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LDAVI: LambDa Architecture driVen Implementation applied to Smart Mobility 

 

 

ABSTRACT 

 

Data has been playing an important role in many areas of society. It has massively increased 

among time and can be a powerful source of knowledge. The way data is handled, and this 

knowledge is extracted had also to be adapted to support this huge amount of information 

coming from different sources. Lambda Architecture comes to supply this need of having a 

Big Data architecture capable of processing both historical data and stream data. We present 

LDAVI, a Lambda Architecture Driven Implementation based on Lambda Architecture 

approach (KIRAN, 2015), a data-processing architecture for handling massive amount of data 

by decomposing the problem into three layers: batch layer – for historical data processing - 

serving layer and speed layer – for streaming processing. Main technologies used for building 

this architecture are Apache Hadoop, Apache Spark, Apache Impala and Apache Kafka. The 

main focus is to this describe this architecture as well as its implementation, as it can apply to 

any type of problem where one needs to store and process huge amount of data – either in 

streaming or batch modes. Our objective in this work is to demonstrate the powerful, capacity 

and feasibility of this architecture and that it can be used to approach different type of Big 

Data scenarios. In this work we address Smart Mobility are as our case of study to evaluate 

LDAVI. We analyze passengers smart card and buses GPS and stops location from the city of 

Schenzhen, aiming to extract passengers density and flow. Lambda Architecture is a new 

architectural concept that emerged with the raise of Big Data Analytics. In this work we 

approach and provide an implementation of this architecture, building it with the main Big 

Data technology stack. Although it has started being used in some areas such as search 

engines and platforms requiring real-time processing – such as video stream players – we 

demonstrate that this architecture can also bring benefits for Smart Mobility, more precisely 

in public transportation. Differently from related works, we approach three different types of 

trip: simple trip, connection trip and round trip, what makes the analysis complete and more 

accurate.  

Keywords: Lambda Architecture, Big Data, Smart Mobility, Passenger Density. 



 

5 

 

RESUMO 

Os dados têm desempenhado um papel importante em muitas áreas da sociedade. Eles 

aumentaram massivamente com o tempo e podem ser uma poderosa fonte de conhecimento. 

A forma como os dados são tratados, e esse conhecimento é extraído, também deve ser 

adaptada para suportar essa enorme quantidade de informações vindas de diferentes fontes. A 

Lambda Architecture vem suprir essa necessidade de ter uma arquitetura Big Data capaz de 

processar dados históricos e dados em tempo real. Apresentamos o LDAVI, uma 

implementação da Lambda Architecture baseada na arquitetura Lambda (KIRAN, 2015), uma 

arquitetura de processamento de dados para manipular uma quantidade massiva de dados 

decompondo o problema em três camadas: camada de lote - para processamento de dados 

históricos - camada de veiculação e camada de velocidade - para processamento de streaming. 

As principais tecnologias usadas para construir essa arquitetura são o Apache Hadoop, o 

Apache Spark, o Apache Impala e o Apache Kafka. O foco principal é descrever essa 

arquitetura, bem como sua implementação, pois ela pode ser aplicada a qualquer tipo de 

problema em que seja necessário armazenar e processar uma grande quantidade de dados - 

nos modos de fluxo contínuo ou lote. Nosso objetivo neste trabalho é demonstrar o poder, a 

capacidade e a viabilidade dessa arquitetura e que ela pode ser usada para abordar diferentes 

tipos de cenários de Big Data. Neste trabalho, abordamos a Mobilidade Inteligente como 

nosso caso de estudo para avaliar o LDAVI. Analisamos os cartoes de passageiros, GPS de 

ônibus e paradas de ônibus da cidade de Schenzhen, com o objetivo de extrair a densidade e o 

fluxo de passageiros. Lambda Architecture é um novo conceito arquitetônico que surgiu com 

o aumento da area de Big Data Analytics. Neste trabalho, abordamos e fornecemos uma 

implementação dessa arquitetura, construindo-a com a principal pilha de tecnologia de Big 

Data. Embora tenha começado a ser usado em algumas áreas, como mecanismos de busca e 

plataformas que exigem processamento em tempo real - como reprodutores de fluxo de vídeo 

- demonstramos que essa arquitetura também pode trazer benefícios para a Mobilidade 

Inteligente, mais precisamente no transporte público. Diferentemente dos trabalhos 

relacionados, abordamos três tipos diferentes de viagem: viagem simples, viagem de conexão 

e ida e volta, o que torna a análise completa e mais precisa. 

 

Palavras-chave: Lambda Architecture, Big Data, Mobilidate Inteligente, densidade de 

passageiros 
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1 INTRODUCTION 

 

Data has been playing an important role in many areas of society. It has massively 

increased among time and can be a powerful source of knowledge. The way data is 

handled, and this knowledge is extracted had also to be adapted to support this huge 

amount of information coming from different sources. Lambda Architecture comes to 

supply this need of having a Big Data architecture capable of processing both historical 

data and stream data. We present LDAVI, a Lambda Architecture Driven 

Implementation based on Lambda Architecture approach (KIRAN, 2015), a data-

processing architecture for handling massive amount of data by decomposing the 

problem into three layers: batch layer – for historical data processing - serving layer and 

speed layer – for streaming processing.  

Our objective in this work is to implement a low-cost framework based on 

Lambda Architecture for bus service management, aiming to extract passengers density 

and flow through Smart Card, bus stop geolocation and buses GPS data. We present 

LDAVI, a Big Data framework based on Lambda Architecture approach (KIRAN, 

2015). The main focus is to this describe this architecture as well as its implementation, 

as it can apply to any type of problem where one needs to store and process huge 

amount of data – either in streaming or batch modes. Here we apply this architecture in 

Smart Mobility are to demonstrate its capacity and feasibility. LDAVI is capable of 

analyzing passenger flow and density of public bus service, using data obtained from 

buses GPS, passengers’ smart card and bus stops geolocation. Moreover, bus stops and 

city zones are categorized according to the passengers’ trips purposes: work, residential, 

nightlife, personal. Therefore, this knowledge about density and flow of passengers, 

besides characterizing city areas and bus stops will demonstrate a real scenario of public 

bus demand, enabling better governance and reorganization of the service and providing 

a decision-making source. This work implements Lambda Architecture (KIRAN, 2015) 

as the processing unit for computing passenger and bus data. All computation is 

performed on the top of a Lambda Architecture, a data-processing architecture for 

handling massive amount of data by decomposing the problem into three layers: batch 

layer – for historical data processing - serving layer and speed layer – for streaming 

processing (GRIBAUDO , 2018). Main technologies used for building this architecture 

are Apache Hadoop, Apache Spark, Apache Impala and Apache Kafka.  A case of study 
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analyzing passenger density and flow for the city of Schenzhen, China, has been 

performed. In addition, this city and its bus stops have been categorized according to 

travel purposes.  

Lambda Architecture is a new architectural concept that emerged with the raise 

of Big Data Analytics. In this work we approach and provide an implementation of this 

architecture, building it with the main Big Data technology stack. Although it has 

started being used in some areas such as search engines and platforms requiring real-

time processing – such as video stream players – we demonstrate that this architecture 

can also bring benefits for Smart Mobility, more precisely in public transportation. 

Differently from related works, we approach three different types of trip: simple trip, 

connection trip and round trip, what makes the analysis complete and more accurate.  

 The scope of our case of study falls within Smart Mobility, a Big Data Analytics 

sub-area, that makes cities infrastructure and public services more iterative, efficient 

and intelligent (Pellicer, S. et al., 2013). United Nations (United Nations, 2011) affirms 

that the world's urban population will increase from 2.6 billion in 2010 to 5.2 billion in 

2050, representing 70% of world population. IPEA (IPEA, 2015) shows that 65% of 

Brazil population living in capitals use public transportation. The city of São Paulo - 

most populous Brazilian capital - rose by 14 million bus users in the first quarter of 

2014, according to the SPTrans, enterprise responsible for transportation service 

management in São Paulo, representing an increase of 2.7% over the same period of 

2013. Population growth will bring many challenges to cities, such as an increase in the 

number of public transport users. This can significantly affect the whole bus public 

service, as most of the time we do not know exactly how the number of passengers is 

distributed among the lines and if a certain area of the city is being supplied by the right 

quantity of buses. Therefore, improving quality and availability of public bus service 

has become essential. Passenger flow and density analysis provides great understanding 

of bus service network, showing its real demand and usage, allowing better control, 

management and decision-making.  

(QING, 2009) use data from Beijing Smart Card to show that it is an important 

source of information of passengers’ behavior. The passenger flow analysis, combining 

GPS data and Smart Card is proposed by (DUAN, 2012). (KIEU, 2015) use Smart Card 

information to focus on passenger segmentation - or characterization. (ZHANG, 2014) 

use the same combination of data sources; however, aims to calculate the passenger 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Pellicer,%20S..QT.&newsearch=true
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density of a bus service, showing a model of buses schedule table redefinition. In the 

context of flow analysis and passenger density, none of those works has as focus usage 

of GPS data and smart card together with city areas clustering. (GUIDO, 2017) one of 

the bases for this work, presents a Decision Support System (DSS) framework for 

assisting transport operators and planners in making decisions regarding sustainable 

mobility development, as well as attracting car users to make them migrate to public 

transports. (BRIAND, 2017) presents a model which applies Gaussian mixture model to 

regroup passengers based on their temporal habits in public transportation usage. 

(ERATH, 2017) is a literature review which brings together recent advances in Big Data 

stack to understand travel behavior and inform travel demand models that allow to 

compute what-if scenarios. Moreover, this thesis is the first work in literature to 

implement Lambda Architecture (KIRAN, 2015) as the architecture to deal with this type 

of data. 

  The thesis is organized as: Section 2 presents related works, containing the state 

of the art of this scenario and important papers; Section 3 presents Lambda Architecture 

and LDAVI – Lambda Architecture Driven Implementation, the proposed method; 

Section 4 presents the case of study and its evaluation and Section 5 and 6 give the 

conclusion and the references, respectively. 
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2 RELATED WORK 

Lambda Architecture is a quite new approach to handle Big Data problems. This 

architecture is capable of handling a huge amount of data, by having distributed and 

scalable storage infrastructure and a processing layer supporting both batch and stream 

modes. 

Within the state-of-the-art of Lambda Architecture and urban mobility area of 

Smart Cities, mainly solutions and models for density and passenger flow analysis and 

Origin-Destination (OD) matrix computation were analyzed. Origin-Destination (OD) 

matrix is a matrix that provides passengers travelling information as where the journeys 

begin and end (NASIBOGLU, 2012). There are three main methods to solve this 

problem: intersection of GPS data and Smart Card; separation of the bus lines in 

different segments to determine user's shipping segment; and usage of buses timetables. 

The first uses time-matching algorithms, but may become impractical to require that 

buses have GPS and Fare Collection Systems. The second has low precision results, 

while the third can be affected by several factors such as bus speed and traffic. 

 This chapter presents a literature review approaching Lambda Architecture and 

the three methods described above and also architectures and techniques that surround 

this subject.  

 

2.1 Literature Approaches 

Firstly, we present three literatures describing the Lambda Architecture, and then those 

that focus on the same scope of this work. Lambda Architecture has two different data 

processing streams: batch processing – used for massive workloads for delayed 

processing – and stream processing – or real-time processing for fast data streams 

(GRIBAUDO , 2018). The architecture will be further explained in Section 3. 

After, we describe literatures focusing on our use case scenario related to Smart 

Mobility. Some techniques and tools are similar between then, however important 

variations appear. In this section we describe, one-by-one, the most relevant works and 

in Section 2.2 a comparative analysis is presented containing the most relevant 

differences between them.  
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(KIRAN, 2015) combines lambda architecture approach with cloud 

development. It implements a lambda architecture design to build a data-handling 

backend supported by Amazon EC2. The idea behind the implementation is to provide a 

data management and processing framework to minimize network resources, cost and 

on-demand availability. Results show reduction in cost and benefits for performing 

online analysis and anomaly detection for sensor data. (VILLARI, 2014) approaches 

two main challenges: big data storage and analytics, and large-scale smart environments 

management. A software solution combining AllJoyn and lambda architecture is 

proposed, enabling big data storage, processing and real-time analytics. MongoDB - 

NoSQL database - and Apache Storm - distributed system for real-time processing of 

data streams - fitting in IoT smart environments, compose the solution. (GRIBAUDO, 

2018) presents a modeling approach of Lambda Architecture which provides a fast 

evaluation tool to support design choices about parameters leading to better architecture 

designs. (MUNSHI, 2018) shows a smart grid big data eco-system based on Lambda 

Architecture state-of-the-art for batch and real-time operations. The features of using 

this type of architecture for Smart Grids are presented, such as robustness and fault 

tolerance, low latency, scalability generalization and flexibility. The eco-system uses 

Hadoop Big Data Lake. (YANG, 2017) implements RADStack, an open-source Lambda 

Architecture implementation, designed to provide fast, flexible queries and overcome 

limitations of pure batch processing or pure real-tile systems. It uses Apache Kafka, 

Apache Samza, Apache Hadoop and Druid. 

In this work, we are presenting motivation for developing such architecture, how 

it works and how we implemented it. Lambda Architecture is comprised by three layers: 

batch, speed and serving. Thus far, batch layer is implemented employing Apache 

Hadoop, Apache Spark, Apache Kafka and Apache Zeppelin. We also briefly review 

the other two layers in order to implement them in the next phase of our work, where 

for serving and speed layer we conclude that Storm is the best choice.  

Relate to Smart Mobility, (QING, 2009) only address the analysis of IC Card - 

Smart Card - without considering other data sources, to prove that it is a major source of 

information passenger traffic. It uses the attraction weight coefficient OD calculation for 

the database of public transport passenger flow.  

(LI, 2012) address the use of the second and third methods by proposing two 

steps: separation date card and bus stops matching. It uses the idea of Automatic Data 
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Collection Systems (ADCS) and aims to describe a method to determine the original 

location by associating bus card data and spatial relationship of stop lines or destination.  

(DUAN, 2012) proposes a method for integrating data originated from GPS and 

Smart Card, with the goal of analyzing passenger flow of single-line type for Beijing. 

The work analyzes passenger information from one bus route of Beijing, including 

passenger flow rates, flow from one station and flow of a line, through combining GPS 

and Smart Card data. (ZHANG, 2014) presents, for the first time, the joint use of data 

from GPS and Smart Card to calculate passenger density on a bus service. It proposes a 

new method for fusion of GPS data and Smart Card that can reduce the timing error in 

the type Fare Collection Devices (FCD) data. (KIEU, 2015) use Smart Card information 

to focus on passenger segmentation - or characterization. 

(GUIDO, 2017) one of the bases for this work, presents a Decision Support 

System (DSS) framework for assisting transport operators and planners in making 

decisions regarding sustainable mobility development, as well as attracting car users to 

make them migrate to public transports. Data comes from C.O.R.E - Centrale Operativa 

REgionale - in Calabria, Italy, for acquiring transit data, and moreover, through data 

mining techniques, users' trip information including data such as origin and destination 

of passengers, routes and travel times was also obtained. The proposed framework is 

designed for collecting, integrating, aggregating, fusing, managing and exposing open 

Big Data, and is based on a centralized Database Management System (DBMS). 

 (BRIAND, 2017) presents a model which applies Gaussian mixture model to 

regroup passengers based on their temporal habits in public transportation usage. The 

case of study has been performed on five years of data collected in the city of 

Outaouiais (Canada), showing passenger clusters linked to their fare types and a relative 

stability of public transport usage. (ERATH, 2017) is a literature review which brings 

together recent advances in Big Data stack to understand travel behavior and inform 

travel demand models that allow to compute what-if scenarios. It describes many 

different categories of data used in the transportation are, such as mobile, smart card, 

GPS and point of interests (POI). Related to smart card data, it gives a deeper look in 

origin-destination matrices and activity identification. 

 

2.2 Comparative Analysis 
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In this section, we firstly perform a comparative analysis between the five related works 

approaching Lambda Architecture. Through this analysis, we have a better 

understanding about the architecture itself as well as its applicable use cases. After, we 

perform another comparative analysis between all related works described in section 2.1 

- discarding the five that focus on Lambda Architecture. This analysis considers four 

main items to highlight similarities and differences between them: purpose of the work, 

data source and structure and used methods and algorithms. The result of this analysis is 

described below and summarized in table Table 1. Sections 2.2.1 and 2.2.2 are strictly 

related to our use case of Smart Mobility. 

 

2.2.1 Datasets 

In the intelligent transportation scenario, literature provides different techniques and 

algorithms and data sources. For obvious reason, the two main data sources - datasets - 

used are the those containing GPS data and passengers’ behaviors - most coming from 

Smart Card. These two different datasets are usually crossed for having both passengers’ 

characteristics and OD matrix computation. 

 

2.2.2 Algorithms 

 Time-matching (temporal) algorithm is the most used one to approach this type 

of challenge. This type of algorithm belongs to graph theory area and in this scope is 

used to correlate temporal and spatial metrics. (ZHANG, 2014) and (GUIDO, 2017) use 

this method to correlate public transport geolocation - GPS - and passengers origin-

destination matrix. This approach is used in this work inside lambda architecture. Based 

on sub-section 2.1 other techniques and algorithms appear, such as attraction weight 

coefficient OD calculation and density-based spatial clustering of application with noise 

(DBSCAN). The goal of this algorithm is to identify clusters of high density and noise 

of low density - in this scope, a noise represents a trip randomly made, as well as to 

identify a cluster of any shape and size - which can truly represent a human behavior 

pattern regarding trips. A strong benefit of this algorithm is that is does not require 

predetermination of initial cores of number of clusters. This method is used by (KIEU, 

2015) but is not the case of our work as we have clusters for representing bus-stops and 

city zones well determined.  
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2.2.3 Comparative table 

We approach, for the first time in literature, a Lambda Architecture implementation - 

built with Apache Hadoop and Apache Spark - focused on computing passenger and bus 

data, providing parallel and distributed storage and processing. (GUIDO, 2017) is taken 

as one of our bases, however we go further providing bus-stops and city zones 

categorization. Thereto, not just single journeys are considered but also connection trips 

and round-trips, which provide a full understanding of passengers flow.  

Table 1 shows the main contributions, technologies and applications of Lambda 

Architecture within the five related works.   

Table 1 – Lambda Architecture literature 

 Contribution Technologies and Application 

KIRAN, 2015 Lambda architecture design to build a data-handling 

backend supported by Amazon EC2. Goal is to provide a 

data management and processing framework to minimize 

network resources, cost and on-demand availability.  

Cloud computing, used by Amazon 

EC2 

VILLARI, 2014 Software solution combining AllJoyn and lambda 

architecture is proposed, enabling big data storage, 

processing and real-time analytics.  

MongoDB and Apache Storm - 

distributed system for real-time 

processing of data streams - fitting 

in IoT smart environments. 

GRIBAUDO, 

2018 

Modeling approach of Lambda Architecture that provides 

a fast evaluation tool to support design choices about 

parameters leading to better architecture designs. 

N/A 

MUNSHI, 2018 Lambda architecture implementation for Smart Grids. The 

features of using this type of architecture for Smart Grids 

are presented, such as robustness and fault tolerance, low 

latency, scalability generalization and flexibility.  

Hadoop Big Data Lake, Flume, 

Apache Spark, Apache Hive, 

Apache Impala, Tableau 

YANG, 2017 RADStack, an open-source Lambda Architecture 

implementation, designed to provide fast, flexible queries 

and overcome limitations of pure batch processing or pure 

real-tile systems.  

Apache Kafka, Apache Samza, 

Apache Hadoop and Druid. 

 

Regarding the use case approached in this work, Table 2 shows the main 

contributions, methods and dataset used by the six related works described above 

focusing on Smart Mobility.  
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Table 2 – Smart Mobility literature 

 

 

 

 

 
Contribution Method Dataset 

QING, 2009 Prove that IC Card is an important source of 

knowledge about the passenger flow. 

Attraction Weight 

Coefficient OD 

Calculation 

N/A 

LI, 2012 Method to determine the original location 

through the Smart Card data association and 

the spatial relation between bus stations 

Schedule tables and lines 

segmentation methods 

Smart Card 

 GPS of Beijing 

DUAN, 2012 Characterize flow and OD matrix of one bus 

line from Beijing 

Combine GPS and Smart 

Card  data 

Smart Card 

 GPS of Beijing 

ZHANG, 

2014 

Passenger density and flow computation. 

Evaluation of buses schedule tables choices 

Time-Matching algorithm Smart Card 

 GPS of 

Shenzhen 

KIEU, 2015 Passenger segmentation using smart card data 

and DBSCAN algorithm 

Density-based spatial 

clustering of application 

with noise (DBSCAN) 

algorithm 

Smart Card 

GUIDO, 

2017 

Decision Support System (DSS) framework 

for public transport decision-making 

Spatial-temporal matching 

algorithm 

Transit data 

BRIAND, 

2017 

Model which applies Gaussian mixture model 

to regroup passengers based on their temporal 

habits in public transportation usage 

Gaussian mixture model Smart Card 

ERATH, 

2017 

Literature review which brings recent 

advances in Big Data stack to understand 

travel behavior and inform travel demand 

models that allow to compute what-if 

scenarios. It describes many different 

categories of data used in the transportation 

are, such as mobile, smart card and GPS. 

Related to smart card data, it gives a deeper 

look in origin-destination matrices and activity 

identification. 

 

N/A Smart Card, GPS 
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3 LAMBDA ARCHITECTURE  

 

Lambda Architecture (KIRAN, 2015) is a new architectural concept that emerged with 

the raise of Big Data Analytics. It was first proposed by Nathan Marz (MARZ, 2013) in 

2013 based on hist experience working on distributed data process at Twitter, and came 

to satisfy the needs of a robust system – generic, scalable and fault tolerant data 

processing architecture. The architecture is mainly composed by three different layers, 

responsible for handling massive amount of data. Batch layer – for historical data 

processing - serving layer and speed layer – for streaming processing (GRIBAUDO , 

2018). 

 

3.1 State-of-Art 

In the state-of-art, three different layers compose this architecture pattern: batch layer, 

speed layer and serving layer. The first one – batch layer – is responsible from 

processing all available data using a distributed processing system - batch computation. 

This layer may be useful when we deal with non-live data, monthly reporting, user 

behavior, or heavy processing that cannot be performed on live. The second, speed 

layer, processes data streams in real time and provide real-time views of recent data – 

this type of processing is also known as stream processing. This layer may be useful for 

real-time processing, where we deal with critical problems – airport and flight control, 

ticket sale, healthy, social medial. The third one, serving layer, is responsible for 

merging the outputs from the batch and speed layers, responding to ad-hoc queries. 

Literature says that for implementing Lambda Architecture there is no need to 

implement the three layers, but one can models it and uses only one or more combined, 

depending on the problem to be solved. According to Nathan Marz (MARZ, 2013) some 

of other motivations for building a Lambda Architecture are robustness and fault 

tolerance – hardware failures and humans failures - scalability, generality and 

extensibility – features can be added easily and be easily maintained. Figure 1 shows the 

Lambda Architecture. This architecture is already in place in some important market 

leaders such as Google, Amazon, Twitter, Amadeus, Netflix and Samsung. 
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Figure 1 – Lambda Architecture 

 

3.2 Technology Stack 

The stack for building a Lambda Architecture is vast and it can be defined per layer. 

Starting with distribution and storage, Apache Kafka, Avro, Hadoop HDFS, Cloudera 

Impala – native analytic database for Apache Hadoop, which translates parquets files to 

SQL-like structure - Apache Hive, Elasticsearch and Apache Cassandra are often the 

chosen technologies. Both stream and batch layers can take advantage of them, however 

is mostly batch layer that uses storage technologies as it is the one responsible for 

computing historical data, while stream layer tends to do all computation online and 

only store the real-time views. HDFS is a distributed file system that stores data on 

commodity machines and, as advantage, replicates data avoiding data loss. It is not a 

database, but a data storage that can be used by several data warehouses or databases – 

such as Apache Hive, Apache Cassandra and Impala. HDFS also has the possibility to 

replicate data, reducing data loss and increasing fault-tolerance. Moreover, data can be 

stored in many ways and formats inside HDFS, and it has its own internal computation 

to compress data for reducing data size. For computation, we can highlight Apache 

Hadoop, Apache Spark and Spark Streaming, Apache Drill and Apache Storm and 

HBase. Spark has come taking the place of Hadoop MapReduce as it has often up to 

100x better performance when running in memory and 10x better when running on disk. 

The reason is because Spark loads all data in memory, which sometimes may also be a 
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limitation if infrastructure has not enough memory to enable Spark to do it. Spark 

Streaming is used for building the stream layer. In terms of data visualization and 

analytics, Apache Zeppelin, Tableau, R and Power BI appear as the most used 

technologies. 
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4 LDAVI – LAMBDA ARCHITECTURE DRIVEN IMPLEMENTATION  

 

Lambda Architecture Driven Implementation (LDAVI) is a generic framework based on 

the Lambda Architecture and built using Big Data stack, such as Apache Hadoop, 

Apache Spark and Kafka. LDAVI is an implementation of Lambda Architecture 

(KIRAN, 2015) using Big Data. In this work we approach and provide an 

implementation of this architecture, building it with the main Big Data technology 

stack. Although it has started being used in some areas such as search engines and 

platforms requiring real-time processing – such as video stream players – we 

demonstrate that this architecture can also bring benefits for Smart Mobility, more 

precisely in public transportation. Differently from related works, we approach three 

different types of trip: simple trip, connection trip and round trip, what makes the 

analysis complete and more accurate.  

We perform a use case based on Smart Mobility to demonstrate its feasibility and 

performance capacity. It uses bus information such as data from buses GPS, bus stop 

geolocation and passengers smart cards and through a big data architecture and methods, 

processes it, extracting useful information such as passengers’ density and flow, and bus 

stops segmentation based on travel purposes. Results obtained from the processing 

through our Lambda implementation show the real bus service demand, allowing a 

better understanding about the bus service network and being an important decision-

making source for authorities and responsible for improving this type of service. 

Moreover, among the benefits of applying this implementation we find balanced 

latency, throughput, scalability and fault tolerance. 

 

4.1 Overview 

This work aims to build a generic architecture – based on Lambda Architecture. The 

main goal of the framework is to provide a clear deep analysis in the architecture itself – 

literature - as well as in its implementation, describing the used technologies. Applying 

this Big Data architecture implementation allow us to execute both batch processing – 

historical data – and stream processing – real-time analysis due to the implementation of 

the architecture’s layers, built on top of Big Data stack technologies described in section 

3.2.  
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To demonstrate the operational capacity of the proposed architecture, this work 

applies it in Smart Mobility area. It gives a better understanding about density and flow 

of bus passengers by performing in-depth analysis in passengers’ smart cards and bus 

geolocation. In our approach, as we are mainly interested in understanding density and 

flow of passengers, we focus our experiments on Chapter 4 in historical data 

computation – batch processing. Nevertheless, future work can include stream 

processing in case we want to have a real-time computation, which could allow us to 

compute arrival time of buses or even live demand and flow among the whole bus 

network. 

A density-and-flow-map of a bus line is built representing the real need and 

usage of buses, allowing decision-making for buses management and control. Results of 

the bus stops and city classification can be modeled, according to a defined precision 

radius representing the relation between the bus position and the bus stops location. 

Defining, for instance, that each bus stops owns a radius of 50 meters from its real 

location means all GPS buses records that have a position in this radius precision belong 

to that bus stop. The model also builds a city characterization, aiming to categorize it in 

a scale of purposes areas types: residential, work/business, nightlife, and areas with 

small or high passengers’ density and flow. These categories are pre-defined and chosen 

to be the most general as possible, representing the main city activities, without losing 

information. Future work can improve this categorization and find more purposes by 

using other clustering techniques. 

The travel proposes criteria are pre-defined according to the daytime that the 

buses are taken. In this thesis, we segment travel purposes among Residential, Night Life 

and Work. 

 

4.2 Considerations 

Table 3 shows the main contributions, technologies and applications of Lambda 

Architecture within the five related works and this work.   
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Table 1 - Lambda Architecture literature 

 Contribution Technologies and Application 

KIRAN, 

2015 

Lambda architecture design to build a data-handling 

backend supported by Amazon EC2. Goal is to 

provide a data management and processing 

framework to minimize network resources, cost and 

on-demand availability.  

Cloud computing, used by Amazon EC2 

VILLARI, 

2014 

Software solution combining AllJoyn and lambda 

architecture is proposed, enabling big data storage, 

processing and real-time analytics.  

MongoDB and Apache Storm - distributed 

system for real-time processing of data 

streams - fitting in IoT smart environments. 

GRIBAUDO, 

2018 

Modeling approach of Lambda Architecture that 

provides a fast evaluation tool to support design 

choices about parameters leading to better 

architecture designs. 

N/A 

MUNSHI, 

2018 

Lambda architecture implementation for Smart 

Grids. The features of using this type of architecture 

for Smart Grids are presented, such as robustness 

and fault tolerance, low latency, scalability 

generalization and flexibility.  

Hadoop Big Data Lake, Flume, Apache Spark, 

Apache Hive, Apache Impala, Tableau 

YANG, 2017 RADStack, an open-source Lambda Architecture 

implementation, designed to provide fast, flexible 

queries and overcome limitations of pure batch 

processing or pure real-tile systems.  

Apache Kafka, Apache Samza, Apache 

Hadoop and Druid. 

This work Implement a low-cost framework based on Lambda 

Architecture and Apache technologies 

Apache Hadoop, Apache Spark, Apache 

Kafka, Apache Impala, Scala 

 

Regarding the use case approached in this work, Table 2 shows the main 

contributions, methods and dataset used by the eight related works described above 

focusing on Smart Mobility.  

Table 2 - Smart Mobility literature 

 
Contribution Method Dataset 

QING, 2009 Prove that IC Card is an important source of 

knowledge about the passenger flow. 

Attraction Weight 

Coefficient OD 

Calculation 

N/A 

LI, 2012 Method to determine the original location 

through the Smart Card data association and 

the spatial relation between bus stations 

Schedule tables and lines 

segmentation methods 

Smart Card 

 GPS of Beijing 
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Differently from relate works presented in the two tables above, our work 

combine a Lambda Architecture implementation, using the main Big Data stack – 

Apache stack – with Smart Mobility area. A data processing framework has been built 

on top of Apache Kafka (message broker), Apache Hadoop and Apache Impala 

(storage), Apache Spark (data processing) and Scala (functional programming 

language), and Apache Zepellin (data visualization). This shows the feasibility and 

powerfulness of Lambda Architecture, and by our case of study in section 4, and, among 

the related works found in literature, for the first time apply it to a Smart Mobility 

problem. 

DUAN, 2012 Characterize flow and OD matrix of one bus 

line from Beijing 

Combine GPS and Smart 

Card  data 

Smart Card 

 GPS of Beijing 

ZHANG, 

2014 

Passenger density and flow computation. 

Evaluation of buses schedule tables choices 

Time-Matching algorithm Smart Card 

 GPS of 

Shenzhen 

KIEU, 2015 Passenger segmentation using smart card data 

and DBSCAN algorithm 

Density-based spatial 

clustering of application 

with noise (DBSCAN) 

algorithm 

Smart Card 

GUIDO, 

2017 

Decision Support System (DSS) framework 

for public transport decision-making 

Spatial-temporal matching 

algorithm 

Transit data 

BRIAND, 

2017 

Model which applies Gaussian mixture model 

to regroup passengers based on their temporal 

habits in public transportation usage 

Gaussian mixture model Smart Card 

ERATH, 

2017 

Literature review which brings recent 

advances in Big Data stack to understand 

travel behavior and inform travel demand 

models that allow to compute what-if 

scenarios. It describes many different 

categories of data used in the transportation 

are, such as mobile, smart card and GPS. 

Related to smart card data, it gives a deeper 

look in origin-destination matrices and activity 

identification. 

 

N/A Smart Card, GPS 

This work Implement a low-cost framework based on 

Lambda Architecture for bus service 

management, aiming to extract passengers 

density and flow through Smart Card, bus 

stop geolocation and buses GPS data 

Time-matching algorithm 

applied over GBS, Smart 

Card and bus stops 

geolocation data in a 

Lambda Architecture 

Smart Card, Bus 

GPS and bus 

stops geolocation 

of  Shenzhen   
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4.3 Architecture 

Lambda Architecture Driven Implementation (LDAVI) is an implementation of Lambda 

Architecture (KIRAN, 2015). From section 3.1 where we presented the Lambda 

Architecture – Figure 1 – what we have implemented is the batch and the serving layer 

– merged views from batch layer. Those 2 layers allow us to compute historical data and 

adding stream layer is not complex as it uses the same platform of the batch layer, 

except that the logic behind is different. Bellow in Figure 2 the highlighted part is what 

represent both batch and serving layers. 

 

Figure 2 - LDAVI implementation: batch and serving layers 

 

4.3.1 Data Flow 

The data flow within the architecture can be represented by three different phases: data 

ingestion, data processing and data visualization – Figure 3. This represents what is 

explained in subsections 4.2.1.1, 4.2.1.2 and 4.2.1.3. 



 

27 

 

 

Figure 3 - Data ingestion, data processing and data visualization phases 

 

All of them can be implemented in different ways using several different frameworks 

and technologies. These three phases as well as the technologies used in this thesis to 

implement them are further described in the next subsections. 

 

4.3.1.1 Ingestion 

This step of the data flow within the architecture is responsible for receiving the data 

coming from one or several sources. In our case, data comes from bus GPS and 

passengers Smart Card data.  

The core of this step is Apache Kafka, a message broker built using producer-

consumer approach. Kafka's advantages include the possibility of having different 

sources of information pushing data to it. Furthermore, it relies on partitions and topics, 

which means we can clearly separate different data coming from different sources in 

different topics- Figure 2. Topics represent categories of messages to which records are 

published to and are composed of partitions, representing an ordered and immutable 

sequence of records. Kafka allows topics and partitions configuration relying on data 

replication and fault tolerance. Producers and consumers can read and write data from 

one or several topics and can use the partitions to enable data redundancy. A producer 

has been built for getting data from our sources and pushing it into Kafka, and, 

respectively, a consumer has been built for reading this data from Kafka and ingesting 
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into Hadoop Distributed File System - HDFS. Hadoop comes from Google's 

MapReduce and Google File System, (Big Data: Hadoop, Business Analytics and 

Beyond). Main components of Hadoop are: HDFS, default storage layer in a given 

Hadoop cluster; Name Node, node in Hadoop cluster that provides the client 

information on where in the cluster particular data is stored and if any nodes fail; 

Secondary Node, backup of the Name Node; Job Tracker, node in Hadoop cluster that 

initiates and coordinates MapReduce jobs or the processing of the data; Slave Nodes, 

store data and take direction to process it from the Job Tracker. 

 

 

Figure 4 – Kafka topic structure 

 

The format for data storage chosen in this thesis is parquet files, which rely on 

Apache Parquet, a columnar storage format available to any project in Hadoop 

ecosystem. On top of our data store layer, we use Apache Impala, a native analytic 

database for Apache Hadoop, which translates parquet files in SQL-like structure. 

 

4.3.1.2 Processing 

The second phase is the data processing, responsible for accessing and processing the 

information stored into HDFS. This can be performed in several ways, and the two most 

known for processing data in Big Data is MapReduce and Apache Spark – general 

engine for large-scale data processing. MapReduce was the first approach used in the 

literature, however it presents some limitations comparing to Apache Spark. Spark can 

have up to a 100 times better performance when running in memory and up to 10 times 

when running on disk. This main difference is due to the way both handle data. 

Meanwhile a significant part of MapReduce running cost comes from reading and 
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writing operations on disk, Spark loads all data in memory. It is important to highlight 

the fact that the choice must be done regarding the memory and disk spaces (GU, 2013) 

(ZAHARIA, 2012). 

 In this thesis, our data processing layer uses Spark jobs, which have been 

implemented in Java and Scala and are responsible for aggregating data stored in 

Hadoop, extracting passenger density and flow. Apache Oozie is also used for 

scheduling the jobs. Spark has four libraries: Spark SQL, for formatting and structuring 

data and enabling query requests; Spark Streaming, for real-time and streaming 

applications; MLib, for machine learning approaches; GraphX, for graphs and graph-

parallel computation. In this work, we use only Spark SQL for querying Apache Impala. 

 

4.3.1.3 Visualization 

The last phase is the data visualization, responsible for exposing the results processed by 

Spark jobs. There are many tools to visualize data in Big Data area. The choice of how 

we expose and display data for the target users is extremely important, as is through this 

visualization that knowledge will be extracted and decisions will be taken. One of the 

tools that has gained strength in the past years is Tableau Software, a commercial tool 

having an in-memory data engine and live query engine presenting a fast performance 

when handling massive data. As one of our goals was to implement a low cost 

framework, mainly based in Apache ecosystem, the tool used to expose our passengers 

density and flow was Apache Zeppelin, a web-based tool for dashboard generation 

(Streaming Data Analysis using Apache Cassandra and Zeppelin, 2016). It enables data-

driven and supports Apache Spark and Python.  

Summarizing all our architecture layers, a Kafka producer is responsible for 

ingesting data into a Kafka topic and a Kafka consumer reads it and stores into HDFS. 

Apache Spark jobs are responsible for processing and aggregating data. Passengers flow 

and density are computed using algorithms that will be further explained. Results - flow 

and density – are exposed through dashboards, using Apache Zeppelin. These phases are 

shown in Figure 3. 

  In the top of our implemented Lambda Architecture, we have applied some 

algorithms to address bus management area. The processing part can be divided into 
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two parts, where the first has as objective to find passenger’s density and flow, and in 

the second one we use this extracted knowledge to segment bus stops and areas of the 

city based on travel purpose. They are described as knowledge retrieval and 

segmentation, respectively. 

 

4.4 Data Analysis 

Data analysis represents the information retrieval – computing origin-destination 

matrices to find passengers’ density and flow – and data segmentation – categorizing 

bus stops and city zones accordingly to travel purposes. This part of the process 

represents a proof of value of our Lambda Architecture framework. 

  

4.4.1 Knowledge Retrieval 

This first computation step is in charge of computing the input passengers’ information 

– in our case, smartcards, buses GPS and buses stops geolocation – retrieving their 

density and flow among the bus network. As we are interested in computing historical 

data, we use the batch layer of our proposed architecture to build origin-destination 

matrices of passengers and then to apply the proposed algorithms on top of them. Batch 

layer, as mentioned, could be used for many different types of computation and 

knowledge retrieval in case of dealing with historical data, as well as the speed layer 

could be used for real-time analysis purposes. Kafka producer feeds Kafka with the data 

and another consumer consumes from it, storing data in HDFS for backing up, 

reprocessing needs and fault-tolerance purposes. Therefore, as soon as data arrives in 

HDFS it is taken by another Spark job to be part of our ETL – Extract, Transform, Load 

– process, which applies the necessary algorithms to retrieve the O-D matrices. Figure 3 

illustrates this process. The goal in this thesis is also being as much generic as possible, 

and further experiments are described in section 5 Experiments. Following subsections 

describe how to use Lambda Architecture batch layer to compute origin-destination 

matrices. 
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Figure 5 – Lambda architecture batch layer 

 

4.4.1.1 Density and Flow Computation 

Having smartcards, bus GPS and bus stops geolocation, we are able to start the 

computation process. It means that we want to figure out the passenger’s density and the 

passengers flow in a determined bus line, and, in a future work, in the whole bus public 

service network. GPS dataset has buses latitude and longitude coordinates, Smart Card 

dataset has tapping card records of all buses users and bus stops geolocation is a static 

dataset containing the position - coordinates - of all stops of the used bus.  The three 

datasets are be combined to get the OD matrix for each bus passenger. For passenger 

origin derivation process we must be aware that the time recorded in a tapping card 

stored into Smart Card dataset represents the moment when the passenger boarded.  In 

comparison with other works in the literature (ZHANG, 2014) we also make use of 

time-matching method to build the OD passengers matrices. Once this computation is 

done, e. g, all the passengers origins and destinations are mapped, it is possible to make 

inferences and to analysis the density and the flow, obtaining source of knowledge to 

segment the bus stops and city using clustering algorithms.  

  First, the goal is to build the Origin-Destination matrices. Having the coordinates 

- latitude and longitude - of each smart card record and bus stops, we can identify in 

what bus stop the passenger boarded. We assume passenger taps the card as soon as he 

gets on the bus and that all passengers boarding are paying the fare through Smart Card 

usage. Data pre-processing is necessary before starting the computation process. The 

GPS data and Smart Card data must be separated according to the target bus line to 

focus the computation process separately for all buses of each bus line.  

  The boarding station is the easy one to be obtained, meanwhile for the alighting 

station some assumptions are necessary, as the passenger does not tap the card when he 
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gets out of the bus. Following the state-of-art of OD matrix computation in public 

transport area (DUAN, 2012), (ZHANG, 2014) this work will make use of time-

matching algorithm. The next steps are the Smart Card ID and GPS ID pairs discovery, 

which represents the respective smart card record related to a GPS record. Thereunto, 

we must compare the boarding station time and the tapping card time. Through this 

comparison and considering the minimum time difference between GPS record and 

Smart card record, we are able to find out the passenger boarding station. GPS records 

that have their coordinates positioned inside a bus stop coverage radius belong to it. 

From that, we can pre-process and determine, for each bus position, if this bus is in a 

bus stops coverage radius. Then, the problem is limited to compare GPS and Smart 

Card times using time-matching algorithm.  

  The process of obtaining the passenger destination requires some assumptions 

and it is an estimation process since we do not have smart card records for passengers 

alighting the buses. To allow this computation, time slots are determined and classified 

according to travel purposes. Only those that can be obtained analyzing passenger 

density in a period of time were used. Furthermore, they represent basic travel goals as 

going to work or going to home, or even going to a party or a pub at night. There is not 

possible to analyze if a passenger is taking a bus to go to a mall or to a supermarket, for 

example, since it is an activity that can be done any time in a day. This is the first step 

of bus stops and city segmentation that will be deeper discussed in the next section. As 

described in section 3.1 this work considers three different segmentations: 

work/commercial, residential and nightlife, which have been arbitrary defined by the 

author. Passenger’s density represents the density – number – of passengers inside the 

bus in each stop, which is incrementally computed by considering the number of 

passengers that have boarded in the bus minus the ones that have gotten off. 

  For estimating passenger destination, two different scenarios must be considered 

so we can understand if it is a round-trip, a connection trip or a simple trip. In the first 

scenario is the passenger taps the card just once and falls into a simple trip purpose. 

(ZHANG, 2014) approach only this case and makes all the computation based on that. 

Here, moreover considering a simple trip, we also take into account the case when the 

passenger taps the card twice or more, what can be done when he is performing a 

connection trip or a round-trip. For estimating the destination of a simple trip, we must 

know the most common passengers destinations based on the time slot of the day. In 
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other hand, if the passenger taps the card twice in a short period of time it falls into one 

of these two cases: connection trip and round-trip. If the time difference between two 

taps is below 60 minutes, we determine it is a connection trip. If the time is over 60 

minutes and below 120 minutes, it is a round-trip. This estimative is performed in 

cascade mode, which means that if the passenger taps the card three times or more, we 

determine the trip type and the destinations one by one always analysis the previous tap. 

We must know that the goal is to find out the passenger final destination and the trip 

type - simple trip, connection trip or round-trip. The Figure 3 below shows that 

estimative: 

 

Table 3 – Trip type classification 

Trip Type Taps Difference between 

taps 

Estimation Method 

Simple 1 - - 

Connection 2 or more < 60 minutes First trip destination is the second 

trip origin. Second trip destination 

estimated as a simple trip. 

Round 2 or more 60min < d < 120min First trip destination is the second 

trip origin. Second trip destination 

is the first trip origin. 

 

4.4.1.2 O-D Matrix Computation 

Origin-destination matrix shows the travel path done by each passenger and is used to 

calculate the density and flow of the bus line. Datasets have information allowing the 

origin discovery, as the Smart Card records have the timestamp of when the passenger 

taps the card. Following our assumption, it is equivalent of boarding time. As explained 

in section 3.4, each Smart Card record will be paired to a GPS record and through that, 

there is enough information for finding in which station the passenger has boarded.  

For finding the destination, first we should know the passenger most common 

destinations - as home, work and nightlife. Knowing that allow us to know the bus stops 

the passenger usually uses as origin and as destination. The algorithms for finding out 

origin and destination, inspired in (ZHANG, 2014) are shown below - Algorithm 1 and 

Algorithm 2 - where the tapping time is represented by x: 



 

34 

 

    

 

 

 

After processing all passengers’ data, the result of the algorithms – density and 

computation – is again stored in Hadoop Filesystem for being re-used in the 

segmentation phase. 

 

4.4.2 Segmentation 

As the information retrieval process described in section 3.3, another Spark job takes 

care of segmenting the data – passengers’ flow and density – based on travel purposes. 

This is also performed in the batch layer of our Lambda Architecture implementation. In 

most of cases described in literature, our segmentation process is done in off-line mode 

– not needing real-time analysis. Clustering algorithms could have been used in this 

phase, however the goal of this thesis is to implement Lambda Architecture and prove 

our generic architecture can be applied in bus services management area. Therefore, 

after having all origins and destinations matrices, bus stops and city zones are 

segmented taking into account the pre-defined time slots representing travel purposes. It 

is done by considering in which time slot the Smart Card tap timestamp fits in. Each bus 

stop is categorized considering the trips purposes of the passengers boarding and 

alighting (Table 4). The direction of the bus must be considered - incoming or 

outcoming buses. The time slots were built, for generalization, even we know some 

cities - especially metropolis – use to present discrepancy when compared to the slots – 

when having 24h industries and stores, or with an intense nightlife.  Income Time 

Interval and Outcome Time Interval represent the time of buses arriving, or leaving, 

respectively, a city zone or bus stop.  

Algorithm 1: Finding passenger's origin 

1: For each Smart Card record, find the GPS 

record with the minimum difference of time 

between tapping and arriving 

2: The result is the most likely vehicle that 

the passenger gets on 

3: Store that Smart Card and GPS pair 

4: Repeat the process for all Smart Card 

records 

Algorithm 2: Estimating passenger's destination 

1: If it is between Monday and Saturday 

2:     switch (x) 

3:         case 6am <x < 8am 

                 Trip purpose may be residential 

4:         case 5pm <x < 7pm 

  Trip purpose may be work 

5:          case 11pm <x < 5am 

  Trip purpose may be nightlife 

6:          default 

  Trip purpose may be personal 

7: else 

8:     switch (x) 

9:          case 11pm <x < 5am 

  Trip purpose may be nightlife 

10:        default 

  Trip purpose may be personal 
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Table 4 – Trip type behaviour classification 

Segment Name Income Time Interval Outcome Time Interval 

Residential 6pm-8pm; 2am-6am 6am-8am 

Work 7am-9am 5pm-7pm 

Night Life 8pm-11pm 11pm-5am 

 

It is important to highlight that this categorization is not restricted to just one 

category, but to as many as it can have. For instance, a station can be most used for 

getting home purpose - 50% of the time - but is also responsible for an intense nightlife 

- 40% - being used in a short amount of time for personal purposes - 10%. We further 

describe the segmentation in section 4 during our experiments. 
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5 EXPERIMENTS 

This chapter contains experiments that aim to demonstrate the feasibility of applying a 

Lambda Architecture based framework in smart transportation area. Experiments 

demonstrate the usability and feasibility of our implementation built using main Big 

Data stack. Here we focus on Smart Mobility problem – bus passengers density – but 

the scope can be extended to others Big Data challenges, as the technologies are the 

same. In our case, we use the framework for batch processing, as we want to detect the 

density and flow of passengers and to classify zones, which relies on historical data. 

Nevertheless, future work can make use of the same framework for stream processing, 

as the main pieces of the architecture would remain the same: Apache Kafka – message 

broker – Apache Hadoop – data storage - and Apache Spark – data processing. 

First step is to check the data availability and how we can cross the different 

datasets to approach our target scenario. For each Smart Card record - representing a 

passenger boarding or landing - the matching algorithm is applied to find out its related 

bus stop. Further, during the classification phase, travel purpose is also found out. Bus 

stops and city zones are classified based on the main passenger’s travel purposes leaving 

the bus stop. Results clearly give an important knowledge about the real bus service 

demand, which may be used by authorities to improve quality, efficiency and comfort. 

Again, this main propose of this work is to debate about Lambda Architecture and 

demonstrate how it can be used to handle Big Data problems by implementing a 

framework based on that. 

In the next subsections, we describe the datasets, experiment methodology and 

evaluation comparing to our baseline. We divided our experiments into two different 

topics to differentiate what is the related to the architecture itself, contribution of this 

work, and what is related to our use case, representing the applicability of the 

architecture. First, we present technical experiments – dataset, methodology and metrics 

– and then data analysis experiments. 

5.1     Technical Experiments 

In this chapter, we describe technical aspects of our experiments such as dataset 

structure and methodology, which includes data processing and origin-destination 

matrix computation. 
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5.1.1     Experiments Set-up 

In this section, we explain the set-up environment of the performed experiments. 

Datasets used as input data, methodology and metrics are described. In the next two 

chapters, the results of these experiments are exposed and analyzed.  

 As mentioned before, our Lambda Architecture implementation can handle a 

huge amount of data. To demonstrate a bit of its scalability and great performance, we 

apply our set-up to four different amounts of data, using the same dataset randomly 

replicated: 400Mb – original dataset; 4Gb, 20Gb and 100Gb. The goal is to demonstrate 

that as dataset grows, our architecture presents almost the same performance. 

Furthermore, we also change the backend infrastructure by adding Spark Workers node, 

which may affect the final performance. Workers are running Spark instances where 

executors live to execute tasks. They are the compute nodes in SparkThis architecture 

can be applied to many different use cases and even if for the one approach in this work 

a huge processing capability is not necessary, can be for other scenarios. For instance, 

the same experiment we present here for one bus line could be done in the whole bus 

network or could be combined with any type of traffic information. 

 Different set-ups used in the experiments are described below in table Table 7. 

We have eight different setups composing (four) 4 different experiments. Two (2) of 

them using 400Mb dataset, two (2) using 4Gb dataset, three (3) using 20Gb and one (1) 

using 100Gb dataset. The number of Spark Workers as well as their memories are also 

considered. As we do not want to focus in data recovery and replication, we set all 

partitions to five (5) and replication factor to one (1). 

Table 5 - set-ups considering dataset size, Spark Workers and their memory and total 

available memory 

Experiment Data Spark 

Workers 

Cores Spark Workers Memory 

1 400Mb 1 8 6.8Gb 

2 400Mb 3 8 6.8Gb 

3 4Gb 1 8 6.8Gb 

4 4Gb 3 8 6.8Gb 

5 20Gb 1 1 8Gb 

6 20Gb 1 8 6.8Gb 
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7 20Gb 3 12 8Gb 

8 100Gb 3 12 8Gb 

 

5.1.2     Data 

For approaching our problem, we need three (3) types of datasets: data coming from 

passengers smart cards and geolocation of buses – for retrieving O-D matrices; and 

geolocation of the bus stops - for classifying stations and city. In our main experiment, 

those three different datasets are: GPS dataset, buses tops geolocation dataset and Smart 

Cards dataset. GPS dataset (Bus ID, Time, Bus Lines, Latitude and Longitude) contains 

19485 records representing buses geolocation. Buses stops geolocation dataset (Stop ID, 

Stop Code, Stop Name, Latitude, Longitude) with all bus stops locations. Smart Cards 

dataset (Smartcard ID, Time, Transaction Type and Metro Station/Bus Line) contains 

Fare Collection System data and is composed by 3186 records representing passengers 

boarding and landing. Bus GPS and Smart Card datasets were obtained from 

(Schenzhen City in China), between October 22th, 2013 - 6am - and October 23th, 2013 

- 12am, totalizing 400Mb. It is important to highlight the fact that although our 

framework is a Big Data framework with potential for handling huge amount of data, 

this first experiment aims to demonstrate that it can be used in the scope of smart 

transportation. After, we replicate this data up to 4Gb, 20Gb and 100Gb. As that, we 

can have a view about the scalability of our architecture. We could not increase even 

more due to hardware capacity limitation. 

In GPS data, Bus ID represents the vehicle ID, Time is the record time, Bus 

Lines has the line of the recorded bus and latitude and longitude represent the position 

information of the vehicle. In the Smart Card data, Smartcard ID represents the ID of 

the tapped card, Time represents the moment the tapping information was recorded, 

Transaction Type - in our case - indicates that is a boarding, and Bus Line has the bus 

line - the Fare Collection System where the smart card data was recorded. Bus stop 

dataset can improve the accuracy and permit us to obtain better results once we know 

exactly the bus stops where the passenger boarded. Bus Stop ID represents the station id, 

Latitude and Longitude represent the bus stop position and Terminal indicates if the 

recorded bus stops is a bus terminal with connections. Passenger origin derivation 

process is considerably easy since we consider that the time recorded in a tapping card 

stored Smart Card dataset represents the moment when the passenger has boarded. For 
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that propose, attributes as SmartCard Id, Time and Bus Line from a card record are used. 

In comparison with literature (ZHANG, 2014), this one also makes use of time-

matching method to build the Origin-Destination (OD) passengers matrices. Once this 

computation is done, it is possible to make inferences and to analyze the density and the 

flow of all passengers that use the public bus service, obtaining source of knowledge to 

segment the bus stops and city using clustering algorithms. Having this segmentation 

will allow authorities to better understand the passengers trips purposes, giving a better 

decision-making source of information. 

Table 6 shows GPS dataset structure, where Bus ID represents the ID of the 

vehicle, Time represents the time when recorded, Bus Lines has the line of the recorded 

bus and latitude and longitude represent the position information - coordinates - of the 

vehicle when recorded. 

Table 6 – GPS dataset structure 

Bus ID Time Bus 

Lines 

Latitude Longitude 

55640 2013-10-22  09:45:56 03950 22.538700 113.972244 

55640 2013-10-22 09:56:31 03950 22.539482 114.024010 

55641 2013-10-22 09:44:26 03950 22.540451 114.119415 

55642 2013-10-22 08:54:10 03950 22.542212 114.125252 

55643 2013-10-22 09:57:15 03950 22.542219 114.125259 

55644 2013-10-22 09:59:53 03950 22.542219 114.125264 

Table 7 shows Smart Card dataset structure, where Smartcad ID represents the ID of 

the tapped card, Time represents the moment the tapping information was recorded, 

Transaction Type - in our case - indicates that is a bus boarding, and Bus Line has the 

line of the bus which has the Fare Collection System where the smart card data was 

recorded.  

Table 7 - Smartcard dataset structure example 

Smartcard ID Time Transaction Type Bus Line 

000000045 2013-10-22 08:18:55 31 M364 

000000061 2013-10-22 08:17:53 31 385 

000000070 2013-10-22 08:06:53 31 111路 

000000131 2013-10-22 08:07:04 31 50路 

000000140 2013-10-22 08:014:05 31 50路 

000000076 2013-10-22 08:40:59 31 111路 
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Bus stops location dataset can improve the accuracy and permit us to obtain better 

results once we know exactly the bus stops where the passenger boarded. The structure 

is shown in Table 8, where Bus Stop ID represents the id of the station, Latitude and 

Longitude represent the bus stop position and Terminal indicates if the recorded bus 

stops is a bus terminal with connections. 

 

Table 8 - Bus stops dataset structure example 

Stop ID Stop Code Stop Name Latitude Longitude 

1 TYVBT Tao Yuan Village Bus Terminal 22.5325462 113.9200887 

2 LHG Long Hui Garden 22.567073 113.960272 

3 CGV Cha Guang Village 22.568309 113.943814 

4 XWV Xin Wu Village 22.5325462 113.9200887 

 

5.1.3     Methodology 

We can split our methodology in three main phases. The first one is the data pre-

processing, where among the datasets we retrieve only the data we want to apply our 

experiments. After, in the second phase, we have the O-D matrix computation, 

responsible for finding out the origin and destination of passengers. At the end, in the 

third and last phase, is where stops and city zones are classified based on the correlation 

results. The next subsections describe all these phases, one-by-one. 

5.1.3.1     Data pre-processing 

The first part of this case of study consists in data pre-processing. As we want to put in 

place our architecture for smart transportation area, we will not process all the data, but 

we will only consider one specific line - B606. Therefore, all data not related to this line 

will be filtered out from the input data and not stored in Hadoop Distributed File System 

(HDFS). The choice of this line has not a specific reason, however after a deep analysis 

in the datasets it seems to be the one with more related data. Noises can be found inside 

datasets, and they are described and removed in section 4.3 Evaluation. We could, 

though, have avoided the filtering part and stored all incoming data inside HDFS. This 

is normally what is done in Big Data approaches related to batch processing, where we 

first store everything and then we decide what is valuable for our problem. 
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5.1.3.2     O-D matrix 

Having all valuable data stored in HDFS and available through Apache Impala, we can 

now start processing it for our use case. O-D matrix computation is the core of any 

density-flow problem and here it represents the boarding and landing bus stops of all 

passengers of line B606. First step is to ingest data into Apache Kafka, which is 

performed by a Kafka producer developed in Scala. As our current experiment uses 

batch mode, Kafka is not strictly necessary, however is part of our architecture and 

allows us to choose for a stream process in future work. From inside our batch 

processing component, Algorithm 1 and Algorithm 2 are executed through a Scala Spark 

job. This job reads from a Kafka topic where our data was ingested to and applies the 

algorithms. The result is our O-D matrix and allows us to compute passengers’ density 

and flow. Above we show a pseudo-code of this job in Figure 4: 
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Figure 6 - Scala consumer job responsible for consuming data from Kafka and applying 

the algorithms 

 

 

5.1.4     Results 

Technical results are obtained by applying the eight (8) different configurations 

described in section 4.1.1 – Table 5. By changing the configuration of input dataset size, 

number of Spark Workers and Spark Workers memory we can have a visibility about 

the scalability of our architecture. Workers are running Spark instances where executors 

live to execute tasks – compute nodes in Spark. In another hand, a Spark executor is a 

distributed agent responsible for executing tasks. The metrics used to compare the set-

ups are in Table 9: execution time, stages, number of tasks and shuffle time.  

 Execution time represents the total time of the Spark job took. This time is 

spread among the job stages and tasks. Stage is a physical unit of execution, meaning a 

step in a physical execution plan. It is a set of parallel tasks – being one per partition – 

uniquely identified by an id. A Spark job can contain two different types of stages: 
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SuffleMapStage, intermediate stage that produces data for another stage; ResultStage, 

final stages that executes a Spark action by running a function on a RDD (Resilient 

Distributed Dataset). Figure 5 shows this split: 

 

Figure 7 - SuffleMapStage and ResultStage inside a Spark job 

 

 Task represents the smallest unit of execution that is launched to compute a 

RDD partition and can be categorized into two different types: ShuffleMapTask, 

executes a task and divides the output to multiple buckets; ResultTask, that executes a 

task and sends the output to the driver application. Earlier stages and he last stage in a 

Spark job execution present ShuffleMapTasks and ResultTasks, respectively. 

 A Spark job runs stage by stage, where each stage is built up by DAGScheduler 

according to RDD’s (Resilient Distributed Dataset) ShuffleDependency. Each 

ShuffleDependency maps to one stage in Spark job and then will lead to a shuffle. 

Shuffle is an expensive action as during it data no longer stay in memory. During a 

Spark execution, a shuffle process involves data partition, data compression and disk 

I/O. Table 9 shows the compress dataset size and the average execution time of each 

one of the 8 different setups, and Figure 6 shows an overview of a full Spark execution 

process. It is important to highlight that, as Spark loads all data in memory, it can be a 

limitation in terms of infrastructure. 

Table 9 - Different setups performance comparison 

Experiment Local Size HDFS Size Workers/Cores Execution time 

1 400Mb 95Mb 1/8 ~18s 

2 400Mb 95Mb 3/8 ~20s 

3 4Gb 950Mb 1/8 ~39s 

4 4Gb 950Mb 3/8 ~43s 
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5 20Gb 4.7Gb 1/1 ~1.9min 

6 20Gb 4.7Gb 1/8 ~2.1min 

7 20Gb 4.7Gb 3/12 ~2.6min 

8 100Gb 24.7Gb 3/12 ~4.3min 

 

 

Figure 8 - Overview of a full Spark execution process 

 

 

5.1.5     Final Results Evaluation 

Spark jobs rely on memory, so the configuration of spark workers, executors, and 

workers memory mainly depend on the available memory during the execution. From 

results presented in 4.1.4 we can realize that experiment 8 was the most preformistic. As 

Spark loads all data in memory to avoid read/write operations, it also depends on the 

available memory. It may lead to an infrastructure limitation, if data cannot be loaded in 

memory. One solution is, whenever memory limit is reached, data is persisted in disk, 

which may decrease a bit performance – as I/O operations – however avoid data loss. 

We can see it also relies on the amount of input data Spark needs to process. 

4.2     Data Analysis Experiments 
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In this chapter, we present our data analysis experiments. In a high-level overview, it 

means our Lambda Architecture implementation applied to the scope of bus 

management. 

5.2.1     Experiments Set-up 

From all set-ups described in section 4.1.1, here we consider only experiments 1 and 8. 

These experiments have the simplest and the most preformistic infrastructure, 

respectively. 

5.2.2     Results 

5.2.2.1     Origin-destination matrices 

As described in section 3.3.1.1, O-D matrices are the start point for retrieving 

passengers density and flow. Having bus stops and smart cards latitudes and longitudes, 

we can correlate them – smart card vs bus stop – and identify in which bus stop a certain 

smart card – representing a passenger – has boarded in or boarded off. By applying the 

two algorithms described in Figure 3 we had performed this correlation and obtained 

the tuples of smart card and bus stop. 

In this work, we also analyzed, among the origin-destination matrix, how many 

of the total tuples represent a simple trip, connection trip and round-trip – section 4.2.3. 

In total, we identified 3988 tuples. 

5.2.2.2    Density and Stops Classification 

Having O-D matrix allows us to compute the passengers density and flow, moreover to 

start the classification process among bus stops and city zones. Classification is done 

based on four pre-defined categories: residential, work, nightlife, personal.  

     First step consists in classifying all GPS records in their respective stops. Each 

GPS record coordinates are compared to all bus stops coordinates. It was done using 

another Scala Spark job running inside Hadoop, in Lambda Architecture. For the 

experiment, the day intervals were divided in: residential (6am-8am), work (5pm-8pm), 

nightlife (11pm-5am) and personal. Personal category encompasses all the remaining 

periods not classified in the others. The target bus stop is the one that presents the 
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minimum distance difference. Then, we had the passenger density computation and bus 

stop main travel purpose discovery.  

   Our implemented Lambda Architecture, although able to handle Big Data use 

cases, was applied to a considerable big amount of data – but not as huge as in a Big 

Data use case. However, using it and using implemented Spark jobs, all smart cards had 

been linked to a bus stop and also related to a travel purpose. This classification helps to 

understand what are the travel purposes associated to each stop and, based on the stop 

geolocation, what are purposes of city zones. This is not the main goal of this work, 

however having O-D matrix results allows us to do so, improving the understanding of 

the bus network demand 

 

5.2.3     Final Results Evaluation 

Evaluation can be split in technical evaluation - where we present the performance of 

using Lambda Architecture implementation, specially Spark and Hadoop comparing to 

standard approach - and the scenario evaluation - where we present the result of our 

architecture applied passengers density computation and classification.  

Taking the technical evaluation, we can a priori infer what Big Data state of art 

mentions – section 3.1. Spark is a framework that comes after the first Hadoop approach 

- MapReduce - reducing hard disk usage and increasing performance in around 100 

times and 10 times faster than the MapReduce in disk and in memory, respectively. 

Unfortunately, our baseline - and any other in literature - goes into details related to 

performance and processing time. However using all scalability and parallelism of our 

architecture, we show here some performance metrics as Spark jobs execution time and 

Hadoop size. The technical evaluation is the most important one in this work, as our 

main goal was to implement a framework based on the Lambda Architecture approach, 

using the top and low-cost Big Data technologies available currently. 

The experiment evaluation results - focusing on the problem approach – are 

described in the three graphics below. First, for O-D matrix computation we find out 

boarding and landing stops of each passenger - each record inside smart card dataset - 

and afterwards the passenger density.  

Figure 7 demonstrates how the cards are distributed among the travel purposes. 

From total 3186 cards registers analyzed, 1350 – 42.4% - represent residential as the 



 

47 

 

main travel purpose. Work appears as the second main reason for taking a bus, with 

1020 – 32% - departing buses, and personal appears with 816 – 25.6% - records. It is 

important to mention that the personal category was added in this first experiment as 

the datasets represent only one day in the bus service network. Night purpose did not 

have any record. As the used dataset is of one day in Schenzhen, and it was a business 

day - Tuesday - that may be the reason for we do not find any passenger taking a bus for 

a nightlife purpose. 

 

Figure 9 - Smart cards categorization  

 

Figure 8 shows the passenger density in each bus stop. LHD is the densest stop, 

with 1551 records, being 379 of work type and 274 of residential type. KFR appears as 

the less dense stop, with only 97 passengers leaving the stop, 22 of them with work as 

travel purpose and 24 with residential as travel purpose. Figure 9 shows the density of 

the second graph distributed between three travel purposes: work, residential and 

nightlife. Again, we see LHG stop with the highest amount. From that graph, we can 

notice that this stop is the one that has more passengers leaving the station in the peak 

periods – 6am to 8am for residential and 5pm to 7pm for work, which result in the 

highest passenger density shown in the second graph. 
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Figure 10 - Passengers density among bus stops 

 

 

 

Figure 11 - Passengers density per travel purpose per bus stop 

 

 

Differently from (ZHANG, 2014), this work also considers the scenario where 

passengers tap the card more than once. Taking into account the intervals shown on 

Table 6 for trip type definition based on number of card taps, the origin-destination 

pairs in the dataset were also classified between the three types: simple trip, connection 

trip, round-trip. All cards registers were divided into these three types, totalizing 2134 

simple trips, 1604 connection trips and 250 round-trip - Figure 10. We have to mention 

that the maximum number of connections found in a trip was 2. Therefore, 1064 

connection trips represent 802 final destinations. At the end, that represents 3186 trips. 

We This result is an important way to understand how passengers move in their trips, as 
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sometimes they may get more than one bus to reach their destination, or the purpose of 

the trip is a round-trip. 

 

 

Figure 10 – Travel type 

  

Our main objective during this work is to expose the idea of the Lambda 

Architecture, presenting its potential and giving a path for implementing it. We applied 

our architecture in bus service management area. We can highlight that our case of 

study does not represent a real big data scenario, as our dataset is limited to 100Gbaims 

to cover an end-to-end scenario, using all technologies available in our architecture. 

This limitation was also in terms of hardware and memory. 
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6 CONCLUSION 

In this work we presented LDAVI, a Lambda Architecture Driven Implementation 

based on Lambda Architecture approach (KIRAN, 2015), a data-processing architecture 

for handling massive amount of data by decomposing the problem into three layers: 

batch layer – for historical data processing - serving layer and speed layer – for 

streaming processing.   

Our objective was to implement a low-cost framework based on Lambda 

Architecture and demonstrate it applicability by applying it in a real scenario in Smart 

Mobility area, extracting passengers density and flow through Smart Card, bus stop 

geolocation and buses GPS data.  

The improvement on public transport quality influences directly and positively 

in society. Furthermore, it brings countless benefits for people lives as well as helps to 

solve urban mobility problems that are current present in big cities. Knowledge about 

public transport network behavior allows decision-making, increasing, service quality, 

passenger experience, usage and profits. We used our architecture to solve a Smart 

Mobility challenge – passengers’ density and flow, using concepts of Big Data, Smart 

Cities and Lambda Box Architecture – Apache Kafka, Hadoop and Spark - the model 

computes passengers’ density and flows using time-matching methods and clustering. 

Differently from related works, we approached three different types of trip: simple trip, 

connection trip and round trip, what makes the analysis complete and more accurate. As 

used datasets were data-limited, the experiment did not represent the whole scope of this 

project, but a part of it. However, it demonstrates the feasibility of what is proposed; 

showing that understanding passengers’ behavior, travel proposals, density and flow are 

an important source of knowledge to improve public bus service. 

  We have already presented our contribution “Passenger density and flow 

analysis and city zones and bus stops classification for public bus service management” 

in the Brazilian Symposium on Databases (SBBD) in 2016 and “Data Mining 

Framework for Bus Service Management: Passenger's density and flow analysis, city 

zones and bus stops classification” in the International Conference on Enterprise 

Information Systems (ICEIS) in 2017 as short paper. In these contributions, the focus 

was in the application of our framework and not the framework itself. We have realized 

that the usability and powerfulness of the framework presented in this work could be 

used not only in Smart Mobility, but in any problem requiring a Big Data approach. 
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A short-term improvement to this work will be to better cluster the days by 

considering business days, weekends and holidays. This will help the decision-making 

as travels purposes may change if done in a business day or weekend and eventually 

Nightlife category may be considered only for weekends. Future work will apply this 

architecture to a bigger Smart Mobility challenge in terms of amount of data. Moreover, 

we plan to implement a full Lambda Architecture, containing its batch layer – as built in 

this work – for processing huge and historical amount of data of public transportation 

and a speed layer, for processing in streaming mode. The idea is to build the speed layer 

by using Apache Spark Streaming and to apply it in public transportation problems 

requiring real-time computation and analysis (such as bus scheduling and passenger 

tracking).
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