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Abstract 

Excavation of tunnels produces a redistribuition of stresses and induces deformations in the rock mass around 
the tunnel’s cross section. In the case of elasto-plastic behavior of rock mass, plastic zones may appear. It is 
important to quantify the influence of this zone on the overall response of the tunnel. In this paper, we deduce 
a fully analytical solution in terms of displacements and stresses around a circular deep tunnel. The aim here 
is not to replace a 3D numerical calculation. This kind of analytical calculation are only useful to have a good 
understanding of the tunnel behavior in the preliminary phases of the project. For example, to perform 
parametric studies useful to choosing good parameters to introduce in a 3D numerical calculation. 
A homogeneous and isotropic rock mass is considered. For elasto-plastic behavior, the Tresca’s constitutive 
model with associate flow rule and Mohr-Coulomb’s constitutive model with non-associate flow rule are 
considered. For both, the idealized stress-strain curve presents a linear istropic hardening law. A geostatic-
hydrostatic state of initial stresses and infinitesimal strains is assumed. The analytical solutions are compared 
with the FEM solutions demonstrating excellent agreement. 
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1 INTRODUCTION 

During the analysis of a deep tunnel it is essential to understand the behavior of the rock mass after the excavation. 
The excavation induces a disturbance zone around the tunnel that depends on the properties of the rock mass, the 
excavation method, in situ stress field, the geometry of the cross section of the tunnel and the type and stiffness of the 
support and the timing of its installation. This plastic zone is defined as a region in the rock mass where its stiffness 
parameters have changed due to the process of excavation and support of the tunnel. One of the tools commonly used 
to understand the interdependence of these factors is analytical solutions. 

The analytical solutions consist of the use of equations deduced from the assumptions of continuous mechanics. 
However, for the closed-form solution, it is necessary to adopt some simplifying hypotheses, such as circular section, 
infinite homogeneous medium, axissimetry boundary conditions and geostatic-hydrostatic stress field. In any case, these 
solutions have the potential of providing a quick overview of the problem and are very useful to identify the relationship 
between the most important variables. The aim here is not to replace a three-dimensional numerical calculation. This 
kind of analytical calculation are only useful to have a good understanding of the tunnel behavior in the preliminary 
phases of the project. In addition, as they are quick calculations, they allow parametric studies that can be useful when 
choosing the parameters of a three-dimensional numerical calculation that takes more time. 

The first analytical solution employed in deep tunnels derives from theoretical development to determine the field 
of stresses and deformations around openings in elastic media. Lamé (1866) proposed the first solution (in plane state 
of deformations) for cylindrical openings in linear elastic medium submitted to an initial state of hydrostatic geostatic 
stresses. Afterwards, Kirsch (1898) proposed a solution in elastic media generalizing the initial stresses field. In the 
following century, along with the development of the phenomenological theory of plasticity, several analytical solutions were 
proposed. In general, considering different yield criteria (Mohr-Coulomb, Hoek-Brown, Tresca for example), stress-strain 
behavior (elasto-plastic perfect, hardening/softening or brittle) and strategies for considering volumetric reduction during 
plastic deformation (such as using a non-associated flow rule). Studies such as Fenner (1938), Morrison and Coates 
(1955), Salencon (1969), Peck (1969), Daemen and Fairhurst (1970), Panet (1976), Berest et al. (1978), Detournay and 
Fairhurst (1987), Corbetta (1990) are exemples of this contribution. Brown et al. (1983) present a good review of these 
solutions until 1980s and presents its own analytical solution. 

In recent analytical solutions, part of the researchers is studying the influence of a non-hidrostatic initial stress field 
considering the stress along the axis of the tunnel the major principal. Studies such as Reed (1988), Pan and Brown (1996), 
Lu et al. (2010), Zhou and Li (2011), Wang et al. (2012), including finite strain, such Vrakas and Anagnostou (2014) are 
examples of this contribution. 

This article presents two analytical solution: the first considers a Tresca’s constitutive model with linear hardening 
behavior with associated flow rule. The second case, more complex, considers a Mohr-Coulomb’s constitutive model 
with linear hardening behavior with non-associated flow rule, in wich post-peak dilatancy occurs at a constant rate with 
major principal strain. In both cases, an initial geostatic-hydrostatic stress field and infinitesimal deformation is adopted. 

2 DEFINITION AND HYPOTHESIS OF THE PROBLEM 

The Figure 1 shows the geometry and boundary conditions of the problem. A circular deep tunnel of radius iR  in a 
homogeneous and isotropic rock mass with an elastic-plastic hardening behavior. A plane state of deformation is 
assumed, i.e., the section is far from the three-dimensional effects of the excavation face, toghether with axial symmetry 
boundary conditions for uniform loading P∞ . iP  is the pressure on the wall of the tunnel that simulates the 
decompression caused by the advance of the excavation and placement of the lining. For example, it is used for generate 
the characteristic curve of rock mass in the Convergence-Confinement method (Panet et al., 2001). 

 
Figure 1. Geometry and boundary conditions of the problem 
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When iP  decreases from P∞  and the yield criterion is achived, a cylindrical plastic zone begins to develop around the 
tunnel. In an elastic-plastic rock mass with hardening, this zone can have two internal domains: a hardening elastic-plastic 
zone and a perfect plastic zone. In the absence of lining, when 0iP = , depending on the properties of rock mass, the 
advancement of this plastic zone can lead to high deformations, indicating the possible failure of the rock mass. 

3 TRESCA CRITERION 

3.1 Equations of the problem 

Considering the axial symmetry condition of the problem in Figure 1, the resulting stress state at a distance r  is 
defined by the radial stress ( )rr rσ  and circumferential stress ( )rθθσ , which are the minor and major principal stresses, 

3 ( )rσ  and 1( )rσ  respectively, when the section of interest is far from the excavation face and with initial state of 
geostatic-hydrostatic stresses. The resulting displacement is defined by the radial displacement ( )u r . 

The strain tensor uε = ∇  in polar coordinates is 

0 0

0 0

0 0 0

u
r

u
r

ε

∂ 
 ∂ 
 =  
 
  
 

 (1) 

and the stress tensor is written as 

0 0
0 0
0 0

rr

zz

θθ

σ
σ σ

σ

 
 =  
 
 

 (2) 

Applying the condition div( ) 0σ = , i. e., the problem is statically admissible, have the following differential equation: 

rr
rr r

rθθ
σ

σ σ
∂

= +
∂

 (3) 

Considering the boundary conditions of Figure 1 which are 

( )rr i i ir R Pσ σ= = = −  (4) 

0

0 0
0 0   where    
0 0
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σ

σ σ σ
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∞
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In linear elasticity behaviour, where ( ) 0 01 ( ) tr( )1eEε ν σ σ ν σ σ= + − − −  (Hooke’s law), the solution of this boundary 

value problem is 
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2

( ) ( ) i
i

R
r P P P

rθθσ ∞ ∞
 = − − − 
 

 (8) 

( )zz r Pσ ∞= −  (9) 

In infinitesimal plasticity the strain deformation ε  is the sum of the tensor of elastic deformations eε  and the tensor 

of the plastic deformation pε , i.e., 

e pε ε ε= +  (10) 

This deformation pε  will occur when the stresses reach the Tresca yield criterion written as 

( ) 2 ( )rrF Cθθσ σ σ α= − −  (11) 

It should be noted that the out-of-plane stress ( )zz rσ  is taken as the intermediate principal stress 2 ( )rσ . This 
assumption is valid with geostatic-hydrostatic in situ stress conditions and sections far from the excavation face. In this 
solution the plastic deformation was assumed to be associated, i.e., G F= , and given by the following expression 

0 0

0 0
0 0 0

p

p p p pG F
ε

ε ε ε ε
σ σ

 
 ∂ ∂
 = = = −

∂ ∂  
 
 

 (12) 

Here we are interested in the particular dependence of the cohesion ( )C α , shown in Figure 2, which introduces the 
linear hardening law. 

 
Figure 2. Variation of the cohesion: A –linear hardening behavior and B – perfect plasticity behavior 

And therefore, 
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where 
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1 0

0

' p
C C

C
ε
−

=  (14) 

and the internal variable α  is the plastic strain magnitude pε . 

Introducing (12) in (10) and replacing eε  in Hook's law gives 

( ) (2 1)p
rr zz

uE
r θθε σ ν σ σ ν σ∞
∂ − = − + + − ∂ 

 (15) 

( ) (2 1)p
rr zz

uE
r θθε σ ν σ σ ν σ∞

 + = − + + − 
 

 (16) 

Making the addition of (15) and (16): 

1 (1 2 )( 1)( 2 )rr
uE

r r θθν ν σ σ σ∞
∂

= − + + −
∂

 (17) 

So, using the (17) in (3) we obtain two equations valid in all the domain: (18) and (19) that we will use in the following 
deductions. 

2(1 2 )( 1)( )rr
u AE
r r

ν ν σ σ∞− − + − =  (18) 

( 1)2 p
rr

ur
r E r

νε σ∂ + = + ∂  
 (19) 

Replacing (18) in (19) the last one becomes: 

1p rr Ar
E r r

σ
ε

′∂
= −

′ ∂
 (20) 

where 

AA
E

′ =  (21) 

21
EE
ν

′ =
−

 (22) 

Considering a monotonic decreasing function in iP  starting from P∞ , we have the different behavior zones in the 
rock mass, show in Figure 3. A first phase, when iP  remains close enough to the P∞ , the entire rock mass remains in 
elasticity, having only zone 1. However, when iP  is below a limit value, necessary for the stress state to reach the yield 
criterion at ir R= , the plastic zone 2 with linear hardening behavior begins. When iP  decreases further, a third zone, of 
perfect plasticity, may appear. 
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Figure 3. Elasto-plastic and elastic zones around the deep tunnel with hardening behaviour 

3.2 Solution in the elastic zone 1 ( )r y≥  

The solution in this zone is classic (Mandel, 1966). We define the radius r y=  those where the elastic zone begins. 

The conditions 0pε =  and 0F =  in r y=  allows obtaining the value of the constant 'A  using (18) and (19): 

2

02 yA C
E

′ = −
′

 (23) 

Using the condition 0pε =  in the elastic domain and the boundary condition in r = ∞  we obtain the complete 
solution in this zone: 

2
0 (1 )( ) Cu r y

r E r
ν+  = −  

 
 (24) 

2

0( )rr
yr C
r

σ σ∞
 = +  
 

 (25) 

2

0( ) yr C
rθθσ σ∞

 = −  
 

 (26) 

( )zz rσ σ∞=  (27) 

3.3 Solution in the plastic zone 3 ( )iR r x≤ ≤  

We define the radius r x=  as the limit between the plastics zones 3 and 2. In this perfect plastic zone, the yield 
criterion is given by 

1( ) 2rrF Cθθσ σ σ= − −  (28) 

As far as the yield criterion is zero in this zone, the equilibrium equation (3) becomes 
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1
1 2rr C
r r

σ∂
= −

∂
 (29) 

The integration of the (19) together with the boundary condition of (4) leads to the following equation of the radial 
stress: 

1( ) 2 ln i
rr i

R
r C

r
σ σ = + 

 
 (30) 

Replacing (30) into (18) we obtain the expression of the radial displacement given by 

2

1 0
( ) (1 ) (1 2 ) 2 ln 2 (1 )i

i
Ru r yC C

r E r r
ν ν σ σ ν∞

  +    = − + − − −          
 (31) 

Afterwards, using the equilibrium equation and the plane state condition of deformations, the rest of the solution 
is given by 

1 1( ) 2 ln 2i
i

R
r C C

rθθσ σ = + − 
 

 (32) 

( ) ( ) (1 2 )zz rrr θθσ ν σ σ ν σ∞= + + −  (33) 

3.4 Solution in the plastic zone 2 ( )x r y≤ ≤  

In this zone of plasticity with hardening behaviour the yield criterion is written as 

( ) 2 ( )rrF Cθθσ σ σ α= − −  (34) 

As far as this criterion is null in this zone, the integration of the equilibrium equation with the condition in r x=  
leads to 

20
2 2

2 1 1( ) ln
1 2

rr x
C C xr y

C E rr x
E

σ σ
′    = + − +   ′ ′     +

′

 (35) 

where xσ  is the value of the radial stress in r x= . Due to the continuity of the radial stress between zone 3 and 2, 
equation (30) provides 

1( ) 2 ln i
x rr i

R
r x C

x
σ σ σ = = = + 

 
 (36) 

In the same way that for the zone 3, the expression of the displacement is obtained using (18), which gives: 

2
20 0

2 2
2 2( ) (1 2 )( 1) 1 1 ln

1 2
x

C Cu r C x yy
Cr E E r E rr x
E

ν ν σ σ∞

 
 ′− +       = + − + − −       ′ ′ ′       +

′ 

 (37) 

Using the equilibrium equation and the plane state condition of deformations, the rest of the solution is given by: 
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20
2 2

2 1 1( ) ln 1
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 (38) 

( ) ( ) (1 2 )zz rrr θθσ ν σ σ ν σ∞= + + −  (39) 

3.5 Calculation of the plastic radius x  and y  

In order to finish the resolution of the problem we must calculate the plastic radius x  and y .In r x=  we have 

10( )  and ( )pp r x C Cε ε α= = =  (40) 

Substituting (40) in (20) we obtain 

2 20

10

2
2p

C
x y

E Cε
=

′ +
 (41) 

The value of y  is finally obtained writing the continuity of the radial stress in r y= , i.e., 

20
0 2 2

2 1 1 ln
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x
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C E ry x
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 (42) 

Together with (36) and (41) the value of y  is obtain in an explicit way: 
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with the following constants: 
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3
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ω
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3.6 Comparison between the numerical and analytical solution 

The numerical solution was obtained through the elastoplasticity algorithm implemented in the GEOMEC 91 finite 
element code. The local elastoplasticity integration algorithm of the stresses and internal variables and the global 
equilibrium iteration algorithm can be obtained in Bernaud (1991). The finite element mesh with 100 isoparametric 
elements with 9 nodes per element, together with their boundary conditions is shown in Figure 4. 
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Figure 4. Finite element mesh and boundary conditions 

The characteristics of the following example are those of the Boom clay (Bernaud, 1991) obtained from samples at 
240m deep: 1430E MPa= , 0.4ν = , 0 0.21C MPa= , 1 0.56C MPa= , 0 (%) 2.4pε = , 4.5P MPa∞ =  and 4.5 0iP MPa= → . 
Figure 5 illustrates the convergence curve, ( ) /i i iU u r R R= − = , for a given application. The point marked in Figure 5 
corresponds in FEM numerical calculation and we can see that numerical and analytical solutions are identical. 

 
Figure 5. Convergence curve  x i iP U  for analytical and numerical solutions for the Tresca criterion 

The Figure 6 shows the plastic radius for the internal pressure range. 

 
Figure 6. Plastic radius x  and y  versus the internal pressure iP  for the Tresca criterion 
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For a given pressure 2.5iP MPa=  the Figure 7 illustrates the stress σ  versus the radius r  for analytical and 

numerical solutions. 

 
Figure 7. Stress versus the radius for analytical and numerical solutions for the Tresca criterion 

As before, we can show the excellent agreement between the analytical and numerical solution. In Figure 7, through 
( )rθθσ , the three zones that delimit the elastoplastic regime can be clearly seen. 

4 MOHR-COULOMB CRITERION 

4.1 Equations of the problem 

In this case, the same strain and stresses tensor given by (1) and (2), equilibrium equation (3), the boundary 
conditions (4) and (5) and the superposition of the deformations elastic and plastic (10) are used. But the yield function 
is written as 

( ) ( 1)( ( ))rr p rrF K Hθθσ σ σ σ α= − + − −  (48) 

where 

2

4 2pK tg π ϕ = + 
 

 (49) 

( ) ( )cotg( )H Cα α ϕ=  (50) 

and ϕ  is the friction angle. In this model the hardening behaviour was adopted only in the cohesive parameter H . 
Assuming a non-associated flow rule, i.e., G F≠ , where 

( ) ( 1)( ( ))rr rrG Hθθσ σ σ β σ α= − + − −  (51) 

and 

1 sin( )
1 sin( )

β

β

ϕ
β

ϕ
+

=
−

 (52) 



Analytical solution of deep tunnels in a strain-hardening elasto-plastic rock mass Denise Bernaud et al. 

Latin American Journal of Solids and Structures, 2020, 17(6), e297 11/21 

obtained for plastic deformation 

0 0

0 0
0 0 0

p

p p pG
βε

ε ε ε
σ
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 = = −

∂  
 
 

 (53) 

where βϕ  is the material dilatation angle. The internal variable associated with the isotropic hardening behavior is given 
by: 

(1 ) pα β ε= +  (54) 

Here we are interested in the particular dependence of the ( )H α  in (55), shown in Figure 8, which introduces the 
linear hardening law. 

 
Figure 8. Variation of the function ( )H α : A – linear hardening behaviour and B – perfect plasticity behavior 

And therefore, 
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where 
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0
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H H
H
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0 0(1 ) pα β ε= +  (57) 

The equilibrium equation (3) and the Hooke’s law give the following relations (that are valid in all zones of behavior) 

1
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Considering a monotonic decreasing function in iP  starting from P∞ , we have the different behavior zones in the rock 
mass. A first phase, when iP  remains close enough to the P∞ , the entire rock mass remains in elasticity, having only zone 
1. However, when iP  is below a limit value, necessary for the stress state to reach the yield criterion at ir R= , the plastic 
zone 2 with linear hardening behavior begins. When iP  decreases further, a third zone, of perfect plasticity, may appear. 

In the following, we describe the deductions corresponding to the two cases of plasticity. For the first, we have only 
the plastic with linear hardening zone. The second is more complex because exist two plastics zones in the rock mass: 
the zone with perfect plasticity and the zone of plasticity with hardening behaviour. 

4.2 First case: only one plastic zone 

In this case exists only the plastic with hardening zone corresponding to the zone 2 illustrates in the Figure 9. 

 
Figure 9. Plastic zone 2 and elastic zone 1 around the tunnel 

4.2.1 Solution in the elastic zone 1 ( )r y≥  

The solution in this zone is obtained writing the conditions: 

0  for  p r yε = ≥  (60) 

0  and  0   when  p F r yε = = =  (61) 

0

0 0
0 0   where    
0 0

P
σ

σ σ σ
σ

∞

∞ ∞ ∞

∞

 
 = = − 
 
 

 (62) 

These conditions applied to the (58) and (59) gives the following solution: 

2

0
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( ) ( )
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p
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K yr H
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 (63) 

2

0
( 1)( ) (1 ) ( )
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p

p
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ν σ∞
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 (64) 

4.2.2 Solution in the plastic zone 2 ( )iR r y≤ ≤  

Considering the continuity of rrσ  and u  in r y= : 

0
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p
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 (65) 

0
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the displacements are obtained by integration of (59) between x  and y . Expressed as a function of rrσ  we have 

1

( 1)
( ) r

rr rr
y

u r y ca b r dr d
r r r

β
β

βσ σ
+

+
 = + + + 
  ∫  (67) 
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E
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E
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Due to the nullity of the yield criterion in this zone, the equilibrium equation writes 
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r
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σ ε
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 (72) 

Due to the fundamental (58) we can eliminate pε . So we obtain 
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Equation where the second member can be written as a function of rrσ , given in the (63). So, an integral-differential 
equation in rrσ  is expressed as 
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( )5 01pa K H= −  (79) 

The method of resolution (74) uses technics purely mathematics. Therefore, we expose in the following directly the 
solution obtained: 
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H E
c

H Eβ ν β
=

′ − − − +
 (81) 

2
1 1 2

1 2
d d d

k
− + −

=  (82) 

2
1 1 2

2 2
d d d

k
− − −

=  (83) 

2

1 2

2 ( 1)(1 ) ( )

(1 )( 1)
p p

p

K H E K
d

E K H

β ν β

ν

′− − − − +
=

′+ − −
 (84) 

2 2

2 2

4( 1)(1 )(1 )
0

(1 )( 1)
p

p

K H
d

E K H

ν β

ν

′− − −
= <

′+ − −
 (85) 

The constants 1c  and 2c  are obtained taken into account the boundary and continuity conditions of stresses, given 
by: 

( )rr i ir Rσ σ= =  (86) 

0
( 1)

( )    with   ( )
( 1)

p
rr y y

p

K
r y H

K
σ σ σ σ σ∞ ∞

−
= = = − −

+
 (87) 

Therefore: 

[ ]

[ ]

2

1

( 1)
2 2 3

1 ( 1)
1

( 1)k
i i

k
i

k c R c
c

k R

β

β

σ β− +

− +

− + +
=  (88) 

[ ]
[ ]

[ ] [ ]

1

2 12 1

( 1)

3 3

2 ( 1) ( 1)( )
2 2

( 1) ( 1)
k

y i
i

k kk k
i

yc c
R

c
k y k R y

β

β β

β σ σ β
− +

− + − +−

 
+ + − + +  

 =
−

 (89) 

Finally, the displacement is a function only of the variable r  

[ ] [ ]1 2

( 1) ( 1)
( 1) ( 1)( ) k k

i

u r y yAr Br C D E
r R r

β β
β β

+ +
− + − +    = + + + +   

  
 (90) 
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with the follow constants: 

[ ]{ }2 21
1(1 ) (1 ) (1 )(1 )cA k

E
ν β ν β ν β= + − + + − −  (91) 

[ ]{ }2 22
2(1 ) (1 ) (1 )(1 )cB k

E
ν β ν β ν β= + − + + − −  (92) 

2
02( ) (1 )( 1)(1 )

( 1)
p p

p

K K H
C

E K
β σ βν ∞ − − + −−  =  

+  
 (93) 

2 2
0

2

2( ) (1 )( 1)(1 )(1 )
(1 )( 1)

p p

p

K K H
D

E K

β σ βν β
β
∞ − − + −− −  = −  
− +  

 (94) 

[ ]{ }{ }2
3

(1 ) ( 1) ( 1) (1 )(1 ) (2 1)E C
E
ν β β ν β ν β ν σ∞

+
= − + − + + − − − −  (95) 

4.2.3 Calculation of the plastic radius y  

In order to complete the solution of the problem, we must calculate the plastic radius y . This is performed writing 

the nullity of pε  and of the yield criterion in r y=  in the (58): 

0
(1 ) ( 1)( ) 0p y

r y

ur K H
r r E

ν σ
=

∂ +  + − − = ∂  
 (96) 

The 
r y

ur
r r =

∂  
 ∂  

 deduction can be performed using the (67) and (80) and obtaining an implicit equation of y : 

[ ]2 2 1( 1) ( )
1 2 3 0k k ke y e y eβ− + −+ + =  (97) 

with 

[ ]1

2 2
02

1 2 2( 1)
1

( 1)(1 )( 1) (1 ) 1
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i
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 (98) 
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 (100) 
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This solution is only valid as long as the stress values iσ  maintain the condtion 0α α≤ . 

4.3 Second case: two plastics zones 

In this case, the second zone (perfect plasticity) appears in ir R=  (see Figure 10). 

 
Figure 10. Plastic zones (2 and 3) and elastic zone 1 around the tunnel 

4.3.1 Solution in the plastic zone 3 ( )iR r x≤ ≤  

In this zone the yield criterion writes: 

1( 1)( )rr p rrF K Hθθσ σ σ= − + − −  (101) 

Due to the nullity of F  in this zone, the equilibrium equation is: 

1( 1) (1 )rr
p rr pr K K H

r
σ

σ
∂

− − = −
∂

 (102) 

The resolution of the differential equation above with the limit condition ( )rr i ir Rσ σ= =  gives the classical solution: 

( 1)

1 1( ) ( )
pK

rr i
i

rr H H
R

σ σ
−

 
= − + 

 
 (103) 

The calculation of the displacements is performed by the integration of the fundamental (59) between the radius 
ir R=  and r x= : 

[ ] ( )
( 1)1

( 1) ( 1)

( 1)
2

1 ( 1)

( 1) (1 ) (1 )(1 2 ) ( )( ) (1 )
( )

(1 ) (1 2 )( ) 1

p
p

p

K
Kp i

K
p i

x

K Hu r xr
r E K rR

x xH u
E r r

β

β

β β

β

β ν β β ν σν
β

β ν ν σ

+
−

− +

+

∞ +

  − − + + + − −+  = − +  
+      

 +  − − − − +  
   

 (104) 

Where xu  representes the displacement in the point r x= . Due to the continuity of xu  the displacements can be 
calculate by the equation of u  in the second plastic zone. 

4.3.2 Solution in the plastic zone 2 ( )x r y≤ ≤  

In this zone, the stresses and displacements are written as the same way that in the first calculation, (67) and (80). 
The difference concerns the limit condition ( )rr i iRσ σ=  of the first calculation that is replaced by the condition 

( )rr xxσ σ= . So, the radial stress in this zone is written with the (80) but with others values of 1C  and 2C  that are: 

[ ] [ ]1 2( 1) ( 1)
1 1 2 2 3( ) ( 1)k k

rr r k c r k c r cβ βσ β− + − += + − +  (105) 
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[ ]

[ ]
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1

( 1)
2 2 3

1 ( 1)
1

( 1)k
x
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k x c c
c

k x

β

β
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− +

− + +
=  (106) 
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y x

k kk k
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β σ σ β
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 + + − + +  
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−
 (107) 

All the others constants are the same as of the first calculation. We remember: 

( 1)

1 1( )
pK

x i
i

xH H
R

σ σ
+

 
= − + 

 
 (108) 

0
( 1)

( )
( 1)

p
y

p

K
H

K
σ σ σ∞ ∞

−
= − −

+
 (109) 

The displacements in this zone are given by the (90) with the constants of (91) to (95). The constants 1c  and 2c  
must be calculated with the (106) and (107). We remember this equation: 

[ ] [ ]1 2

( 1) ( 1)
( 1) ( 1)( ) k ku r y yAr Br C D E

r r r

β β
β β

+ +
− + − +    = + + + +   

   
 (110) 

4.3.3 Calculation of the plastic radius x  and y  

As before, we need to calculate the plastic radius x  and y  to complete the solution of the problem. With this goal 

we write the conditions about pε  in x  and y : 

0

10

0,    ,    
    and    ( )

,  ,  
p

p

r y H r y
H

H r xr x
ε α

ε

= == =  == 
 (111) 

Considering the (58) the first condition is 

0
(1 ) ( 1)( ) 0p y

r y

uy K H
r r E

ν σ
=

∂ +  + − − = ∂  
 (112) 

The derivation in function of r  for the (67) written in r y=  and the value of yσ  allow to write the above equation 

as a function of γ  and x : 
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( 1)( 1)2 1 2

1 0 2 ( )
1 2

2
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1 2
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k kq q x q
E k k

q
E k k

βν β β γ
γ

ν β β
γ γ
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 −
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 (113) 

where /y xγ =  and the constants: 

1
0 ( 1)p

i
K

i

H
q

R

σ
−

−
=  (114) 
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[ ]{ }2 2 2
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0
2 1 22 (1 )(1 )

H E
q H

H Eβ ν
= +

′ − − −
 (116) 

3 0 2

1 2
1 ( 1)2 (1 )(1 )

p

p p

KEq H
K KH E

σ
β ν

∞
 −

= + + 
+ +′ − − −  

 (117) 

The second condition ( 0
ppε ε=  in r x= ) gives: 

( 1)

10
(1 ) ( 1)( )

pK
p

p i
ir x

u xx K H
r r E R

νε σ
−

=

 ∂ + = + − −   ∂    
 (118) 

The derivation of the (67) is written in r x=  and we define /y xγ =  in the (118). Finally, we can express x  as a 
function of γ . 

2 1 2 1 1

2 1

( ) ( ) ( 1 )( 1)
( 1) 4 5 6 7

( )
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with the following constants: 

2 2 01
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p HHq
k E H E
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So, the (113) and (119) are a system of two implicit equations for x  and y  that must be solve numerically. First we 
replace the expression of y  in function of γ  given by the (119) in the (113). With a numerical calculation (calculation of 
the zero of a function) we find the value of /y xγ =  for a given iσ . This value introduced in the (119) gives the value of 
x  and consequently the value of y . 

4.4 Comparison between the numerical and analytical solution 

The numerical solution uses the same program as the the previous solution (GEOMEC 91) whose mesh and boundary 
conditions are shown in Figure 4. The characteristics of the following example are those of the Boom clay (Bernaud, 1991) 
obtained from samples at 240m deep: 1430E MPa= , 0.4ν = , 4oφ = , 2.07o

βφ = , 0 0.21C MPa= , 1 0.56C MPa= , 

0 (%) 2.4pε = , 4.5P MPa∞ =  and 4.5 0iP MPa= → . Figure 11 illustrates the convergence curve for a given application. 

 

Figure 11. Convergence curve  x i iP U  for analytical solution for the Mohr-Coulomb criterion 

The Figure 12 shows the plastic radius for spectrum of internal pressures. 

 

Figure 12. Plastic radius x  and y  versus the internal pressure iP  for the Mohr-Coulomb criterion 

For a given pressure 1.0iP MPa=  (with 0.5ν = ) Figure 13 illustrates the stress versus the radius r for analytical and 
numerical solutions. 
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Figure 13. Stress versus the radius for analytical and numerical solutions for the Mohr-Coulomb criterion 

5 ANALYTICAL AND NUMERICAL CONVERGENCES - COMPARISON 

Table 1 summarizes the result of analytical and numerical convergences ( ) /i i iU u r R R= − =  of six different cases. 
Two considering the Tresca model (T) and five considering the Mohr-Coulomb model (MC). The characteristics of rock 
mass correspond to that of Boom’s clay (Bernaud, 1991). 

Table 1. Characteristics mechanics and Convergences Ui (%) analytical and numerical 

CASE ( )F σ  E  
(MPa) 

ν  
ϕ  
( )°  

βϕ

( )°  
0C  

(MPa) 
1C  

(MPa) 
0
pε  

(%) 
iP  

(MPa) 
∞P  

(MPa) 
(%)iU  

Analytical 
(%)iU  

Numerical 

1 T 1430 0.4 - - 0.21 0.56 2.4 2.5 4.5 5.87 5.91 
2 T 1430 0.5 - - 0.56 0.56 2.4 1.5 4.5 4.54 4.47 
3 MC 1430 0.4 10 4 0.21 0.56 2.4 0.5 4.5 5.11 5.22 
4 MC 1430 0.5 10 4 0.56 0.56 2.4 0.0 4.5 4.53 4.61 
5 MC 1430 0.4 4 2.07 0.21 0.56 2.4 1.0 4.5 10.81 11.03 
6 MC 1430 0.5 4 2.07 0.21 0.56 2.4 1.0 4.5 10.23 10.43 

The maximal difference between analytical and numerical results is 2% indicate the good agreement of the results. 

6 CONCLUSIONS 

In this paper, simple closed-form solutions of the displacements and stresses for an elastic-plastic rock mass of the 
circular deep tunnel with Tresca’s and Mohr-Coulomb’s linear hardening model was presented. Three zones appear 
around the tunnel: an elastic zone, a plastic hardening zone and a perfect plastic zone. The analytical solution for these 
three zones is shown. The analytical results were compared with the FEM results and a perfectly agreement was 
obtained. 
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