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ABSTRACT  

Microbial biofilms are highly structured and dynamic communities, in which phenotypic 

diversification allows microorganisms to adapt to different environments under distinct 

conditions. Biofilms are ubiquitous in nature and colonize many niches of the human body 

and implanted medical devices, being an important factor in Cryptococcus neoformans 

infections. A new approach was used to characterize the underlying geometrical 

distribution of C. neoformans cells during the adhesion stage of biofilm formation. 

Geometrical aspects of adhered cells were calculated from the Delaunay triangulations 

and Voronoi diagrams obtained from scanning electron microscopy images (SEM). A 

correlation between increased biofilm formation and higher ordering of the underlying cell 

distribution was found. Mature biofilm aggregates were analyzed by applying a novel 

protocol developed for ultrastructure visualization of cryptococcal cells by SEM. Flower-

like clusters consisting of cells embedded in a dense layer of extracellular matrix were 

observed as well as morphotype switches related to biofilm formation and distinct levels 

of spatial organization: adhered cells, clusters of cells and community of clusters. The 

results add insights into yeast motility during the dispersion stage of biofilm formation. 

This work emphasizes the importance of cellular organization for biofilm growth and may 

represent novel approaches to establish potential targets for the inhibition and disruption 

of biofilms with clinical relevance. 

 

IMPORTANCE  

The pathogenic yeast Cryptococcus neoformans is the major cause of morbidity and 

mortality due to meningoencephalitis. Biofilm-like structures in medical devices are 
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related to long-term infections, in general recalcitrant to treatment. In spite of some efforts, 

essential aspects about the growth mode, properties, ultrastructure and behavior are not 

well described for fungal biofilms. Our results call to attention an extremely complex and 

intricate process of biofilm formation where favorable conditions and cellular organization 

interactively contribute to ultrastructure shaping of biofilms. Combining new approaches 

using geometrical measures and SEM analysis, we observed that a higher degree of 

hexagonal order in the distribution of cells during surface adhesion favors biofilm 

formation. We describe for the first time flower-like clusters of cells embedded in biofilms 

and distinct levels of spatial organization, possibly regulated in a paracrine manner. 

These findings may point to new approaches for the development alternative methods for 

biofilm formation control. 

 

INTRODUCTION 

 

Microorganisms have been traditionally analyzed using planktonic microbial cells; 

however, this lifestyle is not necessarily related with the growth of microbes in their most 

prevalent habitat. Recent approaches in confocal microscopy and molecular biology have 

provided evidence that biofilm formation represents the most common mode of microbial 

growth in nature (1-4). A wide range of microorganisms is able to switch from a planktonic 

to a colonial lifestyle in the form of a biofilm, creating aggregated communities that are 

enclosed by an extracellular matrix (ECM) (2). 

Microbial biofilms are now recognized as highly structured and dynamic 

communities, in which phenotypic diversification allows microorganisms to adapt to 
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diverse environments under different conditions (5-9). Importantly, biofilms can be 

composed of thousands of cells encased in a matrix and attached to a surface, but they 

can also contain as few as tens of cells arranged as small clusters or aggregates (10). 

Open channels interspersing the microcolonies allow water and nutrients to reach their 

interior and contribute to the nutrition and formation of mature biofilms, possibly mimicking 

a primitive circulatory system. Waste products might also be removed through this system 

(11). 

Fungal biofilm formation progresses through three coordinated stages: early, 

intermediate, and maturation. It begins with the attachment of a microorganism to a 

surface, followed by a cascade of alterations in gene expression that results in biofilm 

formation. Specific details of the resulting biofilm depend on surface properties, 

biofunctionalization, characteristics of the medium, and on the microorganism itself (12-

14).  

In recent years the role that fungal biofilms play in human disease has received 

increased attention. Cells growing within biofilms exhibit unique phenotypic features 

compared to their planktonic counterparts, with the increased resistance to antimicrobial 

agents provided by biofilms being the more drastic example (3, 15-17).  

 In this context, biofilm formation by Cryptococcus neoformans plays a key role in 

infection. C. neoformans is the etiological agent of cryptococcosis, a lethal disease with 

a worldwide distribution that affects immunocompromised individuals, resulting in 

approximately 200,000 deaths per year (18). The major virulence factor of this fungus is 

the polysaccharide capsule that surrounds the cell wall and is   responsible for fungal 

attachment to surfaces and subsequent biofilm formation (19, 20). The C. neoformans 
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capsule is composed mainly of glucuronoxylomannan (GXM), a polysaccharide 

generated intracellularly and exported to the extracellular space via vesicle-mediate 

secretion (21). GXM is also a constituent of the cryptococcal biofilm ECM (22, 23). 

 C. neoformans can form biofilms on medical devices, including ventriculoatrial 

shunt catheters (used to manage intracranial hypertension), peritoneal dialysis fistulae, 

cardiac valves and prosthetic joints (24-28). On biotic surfaces, after traversing the blood 

brain barrier in meningoencephalitis, C. neoformans has the capacity to form biofilm-like 

structures known as cryptococcomas (29). 

Although previous studies using confocal microscopy provided initial insights into 

cryptococcal biofilm structure, conventional scanning electron microscopy (SEM) 

techniques do not preserve the mature biofilm ultrastructure (23, 30). The highly hydrated 

matrix is greatly deformed and the cell samples undergo distortion and may present 

artifacts. Also, C. neoformans capsule is sensitive to dehydration, easily disrupting during 

routine sample preparation (31, 32). As a consequence, considerable effort is currently 

being spent on the development of new methods and instrumentation for its visualization. 

We developed and applied a novel modified protocol for SEM that resulted in 

cryptococcal biofilms samples with better preservation of original structures yielding 

higher resolution images. With such improved images, we characterized the underlying 

geometrical structure of cell distribution during biofilm formation. The degree of order was 

numerically quantified and we revealed a correlation between higher levels of biofilm 

formation and more ordered underlying structures. Order/disorder are very relevant in 

physical systems. In crystals, for example, deformations can only occur near defects due 

to the high energetic cost of their occurrence elsewhere. Besides, some phase transitions 
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are defect mediated. Moreover, in the last decades the interplay among defects, geometry 

and statistical physics has been highlighted (33). Here we propose the application of 

parameters designed to measure order in physical system (34-38) to the microbial 

populations. We also investigated the details of the ultrastructural organization of 

cryptococcal biofilms and show that cryptococcal cell aggregates with a specific ordered 

structure favor biofilm formation as compared to disorganized conglomerates. 

 

RESULTS 

 

Biofilm formation and analysis of cellular adhesion geometry.  

To characterize the underlying geometric structure of cell distribution in the initial 

steps of biofilm formation (after incubation for 4 h), SEM images were examined. This 

analysis considered the wild type strains C. neoformans B3501 and H99, the 

hypocapsular grasp mutant (39) and the acapsular cap67 mutant (40). To take into 

account differences in adhesion of the cells to the substrate, we analyzed conditions 

differing only in the presence or not of poly-L-lysine (PLL). Pre-treatment with PLL 

increases the number of adhered cells, as expected, but did not influence the cell 

organization (Fig.1).  
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FIG 1 Geometric distribution of cells in the initial steps of biofilm formation, after incubation 

for 4 h. C. neoformans B3501, H99, hypocapsular grasp mutant and acapsular cap67 

mutant strains adhered in non-covered glass coverslips (top row) and PLL covered glass 

coverslips (bottom row). 

 

To classify the spatial distribution of cells, we used four measures: average number 

of nearest neighbors  n  and its variance  𝜇2 , intercellular distances, and the average 

degree of hexagonal order 𝜓6. This last measure has been applied to study the liquid-

hexatic transition (34, 35) and also to the study of nanoporous alumina arrays in which 

case the ordering and organization are crucial for engineering applications (38). Among 

the parameters used, 𝜓6 was the one with more conclusive results (Table S1).  

The variance of the number of nearest neighbors 𝜇2 (Eq. 2) was found to be low, in 

the range 0.7-2.1, indicating that the majority of cells have a number of nearest neighbors 

very close or equal to the average 𝑛 = 6 (see Fig. S1 for the local values 𝜇2
𝑖 ). This fact 

reinforces that it is adequate to use 𝜓6, a measure appropriate for hexagonal symmetry. 

For its quantification, we first measure the local order parameter 𝜓6
𝑖  (Eq. 4), that indicates 

how isotropically arranged the nearest neighbors of the ith cell are. If the cells are found 
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in a perfect triangular lattice, all sites have six nearest neighbors and the lines joining the 

ith cell with two of its consecutive neighbors form an angle of 60. In this case of perfect 

hexagonal symmetry, the average of 𝜓6
𝑖  over the whole sample will attain its maximum 

value 𝜓6 = 1. For a random distribution of cells, with angles differing from one another, 

the local values 𝜓6
𝑖  will be smaller and their average, 𝜓6, will be negative and close to 

zero (Fig. 10). In the case of partial ordering, one finds intermediate values 0 < 𝜓6 < 1.  In 

Fig. 2A-B, we present the Delaunay triangulation (37), that determines the network of 

nearest neighbors, combined with SEM of the adhesion stage of biofilm formation without 

PLL biofunctionalization for B3501 and H99 (wild types). Acapsular cap67 mutant and 

hypocapsular grasp mutant were not analyzed since they organize in 3D aggregates.  

In Fig. 2C, cell color is related to 𝜓6
𝑖 . It also shows the Voronoi diagram (37), which 

separates the figure into polygons such that every point in a polygon is closer to the cell 

inside it than to any other cell. The distribution of 𝜓6
𝑖  for each image is presented in Fig.2D 

with a Gaussian fit to the data. The red vertical line represents the average value 𝜓6.  
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FIG 2 Analysis of the local order parameter, 𝜓6
𝑖 , for samples without poly-L-lysine. Left 

column C. neoformans B3501. Right column C. neoformans H99. a) SEM image of 

cryptococcal cells after 4h of adhesion. b) Network of adhered cells; nearest neighbors 

were obtained by Delaunay triangulation (blue line segments). Red circles represent cell 

centers in the bulk of the sample. Vertices without circles near the borders represent cells 

that were discarded from the analysis (distance to the border within 5 % of system size) 

to minimize border effects. c) Voronoi diagram of the sample. The color code represents 

𝜓6
𝑖 . d) Distribution of 𝜓6

𝑖 . The blue curve is a Gaussian fit to the data points, grouped into 

bins. The red vertical line displays the average value 𝜓6 of the local order parameter 𝜓6
𝑖  

(Left: 𝜓6 = 0.21, total number of cells in the image Ntot = 1064, number of analyzed cells 

N = 842, average number of neighbors 𝑛 = 6.00.   Right: 𝜓6 = −0.03 , Ntot = 213, 𝑁 =

166, 𝑛 = 5.92)., 

 

The quantification of biofilm formed after 48 h of incubation was based on 2,3-bis(2-

methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide 

(XTT) reduction assay measurements which determines the absorbance (A (492 nm)) of 

metabolic activity and correlates with biofilm formation and fungal cell number. We found 

a correlation (r2 = 0.98, Fig. 3) between higher levels of biofilm formation (A (492 nm)) and 

more orderly underlying structures (〈𝜓6〉, where the angled brackets represent an average 

of 𝜓6 over 5 images) in the early phase of biofilm formation, since the first layer of cells 

on a substrate is not necessarily characteristic of a random deposition.  
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FIG 3 Correlation between biofilm formation measured by the XTT reduction assay (A (492 

nm)) and the order parameter 〈𝜓6〉. 

 

 For instance, C. neoformans strain B3501, known as a strong biofilm producer has 

〈𝝍𝟔〉 = 0.20 and A (492 nm) = 1.38, while strain H99, a weak biofilm producer, has 〈𝝍𝟔〉 =

−0.04 and A (492 nm) = 0.44 without PLL (Table 1).  

 

Table 1 Average values 〈𝝍𝟔〉 and A (492 nm) for different strains and conditions 

C. neoformans strains 

B3501 cap67 H99 grasp 

 〈𝝍𝟔〉 A (492 nm) 〈𝝍𝟔〉 A (492 nm) 〈𝝍𝟔〉 A (492 nm) 〈𝝍𝟔〉 A (492 nm) 

Without PLL 0.20 1.38 - 0.17 -0.04 0.44 - 0.20 

With PLL 0.22 1.57 - 0.26 0.05 0.89 - 0.42 
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Special attention should be given to these two strains in the presence of PLL; the 

better-known biofilm producer B3501 has a significantly more orderly disposal than H99, 

with an approximately equal number of cells (Fig. 1). These results endorse that the 

difference in biofilm formation is not due simply to different numbers of cells due to the 

low adhesion of H99 in the absence of PLL. For both mutants cap67 and grasp, it was 

not possible to calculate 𝜓6 due to the formation of cell agglomerates that result in 3D 

structures. Nevertheless, this does not weaken the conclusion that a non-random 

disposal with a regular distance and number of neighbors between cells is important for 

biofilm formation, given that the cells are closely packed together in these agglomerates. 

High values of 𝜓6 for C. neoformans B3501 in the range 0.18-0.21 (without PLL, 

Table S1) for the 5 biological replicates analyzed are indeed representative of a non-

random distribution since a Student-t test to evaluate the possibility that such values arise 

from a random deposition of non-overlapping disks with the same average area as the 

cells yields a p-value 𝑝 ≈ 3.7 × 10−7 (Fig. S2). For the five samples of C. neoformans 

H99, we obtained  𝑝 ≈ 0.35  when comparing its 𝜓6  values to those of the randomly 

deposited non-overlapping disks. The same test applied comparing C. neoformans B3501 

with C. neoformans H99 yielded 𝑝 ≈ 1.1 × 10−6. Therefore, it is plausible to conclude that 

the C. neoformans H99 samples present an essentially random distribution, whereas C. 

neoformans B3501 do not (Table 2).  
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Table 2 Values of 𝜓6 for 5 samples of each of the strains B3501 and H99 (without PLL). 

 𝝍𝟔 values of C. neoformans strains 

Biological replicate B3501 H99 

1 0.213 -0.058 

2 0.200 -0.029 

3 0.200 -0.058 

4 0.185 -0.039 

5 0.199 0.006 

 

The orderly distribution of cells even during the detachment stage of biofilm is a 

process that occurs dynamically (see Movie S1). From the snapshots, it can be seen that 

new cells that flow into the already populated region do so by following almost the same 

paths and tend to maintain a more or less regular distance from other cells. This suggests 

that the ordering stems from physical, rather than biological processes; for the case at 

hand one is reminded of like charged spheres, which tend to auto-organize due to the 

electrical repulsion among them. The cells with their charged capsules due to GXM can 

be, in a first approximation, regarded as spheres with similar charges (Fig. 4). This is 

further corroborated by the fact that both mutants with capsular defects tend to 

agglomerate into compact clusters of cells. 
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FIG 4 Time-lapse microscopy of C. neoformans B3501 flow during various stages of 

biofilm formation. Initial steps of biofilm formation (A-C). From 24 h onwards, cells enter 

the vision field from the top (D) and auto-organize (E-F). Cells tend to follow similar 

trajectories. Snapshots from the Movie S1. 

 

C. neoformans biofilms are organized in flower-like clusters.  

We believe that the organized geometrical structure is an important factor for the 

next steps of biofilm formation. The strain B3501 was used for ultrastructure analysis of 

biofilm due to its significantly more orderly disposal during adhesion stage (Fig. 2) and 

strong biofilm formation (30). The applied protocol allowed the detailed observation of 

preserved cryptococcal biofilms by SEM. Our findings contrast with available data of 

confocal and optical microscopy in which resolution and detail are limited, but converge 

in biofilm thickness in the range of 50-76 μm, as well its complexity (15, 30, 41, 42). The 
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images showed the ECM embedding cells organized into biofilm clusters with both 

amorphous and organized flower-like structures of the mature biofilm (Fig. 5A-D). The 

vertical growth seems to dominate cluster expansion with regions of high ECM densities. 

Isolated yeast cells were found both attached to the surface and cluster-associated (Fig. 

5A, C-D).  

 

 

FIG 5 SEM of C. neoformans B3501 displaying flower-like clusters. Biofilm 

presented complex structure and spatial organization. (A) The dotted square indicates 

cryptococcal cells attached to the surface. (A, B) Biofilm clusters with amorphous and 

asymmetrical structure (red arrows) and mature biofilm with flower-like shapes (green 

arrows). Flower-like cluster shown in higher magnification (C, D) with embedded cells in 

the ECM (pink arrows). 
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Interestingly, an unexpected phenotype of a few cells located at cluster boundaries, 

resembling bridges and involved in anchoring the clusters, can be observed. These cells 

are elongated and interconnect surface substrate and clusters (Fig. 6A-C). We found 

ECM micro channels displaying a well-designed structure associated with cryptococcal 

cells (Fig. 6D). For some soil bacteria, the presence of ECM micro channels are required 

for cell alignment and advancement on surfaces (43).  

 

 

FIG 6 SEM of C. neoformans B3501 showing phenotypic cell change and biofilm channel. 

Anchoring cells (pink arrows) are observed located at the base of some flower-like (A-B) and 

amorphous (C) clusters boundaries. Micro channels (yellow arrow) are found associated with cells 

(D). 
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Cryptococcal biofilms form a social community of clusters.  

Even within a community composed of genetically identical microbial cells, there 

exists high heterogeneity in morphology and physiology of its sub-populations (44). Wang 

et al. (2013), discovered that C. neoformans responds in a paracrine manner to a secreted 

protein responsible for colony communication and morphology (45).  

To synchronize social microbial behavior, extracellular signals must disseminate 

across the community and reach adjacent cells.  Here, we speculate the existence of a 

hierarchical biofilm organization composed of a cluster community. The SEM images 

show that small clusters (Fig. 7B-D) are adjacent to the mature biofilm cluster (Fig. 7A). 

We hypothesize that a feedback response of mature clusters signaling leads to the 

formation of small aggregates surrounded by ECM. The clustering process may 

implement a secondary signaling for functional or phenotypic switch in a paracrine 

manner, as supported by Wang. et al. (2013). This process seems to trigger an 

autoinducer activity by stimulating neighboring cells to phenocopy the mature cluster. 
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FIG 7 SEM of C. neoformans B3501 organized in a community of clusters. (A) Higher 

magnification image of a mature biofilm. (B-D) Small amorphous clusters (red arrows and 

dotted arc) surround the mature biofilm (green arrow). 

 

Biofilm associated morphotype switching.  

Adhesion is a critical property for biofilm formation. The presence of germ tubes and 

filamentation in Candida albicans enhances and promotes biofilm formation. Thus, 

suppressing the dimorphic switch is a target for biofilm growth prevention (46, 47). It is 

well known that C. neoformans exhibits yeast, pseudohyphal and hyphal differentiation. 

A study showed that these morphotypes switches might co-exist in response to 

adaptation for survival in an unpredictable environmental condition (48) and are driven by 

multiple communication signals with distinct regulatory patterns (49).  
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 Although the yeast form growth predominates, our finding suggests that 

pseudohyphae (Fig. 8A) may represent an uncommon but intermediate stage of 

development related to biofilm formation in segregated populations of C. neoformans 

where ECM is found associated with pseudohyphae (Fig. 8C-D). 

 

 

FIG 8 SEM of C. neoformans B3501 morphotype switching. (A-C) Different morphotypes 

can be observed during biofilm formation. Note that the yeast form undergoes a switch to 

a pseudohyphae phenotype (pink arrow) and are associated with ECM (green arrow). 

 

DISCUSSION 

 

The hallmarks of this study were the use of a numerical measure to quantify the 

geometrical order of the first layer of adhered cells in the process of biofilm formation as 
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well as the detection of well-shaped ultrastructure of C. neoformans biofilms resembling 

a flower-like pattern using a novel SEM protocol. To verify the relation between cellular 

order and biofilm production, we analyzed C. neoformans H99 and the mutants grasp and 

cap67, and the usual model C. neoformans B3501. Once we showed that there is indeed 

a correlation between increased order and increased biofilm production, we focused on 

the standard strain to further study the ultrastructure. 

This analysis was made possible by the introduction of a modified protocol for SEM 

visualization of microbial biofilms, due to the fact that standard protocols greatly distort 

the matrix. To minimize artifacts, a shortened time of fixation and careful dehydration is 

optimal for ultrastructural SEM analysis (50). The ultrastructure preservation was 

achieved by combining appropriated techniques, a reduced period of incubation during 

SEM preparation and good grade reagents. 

The predominant structure of biofilms was apparent as an organized dense layer of 

ECM that functions as a scaffold that permeates the agglomerate, over and among cells. 

Distinct levels of spatial organization were observed: adhered cells, clusters of cells, as 

well as the community of clusters. The affinity of attachment to different surfaces is 

strongly related to the presence of the cryptococcal capsule. In fixed C. neoformans cells, 

the fibers surrounding the cell (capsule filaments) directly stretch and link cells to surface, 

promoting attachment (19).  

Cryptococcal biofilm formation seems to be driven by a communication system via 

adhesion/matrix protein signaling (45) and directional proliferation of the original adhered 

cells. Cfl1, the first prominent ECM secreted protein of C. neoformans, is highly expressed 

in subpopulations located at the periphery of a mating community and is concentrated in 
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the extracellular matrix boundary. This protein orchestrates yeast-hypha morphotype 

transition, cell adhesion, and virulence. This suggests that Cfl1 may serve as a signal 

regulating morphotype transition in the cells enclosed or adjacent to the ECM (45, 49, 

51). 

We hypothesize that the reversible cell attachment is mediated by capsule 

interactions, including electrostatic repulsion and orderly distribution of cells, as described 

above. Our data supports that once irreversible attachment occurs, cryptococcal cells 

may form a narrow ECM layer around the cell body where cells rapidly proliferate, but the 

surface-attached and peripheral anchored cryptococcal cells may restrict their expansion 

to the plane. As initial small clusters proliferate, their shape increasingly becomes 

anisotropic. At this point, the biofilm consists of several layers of cells grouped into 

clusters resembling extremely organized flower-like patterns. After maturation, cells may 

detach as microcolonies or as isolated planktonic cells, which auto-organize following an 

approximately hexagonal distribution. Cells tend to follow similar trajectories and may 

initiate the process again (Fig. 9 and Movie S1). 
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FIG 9 Scheme of C. neoformans B3501 biofilm formation. (1-2) Adhesion of planktonic 

cells follows an approximately hexagonal distribution. (3) Cluster expansion and shaping. 

(4) Flower-like mature biofilm. (5) Detachment of microcolonies or planktonic cells. (a) 

SEM of biofilm development stages. 

 

Yan et al. (2016) discovered that the cluster ultrastructure of Vibrio cholerae biofilm 

results from the combination of expansion and confinement of surface-attached cells that 

generates an effective anisotropic stress. Such stress overpowers the cell-to-surface 

adhesion force for cells at the cluster center, causing these cells to realign in the vertical 

direction and forcing the transition from 2D expansion to 3D growth (52). Moreover, if 

selection pressure is high, it has been shown that clusters of Pseudomonas aeruginosa 

have higher fitness than isolated cells because cells at the top of the clusters have better 

access to nutrients (53). Cluster morphogenesis results from a great number of variables 

capable of shaping the ultrastructure. Physical and demographic processes are 

demonstrated to act as key factors in biofilm architectures (54). Cryptococcal cells are 
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likely most susceptible to the hydrodynamics constraints due to low motility. In contrast, 

more motile microorganisms may escape these constraints and develop biofilm 

morphogenesis related to cellular migration and biofilm coalescence (54). 

Mathematical studies have related that biofilm architecture depends on the 

availability of nutrients, carbon and oxygen, uptake processes linked to hydrodynamics 

and diffusion limitation of substrate transport through the biofilm. More generally, 

metabolic capabilities, genotypic and phenotypic adaptations could result in different 

behaviors within the biofilm, allowing organisms to choose between a number of 

strategies (55, 56). 

Interestingly, for V. cholerae the presence of low cell number in cluster biofilm results 

in increased volume when compared to biofilms with a larger population. The hypothesis 

is that the significant changes in cell–cell spacing between small and large clusters in 

biofilms are due to strong temporal variation in ECM composition or production levels per 

cell (7). In agreement, the flower-like cluster of C. neoformans presents a high volume of 

ECM and relatively low cell concentration.  

From a clinical point of view, understanding biofilm formation and morphology may 

help develop methods to inhibit the colonization of medical devices. For instance, the 

shunting procedures used to treat cryptococcal meningitis hypertension are risk 

associated and have historically discouraged surgeons due to its complications (57, 58) 

since it can provide a surface for cryptococcal attachment. It is common knowledge that 

uropathogenic strains of Escherichia coli can successfully adhere to and colonize the 

kidney, despite the presence of high flow rates. Since kidney tubules are narrow (<50 
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μm), bacterial attachment patterns at even very small spatial scales can easily block 

them, increasing the severity of kidney infection (59). 

Upon this scenario, special treatment of the devices or the use of materials that 

hinder the initial organization may be used clinically to avoid the development of infection, 

by disrupting the initial organization. Moreover, the introduction of an objective measure 

of order (𝜓6) obtained from an image may facilitate the analysis of whether a given surface 

is prone to biofilm formation. Continued studies are required to provide a greater 

understanding of the importance to investigate the complications of cryptococcal 

meningoencephalitis associated to the spatial distribution of clusters, as well as new 

methods of imaging for helping the development of new anti-biofilm targets.   

 

MATERIALS & METHODS 

 

Quantification of Cryptococcus neoformans biofilm formation by XTT. 

 C. neoformans var. neoformans strain B3501, C. neoformans var. grubii strain 

H99 and mutants cap67 (40) and grasp (39) were grown for 24 h at 30 °C, in 25 mL of 

Sabouraud broth media in a rotary shaker at 150 rpm. Cells were then collected by 

centrifugation at 3,000 g for 5 min, washed three times with phosphate-buffered saline 

pH 7.2 (PBS), counted using a hemacytometer and suspended at 107 cells/mL in DMEM 

- Dubelcco’s modified eagle media high glucose (GIBCO, USA) at pH 7.4. After that, 500 

μL of the suspension were added into individual wells of polystyrene 24-well plates 

(Greiner Bio-One, AUS) containing sterile glass coverslips and incubated at 37 °C for 48 

h. Following incubation, wells were washed in triplicate with PBS to remove any 
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planktonic cells. Then, 300 μL of XTT salt solution (1 mg/ml in PBS) and 24 μL of 

menadione solution (1 mM in acetone; Sigma-Aldrich) were added to each well. Microtiter 

plates were incubated at 37 °C for 5 h. Mitochondrial dehydrogenases in live cells reduce 

XTT tetrazolium salt to XTT formazan, resulting in a colorimetric change, which was 

measured in a microtiter reader at 492 nm (SpectraMax i3). Microtiter wells containing 

only culture media but no C. neoformans cells were used as negative controls. Prior 

studies demonstrated that the XTT reduction assay measurements correlate with biofilm 

and fungal cell number (29).  

 

Geometric analysis. 

 The strains were allowed to grow for 4h (adhesion stage) in the conditions above 

described.  Following the incubation, the wells were washed three times and prepared for 

SEM. Images were treated with the software ImageJ (version1.48k, Java 1.8.0_65 (64-

bit); National Institutes of Health, USA, [http://imagej.nih.gov/ij]) to extract information for 

further statistical analysis. An ellipse was fitted to each of the particles in the image and 

its area was calculated. Since only the center coordinates of each ellipse are necessary 

for the analysis of the neighboring cells network, we represent particles with circles of 

fixed radius such that their areas are equal to the average ellipse area. Once the centers 

are defined, it is possible to establish the nearest neighbors of each cell 𝑛𝑖 by means of 

a Delaunay triangulation and Voronoi tessellation using Fortune's algorithm (60) with the 

software voronoi (version 1, Steve J. Fortune, Bell Laboratories, USA [http://ect.bell-

labs.com/who/sjf/voronoi.tar]) With this information, it is possible to obtain the number of 
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nearest neighbors and distance distributions, allowing one to calculate average 

parameters that quantify order in the spatial distribution of cells for each sample image.  

To calculate the local variance in the number of neighbors 𝜇2
𝑖 , first the average 

number of neighbors was calculated for the sample 

 𝑛 = 〈𝑛𝑖〉 =
1

𝑁
∑ 𝑛𝑖

N

𝑖=1

, (1) 

where 𝑁 is the number of cells whose distance to any image border is not within 5 % of 

the system size. Cells close to the border were not taken into account to calculate bulk 

properties. The local variance was defined as 

 𝜇2
𝑖 = (ni − 𝑛)2, (2) 

and the global variance was defined as its average 

 𝜇2 = 〈𝜇2
𝑖 〉 =

1

𝑁
∑ 𝜇2

𝑖

N

𝑖=1

. (3) 

Following Borba et al. (38) we calculate the local order parameter 

 𝜓6
𝑖 =

1

𝑛𝑖
∑ 𝑐𝑜𝑠

ni

𝑗=1

(6𝜃𝑖𝑗𝑘), (4) 

where 𝜃𝑖𝑗𝑘  are the angles formed by the two line segments joining site 𝑗 and two of its 

consecutive neighbors (Fig. 10).  
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FIG 10 Values of 𝜓6
𝑖  for a site in a triangular lattice (left) and for a random distribution of 

neighbors (right). 

 

A given set of points (an image) can then be characterized by the average value of 

this quantity 

 𝜓6 =  〈𝜓6
𝑖 〉 =

1

𝑁
∑ 𝜓6

𝑖

𝑁

𝑖=1

. (5) 

For a triangular lattice of points, every site will have 𝜓6
𝑖 = 1, since every site has six 

neighbors and six angles equal to  60 °. Therefore, 𝜓6 = 1, characterizes a perfect 

hexagonal symmetry (38). On the other hand, for a set of randomly distributed points, a 

value of 𝜓6close to 0 is expected.  

In order to analyze the probability of generating a given value of 𝜓6 from a random 

distribution of points, we generated 1000 sets of randomly distributed non-overlapping 

disks with areas equal to the average area of a cell in a box of the same size as that of 

the image. For such an ensemble with 𝑁𝑒  images (sets of points), one can calculate the 

average ⟨𝜓6⟩ of 𝜓6and its standard deviation. Then, it is possible to apply a Student-t test 

to evaluate the possibility that the values of 𝜓6 for experimental configurations of cells 
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present the same distribution as those for a random configuration generated by the 

deposition of non-overlapping disks.  The one-tailed test for samples with unequal 

variance was calculated using LibreOffice (version 4.2.8.2 Build ID: 420m0 (Build: 2); 

LibreOffice, The Document Foundation, [http://www.libreoffice.org]). The p-values of the 

test were obtained for the 3 pairs of data: a) 5 samples of B3501 with 1000 sets of non-

overlapping disks (𝑝 ≈ 3.7 × 10−7); b) 5 samples of H99 with 1000 sets of non-overlapping 

disks (𝑝 ≈ 0.35); c) 5 samples of B3501 with 5 samples of H99 (𝑝 ≈ 1.1 × 10−6). In Fig. 

S2 we show the corresponding network for a set of randomly distributed non-overlapping 

disks and the distribution of 𝜓6 for 1000 random sets. 

 

 Scanning electron microscopy preparation. 

 An improved protocol developed for visualization of C. neoformans planktonic cells 

by electron microscopy was recently described (20). Here, we modified a few parameters 

in order to preserve the ultrastructure of the biofilm stages. Briefly, after the incubation 

period (4 h for adhesion or 48 h for mature biofilm) as previously described the wells 

containing the coverslips were washed three times with PBS. After washing, cryptococcal 

adhered cells were fixed with 500 μL of 2.5 % glutaraldehyde type 1 (Sigma Aldrich, USA) 

diluted in 0.1 M sodium cacodylate buffer pH 7.2 and for 15 minutes at room temperature. 

Then, the wells were washed three times in 0.1 M sodium cacodylate buffer pH 7.2 

containing 0.2 M sucrose and 2 mM MgCl2 with the aid of two pipettors, which were used 

for addition and concurrent removal to avoid air exposure. Adhered cells were dehydrated 

in a series of freshly made solutions of graded ethanol (30, 50 and 70%, for 5 min/step, 

then 95% and twice 100%, for 10 min/step). The dehydration was closely monitored to 
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prevent biofilm matrix and capsule polysaccharide extraction. Samples were then 

subjected to critical point drying (EM CPD 300, Leica) immediately after dehydration, 

mounted on metallic stubs, sputter-coated with a 15–20 nm gold-palladium layer and 

visualized in a scanning electron microscope (Carl Zeiss EVO® MA10 or EVO® -50HV 

Carl, Oberkochen, Germany), operating at 10kV. Microscopic fields were selected by 

random scanning and photo documented. The experiment was performed in three 

independent replicates.  

 

Time-lapse microscopy.  

 C. nerformans B3501 cells were prepared as described above and suspended at 

106 cells/mL in DMEM. After that, 1 mL of the suspension was added into individual wells 

of glass and incubated for 4 h at 37 °C. Following incubation, wells were washed in 

triplicate with PBS to remove planktonic cells. Then, 1 mL of DMEM was replaced and 

the wells incubated for 48 h at 37 °C on an Espectral FV 1000 system. Time-lapses were 

performed for at 30–60-s intervals. 

 

SUPLEMENTAL MATERIALS 

 

Fig. S1: Values of the local variance of the number of nearest neighbors 𝜇2
𝑖 .  

Fig. S2: Set of randomly distributed non-overlapping disks and distribution of 𝜓6 for 

1000 random sets. 

Movie S1: Time-lapse microscopy of C. neoformans B3501 flow during biofilm 

various stages of biofilm. 
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Table S1: Geometrical properties of 5 biological replicates of C. neoformans B3501 

and H99, for conditions with and without poly-L-lysine. 
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SUPPLEMENTAL MATERIAL – FIGURE S1 

 

 B3501      H99 

 

FIG S1 Analysis of the variance of the number of nearest neighbors, 𝜇2
𝑖 , for samples 

without Poly-L-lysine. Left: C. neoformans B3501. Right: C. neoformans H99.  
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SUPPLEMENTAL MATERIAL – FIGURE S2 

 

A      B 

   

 

 

 

 

 

FIG S2 A) Blue line segments compose the Delaunay triangulation network for a randomly 

distributed set of disks, which are not allowed to overlap (the minimum distance between 

2 disks is 2𝑅, where the disk radius is 𝑅 ≈ 7.6 pixels, corresponding to the average cell 

radius of Fig. 2A). To minimize border effects, disks lying close to a boundary (a distance 

within 5% of the figure length) were discarded  (black dots) for the calculation of 𝜓6 (𝜓6 ≈

0.0096, N = 867, Ntot = 1064). B) Distribution of 𝜓6 for 1000 independent samples with the 

same parameters: the vertical line corresponds to the average ⟨𝜓6⟩ ≈ −0.013816. The 

dimensions of the box are 𝐿𝑥 = 1024 and 𝐿𝑦 = 768  pixels, equal to those of the image in 

Fig 2A. 
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SUPPLEMENTAL MATERIAL – TABLE S1 

 


