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ABSTRACT: COSMO-RS refinements and applications have been the focus
of numerous works, mainly due to their great predictive capacity. However,
these models do not directly include pressure effects. In this work, a
methodology for the inclusion of pressure effects in the functional-segment
activity coefficient model, F-SAC (a COSMO-based group-contribution
method), is proposed. This is accomplished by the combination of F-SAC and
lattice-fluid ideas by the inclusion of free volume in the form of holes,
generating the F-SAC-Phi model. The computational cost when computing
the pressure (given temperature, volume, and molar volume) with the
proposed model is similar to the cost for computing activity coefficients with
any COSMO-type implementation. For a given pressure, the computational cost increases since an iterative method is needed.
The concept is tested for representative substances and mixtures, ranging from light gases to molecules with up to 10 carbons.
The proposed model is able to correlate experimental data of saturation pressure and saturated liquid volume of pure substances
with deviations of 1.7 and 1.1%, respectively. In the prediction of mixture vapor−liquid equilibria, the resulting model is
superior to COSMO-SAC-Phi, SRK-MC (Soave−Redlich−Kwong with the Mathias−Copeman α-function) with the classic van
der Waals mixing rule, and PSRK in almost all tested cases, from low pressures to over 100 bar.

1. INTRODUCTION
Although COSMO-RS1 models have exceptional theoretical
characteristics and perform very well in qualitative, semi-
quantitative, and solvent-screening tests, the precision required
for engineering tasks, such as the optimization of separation
systems, is usually beyond the current model resolution. In this
sense, the F-SACmodel2,3 (which combines group contribution
with the COSMO-RS theory) is an interesting alternative for the
prediction of mixture behavior. This model is successfully
applied to a variety of phase equilibria computations,4 water−oil
mutual solubilities,5,6 multicompound systems,7 and ionic
liquids.8

However, these models describe only incompressible liquids,
failing to describe the effects of pressure on thermodynamic
properties and also with limited applicability to light gases. In the
literature, there are some approaches that attempt to couple
calculations of COSMO-type models with equations of state to
model compressible phases. Lin9 presented a study that deduced
an equation of state based on the solvation theory of Ben-
Naim.10 Panayiotou et al.11−13 developed an equation of state
based on COSMO-RS. The authors calculated chemical
potentials of interacting surfaces in terms of nonrandomness
factors, generating the so-called NRCOSMO model. The
authors removed the electrostatic contribution from COSMO-
RS, keeping only the hydrogen-bond part to avoid incon-
sistencies in the ideal gas (IG) limit. Themethod was applied for
some normal alkanes and polyethylene; later, the author also
computed solvation/hydration properties.11,13 In the work of
Shimoyama and Iwai,14 the authors introduced vacancies to the
surface charge segments of the solvent molecule in the so-called

COSMO-vac model. The resulting model was able to calculate
activity coefficients in a supercritical phase. The solubilities of 16
pharmaceuticals in supercritical CO2 predicted by COSMO-vac
deviated from experimental values, on average, by less than
unity, on the logarithmic scale. However, the method only
computes infinite dilution activity coefficients of a solute in a
fluid and cannot be seen as a complete equation of state. No
expression for fugacity coefficients is demonstrated.
Costa et al.15,16 developed the equation of state called σ-

MTC, an extension of the Mattedi−Tavares−Castier equa-
tion,17 which combines the sigma profile from COSMO
computations with the generalized van der Waals theory. The
estimated parameters were the lattice cell molar volume of
component i (vi*) and the nonelectrostatic interaction energy
parameters (⟨C0,NE⟩i and ⟨C1,NE⟩i).
Another recent approach investigated in the literature

includes the use of the COSMO-SAC18 model in mixing rules
for cubic equations of state; for instance, combining SCMR19

(self-consistent mixing rule) with COSMO-SAC to get a cubic
equation of state with a strong predictive capacity. Wang et al.20

also used SCMRwhenmodeling polymer/gasmixtures based on
COSMO-SAC. The authors proposed a modified version
mSCMR and concluded that it is superior to the Wong−
Sandler21 and MHV122 mixing rules for the cases studied.
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More recently another method for the inclusion of pressure
effects in COSMO-type activity coefficient models was
proposed, called COSMO-SAC-Phi or CSP23 for short. The
method is similar to COSMO-vac or NRCOSMO, consisting in
creating a pseudo-mixture of molecules and holes (representing
free volume). The ideal gas limit is recovered by subtracting the
ideally screened state reference. This allows a seamless extension
of any COSMO-based method to include pressure effects and
compute fugacity coefficients of pure fluids and mixtures.
Different from NRCOSMO, both electrostatic and hydrogen-
bond contributions are considered and computed with standard
COSMO-SAC equations. This method successfully predicted
vapor−liquid equilibrium (VLE) and liquid−liquid equilibrium
phase equilibria data with good accuracy for a variety of systems.
However, due to its highly predictive nature, there is little room
for improvement (e.g., correlation) of mixture data when the
predictions deviate from experimental observations.
Thus, the objective of this work is to use the COSMO-SAC-

Phi method with the F-SAC group-contribution method rather
than COSMO-SAC. This will reduce the prediction power, but
will provide more correlative power. The resulting model is
called F-SAC-Phi or simply FSP.

2. COSMO-SAC-PHI AND F-SAC-PHI MODELS
In this work, the COSMO-SAC-Phi method is combined with F-
SAC instead of COSMO-SAC, resulting in the F-SAC-Phi
model. The main difference between F-SAC-Phi and COSMO-
SAC-Phi or COSMO-RS models is that the latter ones rely on
molecular properties determined by quantum chemical pack-
ages, whereas the F-SAC-Phi model (as well as pure F-SAC and
other group-contribution methods) relies on fitted molecular
properties.2 In COSMO-SAC-Phi, the volume of the molecules
is constant, and the effects of pressure and expansion are
represented by the presence of holes (free volume). The
formulation of the model is similar to the one in the works of
Carnahan and Starling,24 Chen and Kreglewski,25 and
Christoforakos and Franck,26 with the pressure given by the
sum of two contributions

P P PR A= + (1)

where PR is the pressure due to the repulsion forces and PA is the
contribution of pressure due to the forces of attraction.
Thus, this model can also be seen as a perturbation model,27

with a simple fluid as reference (PR) and a COSMO-based
perturbation term (PA).
2.1. Attractive Contribution by a Pseudo-Mixture. In

the COSMO-SAC-Phi23 method, the attractive contribution is
computed by means of a pseudo-mixture, as shown in Figure 1.
Note that in the scheme of Figure 1, a pressure variation is

possible as a function of volume. The real mixture is described by
the mole amount vector n = [n1, n2, ..., ni, ..., nN]. The pseudo-
mixture is described by the combination of the real mole amount
vector and the amount of holes ñ = [n, nh]. This way the mixture
volume is given simply by

V n b n b
i

i i h h∑= +
(2)

where bi is the molar covolume of species i and bh is the molar
covolume of a hole.
Following Figure 1, pressure−volume relations are possible by

the inclusion or removal of holes. This feature is not present in
COSMO-RS, COSMO-SAC, or original F-SAC. For a given

total volume and mole amount vector, eq 2 can be used to
compute the hole mole amount

n
b

V n b
1

i
i ih

h
∑= −

i

k
jjjjjj
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{
zzzzzz (3)

For the calculation of attractive pressure PA, a classic
thermodynamic relation is used
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where AA
r is the residual Helmholtz energy of the attractive

contribution. To simplify the notation, we will drop subscript A
from here forward.
Considering the pseudo-mixture scheme of Figure 1, we can

derive the required Helmholtz derivative by
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where Ãr is the residual Helmholtz energy of the pseudo-
mixture, and the last term of eq 5 is directly obtained by deriving
eq 3
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Finally, we can define the residual chemical potential of the holes
in the pseudo-mixture as

A
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(7)

leading to an elegant result

P
A
V bT n

A

r

,

h
r

h

μ
= − ∂

∂
= −

̃i
k
jjj

y
{
zzz

(8)

where μ̃h
r is the hole residual chemical potential in the pseudo-

mixture. The chemical potential of holes, μ̃h (not residual), in
the pseudo-mixture and the chemical potential of other
components, μ̃i, are computed as usual with models such as
COSMO-RS, COSMO-SAC, or F-SAC.
To obtain the residual version of these chemical potentials,

the COSMO-SAC-Phi method consists in the following.
Considering COSMO-SAC notation, we discretize a molecule
surface into several segments, and the activity coefficient of a
segment Γm is given by

Figure 1. Schematic diagram for the COSMO-SAC-Phi model; holes of
fixed volume are introduced when the pressure is reduced.
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where ΔWm,n is the interaction energy between segments m and
n, and pn is the probability of finding segment n. In COSMO-
SAC-Phi, both holes and molecules are always considered in eq
9. As stated by Lin and Sandler,18 the logarithm of the activity
coefficient of a segment ln Γm is actually a difference in chemical
potentials. More precisely, ln Γm is the difference in chemical
potential between the segment inserted into the actual mixture
with respect to the segment inserted into a fluid of identical
neutral segments.
To compute the residual contribution, and then respect the

ideal gas limit, the neutral segment fluid reference should be
replaced by the usual reference of an ideal gas (IG). This step is
necessary because any computation with a COSMO-based
model has an implicit reference state of a molecule surrounded
by a perfect conductor, which is not an ideal gas (see, for
instance, the so-called ideally screened state and eq 13 of ref 28).
In the COSMO-SAC-Phi model, the ideal gas limit is recovered
by the following subtraction

ln ln lnm m m
r IGΓ = Γ − Γ (10)

where ln Γm
IG is the chemical potential of the segment in an ideal

gas, and ln Γm
r becomes the residual chemical potential of

segment m.
The use of eq 10 is probably the major difference between

COSMO-SAC-Phi and NRCOSMO.11 In the latter model, the
authors removed the electrostatic contribution of COSMO-RS,
keeping only the hydrogen-bond part to avoid inconsistencies in
the IG limit. In COSMO-SAC-Phi, the electrostatic contribu-
tions are not removed, and the IG reference state is actually
recovered by eq 10.
The chemical potential of the segment in an ideal gas, ln Γm

IG,
can be calculated with eq 9 evaluated at the infinite molar
volume limit, at the same temperature, by simply making the
pseudo-mixture mole amount vector as

nn n 0, 1 0, 0, ..., 1IG
h̃ = [ = = ] = [ ] (11)

Finally, with the residual chemical potential of each segment, we
can calculate the residual chemical potential of a given
compound (or hole) by summing its segments
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where aeff = πrav
2 is the standard surface area segment and rav is the

averaging radius; Qm is the surface area of segment m.
2.2. Fugacity Coefficients. Fugacity coefficients can be

computed by29
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where Z ≡ PV/NRT is the compressibility factor.
Since we consider that interactions come from a sum of

repulsive and attractive forces, residual Helmholtz energy is Ar =
AR
r + AA

r . Again, we describe only the attractive contribution in
this section and drop the subscript to simplify the notation.

To evaluate the Helmholtz partial derivative of eq 14 for a

COSMO-SAC-Phi23 pseudo-mixture, an increase in the amount

ni should cost a reduction in the amount of holes nh to keep a

constant total volumeV. This is illustrated in Figure 2 and can be
transcribed to
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where the last term on the right-hand side is obtained by deriving
eq 3 (with constant bh)
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Combining eqs 15 and 16 with the chemical potential in eq 7, we
obtain
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Equation 17 can be applied to obtain fugacity coefficients of pure
substances and fugacity coefficients of substances in mixtures. A
detailed flowchart of all necessary steps for these computations is
provided in the original work.23

If the hole volume, bh (representing free volume), is not the
same for every compound in the mixture, a mixing rule is used

b
n
N

b
i

i
ih h,∑=

(18)

where N =∑i ni and bh,i is the hole volume for species i. Finally,
the expression for the Helmholtz partial derivative of eq 14
would be
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2.3. Repulsive Forces. Using the same approximation
considered in the COSMO-SAC-Phi method, in the present
work, a simple hard-sphere model was chosen to represent
repulsive forces (reference fluid)

P
NRT

V n bi i i
R =

− ∑ (20)

Figure 2. COSMO-SAC-Phi illustration of a system of constant total
volume V: to introduce a new molecule, holes have to be removed.
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where N = ∑ini, R is the universal gas constant, T is the
temperature, and bi is the hard-sphere volume of species i.
The hole amount, nh, and its molar volume, bh, should not be

included in the summation of eq 20. It should be noted that this
equation represents a crude simplification, and it is actually
responsible for the so-called combinatorial contribution in the
CSP model. Thus, more sophisticated representations, such as
the Carnahan and Starling30 or the more recent developments
present in SAFT models,31,32 may be used in future studies.
2.4. F-SAC-Phi Model. In the F-SAC model, the COSMO-

RS theory of contacting surfaces is used. However, in the F-SAC
model, each molecule is fragmented into functional groups, and
each group has its own empirically calibrated σ-profile

p Q Q Q Q( ) ( , ); (0, ); ( , )k k k k k k k
0σ σ σ= { }− − + +

(21)

where the σ-profile of each functional group is represented by
three empirical parameters: Qk

−, Qk
+, and σk

+. Qk
+ represents the

functional group area of the positive segment, Qk
− is the

functional group area of the negative segment, and σk
+ is the

charge density of the positive segment. With these definitions,
the neutral area Qk

0 is given by the remaining area of the group
surface area:Qk

0 =Qk−Qk
+−Qk

−; and by a charge balance to keep
each group neutral, the group negative charge density can be

computed as k
Q

Q
k k

k
σ = σ−

+ +

− .

Finally, the σ-profile of a molecule is given by the sum of the σ-
profiles of its constituent functional groups

p q p Q( ) ( )i i
k

k
i

k k
( )∑σ ν σ=

(22)

This discrete F-SAC σ-profile, in contrast to the usually
continuous representation in COSMO-SAC or COSMO-RS,
is shown in Figure 3.
Using the σ-profiles of compounds in the mixture, the

proposed F-SAC-Phi model computes the fugacity coefficients,
as explained in the previous section, based on the following
pairwise surface contact energy34

W
E E( )

2 2 2m n
m n m n m n

,

2
,

HB
,

Dispα σ σ
Δ =

′ +
+ +

(23)

where α′ is the constant for the misfit energy, equal to 35 750 kJ
Å4/(mol e2); σm and σn are the apparent surface charge densities
of segmentsm and n (σ-profile); Em,n

HB and Em,n
Disp are the terms that

take into account hydrogen bonds and dispersion between
segments m and n, respectively.
In the F-SAC model, the HB term is a binary parameter3 (for

every functional group pair of HB donor and acceptor) to be
fitted with mixture experimental data. The dispersion con-
tribution was computed by the following simple combining rule

Em n m n,
Disp δ δ= − (24)

where the segment dispersions, δm, are temperature-dependent,
with a decay inspired by the one used in PC-SAFT models for
the temperature-dependent segment diameters31

T(1 exp( / ))m m m
T0δ δ δ= − − (25)

where δm
0 and δm

T were assumed to be per functional group k, with
m = k (adjusted in this work).
For the holes, the parameter, δh

0, was assumed to be zero and
then the value of δh

T was irrelevant.
2.5. Parameter Estimation and Experimental Data. For

every subgroup k, four parameters were estimated in the present
work: volume (Rk and bh,k) and dispersion parameters (δk

0 and
δk
T). This was accomplished using pure compound saturation
pressures (Psat) and saturated liquid molar volume (vl), collected
from the literature with the aid of the NISTThermoData Engine
software.35 The objective function (Fobj) for the optimization of
the model parameters was as follows

F w
P P
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v v
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where NP is the number of experimental points; the “calc”
superscript denotes the quantity calculated with the F-SAC-Phi,
and w = 10 is a weighting factor,4,36,37 so that priority is given to
saturation pressure data.
For the saturation pressure calculations, a classical ϕi

l = ϕi
v

bubble point algorithm was used, and the fugacity coefficients
were computed as previously described. After the bubble
pressure algorithm converged, the saturated liquid volume was
evaluated. To avoid the usual difficulties around the critical
temperature Tc or at very low temperatures, only data in the
interval 0.5 Tc < T < 0.9Tc were considered, including around 20
experimental points for each substance.
The Nelder−Mead optimization method38 was used to

estimate the model parameters for each substance. First, the
parameters for the linear hydrocarbon subgroups CH3 and CH2
were all adjusted using data of linear alkanes. After that, the other
subgroup parameters were adjusted leaving the previously
estimated parameters fixed.
All other F-SAC parameters, namely, Qk (total area of

subgroup k), Qk
+ (area of the positive segment for subgroup k),

Qk
− (area of the negative segment), and σk

+ (positive segment
surface charge density) as well as HB formation energies, were
taken from previous works2,3 and not optimized. For light gases
unavailable in the original works (CH4, CH3−CH3, N2, H2S,
CO2, NH3, C2H4, and CH3NH2), the total area, Qk, was taken
directly from the COSMO cavity surface area available in the
LVPP sigma-profile database39 using the JCOSMO package
developed by Gerber and Soares.33,40 The electrostatic
parameters (Qk

+, Qk
−, and σk

+) for the groups H2 and N2 were

Figure 3. Comparison for the σ-profile of acetone for (a) COSMO-SAC33 and (b) F-SAC.2
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arbitrated as zero (nonpolar). For polar gases (CO2, C2H4, and
NH3), the electrostatic parameters (Qk

+, Qk
−, and σk

+) were also
adjusted in this work. For these cases, bubble pressure deviations
for some VLE data were used along with the pure compound
data to adjust simultaneously all needed pure compound
parameters.

3. RESULTS AND DISCUSSION
A few representative functional groups were considered in this
work as a proof of concept. The resulting parameters optimized
with pure compound data, as described before, are listed in
Tables 1 and 2. The average relative deviations per compound

for saturation pressure and saturated liquid molar volume are
given in Table 3

P P
P

ARD
1

NPP
k

k k

k1

NP sat sat,calc

sat∑=
−

= (27)

v v
v

ARD
1

NPv
k

k k

k1

NP l l,calc

l∑=
−

= (28)

Comparisons with COSMO-SAC-Phi23 and with classical
Soave−Redlich−Kwong equation of state with Mathias−
Copeman α-function41 (SRK-MC) are also included in Table
2, recalling that three additional parameters are needed for the α-
function, taken from Horstmann et al.41 Regarding volume
comparisons, SRK-MC results with the volume translation
method proposed by Peńeloux et al.42 based solely on critical
data41 are used (SRK-MC+VT), since large deviations (average
of 13% with values larger than 39%) are observed without
volume correction.
For molecules consisting of a single subgroup (e.g., CHCl3),

similar F-SAC-Phi and COSMO-SAC-Phi parameters were
obtained. Regarding the hole (free volume) parameter, bh,i, the
average of all subgroups of the F-SAC-Phi model was 12.91 Å3,
similar to the COSMO-SAC-Phi average value of 14.03 Å3.
In Figure 4, responses for pure compound saturation

pressures of some representative molecules are shown. Even
though the MC parameters used were adjusted using data from

Table 1. F-SAC-Phi Electrostatic Parameters Estimated in
This Work for Polar Light Gasesa

electrostatic parameters

group Qk
+ [Å2] Qk

− [Å2] δk
+ [e/nm2]

CO2
b 9.811 11.926 0.011

H2S
c 8.197 5.682 0.010

NH3
d 7.169 7.873 0.016

aFor all other functional groups, electrostatic parameters were taken
from refs 2 and 3. bMixture data with methane, benzene, and acetone.
cMixture data with nitrogen, methane, benzene, and cyclohexane.
dMixture data with benzene and n-decane.

Table 2. Volume and Dispersion Parameters for the F-SAC-Phi Model Estimated in This Work

volume dispersion

group subgroup Rk [Å
3] bh,k [Å

3] δk
0 [kcal/mol] δk

T [102 K]

CH2 CH4 50.639 11.760 0.466 2.815
CH3 37.836 8.800 0.455 5.008
CH2 28.098 18.656 1.072 1.463
CH 20.217 20.778 0.167 9.000
CH3−CH3 74.024 13.355 0.618 3.387
c-CH2 25.918 14.636 0.657 4.309

CH3COCH3 CH3COCH3 101.800 13.691 0.710 3.686
CH3COCH2 92.212 15.309 0.866 3.564

CH3COOCH3 CH3COOCH3 110.032 12.511 0.686 3.321
CH3COOCH2 102.941 15.141 0.873 2.657

ACH ACH 21.475 15.959 0.835 4.708
AC 17.645 16.225 7.628 20.109

CH3OCH2 CH3OCH3 82.652 12.482 0.638 3.623
CH2OCH2 66.436 18.128 1.127 1.620

CC CH2CH 50.479 15.780 0.584 3.907
c-CHCH 33.728 15.556 0.708 4.347

c-CH2OCH2 c-CH2OCH2 62.440 12.671 0.817 4.412
CH3OH CH3OH 56.892 9.812 1.086 3.868
CH2OH CH2OH 33.355 15.312 7.978 0.334
CHCl3 CHCl3 93.939 16.491 0.860 4.043
N(CH2)3 N(CH2)3 106.427 18.613 2.260 1.819
CCl4 CCl4 137.853 15.270 0.720 4.735
CO2 CO2 45.229 9.761 0.592 3.116
H2 H2 35.885 11.293 0.135 1.644
N2 N2 45.877 10.745 0.332 1.678
H2S H2S 46.389 10.846 0.714 5.137
H2O H2O 24.373 6.906 1.218 9.183
NH3 NH3 30.928 8.699 0.632 7.291
C2H4 C2H4 66.267 12.695 0.591 3.286
CH3NH2 CH3NH2 58.139 11.874 0.829 4.262
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different database software,41 for most cases, the responses from
F-SAC-Phi, COSMO-SAC-Phi, and SRK-MC are visually

indistinguishable and in very good agreement with experimental
data.

Table 3. Deviations of Saturation Pressure and Saturated Liquid Volume Using the F-SAC-Phi Model, COSMO-SAC-Phi, and
SRK-MC+VT

F-SAC-Phi COSMO-SAC-Phi SRK-MC+VT

family compound ARDP % ARDV % ARDP % ARDv % ARDP % ARDv %

saturated methane 1.9 0.8 1.8 1.2 1.5 3.2
hydrocarbon ethane 1.6 0.7 1.5 1.0 0.2 3.1

propane 2.7 2.4 1.3 1.3 0.4 4.0
n-butane 2.1 0.9 0.5 0.7 0.3 3.2
n-pentane 3.9 1.7 0.3 0.4 0.2 3.1
2-methylpentane 10.9 1.8 2.5 2.8 1.9 1.2
n-hexane 4.6 1.3 0.6 1.6 1.2 3.7
n-octane 3.8 0.9 0.9 2.5 3.4 4.1
n-decane 3.2 3.7 2.0 4.5 1.4 4.9
cyclohexane 0.7 0.5 0.7 1.0 0.4 3.4

unsaturated ethylene 1.7 0.6 1.3 0.5 0.7 2.7
hydrocarbon 1-butene 1.0 0.6 0.5 0.6 2.6 3.2

1-hexene 2.8 1.6 1.8 2.3 1.8 5.3
cyclohexene 1.1 6.5 1.3 0.7 8.4 18.2

aromatic benzene 0.9 0.3 0.8 0.5 0.5 3.8
toluene 1.2 1.9 1.2 1.1 0.9 4.0

ketone acetone 1.0 0.4 0.7 0.6 1.2 5.7
methyl ethyl ketone 0.7 0.0 0.6 1.0 1.6 1.0

ether dimethyl ether 0.5 1.1 0.8 1.1 2.3 16.0
diethyl ether 1.0 1.8 0.4 0.4 0.8 4.6
tetrahydrofuran 1.3 1.5 1.5 0.9 1.1 4.6

ester methyl acetate 0.6 0.1 0.5 0.5 2.6 4.4
ethyl acetate 1.8 3.5 0.7 1.4 1.0 4.1

organic halide chloroform 1.4 0.8 1.0 3.2 1.2 12.2
carbon tetrachloride 0.8 0.6 0.8 1.1 0.9 3.6

alcohol methanol 1.4 0.6 1.0 2.4 0.8 6.9
ethanol 2.1 3.3 1.8 4.0 2.8 5.7
n-butanol 4.1 3.5 1.4 5.1 2.0 5.0
n-pentanol 2.6 2.5 2.3 2.2 3.8 3.5

amine methylamine 1.1 1.7 1.5 4.2 1.9 17.9
triethylamine 1.9 1.0 1.2 1.3 3.5 3.2

gases nitrogen 2.2 0.9 1.8 1.0 1.9 3.3
carbon dioxide 1.3 1.1 0.2 0.2 0.8 5.8
hydrogen sulfide 2.9 1.1 1.6 0.9 1.2 5.3

other ammonia 1.7 1.0 2.3 2.2 1.5 6.5
water 1.5 0.2 0.9 0.8 0.6 9.0

average 1.7 1.1 1.1 1.1 1.2 4.1

Figure 4. Saturation pressure for (a) small molecules and (b) larger molecules calculated with F-SAC-Phi, COSMO-SAC-Phi, and SRK-MC.
Experimental data from TDE software with 20 experimental points for each substance.
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In Figure 5, results for saturated liquid volume of some
representative molecules are shown. As can be seen, the
proposed method can correlate data very well for a variety of
substances, in spite of the priority for correlation of vapor
pressures in the objective function, eq 26.
When compared with SRK-MC results, much better agree-

ment with experimental data is observed with the F-SAC-Phi
and COSMO-SAC-Phi models. Poor results for the prediction
of liquid volumes are well known for cubic equations of state. In
Figure 5, results with the volume translation method proposed
by Peńeloux et al.42 are also shown, referred to as SRK-MC+VT.
In this work, the version based solely on critical data was
considered.41 This method indeed improved the results for
cubic equations of state, but the proposed method’s correlation
was still superior.
When F-SAC-Phi is compared with COSMO-SAC-Phi,

similar performance is observed for molecules consisting of a
single functional group (e.g., methane, cyclohexane, and

benzene). For molecules consisting of different subgroups
(e.g., n-hexane, 1-hexene, and 2-methylpentane), the proposed
method has shown some difficulties. This can be explained by
the limitations of a group-contribution method, where different
molecules need to be described by a single set of parameters,
whereas in COSMO-SAC-Phi, there are per compound
parameters. Furthermore, most parameters were taken from
previous F-SAC works in this proof of concept (subgroup total
area and electrostatic parameters). In future works, all
parameters could be refined, probably leading to improved
responses.

3.1. VLE Predictions. In this section, some vapor−liquid
equilibrium (VLE) experimental data are compared with F-
SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK
predictions. SRK-MC+vdW corresponds to the SRK equation
of state with theMathias−Copeman α-function and the classical
van derWaals mixing rule with no binary interaction parameters.
PSRK also includes the MC α-function but relies on group-

Figure 5. Saturated liquid molar volume for (a) small volumes and (b) larger volumes calculated with F-SAC-Phi, COSMO-SAC-Phi, SRK-MC, and
SRK-MC+VT. Experimental data from TDE software with 20 experimental points for each substance.

Table 4. Relative Deviations of Bubble Pressures for F-SAC-Phi (FSP), COSMO-SAC-Phi (CSP), SRK-MC, and PSRK for
Different Systems

AARDP %

system ref P (bar) FSP CSP SRK-MC PSRK

methyl acetate/1-hexene 43 0.6−1.0 3.1 2.3 10.1 1.1
methanol/water 44 0.2−0.8 4.9 3.2 37.3 1.0
acetone/cyclohexane 45 0.1−0.4 9.1 5.8 27.1 4.6
chloroform/benzene 46 0.3−0.7 0.9 1.6 4.8 0.7
chloroform/diethyl ether 47 0.2−0.7 4.2 3.4 21.5 7.3
chloroform/acetone 48 0.2−0.4 0.9 1.0 16.4 1.0
low pressure average 3.8 2.9 19.5 2.6
carbon dioxide/acetone 49 5−55 3.2 3.8 5.3 12.2
carbon dioxide/benzene 50 15−65 1.8 23.6 29.6 8.2
carbon dioxide/methanol 51 5−80 10.7 13.6 25.7 3.6
ammonia/n-butane 52 5−25 2.2 8.0 26.6 18.6
ammonia/benzene 53 1−4.5 2.7 9.4 41.2 12.6
ammonia/water 54 1−100 24.2 17.0 181.1 5.2
nitrogen/methane 55 3−35 4.3 3.5 5.8 1.5
methane/carbon dioxide 56 10−80 5.8 10.0 20.6 4.0
nitrogen/carbon dioxide 57 5−120 14.6 8.7 8.6 6.6
ethane/n-butane 58 12−38 4.0 4.3 2.3 3.1
ethane/n-pentane 59 1−50 6.4 8.6 4.6 8.4
ethane/n-decane 60 5−100 17.0 32.5 5.7 35.8
overall 8.1 11.9 29.8 10.0
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contribution binary interaction parameters (UNIFAC-like)
combined with SRK-MC by means of a specific mixing rule.41

The intent is just to provide comparisons with a wide variety of
models, ranging from the very simple SRK-MC+vdW to the
PSRK method, which relies on large binary interaction
parameter matrices. Results were produced based on the iso-
fugacity criteria, yiϕ̂i

v = xiϕ̂i
l.

Results are listed in Table 4, including references for the
experimental data. Only deviations of pressure are included,
since not all experiments provide vapor phase composition data.
Furthermore, deviations of pressure are usually correlated with
deviations of vapor phase composition.
As can be seen in Table 4, the proposed FSPmethod provided

results similar to CSP and PSRK for the low-pressure systems
investigated. When high-pressure systems were also considered,
the proposed method provided the smallest overall deviation.
Visual comparisons are available in Figures 6−11. In Figure 6,

some low-pressure predictions are compared with experimental
data for cases of positive deviations from the Raoult law. As can
be seen, F-SAC-Phi responses are very similar to the ones
obtained with COSMO-SAC-Phi. For all cases in this figure, F-

SAC-Phi predictions are clearly superior to SRK-MC+vdW
ones. The proposed method produced results very similar to
PSRK and CSP for these cases, but they could be further
improved if the original F-SAC parameters were refined
specifically for use in the FSP method.
Predictions for some low-pressure cases with negative

deviations from the Raoult law are shown in Figure 7. Again,
F-SAC-Phi responses are very similar to the ones obtained with
the COSMO-SAC-Phi model. For all cases in this figure, SRK-
MC+vdW predicted nearly ideal behavior. This is a well-known
deficiency of cubic equations of state with the classic mixing rule,
unable to produce negative deviations without negative binary
interaction parameters.32 Results with the PSRK method are
also in good agreement with the experimental data.
Predictions for systems with carbon dioxide are shown in

Figure 8. For carbon dioxide/acetone, F-SAC-Phi, COSMO-
SAC-Phi, and SRK-MC+vdW presented similar responses, in
agreement with experimental data. PSRK performance was
slightly worse for this case. For the case with benzene, much
better agreement with experimental data is observed for the
proposed model when compared with COSMO-SAC-Phi, SRK-

Figure 6. VLE predictions for F-SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK for low-pressure cases with positive deviations from the
Raoult law.

Figure 7. VLE predictions for F-SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK for low-pressure cases with negative deviations from the
Raoult law.

Figure 8. VLE predictions for F-SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK for carbon dioxide systems at high pressures.
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MC+vdW, and PSRK. For themixture withmethanol, all models
provided similar performance, with a higher deviation for the
simple cubic equation of state SRK-MC-vdW. This is one
example where refined F-SAC parameters can show improved
responses. Since there were no CO2 parameters available in the
original version, they were estimated also considering mixture
data (see Table 1).
Predictions for systems with ammonia are shown in Figure 9.

Again SRK-MC+vdW without binary interaction parameters
could not predict the experimentally observed strong deviations.
F-SAC-Phi, on the other hand, produced very good predictions
for positive deviations as well as negative, with pressures up to
100 bar. COSMO-SAC-Phi and PSRK were superior to the
proposed method only for the ammonia/water pair.
In Figure 10, VLE calculations for some light gas mixtures are

shown. In these cases, good agreement with experimental data
was observed for all models, with a slightly better performance
for PSRK.
In Figure 11, ethane/hydrocarbon mixtures are used to verify

how the proposed model handles asymmetric systems. As can be
seen, the proposed model performance did not degrade as much
as the system asymmetry becomes higher. This is an advantage
over both PSRK and COSMO-SAC-Phi.

4. CONCLUSIONS

In this work, a method for the inclusion of pressure effects in the
functional-segment activity coefficient model, F-SAC (group-
contribution method), is proposed, allowing description of
compressible phases and mixtures with light gases. The
proposed modification consists of the direct combination of F-
SAC and lattice-fluid ideas by the inclusion of holes, as suggested
in the COSMO-SAC-Phi method. The resulting model was
called F-SAC-Phi, or FSP for short.
In the proof of concept present in this work, a simple hard-

sphere model was considered for the repulsion forces. Pure
compound parameters were introduced accounting for dis-
persive interactions. The model was able to correlate well
experimental saturation pressure and saturated liquid volume
simultaneously with average deviations of 1.7 and 1.1%,
respectively.
Mixtures ranging from light gases to molecules with up to 10

carbons were tested for low pressures as well as for pressures
over 100 bar. Predictions of mixture vapor−liquid equilibrium
(VLE) data with the proposed model performed similarly to
COSMO-SAC-Phi, SRK-MC, and PSRK.
Future works can improve the repulsive contribution as well as

the description of free volume. Responses could also be

Figure 9. VLE predictions for F-SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK for ammonia systems at high pressures.

Figure 10. VLE predictions for F-SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK for light gas systems.

Figure 11. VLE predictions for F-SAC-Phi, COSMO-SAC-Phi, SRK-MC+vdW, and PSRK for ethane systems with different degrees of asymmetry.61
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improved if the original F-SAC parameters were refined
specifically to be used with F-SAC-Phi. Investigations around
the critical point as well as critical compressibilities with F-SAC-
Phi as well as COSMO-SAC-Phi are also to be pursued.
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