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ABSTRACT

Apoptosis is essential for complex multicellular
organisms and its failure is associated with
genome instability and cancer. Interactions between
apoptosis and genome-maintenance mechanisms
have been extensively documented and include
transactivation-independent and -dependent func-
tions, in which the tumor-suppressor protein p53
works as a ‘molecular node’ in the DNA-damage
response. Although apoptosis and genome stability
have been identified as ancient pathways in eukary-
ote phylogeny, the biological evolution underlying
the emergence of an integrated system remains lar-
gely unknown. Here, using computational methods,
we reconstruct the evolutionary scenario that linked
apoptosis with genome stability pathways in a func-
tional human gene/protein association network. We
found that the entanglement of DNA repair, chromo-
some stability and apoptosis gene networks
appears with the caspase gene family and the anti-
apoptotic gene BCL2. Also, several critical nodes
that entangle apoptosis and genome stability are
cancer genes (e.g. ATM, BRCA1, BRCA2, MLH1,
MSH2, MSH6 and TP53), although their orthologs
have arisen in different points of evolution. Our
results demonstrate how genome stability and
apoptosis were co-opted during evolution recruiting
genes that merge both systems. We also provide
several examples to exploit this evolutionary plat-
form, where we have judiciously extended informa-
tion on gene essentiality inferred from model
organisms to human.

INTRODUCTION

The concept of apoptosis is associated with the mainte-
nance of tissue homeostasis (1). The programmed cell
death (PCD) in the perspective of multicellular organisms
guarantees the substitution of old and/or dysfunctional
cells, which are impaired by the accumulation of cellular
damages due to environmental insults, as well as partici-
pates directly in tissue development (2). According to
KEGG (3), a reference pathway database, there are up
to 100 genes coordinately working in apoptosis. Removing
one of these components affects several others and it
may impair the whole pathway. In complex metazoan
organisms, a defective apoptosis is associated with orga-
nogenesis disorders and also uncontrolled cell growth,
which is typically found in neoplastic diseases (4). In the
perspective of a cancer cell, suppressed apoptosis is a
requirement in order to enhance cell fitness (5). In
some extent, it is thought that apoptosis is related to
genome instability in the sense that mutation prone
clones, containing aberrant genetic content (i.e. high
number of chromosome aberrations and DNA point-
mutations), need a defective apoptosis to escape cell
death (6–8).
Genome-maintenance mechanisms are intimately linked

to apoptotic components, as indicates the high number
of proteins that interact with the tumor-suppressor
protein p53. In fact, this protein interacts with the four
major DNA repair mechanisms: nucleotide excision repair
(NER), base excision repair (BER), mismatch repair
(MMR) and recombinational repair (RER)—homologous
recombinational repair (HRR) and nonhomologous end-
joining (NHEJ). Concerning NER and MMR, p53 can
act in both transactivation-independent and -dependent
manner (9). Furthermore, several DNA repair proteins
can stimulate apoptosis in response to DNA lesions,
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as for example the BER-associated protein poly(ADP-
ribose) polymerase-1 (PARP1) (10) and the MMR
proteins MSH2, MSH6 and MLH1 (11). Indeed, the over-
lapping among apoptosis and DNA repair genes renders
difficult a precise definition of functional boundaries
among all systems, which is a characteristic of complex
biological networks (12).
On the other hand, apoptosis and genome-stability net-

works have different evolutionary roots. For instance, the
core machinery of eukaryotic repair systems seems to be
conserved among the three domains of life, although an
expressive number of eukaryotic proteins have no counter-
part in archaea or bacteria (13). Likewise, metazoan apo-
ptosis contains several components that can be identified
in ancient organisms such as prokaryotes and unicellular
eukaryotes. However, many molecular sources in the
eukaryotic apoptosis network might have been inherited
from prokaryotes by horizontal gene transfer (HGT) in
different events, being exapted to new functions to form
apoptosis network (14).
Notwithstanding the components of these two networks

having been extensively identified in eukaryote phylogeny
(15,16), few data are available about the evolutionary
scenario that functionally linked apoptosis to genome-
stability gene network (5,17,18). One approach to assess
the role of each component in a given interacting network
is through comparative genomics. Using well-studied
models, as yeast and mouse, comparative genomics pro-
vides powerful tools to draw evolutionary inferences for
poorly studied organisms (16).
In a previous paper we characterized the entanglement

among apoptosis and genome-stability pathways in a
human protein–protein-association network (19). Here,
we extend this characterization to build a platform to
transfer functional information from several organisms
to human. The idea is based on the consensus that each
component of a gene/protein interaction network in the
present living organisms has its origin at some point of the
evolution. Thus the scenario that gives rise to the present
network can be tracked-down by searching the root of
each component in a given species tree.
Our goal here is to create an orthology map across a

species tree for the human apoptosis and genome-stability
gene/protein-association network in order to transfer to
humans the information described for other eukaryotes.
We searched for orthologs [i.e. homologous genes derived
from a single ancestral gene in the last common ances-
tor (LCA) of compared species (20)] among 35 fully
sequenced eukaryotic genomes. Likely orthology was
inferred from orthologous groups using STRING data-
base (21,22), and for each set of orthologs we found the
most parsimonious scenario on the eukaryote phylogeny
(23). To verify this orthology data, we reconstructed the
entire analysis using Inparanoid database as a different
data source, and essentially obtained the same results
(see Supplementary materials). As further network char-
acterizations, we estimated gene plasticity by measuring
gene abundance and distribution of each orthologous
groups among the extant species, and considered essenti-
ality data available for yeast and mouse orthologs. Both
plasticity and essentiality information were transferred to

the human gene network. As a result we obtained a gene
network where it is possible to discriminate ancient, less
plastic and more essential regions from earlier, more plas-
tic and less essential ones. Furthermore, the many cancer
genes identified in this gene network are located in the
earlier, more plastic and less essential region. We antici-
pate that our analyses can be applied to study the origins
of a broad range of neoplastic diseases.

MATERIALS AND METHODS

Human gene/protein-association network

The protein–protein interaction network associating 180
human genes of apoptosis and genome-stability pathways
has been extensively described in Ref. (19). Briefly, the
network is generated using the database STRING (24)
with input options ‘databases’,’experiments’ and 0.700
confidence level. STRING integrates different curated,
public databases containing information on direct and
indirect functional protein–protein associations. Each
protein is identified according to both gene HUGO ID
(25) and Ensembl Peptide ID (26) (Supplementary
Table S1). The results from the search are saved in data
files describing links between two genes and then handled
in Medusa software (27).

Parsimony analysis: inferring evolutionary roots of human
apoptosis and genome-stability genes

The parsimony analysis is divided into two major steps in
order to construct parsimonious scenarios for individual
sets of orthologous, given a species tree. We first built a
consensus phylogeny for the eukaryotes listed in STRING
database (22). The eukaryote phylogeny is based on a
manual integration of a variety of phylogenies (28–33).
We determined the presence of homologs among the
organisms in the species tree for the 180 genes of apoptosis
and genome-stability networks. Likely homology was
inferred using the orthology information from the eukary-
otic clusters of orthologous groups of proteins (KOGs)
(21), which was retrieved through the orthology assign-
ments in the STRING server; STRING has augmented
the KOG orthology information by adding additional
species (currently 35 eukaryotes) and creating more
groups (NOGs, nonsupervised orthologous groups) as
well as giving direct association among the three-domain
phylogeny. In total, 142 eukaryotic orthologous groups
were identified (Supplementary Table S1). To benchmark
the analysis, we retrieved the orthologous groups
for same set of genes using Inparanoid database, as
discussed later.

The second major step is the reconstruction of the
evolutionary scenario for each individual set of ortho-
logous genes. This problem has been previously formu-
lated as follows (23): given a species tree and a set of
orthologs with a particular phyletic pattern, find the
most parsimonious mapping for the set of orthologs
on the tree. Precisely, concerning our problem, this
question can be restated as: for each orthologous
group associated with the human apoptosis and
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genome-stability genes, find its earliest ortholog in the
eukaryote phylogeny.

The incongruence of any evolutionary scenario is
resolved according to the gain/penalty approach (23),
where the most parsimonious scenario of presence/absence
of all the genes at all ancestral nodes of the tree is obtained
by using an inconsistency function defined as

S ¼ lþ g�; 1

where l is the number of gene losses, � is the number of

gene gains and g is the gain penalty. For each different
scenario a function S is calculated and the most parsimo-
nious scenario is chosen as the one that yields the mini-
mum value of S. The relative costs of the evolutionary
events consider two cost units for gene birth or gene
acquisition (i.e. g=2), and one cost unit for gene loss.
This ratio is proposed by Mirkin and coworkers (23).
Subsequently, other works validate the 2:1 ratio in pro-
karyotes (34,35) which thereafter has been used in similar
analysis in eukaryotes and prokaryotes (36–38). Further
details and the corresponding evolutionary scenario for all
orthologous groups are presented in Supplementary
Figures S14–S49 and also provided in spreadsheet
format (Supplementary Table S3).

To verify the robustness of our orthology analysis we
compared each gene evolutionary scenario with a corre-
sponding one obtained using a different data source. In
this case, we reconstructed the entire evolutionary analysis
considering the Inparanoid database (39). In contrast to
KOG algorithm, Inparanoid is designed to find orthologs
and in-paralogs between two species and to separate in-
paralogs from out-paralogs. KOG and Inparanoid orthol-
ogy analysis lead to roughly the same conclusions. We
present and discuss these results in Supplementary
Material Online (Supplementary Figures S3–S6, S50–S94
and Table S4).

Diversity analysis of orthologous groups

An orthologous group (OG) corresponds to a set of
genes from different extant species that have a common
gene ancestor. To obtain a quantitative expression of
the orthologous distribution (i.e. distribution of the
items of an orthologous group), we have measured
the information content of two different databases
(STRING and Inparanoid) using Shannon Information
Theory (7,40–43) defined as follows. Consider n as the
number of selected OGs, each one representing an ortho-
logous groups. Each OG is labeled by a (a=1, . . ., n) and
has N� items (orthologous genes), distributed among M
possible organisms. Consequently, for a given OG we can
define s(i,a) as being the number of items of a given organ-
ism i, (i=1, . . .,M), whose sum for a given a adds up to
N� The probability p(i,a) that, among the N� items of the
a-OG, a randomly chosen one belongs to the organism i is
written as

p i; �ð Þ ¼
s i; �ð Þ

N�
; 2

such that
P

i p i; �ð Þ ¼ 1. The normalized Shannon infor-
mation function H� is defined as

H� ¼ �
1

lnM

X

i

p i; �ð Þ ln p i; �ð Þ; 3

where we have divided by ln(M) in order to normalize the
quantities, guaranteeing that 0�H�� 1. Observe that if
there is one gene per organism, N�=M, p(i,�)=1/M,
and H�=1. In fact, H� reflects the spread of the distribu-
tion s(i,�), i.e. it measures the diversity that exists in the
ath OG. H� near 0 indicates poor diversity, while a H�

close to 1 suggests high diversity. As a complementary
quantity, we also estimate the abundance D� in the ath
OG by simply obtaining the ratio between the number of
items (orthologous genes) and the number of organisms.

Transference of functional information from yeast and
mouse to human gene/protein-association network

To predict developmental essentiality of a human gene, we
used the mammalian phenotype information of the corre-
sponding mouse orthologs. In this analysis, a gene is
defined as ‘essential’ for organism development if a
knock-out of a mouse ortholog confers embryonic or
perinatal lethality (44). We obtained the mouse pheno-
type data from the curated knock-out collection available
in Mouse Genome Database (MGD) (http://www.
informatics.jax.org) (45). To predict cellular essentiality
of a human gene, we used the phenotype information of
the corresponding yeast orthologs. In this analysis, a
human gene is defined as ‘essential’ at cellular level if
a knock-out of its ortholog confers lethality to yeast.
The yeast knock-out data were obtained from the
Saccharomyces SGD project ‘Saccharomyces Genome
Database’ (http://www.yeastgenome.org/) (46). Human
and yeast orthology is also verified using as data source
the Inparanoid database (47) and is provided in
Supplementary Table S1. In this analysis, six essential
genes, out of 32, were not listed as orthologs when using
Inparanoid (these genes are presented in Figure 5A with
an asterisk besides their names).

Human gene mutation statistics

The data for the analysis of CAN genes is obtained from
Cancer Gene Census (48). Both germline-mutated and
somatic-mutated CAN genes are retrieved and then
crossed with the list of 180 genes of our study. We identi-
fied 25 CAN genes placed in our network-based model of
apoptosis and genome stability (Supplementary Table S1).
Genotype statistics of germline CAN genes located on r

module is further analyzed in the XP mutation database
(http://www.xpmutations.org). The representativeness of
the sample was tested against a second database [Human
gene Mutation Database—HGMD (49)] which is regarded
as a reference mutation database for (published) gene
lesions responsible for human inherited diseases. Table 1
shows as equivalent the samples obtained here from
HGMD and XP database. However, the former contains
limited gene information comparing to the latter (50).
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Indeed, we could successfully retrieve the zygosity infor-
mation only accessing the XP database.

RESULTS

Apoptosis and genome-stability gene set

Our analysis begins with a list of 180 genes participating in
human apoptosis and genome-stability functions as pre-
viously defined (19) and provided as supplementary mate-
rial online (Supplementary Table S1). To define this gene
set we have characterized several genome-maintenance
mechanisms as well as the interactions among their com-
ponents. In Figure 1A we reproduce these interactions to
illustrate the links between apoptosis and genome-stability
gene networks, which are collectively referred to as the
genome-maintenance gene network. Each node corre-
sponds to a gene-network node (GNN), while the lines
represent direct (physical) and/or indirect (functional)
associations according to STRING database for human.
They are derived from high-quality systematic protein–
protein interaction mapping (22). Note the position of
TP53 gene in the network topology connecting apoptosis
to 18 genome-stability components (Figure 1A, arrow,
and Figure 1B). This functional overlap is further empha-
sized in Figure 1C for the complete network, which shows
the number of links distributed for each gene set.
Although apoptosis and genome stability have equivalent
number of components in this network (i.e. 86:100), the
connectivity of the latter is almost 2-fold, as indicated by
the Venn diagram. Such difference arises mainly due to the
large number of associations among NER, MMR and
chromosome stability components, yielding a highly con-
nected gene module (Figure 1A, r).

Construction of parsimonious evolutionary scenarios

In order to infer the ancestral states of human apoptosis
and genome-stability genes we considered eukaryotic

clusters of orthologous groups of proteins (KOGs) (21),
using the orthology assignments in the STRING server
(22). In total, apoptosis and genome-stability genes are
distributed in 142 KOGs and for each one of these ortho-
logous groups we found the most parsimonious mapping
onto the eukaryote phylogeny. In Figure 2A we present
the topology of the species tree used in this analysis
(28–33), which is arranged in 17 subdivisions (monophy-
letic groups) based upon phylogenetic relationships. Every
species-tree node (STN) is labeled according to the ascend-
ing subtree, and is referred to as the LCA of this subset.

To give a quantitative view of the evolutionary roots
inferred for the 180 human genes studied here, we plotted
the number of human apoptotic and genome-stability
orthologs in each STN (Figure 2B). Accordingly, this
distribution suggests a sequential enlargement of the net-
work, with a progressive increase of apoptosis. In con-
trast, genome-stability orthologs are mainly rooted in
STN-P (at the base of eukaryote species tree), suggesting
that orthologs involved in apoptosis are more recent.
Furthermore, in order to assess the robustness of our
orthology analysis we reconstructed the entire evolution-
ary scenarios using Inparanoid database as a different
data source, and essentially obtained the same results. In
contrast to KOG algorithm, Inparanoid is designed to find
orthologs and in-paralogs between two species and to
separate in-paralogs from out-paralogs (39). We used
this second approach to construct the evolutionary incon-
sistence score (R) that estimates the divergence between
the two scenarios (i.e. �STN). We present and discuss
these results in Supplementary Material Online (Supple-
mentary Figures S3–S6, S50–S94 and Supplementary
Table S4). Briefly, for apoptosis genes, R=1.709 STNs
�0.224 (SE) and for genome-stability genes R=0.807
STNs �0.202 (SE) (Figure 2C). It means that for each
root inferred in our analyses, the estimated error for apo-
ptosis is approximately two STNs up and down from the

Table 1. Allelic distribution of CAN genes placed in r module according to XP mutation database (Panel A). Sample representativeness compared to

a second databases (Panel B)

Panel A Number of Genotypes (%)a Total genotypes (Panel B) Entriesb

CAN gene null/non-null non-null/non-null null/null XP database HGMD

ERCC2 20 (43.5) 26 (56.5) 0 (0.0) 46 76c 48
ERCC3 3 (60.0) 2 (40.0) 0 (0.0) 5 8 11
ERCC4 0 (0.0) 7 (100.0) 0 (0.0) 7 18d 17
ERCC5 0 (0.0) 5 (100.0) 0 (0.0) 5 10 12
XPA 6 (6.0) 94 (94.0) 0 (0.0) 100 128e 25
XPC 0 (0.0) 13 (100.0) 0 (0.0) 13 28f 42
DDB2 0 (0.0) 5 (100.0) 0 (0.0) 5 8g 8
� 29 (16.0) 153 (84.1) 0 (0.0) 182 276 163

aData obtained from XP mutations database (http://www.xpmutations.org) is compiled according to the absence (null) or presence (non-null) of
CAN gene alleles. Null/non-null genotypes are only heterozygous, while non-null/non-null genotypes include heterozygous and homozygous.
bThe number of allelic records present in XP mutations database is compared to a second human inherited mutation database [Human gene
Mutation Database — HGMD (49)] in order to attest the sample representativeness.
cOne allele is duplicated in the database (the XP1BR entry).
dThree alleles have no mutation data (XP80TO, XP81TO and XP89TO entries).
eOne allele had no zygosity information (XP10OS entry).
fFour alleles have no zygosity information (XP6BR, XP4BR, XP3BE and XP22BE entries). Polymorphisms are not considered in the analyses.
gOne allele is duplicated (XP25PV entry).

6272 Nucleic Acids Research, 2008, Vol. 36, No. 19



rooting point in the species tree, while for genome stability
the error is approximately one STN up and down.

In order to test a phylogeny where Caenorhabditis ele-
gans is not at the root of the metazoa we included
Nematostella vectensis, which thus changes the base of
metazoa (Supplementary Figure S9). We chose this organ-
ism because (i) Nematostella is a cnidarian; (ii) the idea
that the cnidarians are at the base of metazoa is less con-
troversial than the nematodes; and (iii) switching a taxon
like this goes some way to testing the effect of the phylo-
geny used. The result after this process is that the roots of
the human genes remain almost the same (the complete
analysis is available at Supplementary Table S5) and
further discussed at supplements (section 1.4: the deep
root of metazoans).

From species-tree nodes to gene-network nodes

To assess the details of the evolutionary scenario described
earlier in the context of known and predicted gene func-
tions, we used the network-based model presented in
Figure 1A (19).

Starting from the complete network graph we generated
three relevant orthology projections to characterize the
functional differences between apoptosis and genome sta-
bility (Figure 3A–C). In these graphs we highlighted the

nodes according to the roots inferred in the species tree
(Figure 3D). Note that here each gene-network node
(GNN) represents an ortholog of a gene in the human
apoptosis and genome-stability gene network.
The orthology information regarding other STNs is

provided in Supplementary Table S1. As quantitatively
showed in Figures 2B–D, the more recent STNs concen-
trate apoptosis roots (round GNNs in Figure 3A and B).
However, there is a qualitative difference: observe the
pooled origins inferred for several components of apo-
ptosis extrinsic (Figure 3A) and intrinsic (Figure 3B)
pathways.
To analyze this result it is important to consider the

biochemical signature of apoptosis, that is, the caspase
activation, which is triggered by either intrinsic or
extrinsic apoptosis pathways. The intrinsic pathway is
associated with mitochondrial outer membrane permeabi-
lization and cytochrome c (CYCS) release in response pri-
marily to developmental cues or cellular damage. It
triggers apoptosis through the Bcl-2 gene family and the
initiator protease caspase-9. In contrast, the extrinsic
pathway is characterized by the ligation of cell surface
receptors via specific death ligands, as the TNF gene prod-
uct, to generate catalytically active caspase-8 (51,52). The
protein encoded by TNF gene is a multifunctional
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Figure 1. Human apoptosis and genome-stability gene network. (A) Graph of interactions among genes involved in apoptosis and DNA repair
pathways, as previously characterized in Castro et al. (19). Different pathways are represented in different colors. Network nodes with more than one
color represent genes participating in more than one pathway. Gene IDs of each pathway are provided in Supplementary Table S1. (B) Magnification
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r module.
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proinflammatory cytokine that belongs to the tumor
necrosis factor (TNF) superfamily, which also includes
the ligands FAS (FASLG) and TRAIL (TNFSF10).
These ligands bind to several members of TNF-
receptor superfamily (e.g. TNFRSF1A, TNFRSF10A,
TNFRSF10B and FAS receptors) and are involved in the
regulation of a wide spectrum of biological processes, such
as immune surveillance, innate immunity, haematopoiesis
and tumor regression [for review, see (53)].
Accordingly, it is noticeable that the components of

intrinsic pathway are rooted mainly in STN-L or earlier
(e.g. CYCS is deeply rooted in eukaryote species tree—
Figure 3C). In contrast, the subsequent enlargement of the
network graph is provided mainly by orthologs of the

extrinsic pathway, whose ligands and receptors are
rooted in STN-I projection, or later (e.g. IL1A, IL3RA,
IL3 and TNFRSF10D genes are observed only in mam-
mals, that is, STN-F and later, evinced by comparing
STN-I projection versus complete human network; details
of these orthologs are presented in the explicit parsimony
analysis—Supplementary Figures S46, S48 and S49).

In STN-P projection (Figure 3C), however, only a small
fraction of genes belongs to apoptosis. Instead, this graph
is remarkable by the large presence of genome-stability
components (triangular GNNs), as quantitatively
addressed in Figure 2B.

Taking all results together, this evolutionary scenario of
genome-maintenance mechanisms is marked by three
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Figure 2. Inferring evolutionary roots of human apoptosis and genome-stability genes. (A) Eukaryote species tree topology used in the parsimony
analysis. The phylogenic relationship among these 35 eukaryotes is based on a manual integration of a variety of phylogenies (28–33). STNs and the
corresponding LCA are indicated. (B) Distribution of apoptotic and of genome-stability orthologs according to the roots inferred in the species tree
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major functional increments: the first is the evolution of
genome-stability gene network, whose components origi-
nate in the basal position of this species tree [STN-P,
inconsistency between datasets R=0.63 STNs �0.22
(SE)]; the second is the appearance of several apoptotic
intrinsic components, rooted near metazoan divergence
[STN-L, inconsistency between datasets R=1.23 STNs
�0.23 (SE)]; the third consists of the network enrichment
with several apoptotic extrinsic members and happens
near chordate-vertebrata root [STN-I, inconsistency
between datasets R=0.35 STNs �0.16 (SE)]. The net-
work core of apoptosis and genome-stability systems are
rooted in this tree before the divergence of metazoans,

while GNNs placed in the periphery of the networks
represent more recent evolutionary innovations. There-
fore, the striking feature of these graphs is the increasing
association between apoptosis and genome-stability func-
tions with the emergence of an entangled gene network,
which is fully consistent with the evolutionary strategy
used in eukarya of adding complexity to existing core
systems (54,55). (Inparanoid database essentially produces
the same evolutionary scenario; please see Supplementary
Figure S6.)
Also, additional evidence of the ancestral roots of

genome stability can be inferred considering the likely
origin of the ancestral eukaryotic KOGs by identifying
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their closest prokaryotic orthologous groups (COGs).
The KOG-to-COG correspondence is presented in
Supplementary Figure S8, and shows that 77.0% of the
genome-stability orthologs have identifiable prokaryotic
orthologous groups, against 39.5% for apoptotic ortholo-
gous genes.
Despite the several organisms that have been consid-

ered, the construction of the gene network is directed to
human. Therefore, the interpretation of the evolutionary
scenarios is ultimately linked with the characterization the
human gene network. It means that we cannot infer that
the gene network in the actual organism at the root of the
eukaryotes was smaller. As we have stated in the introduc-
tion section, our goal is to create an orthology map across
the species tree in order to transfer to human the informa-
tion described for other eukaryotes. This is a one-way
strategy, which is explored in the subsequent sections.

Plasticity analysis

Genetic plasticity may be understood as the ability of a
functional gene network to tolerate changes in its compo-
nents. There are different sources for such changes (gene
duplication, gene loss, mutations and horizontal gene
transfers), with different causes and effects. These changes
in the genome may or may not be naturally selected,
depending on the effect they have either on cell fitness or
organism viability, in the case of complex organisms. The
result of such an evolutionary dynamics is genetic varia-
bility among organisms of the same species or, ultimately,
speciation. Gene networks are not equally plastic and
hence do not equally respond to these variation pressures:
depending on the gene, its function, influence on other
genes, and their relevance, some changes are more likely
to be tolerated or selected than others.
Focusing in networks in general, one may expect that

gene networks that are more tolerant to variation will
present a larger variability inside a species and among
species. Focusing now on individual genes, organisms
should be more tolerant to drastic changes (e.g. gene
knock-out) when the change is performed on genes located
at a more plastic network. These two characteristics, the
gene variability among different genomes and the organ-
ism response to knock-out of single genes, allow two inde-
pendent measures to estimate gene network plasticity. One
possible plasticity measure is estimating the number and
the distribution of orthologs among different organisms.
A second, independent plasticity measure may be obtained
by assessing cell lethality data. In what follows we present
and discuss these two plasticity measures.

Diversity and abundance analysis. We evaluated the diver-
sity and abundance of the orthologous groups to estimate
the plasticity of each gene in our human apoptosis and
genome-stability gene network (precise definition in the
Materials and methods section and further exemplified
in Supplementary Material Online).
The network graph presented in Figure 4A and B

incorporates diversity and abundance statistics, allow-
ing the discrimination in three distinct classes of genes
based on the distribution of diversity as a function of

abundance (Figure 4C). The first class (a) refers to genes
placed in orthologous groups with low diversity and low
abundance (Figure 4A and B, white GNNs; Figure 4C,
white diamonds). It means that few organisms present
these orthologs, and the associated orthologous groups
have few components. This implies a very recent origin
for these GNNs, since (i) all are present in humans, the
end of our species tree; and (ii) they are not present in
many extant species. For example, TP53 and FAS have
their origins at STN-I, as shown in Figures S38 and S40 in
Supplementary Material Online. This class of genes must
then be located at region of the network that is plastic
enough to accept new genes. The second (b) refers to
genes placed in orthologous groups with high diversity
and low abundance (Figure 4A and B, black GNNs;
Figure 4C, black diamonds), indicating a small number
of genes per organism, but present in many different spe-
cies. These genes are located in the most ancient region of
the network. It implies poorly plastic genes, highly con-
served among species. The last class (c) refer to those
genes placed in orthologous groups with high diversity
and high abundance (Figure 4A and B, red GNNs;
Figure 4C, red diamonds), which clearly requires high
plasticity. Note that both red and white GNNs (plastic
GNNs) are segregated from the black GNNs (poorly plas-
tic) in the network. This segregation should be expected
since plasticity must be a characteristic of a set of inter-
acting genes rather than a characteristic of an individual
gene. Figure 4D supports these finding by showing the
relative presence of the three classes of genes in the
STNs: the more recent genes in the network emerge at
the highly plastic regions of the network, while the more
ancient ones are located at the poorly plastic regions.

Observe that this inhomogeneous distribution of white,
red and black GNNs in the network graph reflects also in
the function performed by the genes. While white and red
GNNs are clearly populating apoptosis network, black
GNNs are placed mainly in genome stability. This result
suggests a high evolutionary conservation of genome-
stability orthologs (i.e. class b, orthologs present in many
organisms and with few variants), contrasting with apo-
ptosis GNNs that concentrate the plasticity of the network
(i.e. class c orthologs with many variants per organisms).

Essentiality in Saccharomyces cerevisiae. A second, inde-
pendent plasticity measure is obtained by assessing cell
lethality data. Here we considered the eukaryotic model
Saccharomyces cerevisiae available in the Saccharomyces
Genome Database (SGD) (46). We transferred this infor-
mation to the STN representing the LCA of yeast and
human (i.e. STN-M), which is then projected on the cor-
responding human network topology. The yeast results
are showed in Figure 5A. Observe that essential genes
are concentrated in a specific portion of the network
(blue GNNs) corresponding to the lower plasticity area
showed in Figure 4 (black GNNs there). Furthermore,
likely orthology inferred in the LCA of yeast and human
indicates that yeast have lost several genes in the course
of its evolution, but mainly apoptotic genes (white GNNs
in Figure 5A). Such loss, together with the presence
of essential genes overlaid on genome-stability area
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(blue triangular GNNs), indicates that our evolutionary
scenario is consistent with the plasticity measures shown
in Figure 4: the lost genes are represented by plastic GNNs
(red and white symbols in Figure 4).

Lethality in Mus musculus. In order to complement this
lethality measure with a complex multicellular eukaryotic
model, we assessed Mus musculus lethality data in Mouse
Genome Database—MGD (45). The phenotypic statistics
in MGD database consider lethal any allele that causes
death anytime after fertilization and before the postnatal

day 2; thus, knock-out alleles may indicate ‘developmental
lethality’ or ‘essentiality’ to embryonic stem cells. Evidence
of mouse lethality is obtained according to the frequency
expected by Mendelian genetics (i.e. zygosity and allelic
distribution observed in the offspring): any significant
deviation from the expected frequency for the knock-out
allele indicates lethality. Therefore, from the putative 178
Mus musculus orthologs identified in our analysis, we find
124 genes for which knock-out data are available (Supple-
mentary Table S1). While the majority produced viable
phenotypes, 39 knock-out alleles have been associated
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Figure 4. Plasticity analysis of orthologous groups. (A and B) Diversity H� and abundance D� of orthologous groups are overlaid on apoptosis and
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with embryonic-perinatal lethality. The data are then trans-
ferred to the STN representing the LCA of mouse and
human (i.e. STN-C) and then projected on the correspond-
ing human network topology (Figure 5B). This data pro-
jection shows a homogeneous distribution of lethal alleles
among nonlethal ones (red and grey GNNs, respectively),
and a concentration on the genomic stability network of
genes lacking knock-out data (white GNNs). Figure 5B
highlights the essentiality of apoptosis and genome-
stability gene network to the organism development. How-
ever, except for those genes without knock-out information
(mainly placed in r module), mouse statistics indicate that
the vast majority of knock-out alleles are nonessential at
cellular level, given that even after gene disruption the

cellular expansion is still viable. Such reading complements
the results found for yeast, since what is nonessential to
yeast is also nonessential to mouse at cellular level. A pic-
torial consequence of the complementarity of the results for
yeast and mice is that the set of blue symbols in Figure 5A
almost do not overlap with red symbols in Figure 5B.

Correlating plasticity and cancer statistics

The most systematical, available data about the functional
impairment of human genome-maintenance mechanisms
comes from cancer statistics. According to a global
human disease network described by Goh et al. (44),
from the 180 genes listed in our genome-maintenance
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Figure 5. Integrating evolutionary and functional data. (A) Projection of yeast lethality data onto human apoptosis and genome-stability gene
network: essential (blue GNNs) and nonessential yeast orthologs (grey GNNs) according to SGD database (46). The graph presents all orthologs
inferred in the LCA of yeast and human (i.e. rooted or present in STN-M). White GNNs correspond to genes present in the branch but absent in
yeast, as predicted in the parsimony analysis (see ‘Materials and Methods’ section). Asterisks identify six GNNs whose orthology are predicted by
orthologous groups but not confirmed in the Inparanoid database (47). (B) Projection of mouse lethality data onto human apoptosis and genome-
stability gene network: essential (red GNNs) and nonessential (grey GNNs) mouse orthologs according to MGD database (45). The graph presents
only GNNs whose orthologs are inferred in the LCA of mouse and human (i.e. rooted or present in STN-C). GNNs that lack knock-out data in
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predisposing to cancer (blue GNNs) or both. White GNNs indicate genes not mentioned in the Cancer Gene Census.
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gene network, 51 are associated with some human disor-
der. From these, >50% are implicated in cancer. As an
application for the plasticity estimates presented in the
previous sections, we now consider cancer statistics data.

Genes causally implicated in cancer are collectively
identified as cancer genes—CAN genes (48), and share a
common feature: while they are potentially lethal to
organism due to disruption of tissue architecture, muta-
tions in these genes that lead to cancer are not lethal to the
cell. These mutations are of two types: somatic or germ-
line. While the first arise after organism development and
in few cells, the second are inherited—present before con-
ception—and thus continue afterwards in every cell. In
fact, germline mutations in CAN genes cause cancer pre-
disposition, not cancer per se, contrasting with somatic
mutations that are to a large extent the primary cause of
cancers (56).

Mutations that lead to cancer increase cell fitness (5,57),
implying that the gene network may tolerate (and the cell
may even benefit from) this genetic change (58).
Consequently it is reasonable to expect that CAN genes
are located on plastic gene networks.

We assessed the cancer statistics available in the Cancer
Gene Census at the Cancer Genome Project—CGP
(http://www.sanger.ac.uk/genetics/CGP). The graph of
Figure 5C shows the projection of mutations causally
implicated in human cancer retrieved from that census.
Observe that CAN genes have a polarized distribution in
the network topology. Those presenting exclusively
somatic mutations are associated with apoptotic functions
(red GNNs), and are at the plastic portion of the network,
while those presenting exclusively germline ones are asso-
ciated with genome stability (blue GNNs), at the poorly
plastic region. Conversely, CAN genes that show both
mutation types are at an in-between and overlap apoptosis
and genome-stability networks.

The location of the germline mutations poses a chal-
lenge to our evolutionary scenario. How can we explain
germline mutations in these human genes, given that they
are located at a poorly plastic region? Also, care should
be taken in order to consider these results together with
yeast and mouse due to differences among statistical data.
For instance, CAN gene statistics comes mainly from epi-
demiological data and shows exclusively genes in which
mutations that are causally implicated in oncogenesis
have been described at least in two independent reports,
showing mutations in primary patient material (48).
According to CGP census, the underlying rationale for
interpreting a mutated gene as causal in cancer develop-
ment is that the number and pattern of mutations in the
gene are likely to have been selected because they confer a
growth advantage on the cell population from which the
cancer has developed (48). Also, in contrast to mouse and
yeast knock-out alleles, CAN gene may have a range of
mutations, from a single nucleotide substitution to a com-
plete transcript disruption (i.e. null alleles is the most
severe situation, equivalent to mouse and yeast knock-
out data).

In order to circumvent such data limitations and
improve the analysis we further investigated the human
statistics assessing the genotypic profile of several CAN

gene loci. We attempt to obtain the proportion of null
and non-null alleles in human following the strategy
used in mouse to infer lethality according to the expected
frequency in a Mendelian distribution. We focus the
analysis in the set of CAN genes placed in r module,
collectively represented in the same locus-specific muta-
tion database—XP mutation database (http://www.
xpmutations.org). These CAN genes are also associated
with the same DNA repair function (nucleotide-excision
repair) and are related to three rare autosomal recessive
human clinical disorders (Xeroderma pigmentosum,
Cockayne Syndrome and Trichothiodystrophy), which
may turns reliable the obtaining of a representative
sample (XP database is a repository of XP mutations iden-
tified in patients worldwide). We retrieved 182 mutated
genotypes available in that database, which is then
pooled according to the zygosity and the presence of
null and nonnull alleles (Table 1, Panel A). Sample
number is also compared to a second database in order
to attest the representativeness of the database (Table 1,
Panel B) (see Supplementary Material Online for further
details). Given the data, in case null/null patients exist in
some extent in human population, it would be a strong
argument against the essentiality of genes located at the
poorly plastic region of the network. As is pointed in
Table 1, this is not the case. There is a total absence of
null alleles in homozygous. Therefore, considering equiva-
lent criteria among human, mouse and yeast to infer leth-
ality, the data is consistent with lethality of germline CAN
genes in the network projection, allowing the less-plastic
area to be regarded as essential in human.

DISCUSSION

We presented an orthology map in order to locate the
eukaryotic genes in the human apoptosis and genome-
stability gene/protein-association network. According
to our scenario, apoptosis and genome stability have
different origins in the evolution, in spite of the
complex interaction between both systems observed in
human gene network (see Figure 6 for a summary).
The genome-stability network seems to have emerged ear-
lier in eukaryotic evolution.
Our results are consistent with several scenarios

described by different authors. For instance, the position
of genome stability in the base of eukaryotic species tree is
highly consistence with the DNA repair functions
described in prokaryotes [DNA repair in Escherichia coli
is extensively recognized and has served as a paradigm for
the investigation of other organisms: NER (59), BER (60),
MMR (61) and RER (62)]. Also, the root of BCL2 in the
base of LCA of metazoans is consistent with the identified
pro-survival functioning of Bcl-2 protein family members
in C. elegans (63,64). Likewise, the position of caspases
in the base of LCA of metazoans has been previously
described (14), which is consistent with the origins of
intrinsic pathway components that predate TNF-like cyto-
kines (65). These TNF extrinsic pathway core components
has been described across vertebrates (47) and corroborate
our scenario, in line with the mammalian-like functioning
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of extrinsic apoptosis pathway described in Danio rerio
and the absence of TNF and TNF receptor superfamily
members in C. elegans (52).
However, the novelty here is that our results describe

the genome-maintenance mechanisms as a whole, in a net-
work-based model, to produce a unique evolutionary sce-
nario. This point of view allows investigating the
sequential events that led to the entanglement of apoptosis
and genome-stability gene networks.
In the course of human genome-maintenance network

evolution, three major functional increments are remark-
able as is summarized in Figure 6. The first is associated to
the base of the species tree and comprises genome-stability
genes. The second evolves gradually, especially near the
metazoan origin, with many gene components added to
apoptosis intrinsic pathway, such as BCL2 and the cas-
pase gene family members. The third continues the apo-
ptosis enrichment with the addition of several extrinsic
components, such as TNF superfamily members.
Furthermore, as the macroevolutionary perspective of

these conclusions must be considered together with the
estimated evolutionary error (i.e. two species tree nodes
up and down from the rooting point in the species tree), it
is conceivable that some genes are actually not as recent as
one might think. Nevertheless, our conclusions do point
that in the course of human genome-maintenance gene
network evolution there must have been a dramatic
increase in the number of apoptotic components,

contrasting with the early origin of genome-stability
genes. We identified the expansion of apoptotic compo-
nents in both KOG and Inparanoid-derived data.

This numerical expansion of apoptotic components
could be related to the origin of other cell functions.
Such assumption may be illustrated by the TP53 appear-
ance at the transition to later evolutionary scenarios: p53
protein regulates not only apoptosis, but it is also a key
regulator of cellular senescence, defined as a permanent
cell cycle arrest (66). Senescence is an alternative tumor
suppressor mechanism, where damaged cells are prevented
from dividing (67). If the senescence has functionally
emerged with TP53 gene, this second tumor-suppressor
mechanism may have relaxed the selective pressure on
apoptosis, increasing its tolerance against nonadaptive
processes (e.g. genetic drift, mutation and recombination)
and favoring its evolution. Our results are consistent with
the emergence of both major mechanisms of tumor con-
trol during metazoan evolution, although in what regards
senescence more genes should be taken into account to
draw a safe conclusion.

Likewise, TP53 can exemplify the evolution of genome-
stability gene network. Acting as a transcription factor,
p53 protein is able to modulate all DNA-repair processes
(9,68). Such DNA-repair gene response to p53 protein is in
line with evidences showing that even conserved gene
functions are subject to substantial evolution at the regu-
latory level (69).

Root of 76% of the genome stability components mapped in the network
(46% of BER; 81% of CS; 87% of MMR; 89% of NER; 68% of RER)

Network enrichment with
apoptotic core components of extrinsic
pathway ( several TNF superfamily members)e.g.

Presence of 100% of the genome
stability components mapped
in the network

Presence of 99% of the
apoptotic components
mapped in the network

H
.

sapiens

P.
troglodytes

M
.

m
ulatta

R
.

norvegicus

M
.

m
usculus

C
.

fam
iliaris

B
.

taurus

M
.

dom
estica

G
.

gallus

X
.

tropicalis

T.
rubripes

T.
nigroviridis

D
.rerio

C
.

intestinalis

D
.m

elanogaster

A
.

gam
biae

A
.

m
ellifera

C
.

elegans

K
.lactis

S.
cerevisiae

C
.

glabrata

E
.

gossypii

D
.hansenii

Y.
lipolytica

A
.

fum
igatus

S.
pom

be

F.
neoform

ans

E
.

cuniculi

D
.discoideum

A
.

thaliana

C
.

m
erolae

P.
falciparum

C
.

hom
inis

T.
pseudonana

G
.

lam
blia

Primate

Mammalia

Vertebrata
Chordata

Metazoa

Opisthokonta

Eukarya

Apoptosis

Genome stability

Orth
olo

gs
(

)n

Root of 39% of the
ome earliest core

apoptotic components mapped in the network;
S apoptotic genes ( . Cytochrome c)e.g

I

H

G

F

E

D

C

B

A

Q P
O

N

M
L

K

J

30

60

90

120

150

180

0

0.0

1.0

0.5

Distribution of orthologs

Distribution of plasticity data

Class-b orthologs
Class-c orthologs

Class-a orthologs

Inferred changes in genetic systems

ST
N

-P
/Q

Network enrichment with apoptotic core
components of intrinsic pathway
( and the initiator caspase-9)e.g. BCL2ST

N
-L

ST
N

-I

ST
N

-F

ST
N

-B

Figure 6. Summary of the inferred changes in genetic systems. The histograms show the distribution of 180 human orthologs according to the roots
inferred in the eukaryote species tree (for details, see Figures 2 and 3). STNs and the corresponding LCA are indicated. Inset graph shows the
presence fraction of orthologs of each STNs (for details, see Figure 4D). Diverse important events related to the roots of sets of genes are pointed
along the STNs. Chromosome stability (CS).

6280 Nucleic Acids Research, 2008, Vol. 36, No. 19



The plasticity analysis pointed the genes that during
evolution suffered less duplication, such that they are
poorly abundant and widely distributed among extant
species. The results locate these more conserved genes
mainly on the genome-stability network, which is also
the more ancient portion of the network. In contrast, cer-
tain pairs of genes known to function together in human
are placed in different distribution and abundance (e.g.
ATM and BRCA1, MUS81 and EME1, PCNA and
RPA1, RPA1 and RPA2—Figure 4). Analyzing together,
it may indicate that the enlargement of the network can
also occur through the addition of new nodes that even-
tually evolve to work together with ancient ones.

Lethality measures were performed in two complemen-
tary ways: one assessing knock-out data on yeast genes
and the second regarding essentiality in mice. These two
measures are complementary for the following reasons:
yeast is a unicellular organism and lethality concerns
only cell viability, while mouse is a multicellular animal,
with a complex ontogeny. In this later case, a viable
embryo implies survival after egg implantation and a rele-
vant cell expansion. As a consequence, when an organism
is labeled as viable, certainly the cell is viable and so is the
organism. However, when the organism is not viable, the
experimental procedure does not always discriminate
whether the problem occurred at cell or at organism
level. In summary, lethality data on unicellular organisms
as yeast give sound information on what genes are essen-
tial for cell viability, while on multicellular organisms as
mice the sound information is on what genes are not
essential at cell level. Transferring cell essentiality infor-
mation from mice and yeast to the human apoptosis and
genome-stability gene network revealed that essential
genes at cell level are mostly located at the more ancestral
region of the network.

The integration of the information on ancestrality, plas-
ticity and essentiality poses challenging questions. We
found that the more ancient, less plastic and more essen-
tial genes are located on the genome stability, while the
apoptosis network comprises the more recent, more plastic
and less essential genes. Genome stability is required to
guarantee the information transference from a parental
genome to its offspring and thus provides one of the essen-
tial ingredients for natural selection to act: memory. It is
not surprising that genome-stability network is rooted as
early as possible in the species tree. It is also reasonable
that such a crucial function is performed by highly con-
served genes, where gene duplication is not favored due to
the high possibility of disrupting a very essential pathway,
yielding a poorly plastic network. Ancestrality, plasticity
and essentiality have been pointed as correlated features in
typical prokaryotes (70). On the other hand, in multicel-
lular organisms with a more complex ontogeny, such as
Mus musculus, the available literature reports not having
found these correlations (71,72). Here we find cell gene
essentiality to be correlated with ancestrality and plasticity
in both unicellular and complex multicellular organisms.
The point is that here we discriminate cell lethality from
organism lethality: by isolating data from essential genes
for cell survival from essential genes for organism viabil-
ity, the correlation between cell essentiality, ancestrality

and plasticity emerges and follows the same trends as in
unicellular organisms.
A test for this putative evolutionary scenario for the

human genome-maintenance network is given by the loca-
tion of the human CAN genes. In more complex organ-
isms natural selection acts at two different levels (organism
fitness and cell fitness), what may stem conflicting selective
pressures: while a fast proliferating cell clone is naturally
selected in a unicellular organism, a fast proliferating cell
clone in a complex organism may represent a tumor that
may end up by killing the organism. In complex organ-
isms, apoptosis and genome-stability networks work also
as tissue-maintenance mechanisms, favoring natural selec-
tion acting at the organism level. As disruption of such a
mechanism may favor natural selection acting at cell level,
it stands to reason that many CAN genes are located
at the plastic, less cell-essential region of the genome-
maintenance network.
Specifically, concerning human functional data, at least

two questions emerge from the evolutionary analysis of
cancer statistics: (i) why the distribution of CAN genes is
polarized between the two major segments described in the
evolutionary scenario? and (ii) why CAN genes implicated
in both types of cancers (somatic and germline) overlap
apoptosis and genome-stability networks? While addi-
tional work will be needed to fully characterize the rele-
vance of these results, it is clear for us that this
evolutionary perspective may bring further insights in
understanding cancer and its origins.
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