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Abstract. Simulations based on the peridynamic theory are a promising approach to understand the processes 

involved in the fracture of different materials. Failure mechanisms of materials are intrinsically related with 

nonhomogeneity and randomness on small scales. This fact is an important aspect, because it can change the 

mechanical behavior and the fracture location. This work presents a parametric study of the implementation of the 

material’s specific fracture energy (Gf) correlated random fields. The specific fracture energy, which is directly 

related to the critical stretching of peridynamic bonds, is defined as a 3D scalar random field with Weibull 

probability distribution and a defined correlation length. A plate subjected to a traction load illustrates the proposed 

approach. The results shows an independence of the fracture pattern with the level of discretization used. This 

parametric study contribute to provide flexibility in the calibration of the peridynamic model response allowing 

that the fracture patterns and the global material behavior to change and mainly disconnected from discretization. 
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1  Introduction 

Heterogeneous materials in a more general sense are those that are formed by domains of different materials 

(phases) or the same material, but in different states. In the first case, composite materials in general can be cited 

as materials reinforced with fibers and particles, copolymers, foams, concrete, among others. In the second, it is 

possible to highlight the polycrystals, soils, wood, bone, sea ice and others. These examples show that most of the 

materials we know are heterogeneous and are not only part of the engineering materials (chemistry, mechanics, 

civil, aerospace) but are overlapped with other areas such as physics, geophysics, biology, among others which 

makes research on these materials a multidisciplinary topic [1]. For modeling heterogeneous materials, it becomes 

computationally expensive to represent in a model all the heterogeneities (phases) of a material such as pores and 

inclusions, for example. An alternative is then to use the random field models where a class of material is 

represented by sharing some average characteristics of the material such as density, porosity, stiffness, etc. [2]. 

This work presents a parametric study of the implementation of correlated random fields of the specific 

fracture energy of the material, Gf, in the peridynamic (PD) model. PD is a reformulation of non-local continuous 

mechanics capable of incorporating a mathematical modeling of continuous media, discontinuity, cracks and 

particle mechanisms in a single structure [3]. However, to make the PD capable of better representing 

heterogeneous materials we have to change the way with Gf is spatially distributed in the model. The random field 

used in this work was implemented within the PD context by Friedrich et al. [4], however the goal now is to extend 
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this first study to a detailed analysis of the parameters that influence the random field and how it will help in the 

modeling of heterogeneous materials with PD. 

2  Bond-Based Peridynamics 

Peridynamics is a nonlocal theory of continuum media able to eliminate the mathematical inconsistency 

present in the classical continuum media theory by substituting the spatial derivatives by force integrals in the 

material points in the spatial domain. The PD theory divides a continuum media into material points occupying 

volume in space, Fig. 1. The most important point of the PD formulation is that each material point has its behavior 

governed by the interaction with the points located in its neighborhood. In other words, the PD theory is about the 

interaction forces between material points within a given neighborhood [5]. 

                             

Figure 1. a) A scheme with the main parameters used in the PD [6], b) The uniaxial constitutive law to simulate 

damage [7] 

There are many PD formulations since its creation; however, the bond-based theory [6] satisfies the 

requirements for the aim of this work, despite its limitations, and results in a computational advantage because of 

its simple application. The term “bond” refers to the interaction between the material points at x and x′. The Eq. 

(1) presents the bond-based PD equation of motion, 

 ( ) ( , ) ( ' , ' ) ' ( , )

xH

x u x t f u u x x dV b x t   (1) 

where ρ is the material density, b(x, t) is the body force acting at point x and Hx is the space of the material 

points near the point x, Fig. 1a. f (u′ − u, x′ − x) is a pairwise force density vector function and u is the displacement 

of the material point at x; f contains all the constitutive properties of the material and for a linear elastic isotropic 

solid, for instance, can be expressed as Eq. (2). 

 
'

( ' , ' )
'

y y
f u u x x cs

y y
  (2) 

where y = x + u is the position of the material point in the deformed configuration. The bond constant c is 

the peridynamic material parameter and can be expressed in terms of the material constants of Classic continuum 

mechanics (Javili et al. 2018). That is, for a linear isotropic material, the bond constant is given by: 

 4
012c E   (3) 

where E is the elastic modulus of material. In the Eq. (2), s is the bond stretch expressed on the following 

form, 
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In the PD model damage is introduced by means of bond breaking. The bonds lose their load capacity when 

where
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a limit s0 is reached, as it is shown in Fig. 1b. w0 is the work required to break an individual bond and could be 

represented as the area under the f-s bond law, in Fig.1b [8]. The energy per unit of fracture area required to 

separate the body can be expressed in the Eq. (5), for a 3D case, and thus, the critical stretch s0 can be determined 

by the material fracture energy. 
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In order, to compute the fracturing process is applied a local characteristic function φ  to identify the 

connection state of each bond, as follows 
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Therefore, if a particle has no broken bonds its local damage is φ 0 , on the other hand if the point is 

completely disconnected from the rest of the body its value is φ 1 . 

2.1 3D Random Field Generation  

In the work carried out by Friedrich et al. [4] a methodology was presented to generate a random toughness 

field regardless of discretization used in the PD model. The methodology was originally proposed by Miguel et 

al. [9] and more recently implemented in a version of Discrete Element Method (DEM) by Puglia et al. [10]. The 

random properties are equally distributed along the correlation length (lcor). The approach consists of dividing the 

domain formed by the material points into prismatic regions that have their sides formed by the correlation lengths, 

which can be different in the three Cartesian directions (lcx, lcy, lcz), see Fig. 2. The line of axes XG, YG and ZG 

represents the global coordinate system used to reference the global model. Each PD bounds i of the system is 

referenced by a new coordinate system XGi, YGi and ZGi, and by the local coordinate system within the prism xi, yi 

and zi. 

 

Figure 2. Vertices location and the correlation length in the domain of the PD model  

At each vertices of these prisms (V1 ... V8) are assigned random values with uncorrelated probabilities 

distributions. Subsequently, to determine the value of the random field corresponding to each bond i inside the 

prism a three-dimensional (3D) interpolation is performed. In the present implementation, the spatial localization 

of the PD bonds i is characterized by the coordinates of its barycenter (xi, yi, zi). The 3D interpolation is given as 

follow, 
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where φv (xi, yi, zi) is the interpolated random value for bond i of coordinates xi, yi, zi. Vk (k = 1, 2, 3, …, 8) is the 

values of the random field at the vertices. The randomness of the material properties in Vk considers that the Gf is 

a random field with a distribution of Type III (Weibull), characterized by Eq. (8). 

 ( ) 1 exp[ ( / ) ]
f f

γ
F G G β   (8) 

where β and γ are the scaling and shape parameters, respectively. The mean μ and the standard deviation sd 

are related to the scale and shape parameters by means of the Eq. (9). 

 
2 1/2( (1 1 / )) [ (1 2 / ) (1 1 / )]μ β γ sd β γ γ   (9) 

where Γ is the Gamma function. Since Gf and s0 are directly related (Eq. (5)), it is possible to prove that 

approximately CVs0= 0.5 CVGf, see Hahn and Shapiro [11].  

3  Model description 

To analyze the behavior of the generated random field, was used a PMMA plate as PD model, with the 

dimensions shown in Figure 3. The Figure 3 also details the boundary conditions regions and the mechanical 

properties of the material used. The plates are subjected to a uniaxial tensile test, fixing the lower part and applying 

a prescribed displacement in the upper region. The thickness of the plate is set at 3.015dx, where dx is the distance 

between each material point, which defines the model's discretization. The δ0 horizon also depends on the distance 

from each material point, making the horizon a parameter of the simulation, where δ0 = 3.015dx. In order to better 

analyze what occurs in the xy plane of the plate, in all cases lcz was defined as 0.2 m, that is, a value quite distant 

from the other poles so that it does not influence the response 

 

   
  

Figure 3. Plate dimensions and boundary conditions applied 

With the methodology previously described in Section 2, was generated a value of Gf for each pole. From 

these Gf values, was obtained the critical stretching (s0), for each pole too. Thus, the 3D interpolation for each 

bond (Eq. 7) of the PD model can be determined. Randomness is introduced in the model through a mean value of 

Gf and a standard deviation (sd). The relation between these two parameters can be introduced through a coefficient 

of variation (CVGf). In the next section, a parametric study of the influence of correlation length (lcor), CVGf and 

discretization (dx) will be presented. 

4  Results and discussion  

To illustrate the importance of the correlated random field in the mechanical properties of the material, an 

uncorrelated (Fig. 4a) and correlated (Fig. 4b) with lcx, y = 0.02 m is compared in Fig. 4. Consider the plate shown 

in Fig. 3 with dx = 0.004 m and CVGf = 50%. The color map represents the distribution of Gf in the middle plane 

of the thickness in 1.5dx. It is clear that the correlation length decreases the fluctuation of Gf values for the same 

uy = u (t) 

uy = 0 

δ0 

0.2 m 

0.2 m 

Young’s modulus (E) = 3.3 GPa 

Poisson’s ratio (ν) = 0.25 

Mass density (ρ)  = 1190 kg/m³ 

Fracture energy (Gf ) = 1034 N/m 

Thickness = 3.0dx 
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point (width), making the toughness distribution more correct within the PD model. 

 

  

Figure 4. Gf randon field with: a) uncorrelated and, b) correlated with lcx,y = 0.02 m 

Figure 5 shows the influence of different coefficients of variation of CVGf, for the plate configurations of 

Figure 4. Figure 5a shows the spatial distribution of Gf that remains the same for all cases, however, as CVGf 

increases or decreases the points weaker (in blue) or stronger (red) are highlighted. Figure 5b shows the behavior 

of the Load vs. Displacement curves for the analyzed cases. It is observed that the CV completely changes the 

loading curves because the weakest points highlighted in the randon field make the plate more susceptible to fail 

more quickly. Therefore, CVGf can also be used as an adjustment parameter in the peridynamic simulation in search 

of better results. 

  

Figure 5. a) Gf randon field and, b) Load vs. Displacement for different CVGf 

Figure 6 shows the final rupture configuration for the cases shown in Fig. 5. It is important to note that, as 

the CVGf increases, the crack path changes through the "weakest" region. Therefore, propagation occurs with two 

competitive tendencies in the PD model: the stress level in the plate and the percentage of Gf variation, CVGf. 

To evaluate the independence of the rupture configuration for the model discretization, three levels of 

discretization were analyzed, dx = 0.025 (8x8 points), 0.0025 (80x80 points) and 0.00125 (160x160 points). A 

a) b) 

a) b) 
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correlation length of lcx, y = 0.02 m and CVGf = 50% was considered for all cases. 

 

    
 

Figure 6. Final rupture configuration for different CVGf : a) 50%, b) 100% and, c) 150% 

Figure 7 shows the distribution of Gf for the three discretizations adopted together with the final rupture 

configuration of each case. Analyzing the figures we can see that the random fields have the same configuration 

but have different intensities, this is due to the interference of the number of connections. In the boards with the 

least amount of connections, that is, with large dx, as shown in Fig. 7a, the peaks of higher and lower values do 

not affect significantly. In the plates where the number of material points becomes greater (small dx), the cracks 

propagate in a more defined way, with the field accentuating its weakest points. 

       

   

Figure 7. Gf randon field and final rupture configuration for: a) dx = 0.025 m, b) dx = 0.0025 m and, c) dx = 

0.00125 m. 

 

It is important to remember that the random values of Gf are applied to the poles and do not represent the 

value passed on to the PD model. To measure the influence of the Gf variation within the PD model, it is necessary 

to analyze what happens in the family (Hx) of each material point, since this is really the control volume of interest. 

The plate in the previous case, however, with lcx = lcy = lcz = 3dx, was analyzed for different values of CVGf and 

the mean CV of the families at each point, called CVHx, was analyzed. Figure 8a shows that the relation between 

CVGf and CVHx is approximately 4 times for more usual variations, that is, less than 200%. From the presented 

relationship it is also possible to create a quadratic adjustment curve between the coefficients to predict a desired 

real variation of Gf within the model. 

Figure 8b shows the influence of the correlation length, and the coefficient of variation within the control 

volume, CVHx, considering CVGf  = 50%. In the x and y directions, lcx and lcy are equal and lcz has been put away 

from the xy plane again. They were analyzed in 6 different correlation lengths, representing from a more 

a) b) c) 

a) b) c) 
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homogeneous material, with a longer correlation length, to a completely disordered material with lcor = lcx = lcy 

= 0.0013 m. Fig. 8b shows that a difference of approximately 9% in the CVHx is achieved, which represents a 

significant influence that certainly affects the global behavior of the material. However, when lcor is small, this 

difference is not significant, assuming that at this point there is a complete uncorrelation of properties. 

 

Figure 8. a) Relation between CVGf and CVHx, and b) influence of the correlation length lcor 

5  Conclusions  

The parametric study showed how the parameters change the behavior of the material and the ability of the 

PD to expand its application in the field of heterogeneous materials. CVGf has a strong influence on the crack path, 

while lcor governs the level of heterogeneity that one wants to model. These two parameters served to help 

calibrate the PD model and better adapt to the final rupture configurations recorded in experimental tests.  
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