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Abstract

Significance: Four decades have passed since the first successful human embryo conceived from a fertilization in vitro.
Despite all advances, success rates in assisted reproduction techniques still remain unsatisfactory and it is well
established that oxidative stress can be one of the major factors causing failure in in vitro fertilization (IVF) techniques.
Recent Advances: In the past years, researchers have been shown details of the supportive role CCs play along
oocyte maturation, development, and fertilization processes. Regarding redox metabolism, it is now evident that
the synergism between gamete and somatic CCs is fundamental to further support a healthy embryo, since the
oocyte lacks several defense mechanisms that are provided by the CCs.
Critical Issues: There are many sources of reactive oxygen species (ROS) in the female reproductive tract
in vivo that can be exacerbated (or aggravated) by pathological features. While an imbalance between ROS and
antioxidants can result in oxidative damage, physiological levels of ROS are essential for oocyte maturation,
ovulation, and early embryonic growth where they act as signaling molecules. At the event of an assisted
reproduction procedure, the cumulus/oophorus complex is exposed to additional sources of oxidative stress
in vitro. The cumulus cells (CCs) play essential roles in protecting the oocytes from oxidative damage.
Future Directions: More studies are needed to elucidate redox biology in human CCs and oocyte. Also,
randomized controlled trials will identify possible benefits of in vivo or in vitro administration of antioxidants
for patients seeking IVF procedure. Antioxid. Redox Signal. 32, 522–535.
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Introduction

Cumulus cells (CCs) play essential roles in the oo-
cyte’s growth and maturation processes. For example,

they protect the oocyte from oxidative stress damage (116)
and cope with substrates that the oocyte is incapable of
metabolizing (7). In the follicle, oocyte and CCs maintain
an intense bidirectional communication by metabolite ex-
change in several biological processes. The direct com-
munication via gap junctions allows the two cell types to

exchange small molecules and ions (7,30,75). However, the
CC-oocyte communication goes beyond gap junction
transfer and involves oocyte-secreted factors that drive the
paracrine signaling in CCs, regulating in a loop manner the
CC metabolism (29). This bidirectional communication
orchestrates the oocyte and follicle growth, maturation, and
ovulation processes (29, 94, 95, 111). The CCs are the
sensors to follicle and oocyte health, and are capable of
modulating the microenvironment in response to specific
demands (25).
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Reactive oxygen species (ROS) are produced in the heal-
thy follicle during physiological processes and are important
for oocyte maturation (10, 32). Despite their essential role, an
excessive production of ROS can be detrimental to the fol-
licle, affecting its oocyte maturation (17, 51). As a result of
oxidative stress, an exacerbated inflammatory reaction is
generated in the oocyte and also in the CCs, inducing an
imbalance in growth factor and cytokine production leading
to a detrimental effect on reproduction (5). These insults can
come from the external environment, provoked by patients’
lifestyle, from the inner follicle microenvironment, origi-
nating from dysfunctional CCs, or from the oocyte itself,
caused by aneuploidies or other defects of the gamete. Either
way, those insults can impact on CC’s redox metabolic
functioning that can, therefore, act as a gatekeeper for oo-
cytes’ developmental potential. This review focuses on the
supportive role of CCs, on the relationship between redox
imbalance and oocyte quality, on the impact of female re-
productive pathologies on oxidative stress in the cumulus/
oocyte complex (COC), and suggests clinical applications of
proposed biomarkers of redox activity. We also make sug-
gestions of antioxidant management in the clinical environ-
ment. Oxygen (O2) radicals in reproduction (91), or oxidative
stress in the female reproductive tract (2), on female infer-
tility (4, 45), in the oocyte (26), in the oocyte during in vitro
maturation (19, 59) and in the sperm (122) are or were earlier
discussed elsewhere and are not addressed in this review.

The Intimate Relationship of CCs with Oocytes

In the mammalian ovary, oocytes are contained inside fol-
licles, structures that when matured are composed of somatic

granulosa cells and filled with follicular fluid (FF). In the
antral follicle, the cumulus oophorus, a specialized subgroup
of granulosa cells, are surrounding the gamete (Fig. 1) (22).
CCs differentiate from mural granulosa cells by the action of
oocyte-secreted factors and ovarian hormones (41). The
most inner CC layers, called corona radiata, are in direct
contact with the oocyte through transzonal projections.
These extensions of the granulosa cells transgress the oo-
cyte’s zona pellucida and form specialized junctions with the
oolemma (76).

Together, CCs and oocyte form the COC, located inside
the antral follicle in contact with FF, COCs are surviving in
an avascular compartment. The FF is a plasma-like fluid,
originating from the plasma (25) and constituting a source of
COC metabolites, small signaling molecules, proteins, ROS,
and antioxidants (38). The CCs are the gatekeepers for the
oocyte with its surroundings. Thus, the CCs act as a biolog-
ical barrier that selects and processes the metabolites that
oocyte will receive.

Oxidative Phosphorylation Is the Source of Energy
and Biosynthesis for the Oocyte

The female reproductive tract is considered a hypoxic
environment, with O2 concentration variating between 2%
and 8% (80) (Fig. 2), while the antral follicle is exposed to O2

concentrations between 1% and 4% (55).
The oocyte does not metabolize glucose, but is highly

dependent on oxidative phosphorylation (OXPHOS) to ob-
tain energy. CCs can metabolize glucose captured in the
follicle’s microenvironment through glycolysis, producing
pyruvate that is sent to the oocyte for further processing.

FIG. 1. Anatomy of the ovary. In the mature antral follicle, the oocyte is surrounded by specialized granulosa cells,
named the cumulus cells, which are in contact with the follicular fluid inside the antrum. Color images are available online.
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It was recently found by Dunning and colleagues (63) that
mural cells and CCs have an abundant amount of hemoglo-
bin, a molecule with high O2 affinity. This finding goes in
accordance with the fact that although the oocyte relies on
OXPHOS and electron transport chain reaction for energy
generation, it is located inside the antral follicle, a hypoxic
microenvironment with only 2% O2 available (55). The CC’s
proximity with oocyte and antrum allows hemoglobin to
capture the slightest available O2 to be transferred to the
oocyte for OXPHOS. Even though OXPHOS followed by
electron transport chain reaction is the most efficient meta-
bolic pathway for energy production in eukaryotic cells, it has
a high price: it produces ROS as a by-product (47, 48). Proton
leak from OXPHOS in mammalian oocytes can represent up
to 37% of mitochondrial respiration, which might indicate a
high response to ROS production (106). Although ROS are
essential for some biological processes such as signaling
molecules, they can react with biomolecules such as lipids
and nucleic acids, causing cell damage and oxidative stress,
harming the oocyte and lowering its quality (103).

The oocyte does not have the capacity on its own to
mobilize all the necessary antioxidant defense mecha-
nisms. This protection is provided by the surrounding CCs
(102). Besides O2 rescuing, hemoglobin possesses other
functions of extreme relevance in the COC: it functions as
an antioxidant molecule, capable of protecting cells from

oxidative stress via scavenging reactions with hydrogen
peroxide (H2O2) and nitric oxide (NO). These features were
discussed elsewhere (63).

The healthy (and young) female reproductive tract provi-
des all the necessary conditions for follicle growth, oocyte
maturation, and embryo development, a feature still not
equally reproduced in vitro (39). While therapeutically ef-
fective, in vitro fertilization (IVF) techniques fail to replicate
comparable rates of good-quality oocytes and embryos as
observed in healthy individuals.

In Vivo and In Vitro Sources of Oxidative Stress
in the COC

Oxidative stress and redox imbalance is known to play a
significant role in infertility (8). There are several possible
sources of reactive species that can impact on the COC’s
health, either in vivo, influenced by the women’s lifestyle or
physical conditions, or in vitro, during the IVF technique
(88). The review by Agarwal et al. summarizes different
sources of ROS in vivo and in vitro (3). Smoking (105),
exercising regularly (23), the diet (56, 61), stress (86), body
mass index (BMI) (43), and pathologies such as endome-
triosis (53) and polycystic ovary syndrome (PCOS) (97)
lower the fertility capacity (2) and impact the functioning of
CCs (Fig. 3).

FIG. 2. O2 exposure in the female reproductive tract. The mammalian reproductive female tract is a hypoxic envi-
ronment, with O2 pressure ranging between 2% and 8%. The ovaries receive around 5% O2 from the circulatory system,
while the oocytes are limited to follicular fluid and cumulus cells for their supply. The COC and preimplantation embryo are
adapted to this hypoxic environment. The oocyte, contained inside the antral follicle, and the embryo until day 3 stage are
highly dependent on OXPHOS for energy production. From days 3 to 5, on its way across the fallopian tube to the uterus,
the embryo experiences an O2 supply around 2%–5% O2 in mammals; it shifts its metabolism to aerobic glycolysis. COC,
cumulus/oocyte complex; O2, oxygen; OXPHOS, oxidative phosphorylation. Color images are available online.
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During IVF, the COCs are exposed to several potential
sources of oxidative damage (3). In ovarian stimulation
procedures, multiple follicles will be induced to mature
through the use of gonadotropins. In this process, numerous
genes related to inflammation are induced in the ovarian
follicles (90). ROS originate from the inflammatory cells,
which are attracted by the luteinizing hormone surge, also
also by the activation of cytochrome P450 system in the
steroidogenic cells of the follicle (133) (Fig. 4). Once COCs
are obtained in the culture dish, variations in O2 pressure
(45), exposure to visible light wavelengths (79, 107), pH,
and different media compositions (68) can generate ROS. At
insemination, sperm concentration and quality (96) are ad-
ditional factors that directly impact on COC oxidative stress
levels. It should be noted that the influences of CCs on oo-
cyte metabolism change accordingly to environmental fac-
tors such as O2 tension (15). For example, expression levels
of some antioxidant enzymes are regulated by hypoxia
factors (14).

CC Redox Biology

The FF in direct proximity of the COC can act like an
antioxidant buffer, maintaining the redox balance in vivo
(38). While some studies found significant correlations of
ROS/antioxidant levels in FF and oocyte quality (21), others
reported no correlation (21). Because of its origin, it might be
possible that the FF composition reflects rather the plasma
composition than the COC biological state.

DNA damage caused by oxidative stress in granulosa cells
is inversely correlated with fertilization and embryo quality
rates (99). CCs are mainly responsible for the oocyte oxida-
tive stress defense (116). When CC antioxidant capacity is

low, oocyte quality might be affected (33, 77). The mature
metaphase II (MII) oocyte being transcriptionally silent
(135), the contribution of CC metabolite production (such as
glutathione and melatonin) is even more important at this
stage of maturation. Importantly, when metabolizing glu-
cose, the CCs also generate reduced nicotinamide adenine
dinucleotide phosphate (NADPH) for biosynthesis by the
pentose phosphate pathway (PPP), contributing to the redox
balance of the oocyte (46) (Fig. 5), deviating <3% of the
already small portion of the glucose it can metabolize to PPP
(124). NADPH is essential for reactive species metaboliza-
tion, since it is necessary for reduced glutathione (GSH) re-
cycling. A perfect functioning of both glycolysis and PPPs in
CCs has been shown to be essential for oocyte health in
mouse (62).

The tripeptide glutathione (GSH), the main intracellular
antioxidant, plays an important protective role against oxi-
dative damage of biomolecules and in detoxification pro-
cesses (72). GSH concentrations have been related to the
oocytes’ meiotic spindle morphology and fertilization, and
posteriorly, in early embryo development (66). It is produced
by CCs (69) and oocyte (30), but optimal GSH levels in
oocyte are dependent on CC synthesis (40) (Fig. 5). This was
demonstrated experimentally; oocytes stripped from their
CCs showed a higher cryotolerance when pretreated with an
exogenous glutathione donor (121), suggesting a compen-
satory effect by GSH supplementation in the absence of CCs.

The CCs protect the oocyte also through the expression of
several antioxidant enzymes (6). Besides low expression of
phosphofructokinase (78), oocytes lack also other enzymes
essential for their survival. Instead of being expressed by the
gametes, these enzymes are provided by the CCs. Catalase
(CAT), for example, is an antioxidant enzyme not expressed

FIG. 3. In vivo sources of oxidative stress. There are many potential sources of ROS generation and possible oxidative
stress in vivo. COCs are directly impacted by lifestyle habits such as smoking, exercising routine, stress, and nutritional
habits. Besides, pathologies such as endometriosis and polycystic ovaries significantly impact on cumulus and oocyte health
and functioning. ROS, reactive oxygen species. Color images are available online.
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in oocytes (77). It metabolizes H2O2 into nonreactive mole-
cules (H2O and O2) and its action is supplied by the CCs
(Fig. 5). When exposed to H2O2, oocytes still inside the COC
were protected from oxidative stress damage, while oocytes
from which CCs have been stripped-off presented a major
decrease in viability (33).

The expression of antioxidant enzymes in CCs is corre-
lated with oocyte and embryo quality (43) and even with
pregnancy rates and fetal development (70, 74). Glutathione-
S-transferases (GSTs) form a large family of enzymes that
protect cells from oxidative damage, lipid peroxidation of
membranes caused by ROS and toxic compounds (52).
Wathlet et al. correlated glutathione S-transferase alpha-3
and -4 and glutathione peroxidase (GPx) 3 in CC expression
with pregnancy outcome (129). GPx3 is an extracellular,
seleno-containing enzyme that catalyzes the reduction of
H2O2 and lipid peroxides using GSH as cofactor (67).
Therefore, it acts as an important antioxidant in reproduc-
tive biology.

Superoxide dismutase (SOD), the enzyme responsible for
metabolizing the reactive superoxide anion (O2

�-) into
H2O2 and O2, is expressed in CCs and oocytes, in mito-
chondria (manganese superoxide dismutase [MnSOD]) and
cytoplasm (Cu/ZnSOD). Importantly, its expression and
activity level in CCs was positively correlated with suc-
cessful pregnancy (70).

The inducible form of nitric oxide synthase enzyme gen-
erates nitric oxide (NO�). NO� has dual effects in the ovary. It
is an essential nonpolar signaling molecule that freely dif-
fuses through membranes. It is involved in oocyte maturation
and ovulation, but in a dose-dependent matter can become a
source of oxidative insult (120). CCs are the oocyte’s NO�

source, stimulating oocyte maturation (16). CCs from COCs

that fertilize successfully synthesize less iNOS and HO-1,
another redox-sensitive gene and important antioxidant en-
zyme, indicating that COCs with higher antioxidant activity
might be reflecting a defense mechanism against an oxidative
insult occurring in the follicle and related to a diminished
biological capacity of the oocyte (13).

The differences in oxidative damage and ROS levels in
oocytes fertilized using the classical IVF technique compared
with intracytoplasmic sperm injection (ICSI) suggest that the
CCs play a major role in protecting the oocyte from ROS (9).
The ICSI technique consists of detaching the CCs from the
oocyte to allow the injection of a single sperm through a
needle inside the female germ cell (81). ICSI is mainly used
in cases of severe male factor infertility, with low sperm
fertilization capacity. Although ICSI represents a great ad-
vance in those cases, overcoming the difficulties of a natural
fertilization, it requires the denudation of the oocyte, in-
creasing significantly its exposure to the environment.

In classic IVF, the CCs are not removed and the oocyte
fertilization by the sperm happens in a more natural way.
When the biological shield of cumulus-corona is maintained,
the oocyte retains a living barrier of antioxidants that protect
it from external ROS sources, increased O2 tension, and ex-
aggerated exposure to sperm (45). The improved antioxidant
defenses are another element of the synergism between CCs
and the gamete.

It is known that the patients’ clinical characteristics such as
age (70, 71, 117, 118), BMI (83, 93), infertility causes (101,
134), and stimulation protocol applied (82, 130) influence
directly the CC biological characteristics. Gene and protein
expression patterns, for example, change drastically accord-
ing to the stimulation protocol applied, even though the
success rates can remain similar (37, 49).

FIG. 4. In vitro sources of oxidative stress. During in vitro fertilization techniques, the COC is exposed to several
potential sources of oxidative stress. O2 pressure, visible lights, culture media composition, pH changes, temperature
variations, and sperm concentrations can generate ROS, provoking an imbalance in redox potential and causing oxidative
damage. Color images are available online.
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Pathological Patterns of Redox Metabolism
in Human CCs

The important roles played by CCs to ensure oocyte’s
health suggest that changes in their structural or physiologi-
cal composition could be related to infertility (70). CC gene
expression and biochemical activity are directly influenced
by the oocyte conditions, the follicular environment, and
interactions with the ovarian environment. In that manner,
the CC pattern might indirectly reflect the biological pro-
cesses taking place in the oocyte (85).

Several studies analyzed redox compounds in the fol-
licular environment and found significant differences
between patient’s pathophysiological profiles, such as en-
dometriosis (24, 87), PCOS (125), advanced maternal age
(131), and obesity (127). These differences may be a con-
sequence of the patient’s overall status/pathology, and not

necessarily representative of the oocyte status; however,
they need to be taken into account as potential confounders
when searching for possible oocyte quality indicators. In
PCOS patients, for example, the total antioxidant status in
plasma is decreased (34, 126). It was also found that SOD
activity in serum and FF was significantly lower; however,
there was no correlation with oocyte fertilization capacity,
embryo quality, or pregnancy rates (101). The significant
alteration in enzyme activity can vary for each pathophys-
iological condition. In patients with ovarian dysfunction and
endometriosis, the opposite pattern has been observed, with
copper/zinc superoxide dismutase (CuZnSOD) activity be-
ing elevated (70).

Endometriosis is a pelvic inflammatory disease charac-
terized by the occurrence of implants of endometrial tissue
outside the uterine cavity, with high levels of oxidative
damage in ovarian cells (98). In fact, DNA damage caused by

FIG. 5. Cumulus cell defensive mechanisms against oxidative stress in the oocyte. The cumulus cells are connected
between themselves and the oocyte through gap junctions present in the transzonal projections that permit the transfer of
several molecules essential for oocyte survival. The cumulus cells capture glucose from the follicle microenvironment and
process it through glycolysis, generating pyruvate that the oocyte will metabolize through the TAC+OXPHOS, producing
biomolecules, energy (ATP), and ROS. ROS such as the anion superoxide (O2

�-) can be detrimental. The cumulus also
deviates glucose to the PPP, essential for amino acid production and NADPH recycling, a cofactor essential for antioxidant
reactions. Essential defensive molecules such as GSH and NADPH are also supplied. Besides that, the cumulus is re-
sponsible for CAT production, an enzyme that metabolizes the reactive hydrogen peroxide and that is not expressed by the
oocyte. The cumulus and oocyte also possess SOD, the enzyme responsible for metabolizing superoxide anion into
peroxide, a less reactive form; GR promotes GSSG recycling back to the reduced form, GSH; and GPx metabolizes
peroxide into water and O2, using GSH as an electron acceptor, and reduces lipid hydroperoxides. All these enzymes are
involved in oxidative stress defense. SOD can be located at the cytoplasm as the copper and zinc variant (CuZnSOD), or in
mitochondria as the manganese variant (MnSOD). Both cell types are capable of synthesizing melatonin, but the oocyte
itself does not produce enough levels of antioxidant defenses, being dependent on the cumulus cells. CAT, catalase;
CuZnSOD, copper/zinc superoxide dismutase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced
glutathione; GSSG, oxidized glutathione; MnSOD, manganese superoxide dismutase; NADPH, reduced nicotinamide ad-
enine dinucleotide phosphate; PPP, pentose phosphate pathway; SOD, superoxide dismutase; TAC, tricarboxylic acid cycle.
Color images are available online.

REDOX BIOLOGY OF HUMAN CUMULUS CELLS 527

https://www.liebertpub.com/action/showImage?doi=10.1089/ars.2019.7984&iName=master.img-005.jpg&w=490&h=275


oxidative stress in granulosa cells is higher in patients with
endometriosis (99). Erratic patterns of antioxidant enzymes
are known to occur in CCs from patients with PCOS and
endometriosis (70).

PCOS is an endocrine and metabolic condition that causes
a complex imbalance in ovarian function and ovulation
process (42). In PCOS patients, CCs have shown to have a
higher mitochondrial ROS production and a lower antioxi-
dant capacity, with lower GSH/GSSG (oxidized glutathione),
NADH/NAD+, and NADPH/NADP+ (oxidized nicotinamide
adenine dinucleotide phosphate) ratios, suggesting enhanced
oxidative stress (134). In those patients, a higher GPX3 gene
expression in CCs is correlated with blastocyst formation (54).

It is clear that pathologies change the metabolic func-
tioning and redox status of CCs. However, even though these
cells are behaving differently than in the optimal physio-
logical state, their gene expression pattern might be pre-
senting an adaptive response to the external insults and not
necessarily reflecting a poor oocyte quality. For example,
CuZnSOD levels are significantly decreased in female pa-
tients with age-related infertility (67). Thus, Matos et al.
correlated increased levels of SOD activity in this pa-
tient group with successful Assisted Reproduction Technique
(ART) outcomes (70). This might indicate that CCs are in-
creasing their defense mechanisms against insults that could
harm their oocyte. The authors also observed, however, that
in patients diagnosed with endometriosis or ovarian dys-
function, CC SOD activity is significantly increased (70).

Fertility starts to decline in an accelerated matter in women
from the second half of the third decade of living (73). Aging
of aerobic cells is directly related to oxidative damage caused
by ROS (36). Aging is one of the most important factors in
oocyte competence. It is known that the aging ovary suffers
imbalances of redox metabolism and protein’s carbonyl
stress (117). Mature oocyte mitochondria are originated from
few precursors since embryonic life. In this way, oocytes
from women approaching their forty might present aged

mitochondria, with higher levels of mitochondrial DNA
damage and stress (26). In fact, oocytes from advanced ma-
ternal age present lower levels of messenger RNA stores and
lower efficiency of DNA repair (50).

Granulosa cells of patients with advanced maternal age
present an overexpression of up to 10 times higher of GST
teta 1 levels (57, 58). The GST enzyme being of great im-
portance in cellular xenobiotic detoxification, this could be
indicative of a compensatory mechanism of CCs in an effort
to maintain the oocyte’s health. A lower expression of the
genes encoding SODs (70) and catalase (119) in CCs and
granulosa cells has been reported in relation to mitochondrial
swelling and degeneration, as a reflection of the high levels of
oxidative stress and mitochondrial dysfunctions (119). CCs
from advanced maternal age patients also reveal differences
both on messenger RNA and protein expressions involved in
OXPHOS, mitochondrial function, and posttranscriptional
splicing (71). Mitochondrial respiratory activity dependent
on coenzyme Q10 is decreased in granulosa cells from older
women (12). In accordance with these results, it was shown
that CCs have significantly lower expression of genes in-
volved in coenzyme Q synthesis (11).

These observations make us aware of the fact that different
patient characteristics influence directly on CC functioning,
with the cells adapting to potential insults. These particular
effects must be taken into account in the biological func-
tioning of the COC and in the therapeutic management in the
clinics.

Targeting COC Redox Biology in the Clinical Scenario

Two strategies can be adopted while using antioxidants for
improving IVF outcomes: oral administration, to alleviate
endogenous sources of oxidative stress such as pathologies,
and the supplementation of antioxidants in the laboratory, to
diminish the impact of oxidative stress caused by the in vitro
environment (Fig. 6).

FIG. 6. Antioxidant administration strategies for overcoming COC oxidative stress. Several approaches have been
studied in humans. Different antioxidants have been administrated orally, in vivo, or after COC collection, in vitro. While
different outcomes were evaluated, distinct time frames of administration, concentrations, patient groups, and in vitro
conditions make it difficult to find comparable results. In parentheses are the referenced studies for the administration of
each substance. Color images are available online.
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Oral administration of antioxidants

Besides its action as a hormone driving nycthemeral
rhythm by the pineal gland, melatonin turned out to possess
several local properties (1). FF has higher levels of mela-
tonin than plasma, indicating an important action in the
ovary. Its role on preservation of gametes (20) and usage in
ART is abundant and reviewed elsewhere (35). It is an ex-
tremely efficient antioxidant (35) produced by the COC (27)
that plays a major role in the follicles’ oxidative defense
(89, 109, 110).

Melatonin’s scavenger properties have been explored in
ART (65). Several researchers have studied the effects of
oral supplementation with different outcomes (100, 109).
Melatonin administration improved the number of re-
trieved oocytes, oocyte maturation rates, and embryo de-
velopment rates (31). It was also shown to improve
fertilization rates from patients with previous failed IVF
cycles (108).

The combined administration of melatonin and myo-
inositol, a precursor of phosphoinosides, essential for oocyte
maturation and embryo development, has shown positive
results (128). Women with a previous failed IVF cycle re-
ceived oral administration of melatonin+myo-inositol for 3
months before a new cycle showed improved oocyte matu-
ration, fertilization, embryo number, and quality rates (123).
Another study administrating myo-inositol+folic acid com-
pared with myo-inositol+folic acid+melatonin, even though
the treatment time frame was shorter, showed that melatonin
improves the capability of myo-inositol to improve oocyte
maturation and embryo development rates (92). Myo-inositol
administration in PCOS patients was also shown to positively
impact IVF outcomes (18).

The acetylated form of the amino acid l-cysteine, N-acetyl
cysteine (NAC), is a powerful antioxidant and the precursor
of GSH synthesis, a tripeptide of major importance in COC
antioxidant defense. The oral supplementation of NAC sig-
nificantly improved the number of good-quality embryos and
clinical pregnancy rates and diminished granulosa cell apo-
ptosis rates in patients (28) independently of the stimulation
protocol used.

The administration of ascorbic acid, or vitamin C, in fer-
tility treatments has been showing contradictory results.
While some observed a detrimental effect (115), others have
not shown any significant differences in implantation and
pregnancy rates after its administration (44).

A large meta-analysis on antioxidant oral supplementa-
tion analyzing administration of combinations of antioxi-
dants, pentoxifylline, NAC, melatonin, l-arginine, vitamin
E, myo-inositol, vitamin C, vitamin D+calcium, and
omega-3-polyunsaturated fatty acids against placebo ad-
ministration included 28 trials involving 3548 women and
showed that there is no evidence of improvement in fertility
treatments using this approach (104). The authors stated
that this may due to poor reporting of the outcomes and the
small number of well-conducted studies. Hence, proper
randomized-controlled trial (RCT) studies are required for
conclusion whether oral administration of antioxidants has
a positive effect on ART outcomes. Here, it is also of great
importance to decide upon the most appropriate time frame
as well as the optimal dosage for treatment with antioxi-
dants.

In vitro administration of antioxidants

The administration of antioxidants on COCs in vitro has
also shown some promising results. Supplementation with low
concentrations of melatonin (10-2–102 nM) improved matu-
ration rates of denuded oocytes (132). Also, the incubation of
oocytes from PCOS patients with melatonin showed positive
results in implantation rates (60). However, higher concen-
trations of melatonin medium supplementation (105–107 nM)
were shown to be detrimental (132). The beneficial effects of
antioxidant administration in vitro are dose dependent (113).

Besides its controversial effects in oral administration, the
addition of ascorbate to IVF medium also did not improve
embryo quality in cultures with 5% O2 (114).

Catalase administration decreased the rate of oxidation of
COCs compared with nonsupplemented commercial media
(68), implying that H2O2 is a major ROS generator in COC
in vitro culture. Catalase is absent in oocytes, being physio-
logically supplied by CCs in vivo.

Even though the study of Tao et al. was not conducted on
humans but in porcine, it brings interesting results about the
contribution of CCs to the in vitro environment. While de-
nuded porcine oocytes supplemented with a-tocopherol
showed a greater rate of progression to the MII stage, the
same was not observed supplementing COCs, since oocytes
within the complex already have a high spontaneous MII
maturation rate, reinforcing the role of CCs in oocyte matu-
ration and protection against oxidative insult. Also, the ad-
ministration of a-tocopherol and L-ascorbic acid prevented
CC DNA fragmentation when cultured at 20% O2, but no
effect was seen in cumulus-enclosed oocytes (112).

Just like the influence of pathologies on COC functioning
in vivo, it is of major importance to consider the differences
of the in vitro environment when analyzing the potential
beneficial effects of antioxidant administration. In a study
with bovine oocytes, the antioxidant benefits of melatonin
administration were even higher when culture was conducted
with exposure to a high O2 tension (84).

Conclusion

Alterations in CCs may have several causes and may be
responsible for reproductive disadvantage, this being a direct
cause, a reflection of a decline in the functional and structural
qualities of the oocyte, or a consequence of a detrimental
follicular environment that affects both the oocyte and the
somatic cells. Either way, studying CCs and their relationship
with oocyte quality could guide us toward valuable tools for
improving routine IVF rates. Nevertheless, it is paramount to
also take into consideration the patient-specific background:
clinical characteristics such as age, BMI, pathological fea-
tures, stimulation protocols, and in vitro environment char-
acteristics such as O2 tension, media composition, and
manipulation conditions. Many authors have indicated that
all these parameters will cause distinct metabolic and gene
expression patterns in COCs, directly affecting the func-
tionality and health of the oocyte and its developmental fate.

Oxidative stress is one of the major causes of poor oocyte
quality. In the healthy female tract, along with the physio-
logical environment, the CCs provide the necessary antioxi-
dant defenses the oocyte needs for an optimal development.
In vitro conditions stand far from the ideal parameters found
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in vivo. More physiological culture conditions can be pro-
moted in the clinical environment, by more sophisticated
technological features. Minor parameter adjustments to op-
timize the cultures are within reach to obtain higher success
rates in IVF. For example, FF provokes much lower levels of
ROS when compared with several commonly used culture
media (68). Developing a medium composition that mimics
the FF in vivo, and its changes in relation to the temporal
variations in hormone concentration would enable the cul-
tured COCs to better support oocyte’s metabolic needs.
Critically important are also the physical characteristics of
the in vivo environment, such as O2 tension and temperature,
since both cell types have the ability to adapt their metabolic
pathways according to those parameters. Submitting the
COCs to suboptimal conditions might result in a major effort
of the cells to survive, deviating their energy from biosyn-
thetic routes to damage control process, impairing their po-
tential for normal further development. ‘‘Ex ovo Omnia,’’ the
potential of the oocyte in generating all life as expressed by
the illustrious 17th century physician and scientist William
Harvey, is still true. What has been learned over the last 50
years, thanks to the development of IVF and the access to the
so far closed environment of the ovarian follicle, is that the
oocyte’s unique capacity to generate all cells is only effective
by outsourcing critical functions to corona-CCs. The cumu-
lus functions as a Praetorian Guard to preserve oocyte’s in-
tegrity for further development; hence, these cells constitute
an important target for future optimization of oocyte culture.

Future Directions

There is still a lot to unravel about the redox metabolism of
CC: how it is regulated, how the external sources affect it, its
responses to the environment, and how it modulates the oo-
cyte’s health. Our research addresses the redox metabolism
pattern in the cumulus/corona/oocyte complexes under sev-
eral culture conditions and different patient groups. The
levels of redox enzymes and molecules are being correlated
with embryo development and patients’ characteristics. Such
studies are relevant to better understand the biology of CCs,
and to open new possibilities of future treatments and clinical
approaches. For assessing the real effects of antioxidant ad-
ministration in IVF, RCTs are indispensable.
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Effect of cigarette smoking on DNA damage of human
cumulus cells analyzed by comet assay. Reprod Toxicol
20: 65–71, 2005.

106. Sugimura S, Matoba S, Hashiyada Y, Aikawa Y, Ohtake
M, Matsuda H, Kobayashi S, Konishi K, and Imai K.
Oxidative phosphorylation-linked respiration in individual
bovine oocytes. J Reprod Dev 58: 636–641, 2012.

107. Takenaka M, Horiuchi T, and Yanagimachi R. Effects of
light on development of mammalian zygotes. Proc Natl
Acad Sci U S A 104: 14289–14293, 2007.

REDOX BIOLOGY OF HUMAN CUMULUS CELLS 533

https://www.liebertpub.com/action/showLinks?crossref=10.1155%2F2017%2F7265238&citationId=p_111
https://www.liebertpub.com/action/showLinks?pmid=16727408&crossref=10.1016%2F0093-691X%2894%2990086-X&citationId=p_92
https://www.liebertpub.com/action/showLinks?pmid=11826264&crossref=10.1146%2Fannurev.physiol.64.081501.131029&citationId=p_103
https://www.liebertpub.com/action/showLinks?crossref=10.1155%2F2017%2F7265238&citationId=p_111
https://www.liebertpub.com/action/showLinks?pmid=16727408&crossref=10.1016%2F0093-691X%2894%2990086-X&citationId=p_92
https://www.liebertpub.com/action/showLinks?pmid=22785440&crossref=10.1262%2Fjrd.2012-082&citationId=p_119
https://www.liebertpub.com/action/showLinks?pmid=17709739&crossref=10.1073%2Fpnas.0706687104&citationId=p_120
https://www.liebertpub.com/action/showLinks?pmid=12057726&crossref=10.1016%2FS0015-0282%2802%2903103-5&citationId=p_112
https://www.liebertpub.com/action/showLinks?pmid=29077897&crossref=10.1093%2Fhumupd%2Fdmx028&citationId=p_93
https://www.liebertpub.com/action/showLinks?crossref=10.3181%2F00379727-198-43321C&citationId=p_104
https://www.liebertpub.com/action/showLinks?pmid=17709739&crossref=10.1073%2Fpnas.0706687104&citationId=p_120
https://www.liebertpub.com/action/showLinks?pmid=12057726&crossref=10.1016%2FS0015-0282%2802%2903103-5&citationId=p_112
https://www.liebertpub.com/action/showLinks?pmid=24182414&crossref=10.1016%2Fj.fertnstert.2013.09.036&citationId=p_113
https://www.liebertpub.com/action/showLinks?pmid=1351601&crossref=10.1016%2F0140-6736%2892%2992425-F&citationId=p_94
https://www.liebertpub.com/action/showLinks?pmid=20712264&citationId=p_105
https://www.liebertpub.com/action/showLinks?pmid=24182414&crossref=10.1016%2Fj.fertnstert.2013.09.036&citationId=p_113
https://www.liebertpub.com/action/showLinks?pmid=24526356&crossref=10.1007%2Fs10815-014-0190-7&citationId=p_114
https://www.liebertpub.com/action/showLinks?pmid=24813757&crossref=10.1016%2Fj.rbmo.2014.03.010&citationId=p_95
https://www.liebertpub.com/action/showLinks?pmid=19223519&crossref=10.1210%2Fjc.2008-2648&citationId=p_106
https://www.liebertpub.com/action/showLinks?pmid=26468254&crossref=10.1177%2F1933719115607993&citationId=p_115
https://www.liebertpub.com/action/showLinks?pmid=24188449&crossref=10.3109%2F09513590.2013.850660&citationId=p_96
https://www.liebertpub.com/action/showLinks?pmid=27160446&crossref=10.1016%2Fj.theriogenology.2016.04.019&citationId=p_107
https://www.liebertpub.com/action/showLinks?pmid=24188449&crossref=10.3109%2F09513590.2013.850660&citationId=p_96
https://www.liebertpub.com/action/showLinks?pmid=22578534&crossref=10.1016%2Fj.fertnstert.2012.03.052&citationId=p_100
https://www.liebertpub.com/action/showLinks?pmid=21220312&crossref=10.1073%2Fpnas.1017213108&citationId=p_116
https://www.liebertpub.com/action/showLinks?pmid=17242016&crossref=10.1093%2Fhumupd%2Fdml062&citationId=p_108
https://www.liebertpub.com/action/showLinks?pmid=17910599&crossref=10.1111%2Fj.1600-079X.2007.00479.x&citationId=p_97
https://www.liebertpub.com/action/showLinks?pmid=17910599&crossref=10.1111%2Fj.1600-079X.2007.00479.x&citationId=p_97
https://www.liebertpub.com/action/showLinks?pmid=10421798&crossref=10.1093%2Fmolehr%2F5.8.720&citationId=p_90
https://www.liebertpub.com/action/showLinks?pmid=10421798&crossref=10.1093%2Fmolehr%2F5.8.720&citationId=p_90
https://www.liebertpub.com/action/showLinks?pmid=17854537&crossref=10.1016%2FS1472-6483%2810%2960349-5&citationId=p_98
https://www.liebertpub.com/action/showLinks?pmid=12801566&crossref=10.1016%2FS0015-0282%2803%2900337-6&citationId=p_109
https://www.liebertpub.com/action/showLinks?pmid=17854537&crossref=10.1016%2FS1472-6483%2810%2960349-5&citationId=p_98
https://www.liebertpub.com/action/showLinks?pmid=10216916&crossref=10.1017%2FS0967199499000386&citationId=p_91
https://www.liebertpub.com/action/showLinks?pmid=28988321&crossref=10.1007%2Fs00404-017-4523-5&citationId=p_110
https://www.liebertpub.com/action/showLinks?pmid=24319996&crossref=10.3109%2F09513590.2013.849238&citationId=p_102
https://www.liebertpub.com/action/showLinks?pmid=28988321&crossref=10.1007%2Fs00404-017-4523-5&citationId=p_110
https://www.liebertpub.com/action/showLinks?pmid=15808787&crossref=10.1016%2Fj.reprotox.2004.12.007&citationId=p_118
https://www.liebertpub.com/action/showLinks?pmid=27026099&crossref=10.1186%2Fs12929-016-0253-4&citationId=p_99


108. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa
R, Asada H, Taketani T, Matsuoka A, Yamagata Y, Shi-
mamura K, Morioka H, Ishikawa H, Reiter RJ, and Sugino
N. Oxidative stress impairs oocyte quality and melatonin
protects oocytes from free radical damage and improves
fertilization rate. J Pineal Res 44: 280–287, 2008.

109. Tamura H, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura
I, Maekawa R, Aasada H, Yamagata Y, Sugino N, and
Takasaki A. The role of melatonin as an antioxidant in the
follicle. J Ovarian Res 5: 1–9, 2012.

110. Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S,
Mayo JC, Sainz RM, and Reiter RJ. Melatonin: a hor-
mone, a tissue factor, an autocoid, a paracoid, and an
antioxidant vitamin. J Pineal Res 34: 75–78, 2003.

111. Tanghe S, Van Soom A, Nauwynck H, Coryn M, and de
Kruif A. Minireview: functions of the cumulus oophorus
during oocyte maturation, ovulation, and fertilization. Mol
Reprod Dev 61: 414–424, 2002.

112. Tao Y, Chen H, Tian NN, Huo DT, Li G, Zhang YH, Liu
Y, Fang FG, Ding JP, and Zhang XR. Effects of L-ascorbic
acid, a-tocopherol and co-culture on in vitro developmental
potential of porcine cumulus cells free oocytes. Reprod
Domest Anim 45: 19–25, 2010.

113. Tao Y, Zhou B, Xia G, Wang F, Wu Z, and Fu M.
Exposure to L-ascorbic acid or a-tocopherol facilitates
the development of porcine denuded oocytes from
metaphase I to metaphase II and prevents cumulus cells
from fragmentation. Reprod Domest Anim 39: 52–57,
2004.

114. Tarin JJ, de los Santos MJ, de Oliveira MNM, Pellicer A,
and Bonilla-Musoles F. Ascorbate-supplemented media in
short-term cultures of human embryos. Hum Reprod 9:
1717–1722, 1994.

115. Tarı́n JJ, Pérez-Albalá S, Garcı́a-Pérez MA, and Cano A.
Effect of dietary supplementation with a mixture of vi-
tamins C and E on fertilization of tertiary butyl
hydroperoxide-treated oocytes and parthenogenetic ac-
tivation in the mouse. Theriogenology 57: 869–881,
2002.

116. Tatemoto H, Sakurai N, and Muto N. Protection of por-
cine oocytes against apoptotic cell death caused by oxi-
dative stress during In vitro maturation: role of cumulus
cells. Biol Reprod 63: 805–810, 2000.

117. Tatone C and Amicarelli F. The aging ovary—the poor
granulosa cells. Fertil Steril 99: 12–17, 2013.

118. Tatone C, Amicarelli F, Carbone MC, Monteleone P,
Caserta D, Marci R, Artini PG, Piomboni P, and Focarelli
R. Cellular and molecular aspects of ovarian follicle
ageing. Hum Reprod Update 14: 131–142, 2008.

119. Tatone C, Carbone MC, Falone S, Aimola P, Giardinelli
A, Caserta D, Marci R, Pandolfi A, Ragnelli AM, and
Amicarelli F. Age-dependent changes in the expression of
superoxide dismutases and catalase are associated with
ultrastructural modifications in human granulosa cells.
Mol Hum Reprod 12: 655–660, 2006.

120. Thaler C and Epel D. Nitric oxide in oocyte maturation,
ovulation, fertilization, cleavage and implantation: a little
dab’ll do ya. Curr Pharm Des 9: 399–409, 2003.

121. Trapphoff T, Heiligentag M, Simon J, Staubach N, Seidel
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Abbreviations Used

ART¼ assisted reproduction techniques
BMI¼ body mass index
CCs¼ cumulus cells

COC¼ cumulus/oocyte complex
CuZnSOD¼ copper/zinc superoxide dismutase

FF¼ follicular fluid
GPx¼ glutathione peroxidase
GSH¼ reduced glutathione

GSSG¼ oxidized glutathione
GST¼ glutathione-S-transferase

H2O2¼ hydrogen peroxide
ICSI¼ intracytoplasmic sperm injection
IVF¼ in vitro fertilization
MII¼metaphase II

NAC¼N-acetyl cysteine
NADPH¼ reduced nicotinamide adenine dinucleotide

phosphate
O2¼ oxygen

OXPHOS¼ oxidative phosphorylation
PCOS¼ polycystic ovary syndrome

PPP¼ pentose phosphate pathway
RCT¼ randomized-controlled trial
ROS¼ reactive oxygen species
SOD¼ superoxide dismutase
TAC¼ tricarboxylic acid cycle
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