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Spectral density of dense random networks and the breakdown of the Wigner semicircle law
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Although the spectra of random networks have been studied for a long time, the influence of network topology
on the dense limit of network spectra remains poorly understood. By considering the configuration model of
networks with four distinct degree distributions, we show that the spectral density of the adjacency matrices of
dense random networks is determined by the strength of the degree fluctuations. In particular, the eigenvalue
distribution of dense networks with an exponential degree distribution is governed by a simple equation, from
which we uncover a logarithmic singularity in the spectral density. We also derive a relation between the fourth
moment of the eigenvalue distribution and the variance of the degree distribution, which leads to a sufficient
condition for the breakdown of the Wigner semicircle law for dense random networks. Based on the same
relation, we propose a classification scheme of the distinct universal behaviors of the spectral density in the
dense limit. Our theoretical findings should lead to important insights on the mean-field behavior of models
defined on graphs.
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I. INTRODUCTION

A random network or graph is a collection of nodes joined
by edges following a probabilistic rule. Random networks
are formidable tools to model large assemblies of interacting
units, like neurons in the brain, computers and routers on
the internet, or persons forming a friendship network [1].
Motivated by our increasing ability to collect and process vast
amounts of empirical data, the theory of random networks has
experienced enormous progress, leading to important insights
in physics, biology, and sociology [2]. The implications of the
structure of networks to the dynamical processes occurring on
them remains a fundamental topic in network theory [3].

Dynamical processes on a random network are to a large
extent governed by the spectrum of the corresponding adja-
cency random matrix. This is a random matrix where each
entry equals the strength of the interaction between a pair of
nodes. The study of a broad range of problems amounts to
linearizing a large set of differential equations [4–6], coupled
through a random network, around a stationary state, whose
stability and transient dynamics are ultimately determined by
the eigenvalue distribution of the adjacency matrix. Examples
in this context are the study of the epidemic threshold for
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the spreading of diseases [7], the synchronization transition
in networks of coupled oscillators [8,9], and the functional
stability of large biological systems, such as gene regulatory
networks [10,11], ecosystems [12–14], and neural networks
[15–17]. The spectrum of the adjacency matrix also contains
information about the network structure, since the trace of
the adjacency matrix raised to a certain power yields the
number of network loops of a given length [18]. Therefore,
the problem of how the network architecture influences the
spectrum of the adjacency matrix has attracted considerable
research effort [4,19–25].

Synthetic models of random networks provide a controlled
way to study the role of the network structure on the spectrum
of the adjacency matrix. The degree sequence is the most basic
tool to characterize the graph structure [1]. The degree of a
node counts the number of edges attached to the node, while
the degree sequence specifies all network degrees. When a
network has an infinitely large number of constituents, it is
natural to consider the degree distribution, i.e., the fraction
of nodes with a certain degree, instead of dealing with the
degree sequence. The configuration model stands out as one
of the most fundamental and versatile models of random
graphs [1,26–28], since it enables the degree distribution to be
freely specified while keeping the pattern of interconnections
entirely random. From a practical viewpoint, the configura-
tion model resolves one of the main shortcomings of Erdös-
Rényi random graphs [29–31], namely, its Poisson degree
distribution, which has little resemblance to the long-tailed
degree distributions found in empirical networks [32,33]. The
priceless possibility to fix the degree distribution of a random
graph is not only useful to model the structure of empirical
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networks but offers the ideal setting to examine the impact of
degree fluctuations on the spectrum of the adjacency matrix.

There has been a significant amount of numeric and an-
alytic work on the spectral properties of adjacency random
matrices [4,19–25,34–41]. A remarkable analytic result is the
set of exact and mathematically rigorous equations determin-
ing the eigenvalue distribution of the configuration model
[36–38,42]. These equations form a natural starting point to
study the impact of degree fluctuations on network spectra.
Unfortunately, aside from a few particular cases [24,39,42],
these equations can be analytically solved only in the dense
limit [36,37], when the mean degree becomes infinitely large
and random networks approach a fully connected structure.

The analytic solution for the dense limit of the afore-
mentioned equations is at the root of perturbative and
nonperturbative approximations for the eigenvalue distribu-
tion of large-degree random networks [20,34,43]. With the
exception of graphs with a power-law degree distribution
[19,21,35] whose moments are divergent, one expects that
the eigenvalue distribution of undirected random networks
converges, in the dense limit, to the Wigner semicircle dis-
tribution of random matrix theory, reflecting a high level of
universality. This expectation has been confirmed numerically
[19] and analytically [36,37] for Erdös-Rényi and regular ran-
dom graphs. However, recent work [44] has rigorously shown
that the spectrum of the configuration model does depend on
the degree distribution in the dense limit. The main theorem
in Ref. [44] also provides an approach to compute the spectral
density for specific degree distributions. In spite of these rigor-
ous results, a more detailed understanding of how the structure
of a dense random network influences its spectrum, and the
universal status of the Wigner semicircle law, is still lacking.

In this paper, we study the dense limit of the eigenvalue
distribution of undirected networks drawn from the configura-
tion model. We analyze four examples of degree distributions
in which all moments are finite and the variances scale dif-
ferently with the average degree, and we show that the dense
limit of the eigenvalue distribution is determined by the degree
fluctuations. In particular, we derive an equation yielding the
eigenvalue distribution of dense random graphs with an ex-
ponential degree distribution [28], from which we unveil the
existence of a logarithmic divergence in the spectral density
and the absence of sharp spectral edges, i.e., the eigenvalue
distribution of exponential random graphs is supported on
the entire real line. These are remarkable differences with
respect to the Wigner semicircle distribution of random matrix
theory [45]. We also discuss how the analytic equations for the
spectral density can be derived in two different ways: from the
dense limit of the exact resolvent equations in Refs. [36,37,42]
and from the main theorem proved in Ref. [44]. Based on an
exact calculation of the fourth moment of the eigenvalue dis-
tribution, we obtain a sufficient condition for the breakdown
of the Wigner semicircle law. This condition is given only in
terms of the variance of the degree distribution. We finish the
paper by proposing a classification of the different universal
behaviors of the eigenvalue distribution of the configuration
model in the dense limit, based on an exponent characteriz-
ing how the variance of the degree distribution diverges for
increasing mean degrees.

Our paper is organized as follows. In the next section, we
define the adjacency matrix of random networks and the spec-
tral density. Section III introduces the configuration model
and defines the degree distributions studied in this paper.
In Sec. IV, we present numeric and analytic results for the
dense limit of the spectral density for each example of degree
distribution. Section IV explains how the analytic equations
for the spectral density are obtained from the dense limit of the
resolvent equations, while in Sec. V we derive these equations
from the main theorem in Ref. [44]. The condition for the
breakdown of the Wigner semicircle law and the classification
of the different universal behaviors are discussed in Sec. VI.
We summarize our results and conclude in Sec. VII.

II. THE ADJACENCY MATRIX OF RANDOM NETWORKS

Let N be the total number of network nodes. The set of
binary random variables {Ci j}i, j=1,...,N specifies the network
structure: If Ci j = 1, there is an undirected link i ↔ j between
nodes i and j, while Ci j = 0 means this link is absent. We also
associate a random weight Ji j ∈ R to each edge i ↔ j, which
accounts for the interaction strength between nodes i and j.
We consider undirected simple random networks that have no
self-edges nor multiedges, in which Ci j = Cji, Ji j = Jji, and
Cii = 0.

The degree Ki = ∑N
j=1 Ci j of node i is a random variable

that counts the number of nodes attached to i, while the de-
gree sequence K1, . . . , KN provides global information on the
fluctuations of the network connectivity. In the limit N → ∞,
it is more convenient to work with the degree distribution

pk = lim
N→∞

1

N

N∑
i=1

δk,Ki , (1)

where δ is the Kronecker symbol. The average degree c and
the variance σ 2 of pk read

c =
∞∑

k=0

kpk, σ 2 =
∞∑

k=0

pk (k − c)2.

The degree distribution pk is one of the primary quantities
to characterize the structure of random networks in the limit
N → ∞.

We will study the eigenvalue distribution of the N × N
symmetric adjacency matrix A, with elements defined as

Ai j = Ci jJi j√
c

. (2)

The adjacency matrix fully encodes the network structure,
along with the coupling strengths between adjacent nodes.
The empirical spectral measure of A is given by

ρN (λ) = 1

N

N∑
α=1

δ(λ − λα ), (3)

where λ1, . . . , λN are the (real) eigenvalues of A. By introduc-
ing the N × N resolvent matrix

G(z) = (z − A)−1, (4)

with z = λ − iη on the lower half complex plane, the em-
pirical spectral measure follows from the diagonal elements
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TABLE I. The analytic expression for the degree distribution pk

and the corresponding variance σ 2 in the case of regular, Poisson, ex-
ponential, and Borel random networks. The Borel degree distribution
is defined for c > 1, while the other three distributions are defined
for c > 0. The Borel degree distribution is supported in k � 1, the
degree distribution of regular graphs is supported at k = c, and both
Poisson and exponential degree distributions are supported in k � 0.

Regular Poisson Exponential Borel

pk δk,c
e−cck

k!
1

c+1

(
c

c+1

)k e− (c−1)
c k

k!

[ k(c−1)
c

]k−1

σ 2 0 c c2 + c c3 − c2

of G(z):

ρN (λ) = 1

πN
lim

η→0+

N∑
i=1

ImGii(z). (5)

In the limit N → ∞, the empirical mean of ImGii(z) normally
converges to its ensemble-averaged value, obtained from the
distribution of A, which implies that ρ(λ) = limN→∞ ρN (λ)
is well-defined. Here we will study the spectral density ρ(λ)
when the average degree grows to infinity, hence the limit c →
∞ is performed after N → ∞. The scaling of the elements
Ai j with the average degree c in Eq. (2) ensures the spectral
density has a finite variance when c → ∞.

III. THE CONFIGURATION MODEL OF NETWORKS

We study random networks with arbitrary degree dis-
tributions, known as the configuration model of networks
[1,26–28], where pk is specified at the outset. A single in-
stance of the adjacency matrix of the configuration model is
created as follows. First, the degrees K1, . . . , KN are drawn
independently from a common distribution pk . After assigning
Ki stubs of edges to each node i (i = 1, . . . , N), a pair of
stubs is uniformly chosen at random and then connected to
form an edge. This last step is repeated on the remainder
stubs until there are no stubs left, and the outcome is a
particular matching of the stubs with the prescribed random
degrees K1, . . . , KN . We do not allow for the existence of
self-edges and multiedges in the random network. We set
Ai j = Ji j/

√
c if there is an edge connecting nodes i and j,

and Ai j = 0 otherwise. The coupling strengths {Ji j}i, j=1,...,N

are independently and identically distributed random variables
drawn from a common distribution PJ . We refer to Ref. [1] for
other properties and subtleties of the configuration model. In
the limit N → ∞, the ensemble of adjacency random matrices
A constructed from this procedure is specified by the degree
distribution pk and the distribution of weights PJ . This is
probably the simplest network model that allows us to clearly
exploit the influence of degree fluctuations on the spectral
properties of A.

We will present results for regular, Poisson, exponential,
and Borel degree distributions. The analytic expression for
pk in each case, together with the variance σ 2, are displayed
in Table I. The properties of the configuration model with
Poisson and exponential degree distributions have been
extensively discussed in Refs. [1,28]. The degree distributions

FIG. 1. The Borel degree distribution pk (see Table I) for differ-
ent values of the average degree c. The inset depicts the exponential
tail of pk for large k. The values of c in the inset are c = 40 (solid
line), c = 20 (dotted line), c = 10 (dashed line), and c = 5 (dot-
dashed line).

in Table I obey the following properties: (i) pk is parametrized
solely in terms of the mean degree c, (ii) all moments of
pk are finite for c < ∞, and (iii) for sufficiently large c,
the variances obey σ 2

reg < σ 2
pois < σ 2

exp < σ 2
bor. These four

examples of degree distributions are very convenient to study,
in a controllable way, the effect of degree fluctuations on
random networks as we increase c. Indeed, we can compare
for c � 1 the spectral density of networks with the same
average degree, but with increasing variances σ 2. We do
not consider here random networks with power-law degree
distributions [32,33], since in this case higher-order moments
of pk already diverge for finite c.

Although the Borel degree distribution is not commonly
employed in the study of random networks, the rate of its
exponential decay is smaller than the one of the exponential
degree distribution with the same c, which makes the Borel
distribution well-suited to our analysis. The Borel distribu-
tion, introduced in the context of queuing theory [46,47], also
appears as the distribution of the total progeny in a Galton-
Watson branching process with Poisson distributed degrees
[48]. Figure 1 illustrates the Borel degree distribution for dif-
ferent average degrees. For fixed k � c, the Borel distribution
pk attains a finite limit as c → ∞, in contrast to the Pois-
son and the exponential degree distribution. For k = O(c),
the Borel distribution pk is proportional to 1/

√
c for c � 1.

Therefore, Borel networks with large c contain a finite fraction
of nodes with c-independent degrees and a smaller fraction
of nodes with degrees proportional to c. Note also that pk

in Fig. 1 is highly skewed, its mode is located at k = 1, and
the tail of pk decays as ln pk ∼ ( 1

c + ln ( c−1
c ))k for k � 1. All

network models considered here have exponentially decaying
degree distributions.

IV. THE DENSE LIMIT OF THE SPECTRAL DENSITY

The configuration model of networks has a key property:
In the limit N → ∞, the set of nodes in the neighborhood
of a given node, drawn uniformly from the network, is ar-
ranged in a treelike structure [42]. Nevertheless, the topology
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of random networks is fundamentally different from a Cayley
tree [49] in the sense that boundary nodes are absent from the
configuration model and cycles do survive in the limit N →
∞, but their average length scales as ln N for N � 1. Roughly
speaking, a random network can be seen as a Cayley tree with
fluctuating degrees, wrapped onto itself.

In the limit N → ∞, the spectral density is obtained from

ρ(λ) = 1

π
lim

η→0+

∫
Img�0

d2gP (g)Img, (6)

where d2g ≡ dRegdImg, and P (g) is the joint distribution
of the real and imaginary parts of Gii(z). The symbol

∫
Img�0

represents an integral over g ∈ C restricted to the upper-half
complex plane. The distribution of the resolvent follows from
the solution of the coupled equations [36,37]

P (g) =
∞∑

k=0

pk

∫
Img�0

[
k∏

	=1

d2g	Pcav(g	)

]

×
〈
δ

[
g −

(
1

z − 1
c

∑k
	=1 J2

	 g	

)]〉
J1,...,Jk

, (7)

Pcav(g) =
∞∑

k=0

kpk

c

∫
Img�0

[
k−1∏
	=1

d2g	Pcav(g	)

]

×
〈
δ

[
g −

(
1

z − 1
c

∑k−1
	=1 J2

	 g	

)]〉
J1,...,Jk−1

, (8)

where 〈. . . 〉J1,...,JL denotes the average over the independent
interaction strengths J1, . . . , JL, distributed according to PJ .
The quantity Pcav(g) is the joint distribution of the real and
imaginary parts of the resolvent elements G( j)

ii (z) on the cavity
graph [36,50], defined as the graph where an arbitrary node
j and all its edges have been removed. Equations (7) and (8)
have been derived using both the cavity [36,50] and the replica
method [37] of disordered systems, based on the local treelike
structure of the configuration model. Equations (6)–(8) have
been rigorously proven in Ref. [42] and they are exact in the
limit N → ∞, constituting an interesting point of departure to
study the dense limit c → ∞ of the spectral density ρ(λ).

Let F (G) be an arbitrary function of the complex random
variable G distributed as Pcav(g). By defining the average of
F (G),

〈F (G)〉 =
∫

Img�0
d2gPcav(g)F (g),

we can use Eq. (8) and rewrite the above expression as

〈F (G)〉 =
∫

Imq�0
d2qWcav(q)F

(
1

z − q

)
, (9)

where we introduced the distribution of Q′ ≡ 1
c

∑K−1
	=1 J2

	 G	

Wcav(q) =
∞∑

k=0

kpk

c

∫
Img�0

[
k−1∏
	=1

d2g	Pcav(g	)

]

×
〈
δ

(
q − 1

c

k−1∑
	=1

J2
	 g	

)〉
J1,...,Jk−1

, (10)

with the random variable K denoting the degree of an uni-
formly chosen node. Following an analogous procedure, we
can also rewrite the spectral density in terms of the distribution
W (q) of the random variable Q ≡ 1

c

∑K
	=1 J2

	 G	,

ρ(λ) = 1

π
lim

η→0+

∫
Imq�0

d2qW (q)Im

(
1

z − q

)
, (11)

defined as

W (q) =
∞∑

k=0

pk

∫
Img�0

[
k∏

	=1

d2g	Pcav(g	)

]

×
〈
δ

(
q − 1

c

k∑
	=1

J2
	 g	

)〉
J1,...,Jk

. (12)

We note that W (q) and Wcav(q) are distributions of sums of
independent complex random variables containing a random
and large number of terms. For the examples of pk inTable I,
one can show that, in the limit c → ∞, the number of sum-
mands in Q and Q′ diverges. Thus, instead of working with the
distributions of the resolvent, it is more convenient to extract
the c → ∞ limit of W (q) and Wcav(q). Let us introduce the
characteristic functions ϕ(p, t ) and ϕcav(p, t ) of, respectively,
W (q) and Wcav(q):

ϕ(p, t ) =
∞∑

k=0

pk exp [kSc(p, t )], (13)

ϕcav(p, t ) =
∞∑

k=0

kpk

c
exp [(k − 1)Sc(p, t )], (14)

with

Sc(p, t ) = ln

[ ∫
Img�0

d2gPcav(g)
∫ ∞

−∞
dxPJ (x)

× exp

(
− ipx2Reg

c
− itx2Img

c

)]
. (15)

To study the dense limit c → ∞, we expand Sc(p, t ) in powers
of 1/c, keeping in mind that the moments of Pcav(g) depend
on c. The leading term

S∞(p, t ) = − i〈J2〉J

c
(p Re〈G〉∞ + t Im〈G〉∞) (16)

should yield the dense limit c → ∞ of the spectral density.
Note that we assumed 〈G〉 converges to a well-defined limit
〈G〉∞ when c → ∞. To proceed further, we specify the degree
distribution pk in Eqs. (13) and (14).

A. Regular and Poisson random graphs

Although it is well known that the dense limit of ρ(λ) con-
verges to the semicircle distribution for regular and Poisson
random graphs, it is instructive to illustrate our approach for
these simple models, characterized by highly peaked degree
distributions around the mean value c. Substituting the explicit
forms of pk (see Table I) in Eqs. (13) and (14), and using the
asymptotic behavior of Eq. (16), we obtain

ϕ(p, t ) = ϕcav(p, t ) = e−i〈J2〉J (p Re〈G〉∞+t Im〈G〉∞ ), (17)
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FIG. 2. The dense limit c → ∞ of the spectral density of regular
and Poisson random networks with coupling strengths drawn from
PJ (x) = δ(x − 1). The solid line represents the Wigner semicircle
distribution, Eq. (20), and the symbols are numerical diagonalization
results obtained from 100 samples of 104 × 104 adjacency random
matrices with c = 100.

which promptly leads to the Dirac delta distribution in the
complex plane:

W (q) = Wcav(q) = δ(q − 〈J2〉J〈G〉∞). (18)

The fact that the resolvent statistics of regular and Poisson
random graphs are both described by the same characteristic
function, Eq. (17), already demonstrates that these models
exhibit the same universal behavior for c → ∞. The analytic
expression for Wcav(q) allows us to determine 〈G〉∞ through
Eq. (9), which fulfills

〈G〉∞ = 1

z − 〈J2〉J〈G〉∞ , (19)

while the spectral density simply follows from Eq. (11):

ρ(λ) = 1

π
lim

η→0+
Im

(
1

z − 〈J2〉J〈G〉∞

)
.

By solving the quadratic Eq. (19), we recover the Wigner
semicircle law for the Gaussian ensembles of random matrix
theory [45]:

ρw(λ) =
{ 1

2π〈J2〉J

√
4〈J2〉J − λ2, if |λ| < 2

√
〈J2〉J

0, if |λ| � 2
√

〈J2〉J .
(20)

Figure 2 compares Eq. (20) with numerical results obtained
from diagonalizing large adjacency matrices A with average
degree c = 100. The correspondence between the numerical
data and the theoretical expression is excellent for both regular
and Poisson random graphs.

B. Exponential random graphs

In this subsection, we consider the dense limit of exponen-
tial random graphs, for which pk decays slower than Poisson
graphs for k � 1 (see Table I). Exponential degree distri-
butions have been observed in some examples of empirical

networks, such as the North American power grid [51] and
the neural network of the worm C. Elegans [52].

Inserting the expressions for S∞(p, t ) and pk in Eqs. (13)
and (14) and taking the limit c → ∞, we obtain the asymp-
totic forms

ϕ(p, t ) = 1

1 + ip〈J2〉JRe〈G〉∞ + it〈J2〉J Im〈G〉∞ ,

ϕcav(p, t ) = 1

[1 + ip〈J2〉JRe〈G〉∞ + it〈J2〉J Im〈G〉∞]2 ,

which already show that the dense limit of ρ(λ) is not
described by the Wigner semicircle law in this case. The
distributions W (q) and Wcav(q) are the Fourier transforms of
their characteristic functions. Defining

K(q, ε) =
∫ ∞

−∞

d p dt

4π2
exp (ip Req + it Imq)

× [ε + ip〈J2〉JRe〈G〉∞ + it〈J2〉J Im〈G〉∞]−1,

(21)

with ε � 1 an auxiliary parameter, W (q) and Wcav(q) are
obtained from

W (q) = K(q, ε = 1), Wcav(q) = −∂K(q, ε)

∂ε

∣∣∣∣∣
ε=1

. (22)

The solution of the integral in Eq. (21) is given by

K(q, ε) = (Imq)

〈J2〉J Im〈G〉∞ δ
(

Req − Imq
Re〈G〉∞
Im〈G〉∞

)

× exp
(
− ε Imq

〈J2〉J Im〈G〉∞
)
,

leading to the analytic expressions

W (q) = (Imq)

〈J2〉J Im〈G〉∞ δ

(
Req − Imq

Re〈G〉∞
Im〈G〉∞

)

× exp

(
− Imq

〈J2〉J Im〈G〉∞

)
, (23)

Wcav(q) = (Imq)Imq

[〈J2〉J Im〈G〉∞]2 δ

(
Req − Imq

Re〈G〉∞
Im〈G〉∞

)

× exp

(
− Imq

〈J2〉J Im〈G〉∞

)
, (24)

where (. . . ) is the Heaviside step function.
As in the previous subsection, Eqs. (23) and (24) depend

on 〈G〉∞, but this quantity can be determined through Eq. (9).
Substituting Wcav(q) in Eq. (9) and calculating the integral,
we get

〈G〉∞ = z

〈J2〉2
J〈G〉2∞

exp

(
− z

〈J2〉J〈G〉∞

)

× Ei

(
z

〈J2〉J〈G〉∞

)
− 1

〈J2〉J〈G〉∞ , (25)

with Ei(. . . ) denoting the complex exponential integral func-
tion [53]. The solutions of the above equation yield the dense
limit of the averaged resolvent 〈G〉∞ on the cavity graph
[36,50]. The expression for ρ(λ) in terms of 〈G〉∞ follows
in an analogous way, i.e., one inserts Eq. (23) in Eq. (11) and
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calculates the remainder integral

ρ(λ) = 1

π
lim

η→0+
Im

[
1

〈J2〉J〈G〉∞ exp

(
− z

〈J2〉J〈G〉∞

)

× Ei

(
z

〈J2〉J〈G〉∞

)]
, (26)

with z = λ − iη. It is suitable to introduce the dimensionless
variable γ (z) ≡ z

〈J2〉J 〈G〉∞ , in terms of which the spectral den-
sity is given by

ρ(λ) = 1

π
lim

η→0+
Im

(
z2 + γ 2〈J2〉J

z γ 2〈J2〉J

)
, (27)

where γ (z) solves the following equation:

〈J2〉Jγ = z2

γ 2e−γ Ei(γ ) − γ
. (28)

Equations (27) and (28) constitute one of the main results
of this paper. In contrast to the resolvent Eq. (19), whose
analytic solution yields the Wigner semicircle law, the fixed-
point Eq. (28) for the c → ∞ limit of exponential graphs
has no analytic solution for arbitrary z. The spectral density
obtained from the numerical solutions of Eq. (28) is shown in
Fig. 3(a), together with direct diagonalization of large adja-
cency matrices of exponential random graphs with c = 100.
The agreement between these two different approaches is
excellent, confirming the exactness of Eqs. (27) and (28).

Figure 3(a) suggests that ρ(λ) diverges at λ = 0. To study
the singular behavior of ρ(λ) as |λ| → 0, one needs to under-
stand how γ (z) vanishes as |z| → 0. With a modest amount of
foresight, we make the following ansatz:

γ (z) = β1
z√

〈J2〉J

+ β2(z)
z2

〈J2〉J
, |z| → 0, (29)

where the function β2(z) is such that lim|z|→0 z2β2(z) = 0, and
the coefficient β1 is independent of z. Plugging this assump-
tion for γ (z) in the right hand side of Eq. (28) and expanding
the result in powers of z up to O(z2), we find that the above
ansatz is consistent with Eq. (28) if β1 and β2(z) are

β1 = ±i, β2(z) = −1

2

[
E + ln

(
− β1z√

〈J2〉J

)]
, (30)

with E representing the Euler-Mascheroni constant. The last
step is to substitute Eq. (29) in Eq. (27) and take the limit
η → 0+, which leads to the logarithmic divergence

ρ(λ) = − 1

π
√

〈J2〉J

[
E + ln

( |λ|√
〈J2〉J

)]
(31)

for |λ| → 0. The choice of the negative sign β1 = −i ensures
that ρ(λ) is non-negative. A divergence in the spectral density
of random graphs at λ = 0 may appear due to different rea-
sons. For instance, the spectrum of protein-protein interaction
networks has a singularity at λ = 0 due to the existence of
duplicated genes [54]. In the context of solid-state physics,
the density of states of a tight-binding model for a quantum
particle hopping on a random graph displays a divergence at
λ = 0 due to the presence of localized eigenstates [55].

FIG. 3. Dense limit of the spectral density ρ(λ) of random net-
works with an exponential degree distribution and coupling strengths
drawn from PJ (x) = δ(x − 1). (a) Comparison between the theoreti-
cal results (black solid lines), obtained from the numerical solutions
of Eqs. (27) and (28) for η = 0, and numerical diagonalizations
(red circles) of 100 samples of 104 × 104 adjacency matrices with
c = 100. (b) The logarithmic divergence of the spectral density for
|λ| → 0. The black solid line is the analytic result of Eq. (31), while
the symbols are data derived from the numerical solutions of Eqs. (7)
and (8) for c = 80 and two values of η: η = 10−4 (brown triangles)
and η = 10−5 (green squares). (c) The exponential behavior of the
spectral density for large |λ|, obtained from the numerical solutions
of Eqs. (27) and (28) for η = 0.

Figure 3(b) compares Eq. (31) with the numerical solu-
tions of the distributional Eqs. (7) and (8) for c = 80 using a
Monte Carlo method, also known as the population dynamics
algorithm [36,37,50]. The numerical results lie on the top of
the theoretical curve up to a certain |λ∗|, below which the
numerical data for ρ(λ) deviates from the logarithmic behav-
ior of Eq. (31). As η decreases, |λ∗| shifts toward smaller
values, confirming that the discrepancy between the numerical
data and Eq. (31) is an artifact due to the finite values of η

employed in the numerical solutions of Eqs. (7) and (8).
As a final important property, we inspect the behavior of

ρ(λ) for |λ| � 1. As illustrated in Fig. 3(c), ρ(λ) displays
a crossover from an exponential behavior ln ρ(λ) ∝ −λ to
a faster decay for increasing |λ|, indicating that the spectral
density does not have sharp spectral edges, but instead is
supported on the entire real line. This is also consistent with
a stability analysis of the fixed-point Eq. (28), which shows
that the complex solution for γ (z) remains stable for |λ| � 1.
We point out that a perturbative study of Eq. (28) for |λ| � 1
is not able to capture the analytic form describing the tails of
ρ(λ). This should not come as a surprise, as the tails of ρ(λ)
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FIG. 4. The spectral density of random networks from the con-
figuration model with a Borel degree distribution (see Table I)
for different average degrees c and coupling strengths drawn from
PJ (x) = δ(x − 1). All results are obtained from the numerical solu-
tions of Eqs. (7) and (8) using the population dynamics algorithm
with η = 10−3 (a)–(c) and η = 10−4 (d). Figures (a)–(c) show the
spectral density of Borel random graphs for different c. Figure
(a) also indicates the positive eigenvalues of open chains with one
and two edges, and their correspondence with the position of δ peaks.
Figure (d) exhibits results for the tails of ρ(λ). The symbols are
results for Borel degree distributions with different c, while the solid
black curve shows the tail of ρ(λ) for exponential dense random
graphs as a comparison (see also Fig. 3). The dashed lines are just
a guide to the eye.

are normally caused by rare statistical fluctuations in the graph
structure [34,43].

C. Borel random graphs

As a final example of network model, we present results
for random networks with a Borel degree distribution (see
Table I). In this case, our approach to derive analytic ex-
pressions for ϕ(p, t ) and ϕcav(p, t ) is not useful, because the
probability generating function of the Borel degree distribu-
tion does not have a closed analytic form [48]. Thus, we obtain
results through the numerical solution of Eqs. (7) and (8) us-
ing the population dynamics algorithm [36,37,50]. For Borel
random graphs, the ratio σ 2/c2 diverges as c → ∞, which is
precisely what renders this model interesting in comparison to
Poisson and exponential graphs.

Figure 4 illustrates the evolution of the spectral density
for increasing average degree. Similar to exponential random
graphs, the spectral density is not described by the semicircle
distribution of random matrix theory, although the values of
c in Fig. 4 are not large enough to observe the dense limit of
ρ(λ). We do not present results for larger values of c than
those in Fig. 4 because the population dynamics algorithm
becomes prohibitively time consuming for increasing c, due
to the large variance of the Borel degree distribution.

Among the distinctive features of Fig. 4, we note the
existence of δ peaks in ρ(λ). These peaks, often located at

the eigenvalues of finite components [23,37,41,56], disappear
for c → ∞, when the fraction of nodes belonging to the
giant component converges to one [1]. The spectral density
in Fig. 4 displays δ peaks at the eigenvalues {−1/

√
c, 1/

√
c}

and {0,−√
2/

√
c,

√
2/

√
c} of the adjacency matrices of open

chains with, respectively, two and three nodes. One can show
that these δ peaks disappear in the dense limit by computing
the fraction �s(c) of nodes that belongs to a finite component
with s > 1 nodes [57]. For Poisson, exponential, and Borel
degree distributions, we obtain �

(pois)
s (c) ∝ e−sc, �

(exp)
s (c) ∝

c1−2s, and �(borel)
s (c) ∝ c1−s for c � 1. Consequently, all net-

work models studied in this paper do not have finite clusters
in the dense limit. In the case of the Borel degree distribu-
tion, ρ(λ) contains δ peaks even for very large c because the
function �(borel)

s (c) decays slower for c � 1 when compared
to Poisson and exponential networks.

We have also inspected the tails of the spectral density of
Borel random graphs. According to Fig. 4(d), the behavior of
ρ(λ) as a function of λ is consistent with a power-law decay
up to a certain threshold λp, above which the data clearly
deviates from a straight line. As a matter of fact, we have
confirmed that ρ(λ) decreases as η → 0+ for values of λ

larger than those appearing in Fig. 4(d). In spite of that, the
overall tendency of the data for increasing c suggests that ρ(λ)
does decay as a power law in the limit c → ∞. The results in
Fig. 4 are insufficient to extract the exponent characterizing
the power-law tails of ρ(λ) for c → ∞, since the spectral
density has not reached its limiting behavior for c = 40. Taken
together, these results indicate that ρ(λ) is supported on the
entire real line.

V. A RIGOROUS RESULT FOR THE SPECTRAL DENSITY
OF THE CONFIGURATION MODEL

In this section, we state the main theorem of Ref. [44] and
explain how the resolvent equations for c → ∞, obtained in
the previous section, are recovered from this theorem. We
use the notation of the previous sections and we discuss the
theorem in a less technical language, which helps to establish
the link between Ref. [44] and the results presented in this
paper in a more straightforward way.

The theorem concerns the spectral density ρ(λ) of the
adjacency matrix A [see Eq. (2)] of the configuration model
in the dense limit. Let ν(κ ) be the probability density of the
rescaled degrees Ki

c (i = 1, . . . , N) in the limit c → ∞:

ν(κ ) = lim
c→∞

∞∑
k=0

pkδ
(
κ − k

c

)
. (32)

The main result of Ref. [44] is the following theorem:
Let {Ki}N

i=1 be i.i.d random variables forming a degree
sequence of the configuration model such that c = o(N ) and
Ji j = 1. In the limit N → ∞, if the distribution of Ki/c con-
verges to a limit distribution ν with a finite second moment,
then ρ(λ) = limN→∞ ρN (λ) is given by ν � ρw, where ρw is
the Wigner semicircle law.

Thus, the spectral density ρ(λ) of the configuration model
with c = o(N ) is given by the free multiplicative convolu-
tion � between the probability density ν of rescaled degrees
and the Wigner semicircle law ρw. The free multiplicative
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convolution ν � ρw between the probability measure associ-
ated to ρw and the probability measure corresponding to ν

is the unique probability measure associated to ρ such that
its S transform Sρ (ω) (ω ∈ C) fulfills the convolution prop-
erty Sρ (ω) = Sν (ω)Sρw (ω), where Sν (ω) and Sρw (ω) are the S
transforms of ν and ρw, respectively.

The free multiplicative convolution and the S transform
were introduced by Voiculescu to deal with the multiplication
of free noncommuting random variables [58]. The S transform
finds applications in random matrix theory, since it is an
important analytic tool to determine the spectral properties of
products of large and independent random matrices from the
spectra of the individual matrices [59,60].

For unbounded measures on R+ and for measures with
zero mean and all moments finite, such as the Wigner semi-
circle distribution, the S transform Sϕ (z) (z ∈ C) of the
corresponding probability density ϕ is obtained from [61,62]

Sϕ (z) = (1 + z)

z
ω−1

ϕ (z), (33)

where

ωϕ (z) = 1

z
Cϕ (1/z) − 1. (34)

The function ω−1
ϕ (z) is the functional inverse of ωϕ (z) with

respect to composition and Cϕ (z) is the Cauchy transform
of ϕ

Cϕ (z) =
∫ ∞

−∞

dλϕ(λ)

z − λ
, (35)

where z lies outside the support of ϕ(λ). Instead of working
directly with the inverse ω−1

ϕ (z) in Eq. (33), it is more con-
venient to express the S transform in terms of the Cauchy
transform [60,63]. Since ω−1

ϕ (ωϕ (z)) = z, we can rewrite
Eq. (33) as follows:

Sϕ[ωϕ (z)] = [1 + ωϕ (z)]

ωϕ (z)
z. (36)

Hence, given the S transform of a probability density ϕ, we
are able to uniquely determine ϕ.

In the context of random matrix theory, Cρ (z) is the trace
of the resolvent matrix

Cρ (z) = lim
N→∞

1

N

N∑
i=1

Gii(z), (37)

which, after setting z = λ − iη, gives access to the spectral
density ρ through Eq. (5). Combining Eqs. (5), (34), and (37),
we can also express the spectral density in terms of ωρ (z):

ρ(λ) = 1

π
lim

η→0+
Im

(ωρ (1/z) + 1

z

)
. (38)

The above theorem holds for networks where c scales
slowly with N such that limN→∞ c

N = 0. In the previous sec-
tion, we have derived results by performing the limit c → ∞
after N → ∞, which also implies that limN→∞ c

N = 0. Con-
sequently, with the exception of dense Borel networks for
which ν(κ ) has a divergent second moment (see Table I),
the results for ρ(λ) derived in the previous section should be
recovered from the above theorem.

A. Regular and Poisson random graphs

Here we apply the theorem to degree distributions pk such
that ν(κ ) = δ(κ − 1), like regular and Poisson degree distri-
butions. The procedure to derive the spectral density from
the theorem comprises three steps: first, we compute the S
transforms Sν and Sρw ; second, we obtain the S transform Sρ

of ρ(λ) from the convolution Sρ (ω) = Sν (ω)Sρw (ω); third, we
derive the resolvent equation from Sρ .

Let us compute the S transform of the Wigner semicircle
law ρw(λ) of Eq. (20) with 〈J2〉J = 1. The Cauchy transform
Cρw (z) of ρw(λ) solves the algebraic equation [63]:

Cρw (z) = 1

z − Cρw (z)
. (39)

Using Eq. (34) and rewriting Eq. (39) in terms of wρw (z), we
get

z = ±
√

ωρw (z)

1 + ωρw (z)
. (40)

Inserting the above expression in Eq. (36) leads to

Sρw (ωρw ) = 1√
ωρw

, (41)

where we have chosen the positive sign in Eq. (40). Equation
(39) for the Cauchy transform of ρw is obtained from the S
transform regardless of the choice of sign in Eq. (40).

Now we turn our attention to the S transform of ν(κ ) =
δ(κ − 1). The Cauchy transform Cν (z) of ν(κ ) reads

Cν (z) = 1

z − 1
. (42)

Combining Eqs. (34) and (42), we get

z = ων (z)

1 + ων (z)
, (43)

which leads to

Sν (ω) = 1 (44)

after substitution in Eq. (36). According to the above theorem,
the S transform of the spectral density reads

Sρ (ω) = Sν (ω)Sρw (ω) = 1√
ω

, (45)

which immediately implies that ρ(λ) is given by the semi-
circle distribution, Eq. (20). We conclude that the spectral
density of dense random networks for which the distribution
of the rescaled degrees Ki/c converges to a δ peak is given by
Eq. (20).

B. Exponential random graphs

For random graphs with an exponential degree distribution,
ν(κ ) reads

ν(κ ) =
{e−κ , if κ � 0

0, if κ < 0.
(46)

The transform Sρw (ω) is given by Eq. (41), hence we just
need to obtain Sν (ω). We combine the Cauchy transform of
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Eq. (46),

Cν (z) =
∫ ∞

0
dκ

e−κ

(z − κ )
= e−zEi(z), (47)

with Eq. (34), obtaining

ων (z) = e−1/z

z
Ei(1/z) − 1. (48)

To derive an explicit expression for Sν (ων ) from Eq. (36), we
have to invert analytically the above equation and find z =
φ(ων ). The analytic form of φ(ων ) is usually obtained when
the Cauchy transform has a polynomial form [63], as in the
case of the Wigner semicircle distribution. Unfortunately, here
this is not the case, but we can still obtain from Eq. (48) a
self-consistent equation for the inverse function φ(ων ),

φ(ων ) = 1

ων

exp

[
− 1

φ(ων )

]
Ei

[
1

φ(ων )

]
− φ(ων )

ων

, (49)

while the S transform follows from Eq. (36),

Sν (ων ) = (1 + ων )

ων

φ(ων ), (50)

with ων = ων (z). The solution of Eq. (49) determines Sν (ων )
through Eq. (50).

Now we are ready to recover the equations determining
ρ(λ) of exponential random graphs using the theorem of
Ref. [44]. The S transform of ρ(λ) follows from the convo-
lution

Sρ (ωρ ) = Sν (ωρ )Sρw (ωρ ) = (1 + ωρ )

ωρ
√

ωρ

φ(ωρ ). (51)

From Eq. (36), we conclude that φ(ωρ ) must also fulfill

z
√

ωρ = φ(ωρ ) (52)

for z outside the support of ρ(λ). Substituting the above rela-
tion in Eq. (49), we find an equation that determines ωρ (1/z):√

ωρ (1/z)

z
= 1

ωρ (1/z)
exp

[
− z√

ωρ (1/z)

]
Ei

[
z√

ωρ (1/z)

]

− 1

z
√

ωρ (1/z)
. (53)

The solution for ωρ (1/z) at z = λ − iη allows us to compute
the spectral density using Eq. (38). Setting

γ (z) = z√
ωρ (1/z)

, (54)

we conclude that Eqs. (38) and (53) are identical to Eqs. (27)
and (28), respectively. We also identify

√
ωρ (1/z) = 〈G〉∞ as

the averaged resolvent on the cavity graph.

VI. THE FOURTH MOMENT OF THE EIGENVALUE
DISTRIBUTION

The results of Secs. IV and V show that the dense limit of
ρ(λ) depends on the degree distribution of the configuration
model and the scope of the Wigner semicircle law is limited
to graphs where pk becomes highly concentrated around the
mean degree for c → ∞. In this section, we derive a simple
equation that reveals the influence of degree fluctuations on

the spectral density, giving an exact condition for the break-
down of the Wigner semicircle law. We end up this section by
proposing a classification of the different universal behaviors
of the dense limit of ρ(λ) for the configuration model of
networks.

It is natural to characterize the statistics of random vari-
ables by computing the ratio between their moments. In the
case of locally treelike random networks, the odd moments of
ρ(λ) are zero and the simplest dimensionless parameter of this
type is the kurtosis KN (c),

KN (c) =
∫ ∞
−∞ dλλ4ρN (λ)[∫ ∞
−∞ dλλ2ρN (λ)

]2 = NTrA4

(TrA2)2
, (55)

where we used the definition of the empirical spectral mea-
sure, Eq. (3). When Ji j = √

c ∀i, j, the trace TrAn (n =
2, 3, . . . ) is the total number of closed walks of length n in the
graph, where the length of a walk between nodes i and j is the
number of edges that a walker traverses when going from one
node to the other [18]. The relation between the moments of
ρN (λ) and TrAn is very important in spectral graph theory, as it
connects the eigenvalue statistics with the network structural
properties [18]. The limit N → ∞ must be taken before the
c → ∞ limit.

The trace of the second power of the adjacency matrix A
reads

TrA2 = 1

c

N∑
i=1

∑
j∈∂i

J2
i j, (56)

where ∂i represents the set of nodes connected to i. For N →
∞, we obtain

lim
N→∞

1

N
TrA2 = 1

c

〈∑
j∈∂i

J2
i j

〉
J,K

= 〈J2〉J , (57)

with 〈. . . 〉J,K denoting the ensemble average over the degrees
and the coupling strengths. The trace of the fourth power can
be written as

c2TrA4 = 2
N∑

i=1

∑
j,r∈∂i

J2
i jJ

2
ri −

N∑
i=1

∑
j∈∂i

J4
i j

+
N∑

i=1

∑
j∈∂i

∑
k∈∂ j\i

∑
r∈∂k\ j

CirJi jJjkJkrJri, (58)

where ∂ j \ i is the set of nodes adjacent to j, except for node
i ∈ ∂ j . In the limit N → ∞, the configuration model has a
local treelike structure, cycles of length four are rare, and
hence the last term on the right hand side of Eq. (58) gives
only a subleading contribution, which can be neglected for
N → ∞, yielding the expression

lim
N→∞

1

N
TrA4 = 2

c2
〈K (K − 1)〉K〈J2〉2

J + 1

c
〈J4〉J . (59)

Thus, we obtain an exact analytic expression for the N → ∞
limit of the kurtosis,

K∞(c) = 1

c

〈J4〉J

〈J2〉2
J

+ 2

c
(c − 1) + 2

σ 2

c2
, (60)
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valid for arbitrary degree distributions with first and second
moments finite. Note that K∞(c) is invariant under a rescaling
of the adjacency matrix elements. Equation (60) shows how
the kurtosis of the eigenvalue distribution is linked to the
degree fluctuations.

Let us now establish some general conclusions about the
dense limit of ρ(λ). For c → ∞, K∞(c) behaves as

lim
c→∞ K∞(c) = Kw

(
1 + lim

c→∞
σ 2

c2

)
, (61)

where Kw = 2 is the kurtosis of the Wigner semicircle distri-
bution, Eq. (20). The kurtosis of the distribution ρw(λ) follows
from its moments, which are given by the Catalan numbers
[64]. Equation (61) unveils the central role of the degree
fluctuations to the c → ∞ limit of ρ(λ). It follows that

lim
c→∞

σ 2

c2
> 0 (62)

is a sufficient condition for the breakdown of the Wigner
semicircle law. In the previous section, we have shown that
ρ(λ) converges to the semicircle distribution when the dis-
tribution ν of rescaled degrees is a Dirac δ peak, which is
fully consistent with Eq. (62). One naturally expects that the
eigenvalue statistics of network models that fulfill condition
Eq. (62) is not described by the traditional results of random
matrix theory.

Based on Eq. (61), we can also put forward a classifica-
tion of the different universal behaviors of ρ(λ) in the dense
limit. Let us consider weighted undirected networks, defined
by the adjacency matrix of Eq. (2), in which the variance
of pk scales as σ 2 = Hcα for large c, with H > 0 and α

arbitrary parameters. For this broad class of network models,
the different universal behaviors of ρ(λ) can be classified in
terms of the exponent α that quantifies the strength of the
degree fluctuations. For α < 2, the relative variance σ 2/c2

vanishes for c → ∞, which is a strong indication that pk is
highly peaked around c. Thus, we obtain limc→∞ K∞(c) = 2
for α < 2, and it is reasonable to conjecture that the dense
limit of ρ(λ) is given by the Wigner semicircle law. Regular
and Poisson random graphs are the main examples of this
class of random networks characterized by α < 2. For α > 2,
the limit limc→∞ K∞(c) diverges and we expect ρ(λ) decays
as a power-law ρ(λ) ∼ |λ|−β for |λ| � 1, with an exponent
3 < β < 5. The lower bound on β is due to the finite variance
of ρ(λ) in the dense limit [see Eq. (57)]. Borel random graphs
are characterized by α > 2. Finally, network models with
α = 2 have a finite kurtosis limc→∞ K∞(c) = 2(1 + H ) >

Kw, whose precise value is determined by the prefactor H .
Exponential random networks belong to this latter class where
α = 2 and H = 1. The results presented in Sec. IV are entirely
consistent with this classification scheme.

VII. FINAL REMARKS

Traditional random-matrix theory deals with the spec-
tral properties of large random matrices with independent
and identically distributed elements, providing a theoretical
framework to address the universal properties of large inter-
acting systems [65]. It is widely known that the eigenvalue
distribution of undirected random networks strongly deviates
from the Wigner semicircle law of random matrix theory

in the sparse regime [19,20,34,36,37,41,56], i.e., when the
average degree c is finite. As c grows to infinity, random net-
works gradually become more fully connected and one may
expect that random matrix theory describes well the spectral
properties of dense random networks. We have shown in this
paper that this is generally not the case.

We have studied the spectral density of the adjacency ma-
trix of networks drawn from the configuration model with four
distinct degree distributions. Our main conclusion is that the
dense limit of the spectral density is governed by the strength
of the degree fluctuations. It turns out that the semicircle
distribution of random-matrix theory is recovered only when
the degree distribution becomes, in the dense limit, highly
concentrated around the mean degree. We have also derived
an exact relation between the fourth moment of the eigenvalue
distribution and the variance of the degree distribution, from
which a sufficient condition for the breakdown of the Wigner
semicircle law follows. We point out that the degree distri-
butions considered in this paper have exponentially decaying
tails, implying that all moments of the degree distribution are
finite (the moments diverge only in the dense limit).

From the results derived in this paper, one expects that,
in general, the circular law of random-matrix theory [4,38]
should also fail in describing the spectral density of directed
random networks in the dense limit. Following the techniques
discussed in Secs. IV and VI, the study of the eigenvalue
distribution of directed networks in the dense limit is just
around the corner.

Among the results in Sec. IV, we highlight the analytic
equation for the averaged resolvent [see Eq. (25)], which
determines the spectral density of exponential random graphs
in the dense limit. This equation has no analytic solution,
in contrast to the analogous Eq. (19) yielding the Wigner
semicircle distribution. We have derived important features
of the spectral density of dense exponential graphs, such as
the existence of a logarithmic singularity around the origin
and the absence of sharp spectral edges. In the case of dense
random networks with a Borel degree distribution, we have
studied the spectral density by solving numerically the exact
Eqs. (7) and (8) for large values of the average degree. The
results in Fig. 4 indicate that the spectral density of dense
Borel networks is also supported on the entire real line, ex-
hibiting power-law tails for large eigenvalues. Taken together,
these results reveal remarkable differences with respect to the
Wigner semicircle law.

We have shown how the analytic results of Sec. IV are
recovered from the main theorem in Ref. [44]. While the re-
sults of Sec. IV follow from the equations for the distribution
of the resolvent, the theorem in Ref. [44] is proved through
a series of techniques, including tools from free probability
theory. These two approaches are fundamentally different and
we hope that our work stimulates research toward a rigorous
proof of their equivalence for arbitrary degree distributions.
We also remark that, although the theorem in Ref. [44] is a
compelling result about the spectral density, the approach of
Sec. IV is also very interesting, since it allows to compute the
distribution of the resolvent, the distribution of the self-energy
[66], and the inverse participation ratio [50] in the dense limit.
All these quantities are important, for instance, to study the
localization properties of eigenvectors.
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Based on Eq. (61) for the fourth moment of the eigenvalue
distribution, we have put forward a classification scheme of
the different universal behaviors of the spectral density in the
dense regime. The classification holds for network models
in which the variance σ 2 of the degree distribution scales
as σ 2 ∝ cα for c � 1. Networks with α < 2 exhibit weak
degree fluctuations and we have conjectured that the spectral
density converges to the Wigner semicircle distribution for
c → ∞. Networks with α > 2 display strong degree fluctu-
ations and the spectral density is characterized by a divergent
fourth moment and power-law tails for c → ∞. Finally, the
spectral density of dense networks with α = 2 has a finite
fourth moment, whose value is larger than in the case of the
Wigner semicircle distribution. The results for the specific
degree distributions in Sec. IV are entirely consistent with
this classification scheme. In light of this, it would be inter-
esting to design a network model with a degree distribution
that has finite moments and interpolates among the different
classes.

Overall, our results shed light on the fundamental role of
the degree fluctuations in the dense limit of random networks.
In this context, it would be interesting to inspect the role of

degree fluctuations in the local spectral properties [67–69]
of dense random networks, since the local statistics of the
spectrum usually exhibits a higher level of universality in
comparison to the global statistics. The condition for the
breakdown of the Wigner semicircle law, Eq. (62), should
also apply beyond the realm of network spectra, indicating
whether the degree fluctuations are strong enough to cause
the failure of classic mean-field models on dense networks,
such as the Curie-Weiss model [49] and the Sherrington-
Kirkpatrick model [70]. Thus, we expect our results will
stimulate research toward a better understanding of the dense
limit of various models defined on random graphs, including
ferromagnetic and spin-glass models [71], social dynamics
[72], neural networks [73], and synchronization [8].
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