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Lúcia Scroferneker1,3

1 Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto

Alegre, Rio Grande do Sul, Brazil, 2 Department of Sciences, Humanities and Education, Postgraduate

Program in Health Promotion, Postgraduate Program in Environmental Technology, Universidade de Santa

Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil, 3 Department of Microbiology, Immunology and

Parasitology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil

¤ Current address: Postgraduate Program in Biotechnology, Universidade do Vale do Taquari, Lajeado, Rio

Grande do Sul, Brazil

* valer@unisc.br

Abstract

Fonsecaea pedrosoi is one of the main agents of chromoblastomycosis, a chronic subcuta-

neous mycosis. Itraconazole (ITC) is the most used antifungal in its treatment, however, in

vitro antifungal susceptibility tests are important to define the best therapy. These tests are

standardized by the Clinical and Laboratory Standards Institute (CLSI), but these protocols

have limitations such as the high complexity, cost and time to conduct. An alternative to in

vitro susceptibility test, which overcomes these limitations, is FTIR. This study determined

the minimum inhibitory concentration (MIC) of itraconazole for F. pedrosoi, using FTIR and

chemometrics. The susceptibility to ITC of 36 strains of F. pedrosoi was determined accord-

ing to CLSI and with the addition of tricyclazole (TCZ), to inhibit 1,8-dihydroxynaphthalene

(DHN)-melanin biosynthesis. Strains were grown in Sabouraud agar and prepared for Atten-

uated Total Reflection (ATR)/FTIR. Partial least squares (PLS) regression was performed

using leave-one-out cross-validation (by steps of quintuplicates), then tested on an external

validation set. A coefficient of determination (R2) higher than 0.99 was obtained for both the

MIC-ITC and MIC-ITC+TCZ ATR/PLS models, confirming a high correlation of the reference

values with the ones predicted using the FTIR spectra. This is the first study to propose the

use of FTIR and chemometric analyses according to the M38-A2 CLSI protocol to predict

ITC MICs of F. pedrosoi. Considering the limitations of the conventional methods to test in

vitro susceptibility, this is a promising methodology to be used for other microorganisms and

drugs.
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Introduction

Fonsecaea pedrosoi is a dematiaceous filamentous fungus found in soil, plants and decompos-

ing wood. This fungus is the main agent of chromoblastomycosis (CBM), a chronic, disabling

and recalcitrant subcutaneous mycosis that occurs mainly in tropical regions [1]. The main

virulence and protective factor of CBM agents is the 1,8-dihydroxynaphthalene (DHN)-mela-

nin [2, 3]. The synthesis of DHN-melanin can be inhibited in vitro by the agrochemical tricy-

clazole ([1,2,4]triazolo[3,4-b][1,3]benzothiazole) [1].

Treatment is based on antifungal therapy, which can be combined with physical and

surgical methods. Severe cases are difficult to treat due to the recalcitrant nature of CBM,

and lesions caused by F. pedrosoi generally resist treatment [4]. The most used antifungal

is itraconazole, but no randomized clinical trials have been conducted to determine the

best therapy [1]. In vitro antifungal susceptibility testing may assist in that choice. Refer-

ence methods such as those recommended by the CLSI are highly complex, costly and

require long periods to conduct [5]. Furthermore, they are still not standardized for CBM

agents.

Considering conventional methods limitations, new methods to test in vitro susceptibility

have been developed and Fourier Transform Infrared Spectroscopy (FTIR) has great potential.

This technique generates containing the sample fingerprint, and has extensive applications in

the biomedical field [6]. Its main advantages are the use of a very small amount of sample,

preservation of the sample during analysis and minimal need for preparation, small or no

waste generation, speed of analysis, accuracy, reproducibility and storage and data manipula-

tion directly in the computer software [7].

The few published studies that have used FTIR for susceptibility analyses have reported

promising results [8–11]. There are still no studies of this nature with filamentous fungi. In the

case of CBM agents, for which susceptibility tests are carried out following the M38 CLSI refer-

ence method [12, 13], the use of FTIR may have numerous advantages, especially regarding

cost, labor and waste generation. The aim of this study was to develop a prediction model for

itraconazole MICs of F. pedrosoi using FTIR and chemometric analysis, that showed promis-

ing results.

Materials and methods

Microorganisms

Thirty-six clinical F. pedrosoi strains from the fungi collection of Laboratory of Pathogenic

Fungi, Department of Microbiology, ICBS, UFRGS were studied. All strains were previously

identified by sequencing ITS1-5,8S-ITS2 DNA region and deposited in GenBank1 database

(Table 1).

F. pedrosoi itraconazole MICs were determined previously (unpublished results) using the

microdilution technique according to CLSI protocol M38-A2, with a final antifungal concen-

tration varying between 0.0625 and 32 mg/L. For each isolate, ITC MICs were also determined

with the addition of 16 μg/mL of tricyclazole (Table 1).

Sample preparation for FTIR analysis. The 36 strains tested for itraconazole susceptibil-

ity with CLSI protocol were grown in potato dextrose agar (PDA) (Merck KGaA, Darmstadt,

Germany) at 30˚C for 14 days. After this period, conidial suspensions were prepared scraping

the surface of the colonies with sterile plastic loops and sterile saline solution (0.85%), with

subsequent filtration with filter paper Whatman No. 1 (Sigma-Aldrich, Missouri, USA) to sep-

arate hyphae and conidia. Suspensions were standardized with Neubauer chamber between

105 and 106 conidia per mL. Aliquotes of 850 μL were spread on the total surface of Petri dishes
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of 7 cm in diameter containing 8 mL of Sabouraud dextrose agar (SA) (Acumedia, São Paulo,

Brazil). The fungi were cultivated at 30˚C for 14 days.

Five replicates (fragments with 1 cm x 1 cm) of each culture on SA were cut with scal-

pel blade, deposited on filter paper (0.8 cm x 0.8 cm) Whatman No. 1 (Sigma-Aldrich,

Missouri, USA) in Petri dishes and dehydrated in a drying oven at 50˚C for 1 hour. Subse-

quently, dry agar portions were removed from the plates and submitted to FTIR-ATR

analysis.

Table 1. Isolates used in the study, GenBank1 accession numbers and MIC values (unpublished results).

GenBank1 accession number MIC ITC (mg/L) MIC ITC+TCZ (mg/L)

MH382049 2 0.5

MH382054 0.5 0.5�

MH382034 0.125� 0.5

MH382053 1 0.5�

MH444810 0.25 0.5

MH382089 0.5� 0.25�

MH382042 0.5 0.25

MH382043 32� 1�

MH382046 32 1

MH382052 0.5� 0.25�

MH382083 0.5 0.125

MH382029 0.5� 0.5�

MH382030 0.5 0.5

MH382081 2� 0.5�

MH382032 0.5� 0.25

MH382033 32� 1�

MH382035 1� 0.5

MH382036 1 0.06�

MH382028 2 1

MH382047 0.5 0.5�

MH382080 1� 0.5

MH382045 0.5� 1�

MH382051 2� 1

MH368488 0.5 0.5�

MH382037 1 0.5

MH382038 1� 0.5�

MH382039 2 0.5

MH382040 0.5� 0.5�

MH382086 0.5 0.5

MH382041 0.5� 0.5�

MH382085 1 0.5

MH382050 1� 0.5�

MH382044 32 0.5

MH444807 1 1

MH382048 1� 2�

MH382087 0.25� 0.25�

MIC = minimum inhibitory concentration; ITC = itraconazole; TCZ = tricyclazole;

� = samples for calibration set.

https://doi.org/10.1371/journal.pone.0243231.t001
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FTIR-ATR analysis

Spectra of the five fragments of each fungal sample were acquired by attenuated total reflection

(ATR) in a Spectrum 400 FT-IR/FT-NIR (Perkin Elmer) spectrometer. It was used an Univer-

sal ATR Sampling Acessory with top-plate with diamond/ZnSe crystal and one reflection (Per-

kin-Elmer, catalog number L1250050) whose ATR holder is horizontal. The acquisition range

was 4000 to 650 cm-1 using a spectral resolution of 4 cm-1, force gauge 70 and 4 scans. Back-

ground was done reading the empty holder with clean crystal. The reduced number of scans

was due to the high gain of the signal/noise ratio combined with the good interaction of the

laser beam into the thick layer of the fungal culture biomass when under optimized force

gauge.

Chemometrics

The average spectra of each F. pedrosoi strain were obtained after correction and normalization

of each replicate by amplitude (0–1, min-max normalization). The highest absorption band in

each spectrum was considered 1 and the baseline 0. As a rule, all samples showed maximum

absorption in the v-C-O band at 1045–1028 cm-1.

All chemometric analyses were made in the software Pirouette 4.0 (Infometrix). Figures

were made in the software OriginPro70.

PLS was used to make a calibration model for MIC ITC and MIC ITC+TCZ determination.

For this analysis, spectra from five replicates of each strain were used instead of the average

spectrum to increase the prediction power of the model. Spectral variables (absorbance at each

wave number) of each sample were pre-processed by calculating its 1st derivative using the

Savitzky-Golay algorithm (5 points) and the use of orthogonal signal correction (OSC) with

one component. The dataset was divided into a calibration set (CS) and an external validation

or prediction set (PS) using the systematic 1:1 alternating division, ordered from the lowest to

the highest value of MIC, both for MIC ITC and MIC ITC+TCZ, resulting in two different CS/

PS partitions for the two models. The minimum and maximum values were purposely

included in CS. Thus, CS and PS were prepared with 18 strains each (total number of

strains = 36). The maximum number of latent variables allowed in the PLS model was defined

according to the recommendation of ASTM (American Society for Testing and Materials)

E1655-05 using the following equation: N = 6 (A + 1), where N is the number of CS elements

(N = 18) and A is the maximum number of latent variables allowed in the model, in order to

avoid the occurrence of overfitting [14]. The figures of merit used to evaluate the CS were the

coefficient of determination (R2) and the root mean square error of cross-validation

(RMSECV) using leave-one out cross-validation (by steps of quintuplicates) as software guide-

lines. The PS values were determined by adding one strain (five replicates simultaneously) of

F. pedrosoi at a time to the CS, identifying the predicted MIC values for each quintuplicate. PS

performance was evaluated by R2 and root mean square error of prediction (RMSEP).

Results and discussion

FTIR-ATR spectra of Fonsecaea pedrosoi
The average spectra of the 36 strains of F. pedrosoi varied little and showed the typical pattern

of filamentous fungi (Fig 1). The most prevalent bands (~1150, ~1070 and ~1030 cm–1, num-

bered 12, 13 and 14 in Fig 1) correspond to COC, CO and C-C stretching dominated by ring

vibrations of carbohydrates; they represent the glucans present in the fungus cell wall [15, 16].

Table 2 summarizes the characteristics and biomolecular attributions of the bands marked on

Fig 1 [15, 17–19].
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PLS prediction model of MICs

Different pre-processing protocols combined with PLS regression were evaluated. The best

performance for predicting the MICs with ITC and ITC+TCZ was obtained with the applica-

tion of normalization by amplitude combined with the 1st derivative and with one OSC com-

ponent. The models obtained showed figures of merit (RMSECV/RMSEP and R2) compatible

with high performance, even with one latent variable (Fig 2). However, the RMSEP error for

ITC modeling was below the minimum MIC value quantified only with models with at least

two latent variables. This is why two latent variables were considered for the construction and

validation of PLS models (Table 3).

The reference values for MIC ITC and MIC ITC+TCZ were highly correlated with the val-

ues predicted from FTIR spectra, with R2 higher than 0.99 for both models. In the MIC ITC

model, RMSEP was equal to 0.0645 mg/L, which is 51.6% of the lowest measured value; and in

Fig 1. Total set of averaged FTIR-ATR spectra of Fonsecaea pedrosoi strains grown on Sabouraud medium. The

numbers indicate the main bands found. Averaging from each strain was obtained calculating the arithmetic mean of

absorption for each frequency of the five normalized min-max spectra.

https://doi.org/10.1371/journal.pone.0243231.g001

Table 2. Characteristics of the bands found in F. pedrosoi spectra.

Band number Frequency (cm-1) Vibrational mode/molecular bond Biomolecular attribution

1 ~3335 O-H and N-H stretching modes of amide A and amide B Proteins

2 ~3280

3 ~2920 CH2, CH3 asymmetric stretching Lipids

4 ~2850 CH2, CH3 symmetric stretching

5 ~1745 C = O stretching

6 ~1640 C = O of amide I (β-pleated sheet structures) Proteins

7 ~1550 N-H, C-N of amide II

8 ~1450 CH2, CH3 asymmetric and symmetric bending Lipids, proteins

9 ~1400 C = O symmetric stretching of COO- Lipids, amino acids

10 ~1380 Amide III Proteins

11 ~1240 P = O asymmetric stretching of phosphodiester Nucleic acids, phospholipids

12 ~1150 C-O-C, C-O, C-C stretching vibrations Carbohydrates

13 ~1070

14 ~1030

15 ~890 Aromatic ring vibrations Amino acids, nucleotides

References: Naumann15, Salman et al.17, Salman et al.18, Lecellier et al.19

https://doi.org/10.1371/journal.pone.0243231.t002
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the MIC ITC+TCZ model, the RMSEP was equal to 0.0063 mg/L, i.e. 10.5% of the lowest mea-

sured value. Therefore, these values were lower than the lowest MIC measured in each cate-

gory, which demonstrates the good performance of the model selected.

FTIR-ATR spectroscopy is effective in identification of microorganisms, as it provides

highly specific fingerprints of a sample [20, 21]. The susceptibility or resistance of a microor-

ganism to a given drug is defined by very subtle changes in the cells, and this technique com-

bined with multivariate statistical analyses can detect these characteristics [11]. Only five

studies have used FTIR-ATR to determine the sensitivity or resistance of microorganisms to

certain drugs [8–11, 22]. However, although they obtained promising results, these studies

Fig 2. Figures of merit (RMSECV/RMSEP and respective coefficient of determination) profile of calibration and

validation set of FTIR-ATR/PLS models of MIC ITC and MIC ITC+TCZ for F. pedrosoi samples investigated.

https://doi.org/10.1371/journal.pone.0243231.g002

Table 3. Figures of merit of F. pedrosoi FTIR-ATR/PLS models of MIC ITC and MIC ITC+TCZ.

Parameter Set LV Range (mg/L) ȳ±SD (mg/L) R2 RMSECV RMSEP

MIC ITC

CS 2 0.125–32 4.323 ± 9.938 0.999977 0.1803

PS 2 0.999973 0.0645

MIC ITC+TCZ

CS 2 0.06–2 0.581 ± 0.354 0.999978 0.0022

PS 2 0.999382 0.0063

MIC = minimum inhibitory concentration; ITC = itraconazole; TCZ = tricyclazole; CS = calibration set. PS = prediction set; LV = number of latent variable; ȳ = mean;

SD = standard deviation; R2 = determination coefficient; RMSECV = root mean square error of cross validation; RMSEP = root mean square error of prediction.

https://doi.org/10.1371/journal.pone.0243231.t003
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evaluated only the use of FTIR-ATR with bacteria, for which there is already a high degree of

standardization and a wide range of methods available for susceptibility testing [23]. More-

over, none of these studies used a PLS model.

This is the first study to propose the use of FTIR-ATR together with chemometrics to pre-

dict MICs for a species of filamentous fungus. The prediction was made directly from the fun-

gus cultured in Sabouraud agar, without the need to expose the fungus to the antifungal tested.

This indicates that the characteristics that determine susceptibility or resistance are intrinsic

and are found in the structure of the cell wall and/or membrane [15]. Quintuplicates of each

strain were read in different regions of the plate, since some strains did not grow homo-

geneously over the surface. These growth variations, which could pose a problem for reproduc-

ibility, as also non-specific between-strains variations, were corrected using one OSC

component.

Conclusions

The main advantages of the method proposed here are its ease of execution and lower cost

compared to the reference methods. The limitations consist of the need for an initial set of

MIC values (calibration set), which must be strictly defined following the standards of refer-

ence protocols to ensure a reliable prediction model. New samples with anomalous behavior

should pass through the supervision method (M38) before they are included in the spectral cal-

ibration dataset for a new modeling update [24]. Finally, the information obtained here (using

a Sabouraud agar culture) may not reflect the actual adaptations in RPMI 1640 medium or

under in-vivo test conditions (where host defense mechanisms can generate other adaptation

patterns in the presence of ITC). Studies of this nature are needed to enable a more complete

interpretation of the clinical significance of these results. The present findings indicate that

FTIR-ATR together with chemometrics allows the quantification of the degree of antifungal

sensitivity of F. pedrosoi when challenged with itraconazole and/or tricyclazole. This technique

can aid in the clinical management of infections caused by F. pedrosoi and is a promising alter-

native for studies of this nature with other filamentous fungi and other antifungal agents of

clinical interest from the perspective of metabolomics.
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