. 2046 – 2069, 11 2013.

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Contextualization
	1.2 Motivation
	1.3 Goals
	1.4 Outline

	2 Background
	2.1 Denial of Service
	2.2 Programmable Data Planes
	2.3 Random Forests
	2.3.1 Classification Trees
	2.3.2 Ensemble

	3 Related Work
	3.1 DoS Detection on the Data Plane
	3.2 Machine Learning on the Data Plane

	4 BACKORDERS
	4.1 Approach Overview
	4.2 RF in a Programmable Data Plane
	4.3 BACKORDERS Architecture
	4.3.1 External Components
	4.3.1.1 Network Traffic Collector
	4.3.1.2 Feature Computation
	4.3.1.3 Offline Classifier
	4.3.1.4 RF Trainer

	4.3.2 RF Mapper
	4.3.3 Feature Extractor
	4.3.3.1 Simple Features
	4.3.3.2 Approximating Means

	4.3.4 Online Classifier

	5 Implementation and Evaluation
	5.1 Prototype
	5.2 Methodology
	5.3 Results
	5.3.1 Learner Scores
	5.3.2 Scalability Analysis

	5.4 Applicability

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Future Work

	References

