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Abstract. This work presents preliminary results applying the Boundary Element Method (BEM) as a structural
sensitivity kernel under a contact shape optimization procedure for 3D problems involving anisotropic materials
under contact, using the Complex-Step Method (CSM) to obtain sensitivities of objective function and restrictions
to the variation of design parameters. In this preliminary work, we present the results for the isotropic case. An
important aspect regarding the fatigue life of ductile materials subject to contact conditions is the occurrence of
the maximum shear stress below the surface. The examples analyzed with the present methodology explore the
optimization of shape aiming towards a smooth stress distribution along the blade root surface. The optimiza-
tion procedure follows the SLP paradigm. This BEM based methodology can avoid the need for extreme mesh
refinements reducing computational cost while obtaining useable results.
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1 Introduction

A common characteristic of metallic surfaces in contact is due to the relatively high stiffness of these materials
when compared with the level of acceptable strains, such that, small changes in the initial separation between these
surfaces can result in extremely different contact pressure distribution. As these are key variables in the fatigue life
of these components, optimization of the contact shape as well as the initial separation should be mandatory for
nearly all components under oscillating loads. Another aspect of components under cyclic contact loading is that
fatigue can occur at a small scale just below the region of slip, a mechanism which is commonly known as fretting
fatigue Szolwinski and Farris [1].

Over the last few decades, the shape and topology optimization of problems involving contact is a recurrent
theme in the literature. Since the pioneer works of Haslinger et al. [2], which has proven the total potential energy
when used as a cost function can lead to a constant distribution of flux on the contact surface, and the works of
Haslinger [3] and Klarbring and Haslinger [4] where the same principles were applied to obtain a constant distri-
bution of contact pressure. Fancello et al. [5] compared the two cost functions from [2] and [6] with considerable
differences in the pressure distribution of the optimal shape. Haslinger [7] demonstrated that the functional on
contact shape optimization is only directionally differentiable, and their derivatives result in another quadratic
programming problem. Hilding et al. [8] employed a p-norm approach for contact distributions modifying the
structure shape outside of the contact region. Vondrák et al. [9] performed contact shape optimization for 3D
problems using a domain decomposition method designed for parallel implementation. In the last few years, a
large number of works are found dealing with topology optimization in contact problems such as Zhang and Niu
[10], Niu et al. [11], and Ma et al. [12].

Although one can consider a variety of objective functions, Calvo and Gracia [13] showed that the vast
majority of them result in a boundary-only integral formulation in which the BEM has a clear advantage. As
pointed by Fancello [14], a known disadvantage of the FEM in the context of optimization algorithms is poor
accuracy on boundary results. The BEM is not only well-known for its accuracy in the solution of contact problems
but also has been successfully applied to obtain shape sensitivities. In Sfantos and Aliabadi [15], Tafreshi [16]
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Tafreshi [17] the direct or implicit differentiation of the integral equations is carried out for 2D problems. In Erman
and Fenner [18] the author performs analytic differentiation of the boundary integral equations. In Mundstock and
Marczak [22] the CS method has also been used in a shape sensitivity framework for plane elasticity. In previous
work (Ubessi and Marczak [23]) we have devised an implementation of this method in contact problems with the
BEM, which will be used in this work as the core of the optimization procedures.

The key points in using the CS-BEM approach for obtaining shape sensitivity in contact problems are: (i)
The CS method is exact and therefore does not even compare to FD, and has a straightforward implementation,
does not necessarily imply modifications in the existing code if complex algebra is enabled; (ii) The CS avoids the
increased singularity involved in analytic sensitivity. (iii) In the context of numerical methods, BEM precision on
tractions leads to a better approximation of shape derivatives, especially in contact problems.

This paper presents initial results in 3D contact optimization using an efficient methodology to evaluate
shape sensitivities with the BEM as the structural analysis framework and is organized as follows: Section 2
presents the formulation of the contact shape optimization problem. Section 3 briefly describes the methodology
for BEM contact shape sensitivity. Section 4 shows the initial structural optimization problem setting and the
results obtained for this preliminary example. We close this work in Section 5 drawing the main conclusions from
this analysis and raise some questions on potential aspects to be further studied in future work.

2 Contact shape optimization problem statement

The optimal shape for the contacting surface, aiming for a constant distribution of contact pressure, can be
thought of as the minimization of the maximum contact pressure. Although an obvious choice, this function is not
well-behaved, and may rapidly become unstable, as the maximum pressure changes from one node to another. Ac-
cording to Hilding et al. [8], in problems with singularities, which are generally the ones one would be interested in
performing the optimization, this function is not well-defined and of course non-differentiable. A more commonly
used and accepted measure for the smoothness of the contact pressure distribution is the L2-norm of the contact
pressure, i.e.,

‖p‖L2(Γc) =

(∫
Γc

p2dΓ

)1/2

, (1)

where p is the contact pressure and Γc is the contact surface. As noted by Hilding et al. [8], this function is only
Lipschitz continuous, at the limit it has at least a directional derivative. As long as the total contact force does
not increase, it is clear that this function is minimized if the contact pressure is constant over Γc. Any variation
from the constant distribution will cause this integral to rapidly increase, providing some form of convexity for the
problem.

Let x be the vector containing all design variables xi, the optimization problem statement is

Min
x

‖p‖L2(Γc)

subject to V (x) ≤ V (x0)

xmin ≤ x ≤ xmax

(2)

where we have considered a maximum volume restriction, as well as maximum (xmin) and minimum (xmax) bounds
for any of the design variables x. The optimization procedure adopted in this work is based in the sequential linear
programming (SLP) algorithm from [24], in which the non-linear objective function and restrictions are approx-
imated by a sequence of linearized functions, using a Taylor series expansion. For each iteration the following
linear programming problem has to be solved:

Min
x

f(x0) +

n∑
i=1

(xi − x0i)

(
∂f

∂xi

)∣∣∣∣
xo

subject to (x0) +

n∑
i=1

(xi − x0i)

(
∂gj
∂xi

)∣∣∣∣
xo

≥ 0

xi ≥ max(xmin, x0i − ali)
xi ≤ min(xmax, x0i + aui)

(3)

where x0i is the initial value of the design variable at the SLP iteration.(
∂f
∂xi

) ∣∣
xo

and
(

∂gj
∂xi

) ∣∣
xo

are the sensitivities of f(x), and of gj(x), evaluated at the coordinate point x0. The
last two sets of constraints on the design variables, incorporate the move limits ali and aui being the lower and
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upper bounds on the allowed change in xi in each iteration respectively, as well as the lower and upper bounds for
the design variables along the entire problem xmin and xmax.

This SLP scheme was chosen deliberately due to its simplicity. Therefore, other methods such as the method
of moving asymptotes used by Hilding et al. [8] or the interior point method found in [5] are expected to deliver
even better performance. The solution of the linear programming problem is directly applied to the next iteration.
We have not used a solution scaling scheme between iterations to update the objective function, as it would need
to recalculate the whole problem several times. A relatively small move limit was found to help the next solution
do not fall too far from the optimal point.

3 Shape sensitivity from complex-stepped boundary integral equations

The CS method is entirely based on the Cauchy-Riemann equations, observed initially by Lyness and Moler
[25], and the properties of analytical functions, which was later shown in the form it is actually used by Squire
and Trapp [26], formulated using a Taylor series expansion of f(x + i∆x), which, isolating completely the first
derivative f ′(x) to the left-hand side, one gets

f ′(x) =
Im [f(x+ i∆x)]

∆x
+O(∆x2). (4)

As the truncated terms of the series are lower than ∆x2, it yields quadratic convergence. The CS does not imply a
differentiation, so it does not have cancellation error such as FD, and the increment ∆x can be lower in magnitude
than machine precision, i.e., (εD = 2−52 ≈ 10−16), and the truncation error O(∆x2) vanishes by round off,
making the method exact up to rounding error, and insensitive to the step size.

To formulate the CS-BEM in a similar fashion as the conventional BEM, let us consider a design variable γ,
and let us add an increment ∆γ to its imaginary part, such that γ̂ = γ + i∆γ. One can then write the boundary
integral equation considering either source x and field y points complex, i.e.,

Cu +−
∫

Γ

T(x + i∆x)udΓ =

∫
Γ

U(x + i∆x) t dΓ +

∫
Ω

U(x + i∆x)bdΩ, (5)

where f(x + i∆x) denotes that source and field are complex. Notice that eq. (5) and the conventional real-valued
BEM equations are virtually the same. The usual fundamental solutions (T and U) are the ones proposed recently
in [27]. −

∫
(·)dΓ denotes the Cauchy Principal Value of integral

∫
(·)dΓ.

After the element discretization of boundary Γ and a collocation process for all source points results in the
standard BEM set of linear equations,

H(x + i∆x)u = G(x + i∆x)p, (6)

which can be solved for the unknowns on Γ. The solution vector z real part corresponds to displacement and
traction unknowns,

u = Re[zu], and, p = Re[zp], (7)

and their sensitivities with respect to the design variable γ are

∂u

∂γ
=

Im [zu]

∆γ
,

∂p

∂γ
=

Im [zp]

∆γ
. (8)

Notice that the above passages are exactly the same for CSBEM and the conventional BEM, only differing on the
complex variables. For details on the BEM contact implementation, one should refer to Ubessi and Marczak [23].

3.1 Shape derivatives of objective and constraint functions

After updating the parts of the system of linear equations affected by the complex step in design variable
xi, and solving for the complex solution vector ẑ, the sensitivity of the objective function eq. (1) to variable xi is
evaluated by:

d ‖p‖L2(Γc)

dγi
=

Im

[
nc∑
j=1

(∫
Γj
c
p(x + i∆x)2dΓ

)1/2
]

∆x
, (9)

The volume is calculated using a boundary only integral by Brebbia et al. [31], and its sensitivity is evaluated
in the same fashion, right after the new volume was evaluated for the new design variable vector x
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dV

dγi
=

Im
[
V̂ (x + i∆x)

]
∆x

, (10)

where V̂ is the complex volume resulting when variable xi receive an increment ∆x at its imaginary part.

4 Preliminary results on shape optimization

The geometry of the example analyzed in this work is due to Papanikos et al. [32], a 30◦ section cut from a 12
blade rotor. This problem provides a common application in which the contact geometry and material orientation
may be optimized to increase fatigue and fretting life. The thickness for both rotor and blade was set to 10mm.
At the section cut, a displacement restriction in the element normal direction has been applied to ensure rotational
symmetry, and the y displacement for the rotor and blade was constrained, meaning symmetry along the axial
direction. To simplify the analysis and avoid domain integration a point force was applied at the blade center
of mass consistent to an angular speed of 1000rpm. The coefficient of friction for the contact formulation was
considered as µ = 0.25. The material density for the blade and rotor is ρ = 4429kg/m3, and the elastic constants
are E = 114 GPa and ν = 0.33.

The BEM discontinuity for definition of coloccation points was also set to the same value, η = 0.75, and
Fig. 1a shows the mesh considered for thus problem.

To simplify this initial example, we considered the shape to be continuous along the Z-axis. The nodes were
allowed to move in the normal direction to the initial contact surface, at the flank angle of 20◦. The design variables
in the optimization problem are the position of these groups of nodes, relative to their initial position, as shown in
Fig. 1b. This case resulted in five design variables.

Regarding the SLP problem, the upper and lower bounds on the initial move limits were set to xli = xui =
5e − 3. The maximum allowed position for the nodes was set to zero, i.e., only material removal was allowed
xmax
i = 0, while the lower limit for this movement, was set to xmin

i = −1× 10−2.
In Fig. 2a we present the objective function and move limits, normalized with their initial values as the SLP

algorithm iterations progress. Also, to investigate any noticeable variation in the maximum displacement for the
blade due to the different contact forces, we show the difference between the maximum initial displacement at the
blade tip and the current iteration ones. As the variation is rather small, we show this variation in percent. In the
final geometry, the volume variation was −1× 10−5 of the initial volume.

Due to mass distribution, the contact pressures are not constant through the depth of the blade, being higher at
the line of nodes near the symmetry plane, therefore the 3D treatment is still useful in this case. The initial pressure
distribution for this problem at this position is shown in Fig. 2b, as well as the one obtained after 15 iterations of
the SLP process.

5 Conclusion

The CS method, even in this simple direct increment of the design variables, resulted in very reliable and
consistent derivatives for the contact problem. Even with this simple SLP approach very good results were ob-
tained, with a few tests to find a good value for the move limits. Also, the choice of adjusting one side only, which
can be seen as adjusting the initial separation between the two bodies, limits the possibility of shape modification.
Changing the two bodies’ shape at the same time maybe also of interest, for example, to find a joint geometry with
no initial separation and desirable pressure distribution.

In this work, we found that by updating the BEM matrices only for the complex parts, resulted in a fast
algorithm, without compromising the original generality of the assembly routines. In the adopted scheme where
several mesh nodes were incremented, a considerable number of collocation points were affected by the complex-
step. As noted by Haveroth et al. [20], even the analytical methods also have to solve the system of linear equations
for a few different right-hand side vectors. In future work, we aim to also test if a complex-analytical scheme as is
proposed by the authors, is applicable in contact problems.

The main advantage of using the BEM in this optimization example is that even using a very coarse mesh
and linear elements we obtained good estimates of an enhanced contact shape for obtaining pressure distributions
according to our needs. Another possibility for future investigations is to determine if a coarser mesh can be used
to calculate shape sensitivities and a finer one used between iterations where the objective function is updated
and verified, as ideally, the geometry is driven by some spline parameters which smooth out the mesh changes.
Spline defined surfaces also may be able to reduce the total design variables and therefore the number of sensitivity
evaluations needed in each iteration, while using a finer mesh.
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Figure 1. (a) Simplified linear element mesh for the optimization problem. (b) Sets of design nodes and shape
sensitivity evaluation direction.
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Figure 2. (a) Normalized objective function and move limit along the SLP iterations, and percentage variation of
maximum blade displacement relative to initial. (b) Initial and final contact pressures near the symmetry plane of
the blade, at y = 10 .
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020


	Introduction
	Contact shape optimization problem statement
	Shape sensitivity from complex-stepped boundary integral equations
	Shape derivatives of objective and constraint functions

	Preliminary results on shape optimization
	Conclusion

