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Summary

This paper is devoted to the development of semianalytical solutions for the

deformation induced by gravitational compaction in sedimentary basins.

Formulated within the framework of coupled plasticity–viscoplasticity at large

strains, the modeling dedicates special emphasis to the effects of material

densification associated with large irreversible porosity changes on the stiffness

and hardening of the sediment material. At material level, the purely

mechanical compaction taking place in the upper layers of the basin is handled

in the context of finite elastoplasticity, whereas the viscoplastic component of

behavior is intended to address creep-like deformation resulting from chemo-

mechanical that prevails at deeper layers. Semianalytical solutions describing

the evolution of mechanical state of the sedimentary basin along both the

accretion and postaccretion periods are presented in the simplified oedometric

setting. These solutions can be viewed as reference solutions for verification

and benchmarks of basin simulators. The proposed approach may reveal

suitable for parametric analyses because it requires only standard

mathematics-based software for PDE system resolution. The numerical

illustrations provide a quantitative comparison between the derived solutions

and finite element predictions from an appropriate basin simulator, thus

showing the ability of the approach to accurately capture essential features of

basin deformation.
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1 | INTRODUCTION

Sedimentary basins are natural structures with great economical interest owing to hydrocarbons, groundwater, and
mineral reserves. Assessment and exploration of these resources require a comprehensive understanding of the multiple
coupled phenomena that occur over geological timescale, and for this purpose, analytical and numerical models are of
great importance as they allow to test different scenarios of a basin history.

One of the key aspects of basin simulation concerns the mechanical model used to describe compaction through
time as tectonic subsidence and basin deformation are strongly coupled with thermal evolution and fluid flow. In this
regard, the numerical model should be able to deal with the compaction mechanisms that may take place in different
types of groups of sediments to appropriately reconstruct the geological events through time.
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In siliciclastic rocks, for example, two main types of compaction can take place: purely mechanical compaction due
to grain rearrangement and subsequent pore fluid expulsion, and chemo-mechanical compaction resulting from disso-
lution, diffusion, and precipitation of minerals, known as intergranular pressure solution (IPS). The first prevails in the
early stages of a newly deposited layer, whereas the second progressively dominates as continuous burial increases sedi-
ments temperature and effective stresses.1

Understanding the mechanics of deformation in sedimentary basins has been the subject of study for a long time. In
1930, the geophysicist Lawrence F. Athy2 published a pioneering contribution to the modeling of sediments compaction
process. It basically consists of an empirical law that describes rock porosity reduction with burial depth as an exponen-
tial decay. Relying upon phenomenological relationships that relates porosity to rock overburden, the concept of poros-
ity versus Terzaghi's effective vertical stress dependence has been then introduced by Hubbert and Rubey3 and later by
Smith.4 In this framework, the empirical porosity–stress law must be calibrated for each specific rock according to
available well data.

These ideas have been widely adopted and implemented in numerical finite element (FE) models and are still
applied in Basin and Petroleum System Modeling (BPSM) to represent mechanical compaction under the assumption
of oedometric evolution.5,6 However, such models are not devised for relevant assessment of the horizontal stresses
induced by compaction phenomena, nor for capturing the impact of lateral deformations induced by tectonics, which
may strongly affect the poro-mechanical state of the basin, eventually resulting in seal rock fracturing and fault reac-
tivation. To overcome this limitation inherent to the analyses based on phenomenological porosity–stress laws, several
contributions have focused in the last decades on the formulation of constitutive models that rely upon a more compre-
hensive description of the mechanics involved in basin deformation.7–16 Developed in the context of tensorial formal-
ism, these models have been applied in basin simulations under different geological scenarios, demonstrating the
importance of addressing deformation in sedimentary basins within a three-dimensional (3D) framework. As regards
the chemical fluid–rock interactions and their implications on the sedimentary material behavior, several approaches
have been devoted to describe the complex aspects of dissolution and precipitation of minerals in siliciclastic and car-
bonate rocks.17–26 Still, the formulation of a macroscopic material model that accounts for chemical diagenetic pro-
cesses in basin modeling remains a challenging issue. In addition, factors such as the presence of hydrocarbons or grain
coating may retard or totally inhibit pressure-solution even at great depths.27–30 Despite these difficulties, different
approaches aimed at addressing chemo-mechanical compaction in sedimentary basins at macroscopic level have been
formulated in literature.5,31–35

To deal with these coupled phenomena, Brüch et al.36 developed a constitutive model for the fully saturated porous
material in a thermo-poro-mechanics framework, which was incorporated in a numerical tool on the basis of the FE
method. This model has its origins in previous works,37–44 which aimed to describe purely mechanical compaction of
sediments. Based on micromechanical reasoning, the formulation takes into account the effects of large irreversible
strains on the poroelastic properties of the basin through additional terms in the state equations of the porous material.
This is relevant in basin simulation as some sediment layers may be subjected to more than 50% of
porosity reduction.45

Nevertheless, the accuracy of numerical simulators must be verified for each engineering application by comparing
the predicted results to available benchmarks and reference solutions. In that respect, one may quote the numerical
and analytical solutions via Fourier transforms to classical geomechanics problems formulated within the framework of
coupled thermo-poro-mechanics.46–50 The analytical solutions are derived in the context of both infinitesimal46 and
large strains48,49 by resorting to Laplace transform and Fourier series to solve the resulting boundary value problems
(BVPs). This work presents the formulation of analytical and semianalytical reference solutions that describe the defor-
mation processes in a sedimentary basin. These reference solutions can be conveniently used for verification and valida-
tion benchmarks of numerical basin simulators. The mechanical and chemo-mechanical compaction processes are
respectively represented by plastic and viscoplastic models in the context of large irreversible strains. The analysis is
restricted to drained and isothermal conditions, disregarding the effect of pore pressure and temperature on the mate-
rial. The semianalytical solutions are compared with those obtained by the numerical simulator developed by
Brüch et al.36

It should be noted that the proposed analysis is developed within a purely academic situation that relies upon a sim-
plified geological scenario for compaction processes. In that respect, the primary objective of the paper is to provide ref-
erence solutions derived for compaction in sedimentary basins in the context of highly simplified setting, and not to
predict the mechanical state that would prevail in real data life basin.
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2 | STATEMENT OF THE PROBLEM

The mechanical problem under consideration refers to the evaluation of stresses and strains developing in a sedimen-
tary basin under oedometric conditions during both the formation phases by continuous accretion of sediment material
and along the postaccretion phase as well. The analysis shall focus on deformation induced in the basin by purely
mechanical and chemo-mechanical compaction processes. Whereas purely mechanical compaction originates mainly
from rearrangement of the solid particles during burial and can thus be modeled in the framework of plasticity, chemo-
mechanical compaction resulting from IPS phenomena is generally associated with creep-like deformation. In addition,
compaction process in a sedimentary basin generally involves large strains, the reduction in porosity of the sediment
material exceeding in many situations values as high45 as 50%. The theoretical framework of coupled elastoplasticity–
viscoplasticity at finite strains appears therefore suitable for accurate description of the mechanics controlling the
basin deformation.

In order to formulate semianalytical solutions for the compaction process in sedimentary basins, a simplified setting
relying upon the following assumptions is adopted: (a) the whole sedimentation process takes place under oedometric
conditions; (b) the sediment constitutive material exhibits homogeneous and isotropic mechanical properties in its ref-
erence state, that is, at the time it is deposited at the top of the basin; (c) the hydromechanical coupling is disregarded
in the subsequent analysis (i.e., the effect of pore pressure is not considered), which amounts to addressing the particu-
lar case of highly permeable sediment material (fully drained conditions); and (d) the mechanical evolution of the basin
is analyzed under isothermal condition, disregarding the effect of geothermal gradient on the material properties and
deformation. The role of pore pressure and geothermal gradient has been assessed through numerical formulations in
previous works.9,41,44,51,52

The sedimentary basin undergoing compaction is modeled as an infinite layer, perpendicular to the e3 direction and
lying on a rigid substratum along the plane x3 = 0. Neglecting the tectonic activity, the gravitational field g= −ge3
stands for the only external loading in the compaction process. In addition, the anisotropy of constitutive properties of
the material in its reference state and that induced by compaction processes are neglected in the analysis. This frame-
work of assumptions allows for simplified description of the problem geometry and geological process as well as for
more analytically tractable field equations governing the evolution of mechanical state of the sedimentary basin. In this
simplified framework, the physical quantities involved in the problem only depend on time and the vertical coordinate
x3. The position of a material particle in the sedimentary layer at a time t is defined by coordinate as x3, whereas the
instant when the particle is deposited at the top of the layer is referred to as T(x3, t).

As the sediments are continuously deposited at the top of the basin, the sediment layer thickness is time dependent.
Assuming that the top of the layer remains horizontal, the position of the upper boundary is defined by the gravita-
tional compaction law x3 = H(t) (Figure 1).

2.1 | Governing field equations

The quasistatic BVP is defined by two field equations, which are briefly described in the sequel. Neglecting the inertial
effects, the momentum balance equation for the continuum reads as follows:

FIGURE 1 Geometry model for

sedimentary basin and loading conditions
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divσ x3, tð Þ+ ρ x3, tð Þg=0, ð1Þ

where σ is the Cauchy stress tensor and ρ is the mass density of the sediment material.
In the Eulerian formulation, the mass balance equation writes as follows:

∂ρ x3, tð Þ
∂t

+div ρ x3, tð Þuðx3, tÞð Þ=0, ð2Þ

where u is the Eulerian velocity field of the sediment particles.
The Lagrangian counterpart of the mass balance equation is

ρ x3, tð Þ= ρ0
J x3, tð Þ , ð3Þ

where ρ0 is the initial mass density and J = dΩt/dΩ0 is the Jacobian of the transformation, that is, the ratio of the vol-
ume of a particle at the current configuration to the initial configuration.

Physical quantities associated with the particles seated at the top of the sedimentary basin, viewed as an open mate-
rial system, comply with the following initial conditions:

σ H tð Þ, tð Þ=0, ð4Þ

J H tð Þ, tð Þ=1, ð5Þ

ρ H tð Þ, tð Þ= ρ0: ð6Þ

As a boundary condition, the velocity of the particles in contact with the rigid substratum is null

u 0, tð Þ�e3 = 0: ð7Þ

In the context of oedometric compaction setting, which implicitly disregards the effects of both tectonic events and
loading induced anisotropy, together with assumption of homogeneity of the deposited sediment material along the
whole accretion phase, the general form for velocity and stress fields express as

u x3, tð Þ= u3 x3, tð Þe3, ð8Þ

σ x3, tð Þ= σh x3, tð Þ e1�e1 + e2�e2ð Þ+ σv x3, tð Þe3�e3: ð9Þ

Accordingly, the deviatoric part of stress tensor reads:

s= σ−
1
3
trσ1=

1
3
σv−σhð Þ −e1�e1−e2�e2 + 2e3�e3ð Þ: ð10Þ

2.2 | Loading and geometrical transformation

The mass of sediments deposited per unit area Md(t) on the top of the basin during the time interval [0,t] characterizes
the magnitude of the loading applied to the sedimentary basin. It expresses as
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Md tð Þ=
ðH tð Þ

0
ρ x3, tð Þdx3: ð11Þ

It is assumed that the rate of sediments supply _Md tð Þ is prescribed. The rate-form of 11 writes

_Md tð Þ= _H tð Þρ0 +
ðH tð Þ

0

∂ρ x3, tð Þ
∂t

dx3: ð12Þ

The combination of 2 and 12 together with the boundary condition 7 leads to

_H tð Þ=
_Md tð Þ
ρ0

+ u3 H tð Þ, tð Þ: ð13Þ

The ratio between the height of a particle in the current configuration at time t and its height in the reference state at
time T(x3, t) defines by the vertical stretch Λ(x3, t) (Figure 2). Based on its definition, the initial condition for the sedi-
ment particle is

Λ H tð Þ, tð Þ=1: ð14Þ

Under oedometric conditions, the gradient of the geometrical transformation of a particle between the reference
and the current states takes the following form:

F x3, tð Þ= e1�e1 + e2�e2 +Λ x3, tð Þe3�e3: ð15Þ

The Jacobian of the geometrical transformation J =detF is therefore equal to the vertical stretch:

J =detF =Λ: ð16Þ

Because F x3, tð Þ and Λ(x3, t) depend on the coordinate x3 in the current configuration, these quantities are as Eulerian
fields, even if their definition is similar to that classically adopted in the Lagrangian description of a solid
transformation.

The Eulerian gradient of the velocity field ru is related to F according to ru= _F�F−1, which leads to

∂u3
∂x3

e3�e3 =
_Λ
Λ
e3�e3 !

∂u3
∂x3

=
_Λ
Λ
: ð17Þ

The strain rate tensor d= 1
2 ru+ truð Þ is

FIGURE 2 Definition of the particle vertical stretch
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d=
∂u3
∂x3

e3�e3 =
_Λ
Λ
e3�e3: ð18Þ

From equilibrium arguments, the vertical component of stress at depth x3 can be evaluated as the total weight of the
material volume having unit cross-section area that is seated above the considered depth:

σv x3, tð Þ= −
ðH tð Þ

x3

ρ η, tð Þgdη: ð19Þ

The rate of vertical stress can be calculated from 19 by making use of 2 and 13, which results in

_σv x3, tð Þ= − _Md tð Þg: ð20Þ

2.3 | Constitutive behavior of sediment material

The sedimentary material is modeled as an isotropic elastic–plastic–viscoplastic material undergoing large strains. As
mentioned previously, the anisotropy induced by the compaction on the sediment mechanical properties is disregarded.
During the geometric transformation, the reversible strains (elastic) are assumed to remain infinitesimal. Large strains
produced by compaction are therefore of irreversible nature.

The solid phase that constitutes the skeleton particle is considered to be incompressible. The solid mass balance
implies therefore that the Eulerian porosity (current pore volume fraction) expresses as40

φ x3, tð Þ=1−
1−ϕ0

J x3, tð Þ≈1−
1−ϕ0

Jir x3, tð Þ , ð21Þ

where ϕ0 = φ(H(t), t) refers to sediment porosity in the reference state and Jir is the irreversible component of the
Jacobian transformation, which is close to the total Jacobian Jir ≈ J owing to the assumption of infinitesimal
reversible strains.

The previous equation relates current porosity to volumetric dilatation of the sediment material during burial. It is
expected that the large porosity variation modifies the material elastic properties.40 The stiffness increase of the skeleton
elastic modulus induced by the progressive decrease in porosity is modeled by the Hashin–Shtrikman upper bounds for-
mulated for isotropic composite materials. These variational bounds coincide with the micromechanical estimates
derived from Mori-Tanaka scheme,53 which are known to reasonably model the elastic properties of isotropic porous
media.54,55 The expressions for the bulk and shear moduli as a function of porosity are given by

K φð Þ= 4ksμs 1−φð Þ
3ksφ+4μs

μ φð Þ= μs 1−φð Þ 9ks +8μsð Þ
ks 9+ 6φð Þ+ μs 8+ 12φð Þ

8>><
>>:

, ð22Þ

where ks and μs are the bulk and shear moduli of the solid phase, which are assumed to be unaffected by compaction
processes.

Before further developments, it should be emphasized that the ability of such a formulation to provide relevant elas-
tic estimates over a wide range of rocks and porosity remains to be assessed through specific experimental tests. Keep-
ing in mind, however, that the objective herein is not to represent a specific type of rock but rather to model in a
consistent framework the stiffness increase associated with material compaction, these micromechanics-based estimates
will be adopted in a first approach with the aim to qualitatively reproduce this feature.

6 LEMOS ET AL.
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Equation 22 together with 21 introduces a strong coupling between elasticity and plastic–viscoplastic component of
the constitutive behavior. It is shown that the state equations describing the stress–strain relationship can be formu-
lated in rate-form as follows40:

_σ=C
~
: d−dir
� �

+ _C
~
:C
~

−1 : σ=C
~
: d−dir
� �

+ _Jir
∂C
~

∂Jir
:C
~

−1 : σ, ð23Þ

where _σ is the Cauchy stress rate tensor, dir is the irreversible part of the strain rate tensor, and the fourth-order tensor
C
~
is the material elastic stiffness moduli, in which the expression under the assumption of isotropy is

C
~
φð Þ= K φð Þ−2μ φð Þ=3ð Þ1�1+ 2μ φð Þ1

~
, ð24Þ

where 1 and 1
~
refer respectively to the second-order and fourth-order identity tensors.

The term _C
~
:C
~

−1 : σ in 23 represents the influence of large irreversible strains on elastic properties. In the context of
the oedometric hypothesis, 23 does not involve terms referring to large rotations, and the related term reduces to

_C
~
:C
~

−1 : σ=
trσ

3

_K
K
1+

_μ

μ
s: ð25Þ

Additionally, the relationship between the volumetric irreversible strain rate and the irreversible component of Jaco-
bian reads

trdir =
_Jir
Jir

: ð26Þ

2.4 | Plastic behavior

The irreversible strain rate is additively split into two contributions, dir = dp + dvp, related to the plastic and viscoplastic
strain components.

The plastic component of the constitutive model aims at representing purely mechanical compaction resulting from
rearrangement of the solid particle during burial. The fundamental features that should be specified for the plastic
behavior are related to the plasticity yield surface and to its evolution controlled by the associated hardening law.
Regarding the first aspect, we resort to the concept of so-called "cap models" for the formulation of a simplified isotropic
plastic criterion. Referring to the plane (p= − I1=3= − trσ=3, q= J2 =

ffiffiffiffiffiffiffiffiffiffiffiffi
s : s=2

q
), the yield surface depicted in Figure 3 is

bounded in the dilation domain by a straight line that stands for the brittle failure regime (critical line), whereas the

FIGURE 3 Schematic representation of simplified plastic yield

surface
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side corresponding to ductile failure and material hardening (contracting state) is also approximated in this analysis by
an inclined straight line describe by the following criterion:

f p σ,pc
� �

= −
1
3
trσ+ a

ffiffiffiffiffiffiffiffiffiffi
1
2
s : s

r
−pc =0, ð27Þ

where pc is the consolidation pressure (similar to that introduced in the Cam–Clay model) and represents the hardening
parameter in the model, whereas a is a positive scalar that controls the slope of the ductile part of yield surface. It is
emphasized that such a simplified yield criterion has already been adopted for petroleum engineering applications.56 It
is important to observe that in the absence of tectonic loading, compaction processes are expected to produce purely
contracting stress states. In this context, the simplified plastic criterion 27 appears suitable for representing yielding
under oedometric stress paths such as those involved within the purely gravitational compaction resulting from sedi-
ments overburden, while remaining tractable for devising analytical developments at the sedimentary basin level. In
contrast, it would not be relevant for modeling complex geological scenarios involving for instance lateral shortening.
In such situations, more sophisticated yield surfaces would be necessary in order to include the possibility of shear-
induced dilation for both drained and undrained material behavior.9,14

An associated flow rule is adopted for the plastic strain rate:

dp = _χ
∂f p

∂σ
, ð28Þ

where _χ is the nonnegative plastic multiplier rate.
The plastic hardening law describes the evolution of the consolidation pressure due to the irreversible material den-

sification. A formulation based on limit analysis and micromechanics has been originally proposed in Barthélémy
et al.42 for pc. This formulation has been recently modified by Brüch et al.52 using a calibration exponent mp:

pc φð Þ= pc0
lnφ
lnϕ0

� �mp

, ð29Þ

where pc0 is the initial consolidation pressure for plasticity.
It is emphasized that his hardening law prevents the development of negative porosities under high isotropic com-

pression, because lim
φ!0

pc = +∞, which ensures by virtue of 21 that Jir remains always higher than Jcrir =1−ϕ0.
43

The rate-form expression of the hardening law 29 expresses as follows:

_pc = −hp φð Þ
_Jir
Jir

withhp φð Þ= −
mp 1−ϕ0ð Þpc

Jirφlnφ
, ð30Þ

where hp is the plastic hardening modulus.

2.5 | Viscoplastic behavior

The viscoplastic component of the constitutive model aims to represent the chemo-mechanical compaction induced by
the IPS. The yield surface for viscoplastic component of the behavior is defined in a similar way than for plastic behav-
ior, resorting once again to the concept of “cap models”. In the range of contractive stress states relevant to oedometric
compaction process, the boundary of the yield surface is described by the following:

f vp σ,pvp
� �

= −
1
3
trσ+ a

ffiffiffiffiffiffiffiffiffiffi
1
2
s : s

r
−pvp =0, ð31Þ

where the consolidation pressure pvp stands for the hardening law of the viscoplastic model.

8 LEMOS ET AL.
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The time-dependent component of the strain rate is based on the generalized Perzyna's overstress theory57:

dvp =
f vph i
ηvp

∂gvp

∂σ
, ð32Þ

where h�i is the Macaulay brackets, ηvp is the viscosity coefficient, and gvp is the viscoplastic potential defining the direc-
tion of viscoplastic strain rate. An associated flow rule gvp = fvp shall be assumed in the subsequent analysis.

The evolution law for pvp has been formulated51 and stems from the heuristic idea that similarity can be preserved
between the plastic and viscoplastic models:

pvp φð Þ= pvp0
lnφ
lnϕ0

� �mvp

, ð33Þ

where pc0 is the initial consolidation pressure for viscoplasticity and the exponent mvp is a material constant ranging
between zero and unity that controls the relative magnitude of viscoplastic strains with regard to plastic strains.

The rate-form expression of the hardening law for pvp is given by

_pvp = −hvp φð Þ
_Jir
Jir

with hvp φð Þ= −
mvp 1−ϕ0ð Þpvp

Jirφlnφ
, ð34Þ

where hvp is the viscoplastic hardening modulus.
In order to reproduce the observations from real data life basins, the initial value of viscoplastic consolidation pres-

sure should be higher than that the plastic counterpart; that is, pc0 < pvp0. This condition, assumed throughout the anal-
ysis, simply expresses that purely mechanical compaction prevails in the upper layers of the sedimentary basin. In
other words, plastic strains are first activated during burial and at each instant so that the plastic layers are located
above the viscoplastic layers.

3 | MECHANICAL FORMULATION OF THE PROBLEM

The main objective of this section is to formulate solutions that describe the mechanical behavior of the sedimentary
basin. For this purpose, a description of the problem is initially presented.

The geological time evolution of the sedimentary basin under compaction processes is divided into five consecutive
phases (Figure 4), distinct from each other by the behavior ranges involved along the basin layers. The occurrence of
each phase is conditioned by the whole basin data considered for the analysis.

Referring to Figure 4, the first four phases refer to the sediment deposition period (basin formation), whereas the
latter one refers to the postdepositional period.

• Elastic phase: This phase marks the beginning of the sediment deposition period, when all the seated particles behave
elastically. The time domain is defined by the interval t 2 [0, Te] and the spatial domain extends through x3 2 [0,

H(t)]. This phase ends when the stress of the particles located at x3 = 0 reaches f p σ,pc0
� �

=0 at time t = Te. At that

moment, the height of the basin is H(Te) = He.

• Elastic–plastic phase: In this phase, the upper part of the basin exhibits elastic behavior whereas the other part pre-
sents elastoplastic behavior. The time domain corresponds to the interval t 2 [Te, Tp]. The elastic domain develops
along x3 2 [H(t) − He,H(t)], whereas the elastoplastic domain develops for x3 2 [0,H(t) − He]. This phase ends when

the stress of the particles located at x3 = 0 reaches f vp σ,pvp
� �

=0 at time t = Tp. At that moment, the basin exhibits

thickness H(Tp) = Hp.

• Elastic–plastic–viscoplastic phase: Starting from the top of the basin and moving downward, the basin displays in this
phase three distinct layers—an elastic layer followed by an elastoplastic layer while the particles in the bottom layer

LEMOS ET AL. 9
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undergo elastic–plastic–viscoplastic strains. This phase corresponds to time interval t 2 [Tp, Tvp]. The elastic layer
extends in the same spatial domain of the preceding phase x3 2 [H(t) − He,H(t)]. The elastoplastic layer is defined by
x3 2 [H(t) − Hp,H(t) − He] whereas the elastoplastic–viscoplastic one develops for x3 2 [0,H(t) − Hp]. This phase ends
when the plastic part of strain of the particles located at x3 = 0 no longer evolves (dp =0 or _χ =0) at time t = Tvp. At

that moment, the basin thickness is H(Tvp) = Hvp.

• Elastic–viscoplastic phase in sediment deposition period: In addition to three layers appearing in the previous
phase, particles located at the bottom of the basin undergo purely elasto-viscoplastic strains. This phase takes
place as long as be sediment accretion proceeds t 2 [Tvp, Ts], where Ts stands for the prescribed duration of
sediment deposition process. The elastic and elastoplastic behaviors develop in the same spatial domains appe-
aring in preceding phase x3 2 [H(t) − He,H(t)] and x3 2 [H(t) − Hp,H(t) − He]. The elastoplastic–viscoplastic
layer extends in x3 2 [H(t) − Hvp,H(t) − Hp], whereas the purely elasto-viscoplastic layer develops in x3 2 [0,
H(t) − Hvp]. The end of this phase coincides with that of sediment deposition period at time t = Ts. At that
moment, the basin thickness is H(Ts) = Hs.

• Elastic–viscoplastic phase during postdepositional period: This phase starts at the beginning of the basin post-
depositional period. The time domain corresponds to t ≥ Ts. The elastic and elastic–plastic layers do not evolve and
present the same thicknesses in the preceding phase. The elastic–viscoplastic behavior develops in domain x3 2 [0,
H(t) − Hp]. The end of this phase is defined by arbitrarily final time of analysis Tf in which the basin reaches height
H(Tf) = Hf.

FIGURE 4 Schematic representation of the

evolution of the sedimentary basin during

geological time [Colour figure can be viewed at

wileyonlinelibrary.com]
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It is interesting to note that the layer thicknesses He and Hp remain constant along all the basin evolution for t > Te.
This means that after their formation, these layers translate upward parallel to direction e3 as the sediments
are deposited.

The same observation holds regarding the layer thickness Hvp, which remains constant as long as the sediment
accretion proceeds (i.e., for Tvp ≤ t ≤ Ts) and vanishes when it stops.

The system of differential equations that describe the sedimentary basin mechanical state is formed by the momen-
tum balance 1, the mass balance equation 3, the relationship between velocity gradient and transformation gradient 18,
the relationship between the irreversible strain rate and the Jacobian irreversible component of the transformation 26,
and the constitutive behavior law 23. This system relates the unknown fields Λ,Jir,σh,σv, and u3 of the problem. It corre-
sponds to a first-order nonlinear partial differential system of equations. These equations are completed by the comple-
mentary constitutive relationships as well as by initial and boundary conditions.

In Figure 5, two snapshots are presented in order to illustrate the sedimentary basin formulation. The first one cor-
responds to elastic–viscoplastic phase during the sediment deposition period. The second one refers to the non-
depositional period. Strain rates relevant to the formulation in each phase are also presented.

3.1 | Problem resolution for the accretion period _Md> 0

During the depositional period, the material domain is evolving due to continuous sediment supply at the top of the
basin. The sedimentary basin can thus be viewed as an open material system. An Eulerian description of particle
motion is therefore suitable.

Referring to the mechanical state of the basin, closed-form solutions prove difficult to derive. Only
semianalytical will be elaborated for the system of differential equations controlling the field variables in the
sedimentarybasin.

Prior to further developments, it is assumed that the sedimentation process remains monotonic along the whole
depositional phase (i.e., _Md >0), thus excluding in particular any erosion period. Under this assumption, the stress and
strain fields can conveniently be regarded as a function of the vertical stretch. In particular, the stress can be written as

σ x3, tð Þ= σ Λ x3, tð Þð Þ: ð35Þ

Such an observation allows for a simplified formulation of the PDE governing the mechanical evolution of the basin.
From a computational viewpoint, the resolution procedure is performed incrementally through time discretization of
governing equations. Starting from basin configuration known at time t, the problem amounts to numerically solving
for each time step Δt an approximate ODE system stated on the material system with known thickness H(t). The proce-
dure allows thus for the determination of the new basin configuration at time t+Δt. In particular, the thickness basin is
updated using Equation 13 in discretized form:

FIGURE 5 Illustrative representation of

sedimentary basin layers behavior [Colour

figure can be viewed at wileyonlinelibrary.com]
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H t+Δtð Þ=H tð Þ+ΔHwithΔH’ _Md tð Þ=ρ0 + u3ðH tð Þ, tÞ
� �

Δt: ð36Þ

In the time incremental procedure adopted for resolution, continuity conditions for all relevant fields should be
accounted for at the interfaces of layers x3 = H(t) − He, x3 = H(t) − Hp, and x3 = H(t) − Hvp.

The incremental scheme as well as the solution to the system of ordinary nonlinear differential equations is per-
formed numerically using the MAPLE software. A finite difference technique with Richardson extrapolation is used to
solve the BVP.

3.1.1 | Elastic phase

At the beginning of the process, the thickness of the basin is H(0) = 0. It then progressively increases as sediments are
brought. The strain induced by gravity effects remains elastic until the thickness reaches a threshold He defined below.
The absence of irreversible strain (Jir = 1 and _Jir =0) implies that elastic moduli remain constant, thus simplifying the
constitutive law 23.

For the elastic domain (dir =0), the simplified constitutive law provides

_σh = Fe
h

_Λ
Λ
, ð37Þ

_σv = Fe
v

_Λ
Λ
, ð38Þ

where Fe
h =K−2=3μ and Fe

v =K +4=3μ. These equations have 4 and 5 as the initial conditions.
Integrating Expressions 37 and 38 yields

σh = Fe
hlnΛ, ð39Þ

σv = Fe
vlnΛ: ð40Þ

It follows from the momentum balance equation 1 that:

∂σv
∂x3

=
ρ0g
Λ

: ð41Þ

Substituting 40 into the momentum balance equation 41 leads to

∂Λ
∂x3

=
ρ0g
Fe
v
: ð42Þ

Integrating the previous equation with the account for the initial condition 14 provides

Λ x3, tð Þ=1−
ρ0g
Fe
v

H tð Þ−x3ð Þ: ð43Þ

Combining Equations 20 and 38, we can rewrite the relation 17 as

∂u3
∂x3

=
− _Mdg
Fe
v

, ð44Þ
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whose integrating with the boundary condition 7 yields

u3 H tð Þ, tð Þ= − _Mdg
Fe
v

H tð Þ: ð45Þ

By substituting the previous equation into Equation 13 and then integrating it with the initial condition H(0) = 0, we
obtain the gravitational compaction law in the elastic phase:

H tð Þ= Fe
v

ρ0g
1−exp −

g
Fe
v
Md tð Þ

� �� �
: ð46Þ

This phase ends when the stress of the particles located at x3 = 0 reaches f p σ,pc0
� �

=0 at time t = Te. At this moment,
the basin is characterized by

Λe =Λ 0,Teð Þ= e
− pc0

K +2
ffiffi
3

p

3 μa

He =H Teð Þ= Fe
v

ρ0g
1−Λeð Þ

σeh = σh 0,Teð Þ= −
Fe
hpc0

K +
2

ffiffiffi
3

p

3
μa

σev= σv 0,Teð Þ= −
Fe
vpc0

K +
2

ffiffiffi
3

p

3
μa

ue3 = u3 He,Teð Þ= − _Mdg
Fe
v

He

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

, ð47Þ

where the time Te is obtained from relationship He = H(Te), which can equivalently be expressed through

Md Teð Þ= Fe
v

g
pc0

K + 2
ffiffi
3

p

3 μa
: ð48Þ

3.1.2 | Elastic–plastic phase

As burial proceeds for t ≥ Te, elastoplastic strains develop in the deeper layers of the basin, that is, when the thickness
of the basin becomes greater than the threshold He. The thickness of the elastic layer remains constant in time, equal to
He, and extends in the range x3 2 [H(t) − He,H(t)] (Figure 4). In contrast, the thickness of the elastoplastic layer
increases from bottom x3 = 0 as the sediments are supplied. The domain is defined at each instant by the range x3 2 [0,
H(t) − He].

The plastic strain rate 28 is rewritten considering the plastic yield condition 27:

dp = _χ
∂f p

∂σ
= _χ −

1
3
1+

a

2
ffiffiffiffiffi
J2

p s

� �
: ð49Þ

Relationship 26 applied to the previous equation results in
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trdir =
_Jir
Jir

= − _χ ð50Þ

Introducing the strain rate 18, the material elastic stiffness moduli tensor 24, and the plastic strain rate 49 into the con-
stitutive behavior law 23 yields

_σ= βeh
_Λ
Λ
+ K−

ffiffiffi
3

p

3
μa

� �
_χ +

trσ

3

_K
K
−

σv−σhð Þ
3

_μ

μ

� �
e1�e1 + e2�e2ð Þ

+ βev
_Λ
Λ
+ K +

2
ffiffiffi
3

p

3
μa

� �
_χ +

trσ

3

_K
K
+
2 σv−σhð Þ

3
_μ

μ

� �
e3�e3:

ð51Þ

The consistency condition _f
p
=0 expressed for the yield criterion 27 gives

_f
p
=
∂f p

∂σ
: _σ− _pc = −

1
3
tr _σ+

a

2
ffiffiffiffiffi
J2

p s : _s− _pc =0: ð52Þ

Based on the above equation, it is possible to determine the expression of the plastic multiplier:

_χ =Gp
1 Jirð Þ

_Λ
Λ
+Gp

2 Jirð Þ _Jir with
Gp
1 Jirð Þ= −

K +
2

ffiffiffi
3

p

3
μa

K + a2μ+ hp

Gp
2 Jirð Þ= −

σv +2σhð Þ�K + a
ffiffiffi
3

p
σv−σhð Þ�μ

K + a2μ+ hp

8>>>>><
>>>>>:

, ð53Þ

where the nondimensional stiffness parameters �K and �μ are defined by �K = 1
3K

∂K
∂Jir

and �μ= 1
3μ

∂μ
∂Jir

. Note that
hp = hp(φ) = hp(Jir) by virtue of 30.

It follows from 21 and 22 that

�K = −
1
3

3ks +4μs

Jir 3ks +4μsð Þ−3ks 1−ϕ0ð Þ

�μ= −
5
3

3ks +4μs

3ks 5Jir−2 1−ϕ0ð Þð Þ+4μs 5Jir−3 1−ϕ0ð Þð Þ

8>><
>>:

ð54Þ

Substituting Equation 53 into 51 yields

_σ= Fp
h1

_Λ
Λ
+ Fp

h2
_Jir

� �
e1�e1 + e2�e2ð Þ+ Fp

v1

_Λ
Λ
+Fp

v2
_Jir

� �
e3�e3, ð55Þ

where

Fp
h1 Jirð Þ= βeh + K−

ffiffiffi
3

p

3
μa

� �
Gp
1

Fp
h2 Jirð Þ= K−

ffiffiffi
3

p

3
μa

� �
Gp
2 + σv +2σhð Þ�K− σv−σhð Þ�μ

Fp
v1 Jirð Þ= βev + K +

2
ffiffiffi
3

p

3
μa

� �
Gp
1

Fp
v2 Jirð Þ= K +

2
ffiffiffi
3

p

3
μa

� �
Gp
2 + σv +2σhð Þ�K +2 σv−σhð Þ�μ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

: ð56Þ
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Based on observation 35, Equation 55 can be rewritten as

∂σ

∂x3
=

Fp
h1

Λ
∂Λ
∂x3

+ Fp
h2
∂Jir
∂x3

� �
e1�e1 + e2�e2ð Þ+ Fp

v1

Λ
∂Λ
∂x3

+Fp
v2
∂Jir
∂x3

� �
e3�e3: ð57Þ

Combining the momentum balance equation 41 and the vertical component of stress in 57 leads to

∂Λ
∂x3

=
ρ0g

Fp
v1
−
Fp
v2

Fp
v1
Λ
∂Jir
∂x3

: ð58Þ

Recalling that Jir(x3, t) = Jir(Λ(x3, t)), it follows from 50 and 53 that

∂Jir
∂x3

= −
Gp
1Jir

Λ 1+Gp
2Jirð Þ

∂Λ
∂x3

: ð59Þ

Combining Equations 17 and 20 with the expression of vertical stress rate given by 55 yields the law of spatial variation
of particles velocity

∂u3
∂x3

=
− _Mdg

Fp
v1 +Fp

v2Λ
∂Jir
∂x3

= ∂Λ
∂x3

, ð60Þ

which should be completed with the boundary condition 7.
Equations 57–59 governing the stress and strain fields, together with Equation 60 related to particles velocity field,

define the system of differential equations governing mechanical state of the elastoplastic layer of the sedimentary basin
0 ≤ x3 ≤ H(t) − He. The continuity conditions at the interface with the upper elastic layer H(t) − He ≤ x3 ≤ H(t) are
expressed from the quantities computed at the end of elastic phase through 47:Λ(H(t) − He, t) = Λe, σ H tð Þ−He, tð Þ= σe,
and Jir(H(t) − He, t) = 1. Such a mathematical problem is not tractable analytically and is solved numerically for each
time step using MAPLE software. The end of this phase corresponds to time t = Tp at which the stress of material parti-
cles located at x3 = 0 complies with viscoplasticity condition f vp σ,pvp

� �
=0. At that moment, the thickness of the basin

is Hp = H(Tp), and the following quantities are computed:

Λp =Λ 0,Tpð Þ
σph = σh 0,Tpð Þ
σpv = σv 0,Tpð Þ
Jpir = Jir 0,Tpð Þ
up3 = u3 Hp−He,Tpð Þ

8>>>>>><
>>>>>>:

ð61Þ

and will be used as “boundary conditions” at x3 = Hp − He for the next elastic–plastic–viscoplastic layer that develops
for t ≥ Tp.

It is noted that the velocity of particles located at the top of the basin is given by

u3 H tð Þ, tð Þ= ue3 + u3 H tð Þ−He, tð Þ: ð62Þ

3.1.3 | Elastic–plastic–viscoplastic phase

The response of the basin in the elastic–plastic–viscoplastic phase should be analyzed for t ≥ Tp when the thickness of
the basin becomes higher than the threshold Hp. As for the elastic domain, the thickness of the elastoplastic layer
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x3 2 [H(t) − Hp,H(t) − He] (Figure 4) remains constant in time. In contrast, the thickness of the elastoplastic–
viscoplastic layer increases from bottom x3 = 0 as the sediments are supplied. This material domain is defined by the
range x3 2 [0,H(t) − Hp].

Relationship 26 applied to the plastic strain rate 28 and the viscoplastic strain rate 32 results in

trdir =
_Jir
Jir

= − _χ +
f vp

η

� �
= −Ψ: ð63Þ

The constitutive equation 23 reads

_σ= βeh
_Λ
Λ
+ K−

ffiffiffi
3

p

3
μa

� �
Ψ+

trσ

3

_K
K
−

σv−σhð Þ
3

_μ

μ

� �
e1�e1 + e2�e2ð Þ

+ βev
_Λ
Λ
+ K +

2
ffiffiffi
3

p

3
μa

� �
Ψ+

trσ

3

_K
K
+
2 σv−σhð Þ

3
_μ

μ

� �
e3�e3:

ð64Þ

It follows from the consistency condition _f
p
=0 that

Ψ=Gvp
1 Jirð Þ

_Λ
Λ
+Gvp

2 Jirð Þ _Jir with
Gvp
1 Jirð Þ= −

K +
2

ffiffiffi
3

p

3
μa

K + a2μ+ hp

Gvp
2 Jirð Þ= −

σv +2σhð Þ�K + a
ffiffiffi
3

p
σv−σhð Þ�μ

K + a2μ+ hp

8>>>>><
>>>>>:

: ð65Þ

The system that describes the mechanical behavior of the basin in the elastoplastic–viscoplastic domain at each
instant is given by

∂Λ
∂x3

=
ρ0g

Fvp
v1
−
Fvp
v2

Fvp
v1
Λ
∂Jir
∂x3

∂σh
∂x3

=
Fvp
h1

Λ
∂Λ
∂x3

+ Fvp
h2

∂Jir
∂x3

∂σv
∂x3

=
Fvp
v1

Λ
∂Λ
∂x3

+ Fvp
v2
∂Jir
∂x3

∂Jir
∂x3

= −
Gvp
1 Jir

Λ 1+Gvp
2 Jirð Þ

∂Λ
∂x3

∂u3
∂x3

=
− _Mdg

Fvp
v1 +Fvp

v2Λ
∂Jir
∂x3

=
∂Λ
∂x3

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

, ð66Þ

where

Fvp
h1 Jirð Þ= βeh + K−

ffiffiffi
3

p

3
μa

� �
Gvp
1

Fvp
h2 Jirð Þ= K−

ffiffiffi
3

p

3
μa

� �
Gvp
2 + σv +2σhð Þ�K− σv−σhð Þ�μ

Fvp
v1 Jirð Þ= βev + K +

2
ffiffiffi
3

p

3
μa

� �
Gvp
1

Fvp
v2 Jirð Þ= K +

2
ffiffiffi
3

p

3
μa

� �
Gvp
2 + σv +2σhð Þ�K +2 σv−σhð Þ�μ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

: ð67Þ
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Equations 66 should be completed byΛ(H(t) − Hp, t) = Λp, σ H tð Þ−Hp, tð Þ= σp , and Jir H tð Þ−Hp, tð Þ= Jpir
representing the conditions of continuity at the interface between the elastoplastic and elastoplastic–
viscoplastic domains.Finally, integration of u3 in 66 requires to account for Condition 7 that prescribes the velocity
at x3 = 0.

The thickness of the elastoplastic–viscoplastic layer is increasing with time as long as dp 6¼ 0 and dvp 6¼ 0. This phase
ends in time t = Tvp when the plastic component dp of strain rate vanishes for particles located at x3 = 0. This means
that _χ =0 and no additional plastic strains are therefore developed. At t = Tvp, the basin thickness is H(Tvp) = Hvp and
the following quantities are computed:

Λvp =Λ 0,Tvpð Þ
σvph = σh 0,Tvpð Þ
σvpv = σv 0,Tvpð Þ
Jvpir = Jir 0,Tvpð Þ
uvp3 = u3 Hp−He,Tvpð Þ

8>>>>>><
>>>>>>:

: ð68Þ

Along this phase, the velocity at the top of the basin is given by

u3 H tð Þ, tð Þ= ue3 + up3 + u3 H tð Þ−Hp, tð Þ: ð69Þ

3.1.4 | Elastic–viscoplastic phase

As accretion proceeds, a new layer referred to as elastic–viscoplastic layer starts developing for t ≥ Tvp in the material
domain 0 ≤ x3 ≤ H(t) − Hvp (Figure 4). In the latter, the plastic strain in not evolving so that dp =0, and, therefore,
dir = dvp . Elastic, plastic, and plastic–viscoplastic layers keep constant thicknesses along this phase, equal, respectively,
to He, Hp − He, and Hvp − Hp.

On the one hand, state equation 23 together with the viscoplastic flow rule 32 provides

_σ= βeh
_Λ
Λ
+ K−

ffiffiffi
3

p

3
μa

� �
f vp

η
+
trσ

3

_K
K
−

σv−σhð Þ
3

_μ

μ

� �
e1�e1 + e2�e2ð Þ

+ βev
_Λ
Λ
+ K +

2
ffiffiffi
3

p

3
μa

� �
f vp

η
+
trσ

3

_K
K
+
2 σv−σhð Þ

3
_μ

μ

� �
e3�e3:

ð70Þ

On the other hand, Expression 26 of irreversible volume dilatation expresses in the elastic–viscoplastic layer as

trdir =
_Jir
Jir

= −
f vp

η
: ð71Þ

Such a differential equation linking Jir and Λ to stress state σ proves difficult to be handled numerically in
the context of Maple procedures. For this reason and in order to preserve semianalytical formulation of the
problem solution, an uncontrolled approximation shall be introduced at this stage. It consists in assuming along
each time step that _f

vp
=0 . In the time incremental procedure adopted for solving the differential

equations governing the mechanical fields in the elastic–viscoplastic layer, this approximation amounts to
considering that the value of fvp attached to each particle is piecewise constant with respect to time. Such an
approximation yields

LEMOS ET AL. 17



LEMOS et al.2152

−
_Jir
Jir

=Gv
1 Jirð Þ

_Λ
Λ
+Gv

2 Jirð Þ _Jir with
Gv
1 Jirð Þ= −

K +
2

ffiffiffi
3

p

3
μa

K + a2μ+ hvp

Gv
2 Jirð Þ= −

σv +2σhð Þ�K + a
ffiffiffi
3

p
σv−σhð Þ�μ

K + a2μ+ hvp

8>>>>><
>>>>>:

, ð72Þ

in which hvp = hvp(φ) = hvp(Jir) as indicated in 34.
The relevancy of such approximation as well as associated accuracy will be assessed a posteriori in Section 4,

through comparison of the predicted solutions with those derived from a FE tool specifically devised for sedimentary
basin simulation.

Substituting Expressions 71 and 72 into 70 yields

_σ= Fv
h1

_Λ
Λ
+ Fv

h2
_Jir

� �
e1�e1 + e2�e2ð Þ+ Fv

v1

_Λ
Λ
+Fv

v2
_Jir

� �
e3�e3, ð73Þ

where

Fv
h1 Jirð Þ= βeh + K−

ffiffiffi
3

p

3
μa

� �
Gv
1

Fv
h2 Jirð Þ= K−

ffiffiffi
3

p

3
μa

� �
Gv
2 + σv +2σhð Þ�K− σv−σhð Þ�μ

Fv
v1 Jirð Þ= βev + K +

2
ffiffiffi
3

p

3
μa

� �
Gv
1

Fv
v2 Jirð Þ= K +

2
ffiffiffi
3

p

3
μa

� �
Gv
2 + σv +2σhð Þ�K +2 σv−σhð Þ�μ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

: ð74Þ

A reasoning similar to that developed for the preceding phases of the basin evolution allows for the formulation of the
ODE system that governs the mechanical state of the elastic–viscoplastic layer. It follows

∂Λ
∂x3

=
ρ0g
Fv
v1
−
Fv
v2

Fv
v1
Λ
∂Jir
∂x3

∂σh
∂x3

=
Fv
h1

Λ
∂Λ
∂x3

+Fv
h2
∂Jir
∂x3

∂σv
∂x3

=
Fv
v1

Λ
∂Λ
∂x3

+ Fv
v2
∂Jir
∂x3

∂Jir
∂x3

= −
Gv
1Jir

Λ 1+Gv
2Jir

� � ∂Λ
∂x3

∂u3
∂x3

=
− _Mdg

Fv
v1 +Fv

v2Λ
∂Jir
∂x3

=
∂Λ
∂x3

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

: ð75Þ

The above equations should be completed by the continuity conditionsΛ(H(t) − Hvp, t) = Λvp, σ H tð Þ−Hvp, tð Þ= σvp, and
Jir H tð Þ−Hvp, tð Þ= Jvpir expressed at the interface between elastic–plastic–viscoplastic layer and elastic–viscoplastic layer,
together with the boundary equation 7 expressing nullity of velocity at the rigid substratum.

This phase takes place as long as sediment accretion proceeds. When the latter stops at time t = Ts, the sedimentary
basin will evolve subsequently as a closed material system without additional sediment supply (nondepositional
period). The numerical incremental procedure used to solve this problem based on MAPLE software allows to compute
at time t = Ts the total thickness of the basin Hs = H(Ts) as well as the following quantities:
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Λs =Λ 0,Tsð Þ
σsh = σh 0,Tsð Þ
σsv = σv 0,Tsð Þ
Jsir = Jir 0,Tsð Þ
us3 = u3 Hs−Hvp,Tsð Þ

8>>>>>><
>>>>>>:

: ð76Þ

Note that during this phase, the velocity of particles located at the top of the basin is given by

u3 H tð Þ, tð Þ= ue3 + up3 + uvp3 + u3 H tð Þ−Hvp, tð Þ: ð77Þ

3.2 | Preliminary illustrative numerical results

Semianalytical solutions for the evolution of stress and strains during the accretion period are presented for the data
provided in Section 4.1. The purpose herein is merely illustrative, a more comprehensive analysis being the object of
Section 4.2 the respective analysis of the mechanical variables.

The compaction law t ! H(t) is presented in Figure 6, where the consecutive phases related to behavior of the sedi-
mentary layers are reported. The basin thickness at the end of accretion period t = Ts = 60 My (millions of years) is
about Hs = 2864.21 m, which corresponds to as overall compaction ratio of 1-Hs=Hffi 52:2% where H=6000m is the
total sediment height supplied during this period.

The times of activation of each phase as well as associated layers extents can also be observed from this figure:

Te ≤Tp ≤Tvp ≤Ts

He ≤Hp ≤Hvp ≤Hs

�
: ð78Þ

The profiles along basin depth of total Jacobian J = Λ as well as its irreversible component Jir are plotted in Figure 7A
for t = Ts. As expected, values of J and Jir prove very close to each other, thus validating the assumption of infinitesimal
elastic strains. It is also observed that J ≈ Jir ≈ 0.3 along the basin bottom x3 = 0, approaching the asymptotic value
Jcrir =1−ϕ0 = 0:28.

The porosity profile along the basin thickness calculated at time t = Ts is shown in Figure 7B. Reflecting the signifi-
cant material densification associated with burial process, this important parameter decreases from φ = ϕ0 = 0.72 at
the top of the basin to φ ≈ 0.08 at the bottom x3 = 0, which indicates the trend towards total pore closure. This behavior
is consistent with the increasing intensity of the stress components with depth as observed in the profile of Figure 8.

3.3 | Problem resolution for the postaccretion period _Md= 0

In the nondepositional period that takes place for t > Ts, the sedimentary basin behaves as a closed material system
because no additional material is supplied at the top of basin. A Lagrangian description with respect to the configura-
tion reached by the basin at the end of accretion process t = Ts appears therefore convenient for addressing the basin
deformation during this phase. In this framework, a sediment particle is referred to by means of its initial coordinate
X3 = x3(T

s). In the current configuration of the basin, the particle position at time t is then defined by x3(X3,
t) = X3+ξ3(X3,t), where ξ= ξ3 X3, tð Þe3 is the displacement vector.

A main characteristic of basin deformation during the nondepositional period lies in the fact that strains do not evo-
lve in the upper elastic and plastic layers. The strain field is actually evolving (d 6¼ 0 ) only in the layer involving
viscoplastic deformation, that is, for 0 ≤ X3 ≤ Hs − Hp. The latter layer whose thickness is decreasing in time owing to
viscoplastic compaction will be referred to as elastic–viscoplastic layer.

The response of the elastic–viscoplastic layer is studied along nondepositional period Ts ≤ t ≤ Tf, where Tf is the
total geological time chosen for analysis.

It follows from _Md =0 and relationship 20 that the vertical stress remains constant
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_σv =0 ð79Þ

whose integration between time Ts and current time t provides

σv X3, tð Þ= σpsv X3ð Þ, ð80Þ

where σpsv X3ð Þ= σv x3 =X3, t =Tsð Þ is the known (calculated) vertical stress distribution that prevails in the basin at the
end of accretion period t = Ts.

The constitutive state equation 23 in which dir = dvp is given by 32 yields

FIGURE 6 Basin compaction law at the end of accretion

period t = Ts = 60 My [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Profiles of the basin at t = Ts = 60 My (end of accretion period): A, Jacobians of the transformation; B, Eulerian porosity

[Colour figure can be viewed at wileyonlinelibrary.com]
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Equating the vertical component in the above equality with 79 provides
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Observing that

f vp =Aσh +Bσv−pvp with
A= −2+ a
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identity 82 can be rewritten as

K +
2
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3
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� �
Aσh +Bσv−pvp

η
= −βev

_Λ
Λ
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By observing that

trdir =
_Jir
Jir

= −
f vp

η
= −

Aσh +Bσv−pvp
η

ð85Þ

and equating the horizontal components in 81, one obtains

FIGURE 8 Stress profiles of the basin at t = Ts = 60 My (end of

accretion period) [Colour figure can be viewed at wileyonlinelibrary.

com]

LEMOS ET AL. 21



LEMOS et al.2156
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+ σv +2σhð Þ�K− σv−σhð Þ�μ½ � _Jir : ð86Þ

Equations 84–86 form the nonlinear PDE system that describes the mechanical state of the elasto-viscoplastic layer
during the postdeposition period. This PDE system involves only temporal derivatives due to Lagrangian description,
which allows its reduction to a parameterized ODE system. It consists of an initial value problem (IVP) that governs
the unknown fields σh, Jir, and Λ. The system is solved with MAPLE using a numerical integration routine based on
Runge–Kutta–Fehlberg method, which produces a solution accurate to the fifth order. The initial condition at time
t = Ts is defined by the fields σpsh X3ð Þ= σh x3 =X3, t=Tsð Þ , Jpsir X3ð Þ= Jir x3 =X3, t=Tsð Þ , and Λps(X3) = Λ(x3 = X3,
t = Ts) that were computed at the end of accretion period.

Once the stretch field Λ(X3,t) is calculated, the compaction law t ! H(t) is then obtained from the displacement of
particles located at the top of the basin. It is recalled that the displacement field results from numerical integration of
following relationship:

rξ�e3 =
∂ξ3 X3, tð Þ

∂X3
=Λ X3, tð Þ−1: ð87Þ

The gravitational compaction law is obtained by the numerical integration of the previous expression.

4 | ILLUSTRATIVE NUMERICAL BASIN SIMULATIONS—COMPARISON
WITH FE SOLUTIONS

For illustrative purposes, the semianalytical solutions developed in Section 3 are presented in the context of a sedimen-
tary basin simulation during both the accretion and postaccretion phases. The numerical results do not refer to a real
data life basin but rather to an academic problem and are only intended to illustrate some features of basin deformation
in the context of purely gravitational compaction under oedometric conditions. In the framework of such simplified sce-
nario, the accuracy of the approach predictions is assessed through comparison with FE solutions derived from the
basin simulator developed by Brüch et al.36,51. This simulator, which implements a finite thermo-poro-mechanics
modeling, is specifically devised to deal with 3D analyses of purely mechanical and chemo-mechanical compaction in
sedimentary basins. The main features of the FE constitutive modeling include elasticity coupling with large irreversible
porosity changes as well as the sediment material hardening induced by irreversible densification during compaction.43

From a computational viewpoint, the basin simulator relies upon a parallel FE implementation of the constitutive
modeling with shared memory multiprocessing interface. An automatic timestep algorithm allows for continuous
update of the time step length used in the analyses, based on the evolution the material properties and FE mesh geome-
try. The issue related to the fact the basin is an open material during the sediment accretion phase is addressed by
means of a specific activation/deactivation procedure. Basically, the latter consists in operating with a fictitious closed
material system in which the sediment deposition periods are modeled by progressive activation of gravity forces and
material properties within the fictitious basin sublayers. At each geological time t, the configuration of the real basin
system and associated mechanical state is deduced from the evolution in time of the fictitious closed material system.
Further description of the activation/deactivation algorithm and its numerical implementation may be found in the
original work by Bernaud et al.44 and related subsequent extensions.9,51

4.1 | Problem description and data

We analyze the one-dimensional compaction induced by purely gravitational effects in a sedimentary basin that forms
during a geological period 0 ≤ t ≤ Ts = 60 My by continuous material supply with a constant rate of sediment accretion
equal to _Md =2:54× 10−9 kg=s per unit area, approximately equivalent to a rate of 80 ton/km2/year. In its reference
state, the sediment material is assumed to exhibit always the same mechanical properties along the accretion phase. In
order to characterize the level of compaction magnitude, it is relevant to note that, in the absence of any compaction
process, the total amount of deposited sediments would correspond to a vertical column of thickness

22 LEMOS ET AL.



LEMOS et al. 2157

H=M
_

d
Ts=ρ0: ð88Þ

As regards the material properties in the reference state, the model data used for the numerical simulations are defined
as follows. Initial material density ρ0 = 800 kg/m3, initial porosity ϕ0 = 0.72, initial Young modulus E0 = 1GPa, initial
Poisson's ratio ν0 = 0.33, initial consolidation pressure for plasticity pc0 = 4MPa, plastic hardening law exponent
mp = 1.3, initial consolidation pressure for viscoplasticity pvp0 = 5MPa, viscoplastic hardening law exponent mvp = 1.0,
and viscosity coefficient η = 1 GPa � My. Finally, the scalar that controls the slope of the ductile part of both the plastic
and viscoplastic yield surfaces is fixed to a = 1.1545.

Although the configuration addressed herein refers to an illustrative synthetic case, the material properties are actu-
ally characteristic of sandstone-like sediments as no fluid overpressure is considered throughout the simulation. In
addition, dissolution and precipitation of quartz minerals are known to play an important role in porosity reduction of
siliciclastic rocks like sandstones.58 However, the choice of some parameters such as the Young modulus and the plastic
consolidation pressure is questionable, as they seem unrealistic at the deposition reference state. The high value
adopted for E0 is attributed to the limitation of the Hashin–Shtrikman estimates 22 to adequately predict the evolution
of the stiffness moduli over a wide range of porosity. It is therefore necessary to consider a relatively high value for ini-
tial Young modulus to obtain reasonable values at depth. As regards the initial consolidation pressure for plasticity, a
deliberately high value is adopted for to better visualize the model predictions and thus clearly illustrate each phase of
the compaction process described in Section 3. More realistic values of pc0 could actually be adopted in order to activate
plastic deformation at low overburden levels (see, e.g., Brüch et al.52). As it will be commented in Section 4.2, the values
considered for material properties in the reference state lead to unrealistically overestimating the extent of upper elastic
layer. However, this superficial crust of the sedimentary basin generally represents a minor component in basin model-
ing, so that it is more important to relevantly characterize the rock behavior at depth.

According to selected values for the rate of sediment accretion _Md , initial material density ρ0, and total accretion
phase duration Ts, it follows from 88 that the whole deposition process would result in a sediment column of thickness
H=6000m, corresponding to a thickness increase of 100 m per million years of increase in the absence of compaction.

As regards the computational FE model, the model geometry representing the initial configuration of the fictitious
material system is defined by a column with H=6000m height and L1 = L2 = 100 m horizontal sides (Figure 9). The
initial mesh of the column consists in n = 60 twenty-node hexahedra elements (quadratic displacement interpolation)
of side L = 100 m, regularly distributed along the column height. The associated total number of nodes is equal to
728, corresponding to 2,184 degrees of freedom (nodal displacement components). Each element represents in fact a
sublayer that shall be activated according to its location as sediment accretion proceeds.

The boundary conditions for the FE model are summarized in Figure 9 and are consistent with the oedometric
assumption adopted for the analysis. The plane x3 = 0 defines the rigid basement rock, thus implying the displacement
condition ξ x3 = 0, tð Þ � e3 = 0. The normal displacements along lateral surfaces xi = 0 and xi = Li (i = 1, 2) are maintained
null: ξ xi =0, tð Þ � ei = ξ xi =Li, tð Þ � ei =0. During all the numerical simulations, the upper surface x3 = H(t) remains stress
free: T = σ x3 =H tð Þ, tð Þ � e3 = 0.

Finally, the total time of basin evolution analysis is fixed to Tf = 2 × Ts = 120 My, and the initial time step is taken
equal to Δt = 0.01 My, which is much smaller than the characteristic viscoplastic relaxation time T vp

c = η=Eoed ’
0:675 My,

59 where Eoed denotes the initial oedometric elastic modulus.

4.2 | Results

For the sake of clarity, the results of the present analysis will be referred to as follows. In all figures, the semianalytical
solutions are referred to as “SAR” and displayed by solid continuous lines, whereas the results derived from the FE
basin simulator are referred to as “FEM” and represented by symbols.

Prior to results analysis, it is recalled once again that the numerical simulation is carried out in the context of an
academic situation, and the associated results are provided for merely illustrative purposes. They are not intended to
reproduce the mechanical fields that could be observed in real data life basins.

At the scale of basin, a main feature in sedimentary basin simulation refers to assessment of the compaction law
t ! H(t). The semianalytical and FE predictions obtained for the gravitational compaction law are shown in Figure 10.
The different phases related to basin behavior that have been described in Section 3 are highlighted in this figure. The
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SAR predictions are very close to the FEM solutions, and this good agreement can thus be viewed as a preliminary vali-
dation of the simplifying assumption introduced in Section 3.1.4 (elastic–viscoplastic phase). The level of basin compac-
tion can be defined at time t as 1-HðtÞ=H. The magnitudes of this compaction ratio predicted by SAR and FEM at t = Ts

(end of the accretion phase) are respectively 52.2% and 52.3%. In the postaccretion period, the compaction level exhibits
a slight decrease to reach approximately 54% for both SAR and FEM at t = Tf (end of the analysis). The thicknesses of
the different layers and the associated times of formation during the deposition period obtained from the semianalytical
approach are summarized in Table 1.

4.2.1 | Numerical analysis of local fields

This section is dedicated to analyzing the evolution of mechanical fields attached to the sediment particles located at
any instant along the substratum interface x3 = 0 (i.e., bottom layer). These particles are deposited at the beginning
t = 0 of accretion process and associated mechanical state is evolving as burial proceeds, exhibiting the highest strain

FIGURE 9 Spatial discretization and mechanical boundary conditions

FIGURE 10 Gravitational compaction law of the basin [Colour

figure can be viewed at wileyonlinelibrary.com]
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and stress levels of the basin. Table 2 summarizes the values of relevant quantities predicted by both SAR and FEM ana-
lyses at particular times t = Ts and t = Tf.

The evolution of Eulerian porosity φ(x3 = 0,t) and mass density ρ(x3 = 0,t) are respectively depicted in Figure 11A
and B. As expected, the porosity decrease with time during the accretion period is straightforwardly associated with
continuous increase in mass density of the porous material. These quantities rapidly reach almost stabilized values as
soon as sediment deposition process stops.

Once again, the perfect matching between SAR and FEM predictions is emphasizing the accuracy of the semi-
analytical approach. The small discrepancy observed in the elastic–viscoplastic phase is reflecting the effect of the
approximation introduced in Section 3.1.4 in the formulation of problem governing equations.

The evolution of stress state along accretion and postaccretion phase is displayed in Figure 12A. As expected from
equilibrium consideration described in 79, the vertical stress component is no more evolving after the deposition pro-
cess has stopped t ≥ Ts, whereas the horizontal component progressively stabilizes. The evolution in time of the differ-
ent components of the Jacobian of the particle transformation is shown in Figure 12B. It is first observed that the
values of total Jacobian J and its irreversible counterpart Jir are revealed to be very close, thus validating the assumption
of infinitesimal elastic strains adopted in the analysis. It is recalled that the plastic part Jp (resp. viscoplastic part Jvp)
represents a measure of plastic (resp. viscoplastic) volumetric dilatation undergone by the sediment material. This fig-
ures provides a clear illustration that plastic compaction is prevailing for t ≤ Tp where the plastic part Jp of the Jacobian
is significantly decreasing as burial proceeds to finally stabilize after the elastic–viscoplastic phase (along which dp =0
and thus _Jp =0) is activated at t = Tvp. The evolution of viscoplastic component Jvp exhibits an opposite trend: it starts
decreasing from unity at time t = Tp with simultaneous evolution of plastic and viscoplastic strains until t = Tvp, and
from that moment and on, only the viscoplastic volumetric dilatation continues evolving _Jvp <0.

Finally, the hardening of the material induced by large porosity change is illustrated in Figure 13 by plotting the
plastic pc and viscoplastic pvp consolidation pressures as functions of time. The results in this figure indicate that mate-
rial densification may lead to significant increase in the value of hardening parameter, which can be multiplied by a
factor as high as 10.

TABLE 1 Time of formation and thickness of each layer predicted from SAR

Te 5.10 My He 509.20 m

Tp 13.26 My Hp 1097.37 m

Tvp 40.79 My Hvp 2249.96 m

Ts 60.00 My Hs 2864.21 m

Abbreviation: SAR, semianalytical solution.

TABLE 2 Relevant mechanical quantities evaluated for particles along x3 = 0

t = Ts = 60 My t = Tf = 120 My

SAR FEM SAR FEM

φ 0.0728 0.0649 0.0451 0.0470

ρ (kg/m3) 2654.44 2671.70 2732.32 2722.86

σh (MPa) −39.32 −39.13 −40.46 −40.05

σv (MPa) −47.15 −46.51 −47.15 −46.54

J 0.3014 0.2983 0.2928 0.2928

Jir 0.3020 0.2995 0.2932 0.2938

Jp 0.3821 0.3803 0.3821 0.3803

Jvp 0.7904 0.7873 0.7675 0.7725

pc (MPa) 59.48 62.89 73.95 72.71

pvp (MPa) 39.88 41.62 47.15 46.54

Abbreviation: FEM, FE basin simulator; SAR, semianalytical solution.

LEMOS ET AL. 25



LEMOS et al.2160

4.2.2 | Analysis of the overall basin response

We move in this section to the analysis of the mechanical fields that characterize the overall response of the sedimen-
tary basin, focusing the description on the state of the latter at particular times t = Ts and t = Tf.

The overall response is first illustrated by Figures 14–16, displaying respectively the profiles within the basin of
porosity, sediment mass density, and Jacobian of the particle transformation. The analysis of the results calls for the fol-
lowing qualitative comments:

FIGURE 12 Evolution at x3 = 0: A, horizontal and vertical stress; B, Jacobians [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Evolution at x3 = 0: A, Eulerian porosity; B, sedimentary mass density [Colour figure can be viewed at wileyonlinelibrary.

com]
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• The material densification induced by compaction at large strains is reflected by the decrease (resp. increase) of
porosity (resp. mass density) with depth.

• The referred fields slightly vary along the upper elastic crust, which is consistent with the assumption of infinitesimal
elastic strains adopted in the analysis. The thickness of elastic crust may appear as excessively high in regards the
total thickness of the basin. This is mainly attributed to the value of pc0 defining the extent of elastic layer through

condition f p σ,pc0
� �

=0. From a rigorous point of view, pc0 should therefore refer to an elastic limit and not to a limit

pressure state as expressed by expression 29. Consequently, such a definition of pc0 leads to overestimating the extent
of elastic layer, as described by Deudé et al.43

FIGURE 13 Evolution of the plastic and viscoplastic

consolidation pressure at x3 = 0 [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 14 Eulerian porosity profile along basin thickness: A, at t = 60 My; B, at t = 120 My [Colour figure can be viewed at

wileyonlinelibrary.com]
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• The two approaches SAR and FEM predict similar profiles of all fields for both t = Ts and t = Tf. The small discrep-
ancy observed in the elasto-viscoplastic layer located at the bottom of the basin is due to the simplifying approxima-
tion introduced in Section 3.1.4 for the formulation of governing equations.

The profiles of horizontal and vertical stresses within the basin are plotted in Figure 17. It is recalled that the verti-
cal stress component σv is statically determined independently on the material constitutive behavior. In contrast, the
horizontal stress component σh is strongly affected by the constitutive properties of sediment material. In particular, it
is very sensitive to the value of parameter a controlling the inclination of plastic/viscoplastic yield surface in the con-
tractive stress states.

FIGURE 16 Jacobians of the transformation profiles: A, at t = 60 My; B, at t = 120 My [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 15 Sediment mass density profile: A, at t = 60 My; B, at t = 120 My [Colour figure can be viewed at wileyonlinelibrary.com]
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Finally, the plastic and viscoplastic hardening parameter profiles in the basin are shown in Figure 18, illustrating
once again the hardening of material induced by densification.

5 | CONCLUSIONS

A theoretical framework for the analysis of gravitational compaction in sedimentary basins under oedometric
conditions at large strains has been formulated. The latter relies upon a simplified description of the problem
geometry and geological process, as well as of sediment material constitutive behavior. In the context, the field

FIGURE 17 Stress profiles within the basin: A, at t = 60 My; B, at t = 120 My [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 18 Profiles of plastic and viscoplastic consolidation pressures: A, at t = 60 My; B, at t = 120My [Colour figure can be viewed

at wileyonlinelibrary.com]

LEMOS ET AL. 29



LEMOS et al.2164

equations governing the evolution of mechanical state of the sedimentary basin have carefully described and the
semianalytical solutions to associated nonlinear PDE system have been derived making use of the MAPLE
software recourses. These solutions prove useful in the context of sedimentary basins modeling because they can
be viewed as reference solutions for verification and benchmarks of basin simulators. As a matter of fact, there is
a lack for reference solutions relevant to the field of basin simulation that incorporate essential features of
sediment deformation induced by compaction processes. In that respect, particular emphasis has been dedicated
for the constitutive modeling formulated at porous material level to take into account the stiffening and hardening
associated with pore closure.

From the constitutive modeling viewpoint, the state equations of the sediment material are formulated in the
framework of coupled plasticity–viscoplasticity at large strains. At macroscopic scale, the purely mechanical
compaction that predominates in the upper layers of a sedimentary basin is modeled by means of time-independent
plastic strains, whereas the viscoplastic component of behavior is intended to address creep-like deformation resulting
in chemo-mechanical compaction that prevails at deeper layers. The proposed coupled modeling is able to
automatically account, through the irreversible component of the material transformation Jacobian, for deformation
along intermediate layers where the two compaction processes occur simultaneously. A main advantage of adopting
the simplified oedometric setting is to allow for investigation and clear interpretation of the role of each relevant model
property on the mechanical evolution of the sedimentary basin.

Even though it mainly refers to an academic problem rather than to real data life basin, the numerical illustration
proved able to accurately capture fundamental features of basin deformation in both accretion and postdepositional
periods of the geological basin life. The numerical simulations have addressed the overall basin response, such as the
prediction of compaction law, stresses and porosity profiles within the basin, and the evolution in time of the relevant
mechanical parameters at the bottom of the basin. The proposed approach can also be used for intensive parametric
analyses, because it does not require complex and costly computational procedures such as those involved in
FE simulations.

Comparison with FE solutions derived from a basin simulator that integrates the effects of large irreversible porosity
change on the elastic properties as well as on plastic/viscoplastic hardening laws36,51 provides ample evidence of the
ability of derived semianalytical solutions to relevantly reflect most of local and overall features of the basin deforma-
tion. In particular, it has been shown that the simplifying approximations introduced in the resolution formulation
affect very little the accuracy of obtained predictions.

As extensions to be foreseen in the future, the analysis should be extended to more realistic situations incorporating
(a) the effects of tectonic loading by applying for instance lateral prescribed displacements,9 (b) the effects of geother-
mal field relying on the approach developed in Brüch et al.36 to address the evolution of sediment material properties
associated with temperature, and (c) hydromechanical coupling.
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