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ABSTRACT

The increasing power density and the pervasive use of compute-intensive and power-

hungry applications demand energy-efficient CMOS design. The quest for energy-efficient

systems particularly concerns in wearable devices for health monitoring as they must be

under non-stop operation with limited energy source available on miniaturized batteries.

There is an ever-growing interest in employing neural network-based applications for data

processing on edge devices. Neural networks have complex structures in their pure soft-

ware or hardware implementations, or in a combination of both approaches. They require

millions of data fetches and arithmetic operations that are very energy demanding, and

merely reducing the data size of inputs and parameters to meet power constraints might

not be the optimal strategy due to significant impact on output error. Hence, this work

proposes a framework for arithmetic circuit generation, enabling an architectural explo-

ration that seeks to maximize as much as possible the energy efficiency. As a case study,

this thesis also proposes a jointly optimized software-hardware approach to implement a

neural network-based heart rate estimation application from photoplethysmogram signals.

This approach combines binarization and quantization techniques to reduce computation

requirements, making the model more suitable for hardware implementation. A custom

hardware architecture is proposed for this application to achieve real-time operation with

maximum energy efficiency. The stream-based architecture minimizes the system latency

adopting a full pipeline implementation exploring the application requirements. This ar-

chitecture was validated on both FPGA and ASIC platforms to ensure its feasibility on

embedded devices.

Keywords: Neural networks. VLSI design. low power CMOS. hardware accelerator.

heart rate estimation. PPG.



RESUMO

O aumento da densidade de potência e do uso pervasivo de aplicações com alto custo

em esforço computacional e em dissipação de potência exigem eficiência energética no

projeto CMOS. A busca por sistemas eficientes energeticamente é particularmente crítica

em dispositivos vestíveis para monitoramento de sinais vitais uma vez que estes devem

operar ininterruptamente mesmo com uma fonte de energia limitada disponível nas ba-

terias miniaturizadas. Há um interesse crescente no emprego de aplicações baseadas em

redes neurais para o processamento de dados em dispositivos embarcados. Redes neu-

rais possuem estruturas inerentemente complexas para implementação, seja em software,

hardware ou em uma combinação estreita de ambos. Tais redes requerem milhões de

operações aritméticas e acessos à memória que demandam um gasto de energia elevado, e

simplesmente reduzir a largura de representação dos parâmetros e dados de entrada para

respeitar as restrições de dissipação de energia pode não ser a melhor estratégia devido

ao impacto no erro percebido no resultado da aplicação. Assim, esse trabalho propõe

um framework para geração de circuitos aritméticos, permitindo uma exploração arquite-

tura para buscar a máxima eficiência energética. Como estudo de caso, essa tese também

propõe uma abordagem de otimização conjunta de hardware e software para implemetar

um aplicação para estimação de frequência cardíaca a partir de sinais de fotopletismogra-

fia baseada em uma implementação de redes neurais. Essa abordagem combina técnicas

de binarização e quantização para reduzir os requisitos de processamento, transformando

o modelo em uma implementação mais adequada para a execução em hardware. Uma

arquitetura de hardware customizada é proposta para esta aplicação para operação em

tempo real com máxima eficiência energética. Esta arquitetura baseada em fluxo de da-

dos minimiza a latência do sistema ao adotar uma implementação com pipeline em todos

os estágios, explorando os requisitos da aplicação. Esta arquitetura foi validada em plata-

formas FPGA e ASIC para garantir sua viabilidade em sistemas embarcados.

Palavras-chave: Neural networks. VLSI design. low power CMOS. hardware accelera-

tor. heart rate estimation. PPG.
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1 INTRODUCTION

In recent years, the push towards miniaturization in Complementary Metal-Oxide-

Semiconductor (CMOS) devices led to the development of emerging applications like In-

ternet of Things (IoT), large scale cloud computing, house, and automobile automation,

and mobile computing. Each application has different complexity demands from the com-

puting stack. Nevertheless, the underlying hardware has to cope with several challenges

performance-wise, especially with respect to the ever-growing power density in these

devices (DENNARD, 2015). Current general-purpose processors already run at frequen-

cies that are managed or slowed to cope with very high power densities in silicon areas

with high switching activity (SCHWIERZ; LIOU; WONG, 2010). This increased power

dissipation leads to several problems to be addressed by chip, packaging, and cooling

design solutions, as they impact both device reliability and system performance. These

are known to degrade as the temperature rises (for voltage supplies well above the FET

thresholds) due to the physical characteristics of the semiconductor devices.

Such semiconductor advancements improved the computation capability of edge

devices, which led to the development of the edge computing paradigm where the tasks

are executed locally on the device instead of exchanging the information with a powerful

cloud system (LIANG et al., 2020). Processing data locally has several benefits, like

reduced latency, improved security, and reduced data transmission energy, although the

increased computing requirements compromise part of these energy savings demanded

from the edge devices.

This case is perfectly illustrated by deep learning applications, which usually re-

quire an immense compute power even in such edge devices. Image and speech recogni-

tion, language processing, signal processing, and industrial plant monitoring are typical

applications present in a plethora of edge devices (DE SILVA et al., 2020). In these appli-

cations, edge devices are only concerned about the inference part of the algorithm as the

training process is executed in large data centers. Nonetheless, the inference task compu-

tational cost is hardly met by general-purpose processors, limiting their applications.

A solution to this problem is to adopt a hardware-software co-design optimiza-

tion approach to reduce network complexity and to offer hardware support for optimized

data flow (VERHELST; MOONS, 2017). On the one hand, reducing the complexity is

quintessential as some neural networks may achieve 100 giga-operations (GOPS) per each

evaluation. On the other hand, these operations make extensive use of arithmetic circuits
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and data movement procedures, two aspects that are directly linked with the network ar-

chitecture (ZHOU et al., 2019). This approach has fostered research groups to investigate

these optimizations for general-purpose circuits able to accelerate a multitude of neural

networks.

1.1 Problem formulation

Designing dedicated hardware architectures for neural networks can bring together

optimizations from both the software and hardware level. The use of efficient hardware

accelerators enables complex applications such as object recognition and signal process-

ing to operate reliably in edge devices.

The medicine evolution changed the actuation paradigm to be more focused on

disease prevention and early detection as the scarce resources are better distributed this

way. This approach was mainly possible with wearable health-monitoring devices that can

obtain a humongous pile of data that can be processed and presented as useful information

for both patients and health service workers.

The most critical information gathered by these devices is the heart rate and its

variability. It not only helps athletes improve their performance, but it also helps to mon-

itor and detect heart-related diseases that are usually silent and likely to be fatal. Pho-

toplethysmography (PPG) has arisen as a low-cost, non-intrusive heart rate monitoring

technology that has been embedded in smartwatches and fitness trackers.

Nonetheless, wrist-worn PPG devices are heavily affected by motion artifacts,

which can distort the signal quality, reducing the measuring effectiveness of the system.

In that sense, neural networks are a promising alternative to traditional signal processing

algorithms as they usually can extract more information from a single signal, reducing the

system complexity. Nonetheless, most devices available on the market could only process

these networks using general-purpose processors, which is not only energy-inefficient for

this task, but additionally might not be able to process it in real-time.

1.2 Thesis claim and objectives

This thesis claims that efficient neural network inference can be achieved by adopt-

ing a hardware-software joint optimization approach, enabling real-time operation in em-
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bedded devices with limited compute capability and power availability. The following set

of objectives was set to accomplish these claims:

• Provide a literature review on neural networks, considering the theoretical founda-

tions along with techniques to cope with the complexity of such algorithms on both

algorithmic and circuit levels.

• Propose a framework for arithmetic core generation to explore the implementation

of efficient arithmetic operators.

• Explore the inherent time dependency characteristic of recurrent neural networks

for heart rate estimation from a unidimensional signal.

• Provide a co-design strategy to obtain an optimized recurrent neural network model

that is able to run on a dedicated hardware platform for heart rate inference from

photoplethysmography signals.

• Propose a hardware architecture that employs energy-efficient arithmetic circuits

and low-power techniques, targeting both FPGA and ASIC platforms to achieve

real-time heart rate inference based on the proposed recurrent neural network model.

The main motivation relies on the fact that neural networks often have hundreds

of thousands of parameters, and a single inference may require millions of operations.

Squeezing every bit of performance with the smallest power dissipation is fundamental

in energy-constrained devices. Therefore, this work proposes a cross-layer optimization

from the network down to the arithmetic circuits that constitute the heart monitoring sys-

tem.

1.3 Thesis Organization

The remaining of this thesis proposal is organized as follows: a comprehensive

background of neural networks is presented in Chapter 2. Chapter 3 explores optimization

techniques to cope with the high complexity of neural networks and general-purpose and

custom computational platforms. A review of arithmetic circuits is presented in Chapter 4.

Chapter 5 describes RTLGen, a Python-based framework for arithmetic circuit generation.

A brief overview of heart rate estimation is presented in Chapter 6, along with the structure

of CorNET, a deep neural network for heart rate estimation from wrist-worn PPG signals.

The binarization and custom hardware implementation of the CorNET framework are

presented in Chapter 7. Finally, Chapter 8 summarizes the conclusion of this thesis, along
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with the directions of future work. A list of all publications accomplished by the author

during the years of this Ph.D. research is presented in Appendix A.
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2 OVERVIEW OF DEEP LEARNING

Machine Learning (ML) comprises a wide variety of subareas that have one com-

mon factor: they all use mathematical models and a huge amount of data to classify,

predict or generate new information that can be useful to the application they were con-

ceived for (GOODFELLOW; BENGIO; COURVILLE, 2016). ML algorithms primary

role is to obtain knowledge about a given set of inputs based on a model previously built

from observations. All ML systems aim to combine a set of inputs in a specific manner

to produce a useful prediction on data that has never been applied to the model. From a

mathematical point of view, these inputs are variables, also known as features. They are

linearly combined with weights and biases to produce a prediction about a particular char-

acteristic of the input. The whole Machine Learning concept can be divided into several

classes, as shown in Figure 2.1.

Figure 2.1: Artificial intelligence subareas division

Source: (GOODFELLOW; BENGIO; COURVILLE, 2016)

A machine learning algorithm can be seen as a program that learns “from an ex-

perience E with respect to some class of tasks T and a performance measure P, if its per-
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formance at tasks in T, as measured by P, improves with the experience E” (MITCHELL,

1997, p. 2).

The Task T determines what the application goal is. According to (GOODFEL-

LOW; BENGIO; COURVILLE, 2016, p. 97),

Machine learning tasks are usually described in terms of how the machine
learning system should process an example. An example is a collection of
features that have been quantitatively measured from some object or event that
we want the machine learning system to process.

There is a multitude of tasks that can be accomplished with ML. For instance,

classification tasks aim to detect and specify to which category or class the current input

belongs. They fostered several competitions like image classification and face recogni-

tion, among others. Particularly, the ImageNet Large Scale Visual Recognition Challenge

(RUSSAKOVSKY et al., 2015) played a fundamental role in this field as it led to the

development of new deep learning techniques and extremely accurate neural networks.

Another promising task type is transcription, where the ML algorithm converts the in-

put into another representation, like speech recognition, license plate reading, and optical

character recognition. A non-exhaustive task list includes anomaly detection (e.g., fraud

detection), structured output (e.g., image segmentation), machine translation (e.g., auto-

matic language translation), regression (e.g., heart rate estimation), among others.

Regardless of the task that must be accomplished by the ML algorithm, its Per-

formance P must be measured to indicate the algorithm effectiveness. The performance

metric is directly dependent on the task being carried by the system. Generally, in clas-

sification and transcription tasks, P is dictated by the accuracy (or error rate), a metric

that indicates the proportion of correct outputs. However, the most important P mea-

surement is obtained when the algorithm is evaluated on a test dataset. It contains data

that the model has never seen before as it determines the generalization capability of the

model and how well it performs in a real-world scenario (GOODFELLOW; BENGIO;

COURVILLE, 2016).

The algorithm performance P, for a given task T, improves according to its Expe-

rience E during the learning process. The algorithm can adopt either an unsupervised or

supervised learning process, which depends on the type of experience available. There

are other learning approaches like reinforcement learning, which are not the focus of this

work.

• Unsupervised learning: the algorithm learns useful properties and characteristics

of the structure of the dataset. In this case, no labels, targets or outcomes are spec-
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ified a priori for each member of the dataset, so the model must make sense of the

input data without supervision. Examples of this approach are k-means clustering,

principal component analysis, and outlier detection.

• Supervised learning: the experience available to the algorithm includes input data

with associated labels or targets. In this case, the algorithm learns to predict an

output y from input x. Examples of this approach include image classification (like

ImageNet and the Iris dataset), handwritten recognition, and speech recognition.

2.1 Deep Learning Algorithms

Simple machine learning algorithms are not suited to solve complex tasks like ob-

ject and speech recognition, requiring more advanced techniques that improve the model

ability to generalize in these tasks (GOODFELLOW; BENGIO; COURVILLE, 2016).

This challenge fostered the development of deep learning techniques based on a deep

graph with many layers representing a model, describing reality through a hierarchy of

concepts (MOONS; BANKMAN; VERHELST, 2019). Notably, these techniques are im-

plemented with neural networks (NN), which are able to solve subjective problems, like

speech recognition and image classification, through a learning methodology.

Neural networks are inspired on the brain biology, as the latter can acquire several

sensorial data – vision, sound, and others – and process them in an array of interconnected

neurons that generates a response for these stimuli. The intricate connections among

neurons give the brain the ability to perform various tasks like recognizing some face

in a photo, understanding spoken words, and so on. Although these tasks are trivial for

humans, they are not easily accomplished by computers when traditional software is used.

This class of algorithms has been studied for a long time aiming to mimic the

brain’s ability to process input data through neurons to generate a stimuli response (ROSEN-

BLATT, 1958; MARBLESTONE; WAYNE; KORDING, 2016; WIDROW; LEHR, 1990).

These neural networks were initially based on the McCulloch–Pitts neuron (MCCUL-

LOCH; PITTS, 1943), which featured multiple inputs, and each one was associated with

a specific weight to control the influence of such inputs, as illustrated in Figure 2.2. These

inputs are linearly combined before passing through a non-linear function – known as the

activation function – to simulate the synapse in a brain neuron. Often, non-linear func-

tions – like a sigmoid, hyperbolic tangent, rectified linear unit (ReLU) – are used as the

activation function.
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Figure 2.2: Example of an artificial neural network and artificial neuron.

Source: (VERHELST; MOONS, 2017)

Neural network models consist of several layers of neurons, and each neuron of a

given layer has a weighted connection to each neuron of the next layer. Also, they often

have a bias value, which enables the translation of the activation function. The activa-

tion function must be implemented as a non-linear function to make possible learning

more complex featuresand allow the training algorithms to work properly. In the end,

the combination of these connections leads to an expected output according to algorithm

objectives. In class-based algorithms like image recognition, the output indicates the

probability of the current input to belong to a given class (see Figure 2.2). Both weights

and biases of neurons in a network describe the network parameters, and the definition of

the network structure is tailored for each target application.

First neural networks were conceived as classifiers whose inputs were obtained

through hand-crafted feature extractors that could translate the raw data (like a two-

dimensional array of pixel values) into an appropriate representation. They required that

application domain experts expend considerable effort in properly selecting and imple-

menting the most suitable feature extractors, including edge detection filters, histogram

of oriented gradients (HOG), among others (LECUN; BENGIO; HINTON, 2015). This

process was known as conventional machine learning, and its structure is presented in

Figure 2.3a.

Nevertheless, these models were limited to small neural networks with a limited

number of layers and neurons, which severely capped the ability of the model to learn

more complex features. According to (SZE et al., 2017b), such layer limitation was due
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to three main reasons: (a) larger networks had convergence issues due to the training

algorithm available at that time, (b) datasets were not large enough, and (c) computational

power of the machines in the past could not cope with the complexity of such models.

Despite these drawbacks, these models were state-of-the-art in several applications with

high performance in object recognition tasks like optical character recognition (OCR).

Figure 2.3: Evolution of machine learning implementation flow

Source: (VERHELST; MOONS, 2017)

As the technology evolved, providing more computing power and more massive

datasets became available, these networks were able to stack more layers and neurons.

Hence, a key paradigm shift happened with the adoption of representation learning, where

the neural network model was responsible for both the feature extractor and the classifier

(Figure 2.3b). According to LeCun, Bengio and Hinton (2015, p. 436), “representation

learning is a set of methods that allows a machine to be fed with raw data and to automat-

ically discover the representations needed for detection or classification.”

Deep learning algorithms employ multiple representation levels by stacking non-

linear modules that progressively transform the raw representation at one level into a more
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abstract representation on the next level. This approach allows the network to learn very

complex functions. The key benefit of deep learning is that all features are learned directly

from data based on a learning procedure, removing the need for hand-crafted or previous,

specific, and separate software pre-processing for feature extraction entirely. For instance,

Figure 2.3c shows the inspection of a given trained deep learning network where the initial

layers detect simple features like lines and color gradients. As the network deepens,

more complex features are detected like a house or a car. In Olah, Mordvintsev and

Schubert (2017), the authors developed a feature visualization tool that allows neural

network developers to investigate the patterns learned by each module in each layer for a

given model.

This new approach for constructing neural networks excels at discovering com-

plex structures in high-dimensional data, and it led to models that beat previous records

in object and image recognition, molecular activity prediction, and other applications in

vast domains of science, technology, and business (LECUN; BENGIO; HINTON, 2015).

Recent advances showed that neural networks have an outstanding performance that even

surpassed human abilities. For instance, He et al. (2015) shows the first NN architecture

with better accuracy than the human level for a 1000-class image classification dataset.

The authors in Xiong et al. (2016) proposed a NN for conversational speech recognition

that achieved the same error rate of trained professionals transcribers. However, these

achievements come at a high cost in algorithm complexity and computational require-

ments. Powerful neural networks have hundreds of thousands or even millions of parame-

ters used in millions of operations, posing considerable challenges in embedded platforms

that are energy-constrained with limited computing capabilities like smartwatches, smart-

phones, and drones. For further information, a comprehensive review of the deep learning

evolution is presented in Wason (2018), indicating each algorithm’s goal and application

domain.

Regardless of the neural network application, they all undergo two procedures:

training and inference phases. During the training phase, a set of inputs is fed to the

model, and, according to the learning approach, the training algorithm updates the weights

accordingly so the outcome will be as expected. This automated process is the backbone

of all ML algorithms. Since it demands an enormous amount of data, this procedure

usually occurs offline, i.e., the network training is executed in powerful machines outside

the real scenario the network will be deployed. Depending on the number of parameters

and input datasets, this training phase goes from minutes, in small models, up to weeks
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in deeper networks. Usually, once the model achieves satisfactory accuracy, the network

refinement stops, and the network is deployed to perform its target application. Hence

the time, bandwidth, and consumed energy on the training process are not particularly

concerning due to its single-event nature, even though the desired model must feature

such characteristics. Since this work focuses on supervised learning application, Section

2.2 further discusses the processes involved in this learning approach.

Once the training process is done, the model can perform its task by computing

the network output based on the inputs and weights. This process is known as network

inference. Given the current constraints in processing time, transmission bandwidth, in-

formation security, and power consumption in mobile devices like sensors, smartphones,

smartwatches, etc., the current trend is to embed the inferece process near the sensor.

Several studies address the advantages of using this approach, like in (DU et al., 2015;

CAVIGELLI et al., 2015).

2.2 Supervised Learning

The main point of deep learning algorithms resides in the self-learning methodol-

ogy, where the network adapts itself without the need for tailored filters and expert-based

algorithms to solve a problem. If a large amount of data is given to the network, it will

learn how to adapt its mathematical model to represent the target application (GÉRON,

2017). This task can be achieved in many ways, yet this work is limited to the supervised

learning approach.

Training a neural network is an optimization process that involves maximizing or

minimizing some function that indicates the model performance. During training, the data

is usually split into training and test datasets. The former usually contains an enormous

amount of data, and it is used to train the network parameters (weights and biases). On

supervised learning, this dataset may include a label associated with each dataset element

depending on the training algorithm. This label corresponds to the expected network

output when the information is fed to the algorithm. Conversely, the test dataset is used

to evaluate the algorithm performance on data that it has never seen before.

Although the primary mechanism of supervised training is the same for all ML-

based algorithms, there is a fundamental difference between linear models and neural

networks. The latter introduces non-linearities, transforming the learning process into

a non-convex optimization problem (GOODFELLOW; BENGIO; COURVILLE, 2016).
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This issue is usually addressed using a gradient-based optimizer since other methods do

not scale for neural networks.

2.2.1 Loss Function

In all gradient-based optimizers, the main goal is to minimize a loss function

(also known as criterion or cost function). Hence, choosing an adequate loss function

is quintessential to train a neural network successfully. These functions compute the met-

ric that indicates how well the model fits within the training datasets. Choosing the most

suitable loss function depends on the type of problem that the neural network is supposed

to solve, although it must be differentiable to allow the gradient computation (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). In summary, loss functions have two roles:

(a) they penalize the model complexity to some extent, and (b) they measure the compat-

ibility between the input and the ground truth. The data loss is taken as the average loss

over all the N individual examples, as shown below:

L =
1

N

N−1∑
i=0

Li (2.1)

These functions are often divided into two categories. The regression loss func-

tions predict quantities, and they suit applications like the estimation of the product price,

prediction over yearly sales in a company, etc. Classification loss functions predict la-

bels, and they are more appropriate for classification problems where the output value

should correspond to a limited set of classes. This type of loss function is commonly

seen in image classification networks as the possible network outcomes are discrete and

well-defined (MOONS; BANKMAN; VERHELST, 2019).

In classification networks, the network is trained to maximize the likelihood of the

predicted value with respect to the label associated with that input. Therefore, the cost

function is given by the negative log-likelihood, equivalent to the cross-entropy between

the training data and the model distribution (GOODFELLOW; BENGIO; COURVILLE,

2016). The cross-entropy (H) for N neurons on the output layer is computed according

to (2.2) where p(x) indicates the distribution for each true label, and q(x) represents

the distribution for each predicted label. This loss function is usually combined with a

softmax function, so the output is a 1-hot encoded vector distribution p, where 1 is at the

index of the true label, and 0 otherwise.



30

H(p, q) = −
N∑
x

p(x) log (q(x)) (2.2)

Conversely, regression-based networks operate on real-valued quantities, so the

loss function must compute the error between the predicted output and the expected value.

The most common approaches are the mean squared error (MSE), also known asL2-norm,

and the mean absolute error (MAE), also known as the L1-norm. These functions were

once used for classification tasks, but they are no longer adopted for that task type. Both

functions compute average error difference between the predicted output and the golden

label for all N neurons on the output layer, as stated below:

MSE =
1

N

N∑
i

|pi − yi|2 (2.3)

MAE =
1

N

N∑
i

|pi − yi| (2.4)

In both functions, pi and yi are the predicted and expected outputs. The MSE

approach is more stable and computationally efficient than the MAE. However, MSE is

less robust than the MAE as it severely penalizes the eventual outliers, which may lead to

a model more optimized for this case instead of the general case.

2.2.2 Backpropagation Algorithm

Once the loss function is determined, the partial derivatives of this function must

be computed with respect to all weights and biases through the chain rule of differentia-

tion. The backpropagation algorithm is an efficient approach to accomplish this task, and

it sequentially computes the derivatives from the output of the last network layer up to its

inputs (SZE et al., 2017b). The backpropagation algorithm computes the negative gradi-

ent of the loss function to determine the direction in which the error decrease according

to Figure 2.4.

Note that the backpropagation is only part of the learning process as its role is

computing the error gradients without any weight modification (GOODFELLOW; BEN-

GIO; COURVILLE, 2016). In that sense, the algorithm looks for all partial derivatives of
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Figure 2.4: Weight update using the gradient descent approach

weight

Loss

wi

gradient

the loss function L to any weight wij which connects the neuron j to a previous neuron

i throughout the entire network. Assuming that fk is an output activation function that

transforms the output ok into the expected form, the general computation can be defined

as:

∂L

∂wij

=
∑
p

[
∂L

∂fp

(∑
k

∂fp
∂ok

∂ok
∂wij

)]
(2.5)

In (2.5), the term
∑

p is the summation of all outputs and
∑

k is summation of all

inputs that affect each output op. Since the partial derivatives must be computed for all

network nodes, this process has considerable memory usage and compute requirements,

limiting its integration in embedded devices for complete on-edge training. An extensive

mathematical explanation of the backpropagation algorithm is presented in (GOODFEL-

LOW; BENGIO; COURVILLE, 2016).

2.2.3 Optimization algorithms

As stated earlier, the learning process in a neural network is a non-convex opti-

mization problem since the partial derivatives computed during the backpropagation may

lead to multiple critical points – minima, maxima and saddle points – which may severely

limit the learning performance of the network. In most cases, the network optimizers are

based on a hill-climbing algorithm known as gradient descent, which aims to minimize

the error by updating the parameters according to the negative value of the error gradient

(LECUN; BENGIO; HINTON, 2015).
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The gradient descent algorithm works as follows. Assuming w is a vector contain-

ing the weights that describe the connections in a neural network, the update procedure

follows the Equation 2.6. The current weights change accordingly to the update factor

∆w.

w = w + ∆w (2.6)

where the update factor is calculated individually for each weight based on the gradient

estimate (g) for that weight:

∆wj = −η ∂J
∂wj

= −ηg (2.7)

The update factor depends on the gradient of the loss function with respect to the

current weight. Also, the η factor is the learning rate, and it controls the update step size

for the new weight. Choosing the right value for the learning rate is not straightforward

for two reasons:

• If η is too small, the learning process slows down as it will require more steps.

Further, since it is possible to have multiple local minima (see Figure 2.5, a small

learning rate may leave the update process in a non-optimal minima point.

• If η is too big, the optimizer may never reach a minima, and the model can even

diverge.

Figure 2.5: Multiple local minima and maxima points in a loss function

Despite the effectiveness of the gradient descent algorithm, it has a poor perfor-

mance on deep neural networks due to the enormous computational effort to advance a
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training epoch with respect to the network learning process. Here, the term epoch in-

dicates the number of times the optimizer has passed through all values on the training

dataset. It takes a considerable amount of time to complete the network optimization as it

requires the application of the entire dataset accumulating the loss, so it would be able to

compute the gradients to update the weights.

The first alternative to this approach is the stochastic gradient descent (SGD) al-

gorithm, proposed by Lecun et al. (1998), which is an approximation of the basic gradient

descent algorithm. In this strategy, a minibatch of m samples is stochastically taken from

the training dataset containing N >> m samples and fed to the network. Then, the aver-

age loss for this minibatch is computed, and the weights are updated according to (2.6).

This process is repeated until all N samples on the input dataset have been fed to the net-

work. At this moment, the algorithm moves to the next training epoch. There are several

benefits in using SGD, among them:

• Scalable computation time: The processing time between network parameter up-

dates depends solely on the size of the minibatch regardless of the total dataset size.

This approach ensures the convergence even when the training dataset is huge.

• Noise introduction: for each batch, the SGD estimator introduces a source of noise

due to the stochastic characteristic of minibatch sampling. It prevents the conver-

gence to local minima, although this could also lead to a non-convergent network.

There are several other variants of the SGD algorithm to improve the convergence

rate, training time, and so on. Some of the most popular versions are listed below:

• Momentum: is an SGD extension designed to accelerate the learning process.

It accumulates an exponentially decaying moving average of past gradients and

keeps moving in that direction. In this case, the update process determined in (2.6)

changes to w = w + v where v is the momentum or velocity and it is given by

v = αv − ηg. Here, α is hyperparameter which determines “how quickly the con-

tributions of previous gradients exponentially decay” (GOODFELLOW; BENGIO;

COURVILLE, 2016, p. 293).

• AdaGrad: is one of the first learning algorithms with an adaptive learning rate.

Here, each model parameter has a specific η value that is updated in each minibatch.

The learning rate update is inversely proportional to the square root of the sum of all

the historical squared values of the gradient (DUCHI; HAZAN; SINGER, 2011).

In this algorithm, the learning rate decreasing speed is directly proportional to the
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gradient estimate’s magnitude for that given parameter.

• Adam: is a combination of the RMSProp (a variant of momentum) and AdaGrad al-

gorithms (KINGMA; BA, 2014). This method computes the adaptive learning rates

using two momentum estimates of the gradients, hence the name Adam (adaptive

moment estimation). The intrinsic gradient rescaling and adaptive momentum leads

to an algorithm fairly robust to initial hyperparameter definitions (GOODFELLOW;

BENGIO; COURVILLE, 2016).

2.3 Feed-forward Networks

Feed-forward networks are also known as multi-layer perceptrons (MLPs), repre-

senting the first type of artificial neural network (ANN) ever proposed. These models do

not have any type of internal feedback connections, so previous computations do not influ-

ence the current output result. Traditional MLPs were composed of fully-connected layers

where each neuron on a given layer is connected to all neurons on the next layer, as ex-

emplified in Figure 2.3b. The goal of a feed-forward network is to approximate a function

f that maps the input x to a desired output y (GOODFELLOW; BENGIO; COURVILLE,

2016). For a n layer network, this function is defined as f(x) = fn(fn−1(...f 2(f 1(x)))),

where f 1 is the network input, f 2() to fn−2() are the hidden layers, and fn−1() is the

output layer. The number of neurons on a given layer determines the layer width, and it

could vary between layers within the same model.

According to Sze et al. (2017b), deep neural networks (DNN) are so-called when-

ever they “have more than three layers, i.e., more than one hidden layer.” However, mod-

els based only on fully-connected layers do not scale very well due to the number of

parameters that need to be trained. For instance, assuming a DNN with L layers, each one

of them with N neurons, there would be L.(N2 + N) that must be trained. Considering

an image recognition task where each input can have thousand of pixels, the number of

parameters rapidly explodes. The breakthroughs in deep learning also led to new network

topologies that addressed this issue.
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2.3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a particular type of feed-forward neu-

ral network where the neural connections are limited, addressing some of the problems

of DNNs. The virtual cortex on the human brain inspires the foundation of these CNNs

as the former has several localized receptive fields whose neurons only produce spikes

when there are stimuli on specific locations (LECUN; BENGIO et al., 1995). According

to Goodfellow, Bengio and Courville (2016, p. 326), CNNs are “simply neural networks

that use convolution in place of general matrix multiplication in at least one of their lay-

ers.” These networks have several CNN layers cascaded, which are trained to represent

hierarchical features.

Figure 2.6: Example a 3× 3 2-D convolution over a single input channel

Source: (CORNELISSE, 2018)

Convolutional layers implement sets of filters with limited neural connections that

convolve with the input feature maps (IFMs) to produce the output feature maps (OFMs).

Each filter corresponds to a learned patch that identifies a specific feature. The filter

size determines the neuron’s local receptive field, indicating the amount of information

a neuron will receive to combine and produce an output. Figure 2.6 illustrates how a

2-D convolutional layer work considering a filter size of 3 × 3. The grid in blue is the

input image while the small grid in green represents the filter coefficients – also known

as kernel – found during training. Note that this filter is projected over the input feature
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map, and only those input values are considered for computing the output value on the

output feature map.

Figure 2.7: View of a 2D convolutional layer with multiple input channels

Source: (GIBSON; PATTERSON, 2017)

Each CNN layer may have multiple filters to learn specific features that will gen-

erate multiple channels on the output feature map. Whenever the input feature maps have

more than one channel, each filter is composed of a filter stack, one for each input chan-

nel, whose final value is the sum of the convolution across all the channels, as shown in

Figure 2.7. In this example, the input is a 3-channel 2-dimensional IFM, and each filter

can be seen as a single 3-D computation unit. The formal mathematical description to

compute the outputs of a filter f on the layer l is given by:

O[f ][x][y] =
C−1∑
c=0

K−1∑
i=0

K−1∑
j=0

I[c][Sx+ i][Sy + j]×W [f ][c][i][j] +B[f ] (2.8)

In Equation 2.8, f is bounded by the number of filters on the layer (F), and K×K

gives the filter size. The variables x and y indicate the position where the computation

value will be stored, and they are limited by the size of the output feature map. O, I , W

andB are the containers of the OFM, IFM, weight matrix and filter bias, respectively. The

filter stride S sets how the kernel will slide over the feature map. If the stride is smaller

thanK, two consecutive filter windows will share, at least,K values. Increasing the value

of S reduces the spatial dimension of the output feature maps as the inputs will undergo

a subsampling. In most cases, the stride value is set to 1, although some implementations

stride equal to 2. Table 2.1 summarizes the shape parameters of a given CNN layer.

Convolutional layers profit from three fundamental principles that allow such im-

proved performance with lower complexity. The first one is sparse connectivity since

the convolution operation employs kernels smaller than the inputs instead of the dense

matrix multiplications in MLPs. These smaller patches are more suitable to detect sim-
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Table 2.1: Shape parameters on a CNN layer
Parameter Description

K Width/height of the filter kernel
C Number of input channels
F Number of filters in the layer
M Width/height of the output feature map
S Convolution stride

pler yet meaningful features such as edges. Further, it requires fewer parameters and

computing operations, and it improves the layer statistical efficiency (GOODFELLOW;

BENGIO; COURVILLE, 2016). The second fundamental principle is parameter sharing

as the same pattern learned by a given filter kernel can appear anywhere on the input fea-

ture map, so only one set of weights is required, which effectively reduces the model size

(SZE et al., 2017b). Finally, the last principle is equivariance, which states that when-

ever an input suffers any type of modification, the output will change accordingly. For

instance, in a time series application, any time event on the input will also appear on the

output, although it would be time-shifted.

2.3.2 Activation Layer

In the biology world, a neuron only fires a synapse if the combination of its inputs

is higher than a predefined threshold. Then, this synapse would be propagated to the

neighbor neurons, and so on. This threshold-based decision to fire or not a neural synapse

can be modeled as a non-linear function. Further, if only linear combinations are used

throughout a neural network, the model will not be able to represent several geometric

shapes and real-world problems. For a practical illustration of this problem, no linear

combination can describe the XOR function. Thus, for a neural network to represent

more complex features, it must include at least one non-linear layer (GOODFELLOW;

BENGIO; COURVILLE, 2016).

Several activation functions have been proposed to add the required non-linearity

to a neural network. Both sigmoid (Figure 2.8b) and hyperbolic tangent (Figure 2.8a)

functions have been widely used since their outputs fall between the range [0, 1] and

[−1, 1], respectively. This characteristic is desired for softmax classifiers used on mul-

ticlass classification problems.

Nair and Hinton (2010) showed that using approximate versions of these functions
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Figure 2.8: Non-Linear Activation Functions

(a) Hyperbolic tangent (b) Sigmoid

(c) Rectified Linear Unit (d) Leaky Rectified Linear Unit

Source: The Author

improves system performance. The authors proposed the Rectified Linear Unit (ReLU),

shown in Figure 2.8c, an almost-linear activation function where all negative values are

set to zero. Due to the unbound output interval, this function avoids the early saturation

of the outputs, and it keeps most of the advantages of linear models, resulting in lower

training times and faster convergence (KRIZHEVSKY; SUTSKEVER; HINTON, 2012;

GOODFELLOW; BENGIO; COURVILLE, 2016). Leaky ReLU (Figure 2.8d) solves the

vanishing negative values problem of the traditional ReLU approach, which may affect

the model ability to learn.

2.3.3 Pooling Layer

As the network deepens, the features found by each convolutional layer become

more complex and more sensitive to input variations. Further, the number of filters within

a convolutional layer usually increases towards the network output, leading to a ludicrous

number of parameters to describe each layer.

The pooling layer reduces the spacial size of feature maps before their connections
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subsequent layer within the network. The reduction is similar to a subsampling approach

in signal processing and offers two key advantages. First, it effectively reduces both the

number of computations and the number of parameters on the network. Second, it also

controls the network overfitting, i.e., it prevents the model to become overly adjusted for

the training dataset which leads to a poor performance on data never seen before. The

subsampling introduces noise, leaving the model more permissive to variations on the

input data (YU et al., 2014).

Figure 2.9: Multiple pooling algorithms for a 2× 2 analysis window

Source: (SUN et al., 2020)

Figure 2.9 shows multiple pooling algorithms for an analysis window of 2 × 2.

In pooling layers, the stride is equal to the size of the analysis window. According to the

pooling approach, the algorithm will compare the values within the window and select the

minimum, the average, or the maximum pixel values. Then, the output will be forwarded

to the next layer to proceed with the computation.

2.3.4 Batch Normalization Layer

Each minibatch of the SGD-based learning algorithm changes each layer’s input

distribution, which may negatively impact the network training. This issue, also known as

covariate shift, can be mitigated by introducing a batch normalization (BN) layer, which

normalizes the inputs according to a running mean and variance (IOFFE; SZEGEDY,
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2015). This data normalization is computed as:

y =
x− µ
σ2 + ε

γ + β (2.9)

The BN layer has four parameters. The pair (µ, σ) represents the batch mean and

variance, respectively, and they are needed to obtain zero mean and unit variance on the

inputs. Conversely, γ and β are scaling and shift parameters that modify the normalized

value. If the BN is placed after a convolutional or fully-connected layer, its computa-

tion can be embedded into the weights of those layers, removing the need for additional

computations (SZE et al., 2017b).

2.4 Recurrent Neural Networks

Despite the versatility of feed-forward networks, they are not optimized for prob-

lems with long-term sequenced inputs. In this regard, recurrent neural networks (RNN)

arise as an alternative as they can scale to longer input sequences that would be practical

for convolutional neural networks without sequence-based specialization (GOODFEL-

LOW; BENGIO; COURVILLE, 2016). RNNs are a type of feed-forward neural network

with feedback loops and internal states, allowing the information to persist between values

on the input sequence, i.e., the network can keep track of history about the past elements

that were presented on the input. The ability to retain past information is quintessential

in applications where there is a temporal dependency between inputs, which justifies the

excellence of these networks in applications like speech recognition, language translation,

image captioning, video processing, and others (SAK; SENIOR; BEAUFAYS, 2014).

The outputs of the hidden units in a given RNN at different discrete time steps

can be seen as if they were outputs of different neurons in a DNN (LECUN; BENGIO;

HINTON, 2015). In fact, these networks were the inspiration for the spatial convolution

networks (DONAHUE et al., 2017).

Figure 2.10 illustrates a deep recurrent neural network where the circles are the

network layers, the solid lines are the weighted neural connections, and the dashed lines

are the predictions. The y-axis indicates the network structure (layers), while the x-axis

is the unrolled version of the network for multiple values of the input sequence. In these

networks, an input vector x containing a sequence of T values is passed to a stack of

N hidden layers that have recurrent connections to compute both the hidden vector se-
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Figure 2.10: Deep recurrent neural network example

Source: (GRAVES, 2013)

quences h and output prediction y. As stated in Graves (2013, p. 3),

The network is ’deep’ in both space and time, in the sense that every piece of
information passing either vertically or horizontally through the computation
graph will be acted on by multiple successive weight matrices and nonlineari-
ties.

These traditional recurrent neural network, also known as vanilla RNN, are dy-

namic models which map the inputs to hidden states and vice-versa according to (2.10)

and (2.11). The hidden state ht is computed from a linear combination between the current

input (Wxhxt) and the hidden state value from the previous time step. This combination

is passed to a non-linear function g, which is typically implemented as a sigmoid or hy-

perbolic tangent. Conversely, the output prediction y at time step t is computed solely in

terms of the current hidden state.

ht = g (Wxhxt +Whhht−1 + bh) (2.10)

yt = g (Whzht + by) (2.11)

In RNNs, the traditional backpropagation algorithm for weight update is insuf-

ficient to consider the influence of past inputs and states on the current input. Hence,
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these networks rely on an extended version named backpropagation through time (BPTT)

proposed by Zipser and Williams (1995), which unrolls the recurrent network so it can

be seen as a feed-forward implementation, enabling the error measurement at each time

step. However, BPTT does not scale well in vanilla RNN networks. As the number of

time steps increases, the error gradient might vanish or explode, making it difficult for

the network effectively learn any mapping function (HOCHREITER; SCHMIDHUBER,

1997). This situation is known as the vanishing gradient problem, and it is not limited to

recurrent networks.

2.4.1 Long-Short Term Memory

An alternative to vanilla RNNs are the long short-term memory (LSTM) networks

proposed by Hochreiter and Schmidhuber (1997), which were designed to overcome the

gradient issues on the BPTT algorithm. LSTM-based networks support long input se-

quences, and they control the error gradient enforcing a constant error flow through the

internal state of each LSTM unit. According to Gers, Schmidhuber and Cummins (2000,

p. 2452),

The basic unit in the hidden layer of an LSTM network is the memory block,
which contains one or more memory cells and a pair of adaptive, multiplicative
gating units that gate input and output to all cells in the block. Each memory
cell has at its core a recurrently self-connected linear unit called the constant
error carousel (CEC), whose activation we call the cell state. The CECs solve
the vanishing error problem: in the absence of new input or error signals to
the cell, the CEC’s local error backflow remains constant, neither growing nor
decaying.

A compelling improvement to the original LSTM implementation was added by

(GERS; SCHMIDHUBER; CUMMINS, 2000), where they introduced the forget gate.

This gate is a hidden unit that controls the weight of this self-loop, effectively controlling

when the memory blocks should be reset as their contents are no longer up-to-date. This

version has been adopted as the standard LSTM implementation. There are other LSTM

variations like the bi-directional LSTM and the gated recurrent unit (GRU), but they are

beyond the scope of this work.

Fundamentally, LSTM networks are composed of LSTM cells which have an inter-

nal recurrence, also known as a self-loop, besides the outer recurrence inherent to RNNs

(GOODFELLOW; BENGIO; COURVILLE, 2016). Each cell is composed of gates that

control the information flow, leading to a higher number of parameters to be trained.

These gates can be seen as recurrent network layers within the cell. Nonetheless, LSTM
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cells still have the same input (sequence), and output (hidden state) interface as a regular

RNN.

Figure 2.11: Internal LSTM unit implementation

LSTM
Gate
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Operation

Vector
Transfer Concatenate Copy
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Ct-1 Ct

C*
t ot

ht-1 ht

Source: Adapted from (OLAH, 2015)

Figure 2.11 illustrates the implementation of an LSTM cell. The key element in

these cells is the top line, which indicates the cell state (Ct): a memory block which

keeps track of the influence of previous time steps. The cell state is updated according

to the three control gates’ outputs – forget, input, and output – which are delimited with

a dashed blue line sequentially from left to right. All gates receive the concatenation of

the previous hidden state (ht−1) and the current input sequence (xt). The dashed gray line

highlights how the gates contribute to the cell state update mechanism.

The forget gate (ft, shown in Fig. 2.11) controls how much the previous cell state

(Ct−1) should be considered on the updated state. It applies a sigmoid function to the

linear combination of xt and ht−1, constraining the output to the interval (0, 1). If ft = 0,

the previous cell state is completely forgotten, else it carries some influence on the updated

state. Mathematically, ft is defined according to (2.12) where Wf is the weight set for the

forget gate and bf is the associated bias.

ft = σ(Wf · [ht−1, xt] + bf ) (2.12)

The input gate (it and C∗
t , shown in Fig. 2.11) determines how much the current

inputs (xt, ht−1) influence the cell state, i.e., it decides how relevant the input information

is. That is achieved with two non-linear gates: it establishes the relevance of the inputs,
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and C∗
t modulates the inputs, creating a vector of candidate values that could be added

to the current state. In that sense, it is similar to ft, so it employs a sigmoid function

as the non-linearity while C∗
t employs a hyperbolic tangent (tanh) function to constrain

these inputs to the interval (−1, 1). Mathematically, these functions are defined according

(2.13) and (2.14) where the pairs (Wi, bi) and (Wc, bc) are the weight sets and bias for it

and C∗
t , respectively.

it = σ(Wi · [ht−1, xt] + bi) (2.13)

C∗
t = tanh(Wc · [ht−1, xt] + bc) (2.14)

All the equations so far computed the gated values to update the old cell state.

First, Ct−1 is multiplied by ft to determine how much influence the previous state has

over the updated state. Then, this value is added to the modulated current candidate

values computed on the input gate. These modulated values are obtained multiplying it

by C∗
t . Formally, the updated cell state Ct is given by the following equation:

Ct = ft × Ct−1 + it × C∗
t (2.15)

Likewise, the output gate (ot, shown in Fig. 2.11) determines how much the up-

dated cell state must be transferred to the hidden state. That is achieved using a sigmoid-

tanh modulation similar to the input gate. In this case, the sigmoid function is applied to

the input values (xt, ht−1) to decide what part of the cell state should pass to the output

while the tanh function constraints the output to the (−1, 1) interval. Note that the ad-

dition part of (2.15) may lead to a cell state value whose magnitude is greater than one;

hence, it must be squashed to avoid the vanishing gradient problem. The formal defini-

tion of the output gate is given by (2.16) where Wo and bo are the weight set and bias,

respectively:

ot = σ(Wo · [ht−1, xt]) (2.16)

ht = ot × tanh(Ct) (2.17)

LSTM-based networks proved to be an excellent alternative to vanilla RNNs as

they learn more easily the long-term dependencies (GOODFELLOW; BENGIO; COURVILLE,
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2016). For instance, these networks achieved outstanding results in large-scale speech

recognition (GRAVES; JAITLY, 2014) and language translation (SUTSKEVER; VINYALS;

LE, 2014), whereas CNN-based networks are not suitable for these tasks. These networks

have also been used in activity recognition in video files, image captioning (scene recog-

nition), and video descriptions, among others (DONAHUE et al., 2017).

2.5 Training frameworks

The success of neural networks led to the development of several tools, libraries,

and frameworks that help developers to build their models, so they do not need to imple-

ment everything from scratch. These tools offer all the mechanisms required for training

and inference, like automatic gradient computation, layer instantiation, data analysis, and

so on. They also embed optimized algorithms that can take great advantages of spe-

cific features in CPUs and GPUs (MOONS; BANKMAN; VERHELST, 2019). A non-

exhaustive list of the most popular frameworks is listed below:

• Caffe: one of the first frameworks for neural networks ever deployed (JIA et al.,

2014). It started as an academic project and grew into a large project used by many

users. The network definition and deployment is not as straightforward as other

frameworks.

• Tensorflow: it is a framework developed and supported by Google (ABADI et al.,

2015). It provides several optimized functions and operations to create computa-

tional graphs for deep learning applications. Most of the time, it is used with the

Keras wrapper, which provides state-of-the-art data manipulation and neural net-

work implementations (CHOLLET et al., 2015). It is relatively popular due to

its vast user base and well-written documentation, although its network graphs are

static and precompiled, posing serious debugging challenges for the developer.

• Pytorch: this framework is maintained by Facebook (PASZKE et al., 2019), and it

was initially based on the Torch implementation. It relies on dynamic graphs for on-

the-fly compilation, making it easier to debug despite the speed penalty associated

with it.

• Theano: it is similar to Tensorflow as it uses static graphs for network computa-

tion (THEANO DEVELOPMENT TEAM, 2016). Generally, it is used with the

Lasagne (DIELEMAN et al., 2015) wrapper for more straightforward application
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development as the latter features several functions and methods for neural network

implementation.

2.6 Chapter Summary

This chapter aimed at presenting a comprehensive review and background on the

most relevant concepts and methods on in the vast field of neural networks. Such concepts

are necessary as the motivation for and basis over which the research described in the

following Chapters is undertaken.
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3 COPING WITH DEEP LEARNING COMPLEXITY ON EMBEDDED SYSTEMS

Deep recurrent neural networks have thousands, even millions, of parameters to

execute the internal operations to obtain a prediction given an input. As networks grow

deeper, the number of parameters and operations rapidly increases, demanding an ever-

growing computational capability to process a network quickly and efficiently (MISRA;

SAHA, 2010). However, edge devices hardly have the computing power nor the required

energy in batteries to accomplish these tasks (VELASCO-MONTERO et al., 2018). Then,

a hardware-software co-design approach is required to overcome the inherent complexity

of these algorithms to extract the maximum performance attainable with the least amount

of energy.

In this regard, there are three fundamental characteristics in deep learning that can

be explored to optimize the algorithm execution and the underlying hardware. First, the

unique characteristic of dataflow in deep neural networks foster data reuse and parallel

computation. Second, efficient networks usually present a high degree of sparsity, i.e.,

most of the weights tend to be equal to or near zero, which can help to skip some opera-

tions to save time and energy. Finally, the intrinsic probabilistic nature of neural networks

and the iterative learning process make these networks more robust to approximations,

enabling the usage of data representations with a smaller number of bits and suitable for

execution in tailored platforms based on approximate computing techniques. Most of

these techniques require hardware support to be implemented efficiently.

Hence, this chapter reviews the most common co-design techniques that explore

these three characteristics of neural networks. Then, it provides a brief overview of gen-

eral and custom computational platforms for algorithm execution.

3.1 Exploiting network structure

Most deep neural networks rely on multiply-and-accumulate (MAC) operations

within their convolutional and dense layers. Fundamentally, these operations can be eas-

ily parallelized with the additional benefit of reusing data for minimal data movement.

Hence, system designers explore high-parallel compute diagrams, which include tempo-

ral and spatial architectures (CHEN; EMER; SZE, 2017). General-purpose hardware like

CPUs and GPUs usually embed some type of temporal parallelization like single instruc-

tion, multiple data (SIMD) or single instruction, multiple thread (SIMT) techniques for
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increase performance. Nonetheless, the parallelization degree attained in these platforms

– in the order of hundreds to few thousand MAC units – is far from those presented in

custom platforms like the Google TPU, which can compute 65.536 (256× 256) MACs in

a single clock cycle (JOUPPI et al., 2017).

In that sense, most custom hardware accelerators adopt the flow presented in Fig-

ure 3.1, aiming for as many simultaneous operations as possible with minimal data move-

ment combined to an architecture flexible enough that it is not fixed to a single network

structure. These architectures rely on an array of processing elements (PEs) where the

operations are executed along with multiple memory levels for fast and energy-efficient

accesses. Nevertheless, some deep neural networks may require specific accelerator archi-

tectures to cope with the application needs and system constraints like power dissipation

and circuit area, leading to a trade-off between flexibility and execution efficiency at the

circuit level.

Figure 3.1: Baseline DNN hardware accelerator

Source: (SZE et al., 2017a)

Custom accelerators are built to explore the temporal and spatial data locality in-

herent to deep neural networks to minimize data movements. For instance, the weights

of a given CNN filter will be used over the entire input feature map to compute the out-

puts. Likewise, a given patch of the input feature map will be used by several filters in

a given CNN layer. In both cases, memory access becomes a bottleneck when the paral-

lelization is increased as a single MAC operation requires four memory accesses: input,

weight and partial sum reads, and result write. Considering AlexNet, a popular CNN net-

work, it would require near 3 billion DRAM accesses to compute a single output, severely

penalizing power efficiency and system throughput (SZE et al., 2017b).

Hence, the first approach to minimize data movement relies on the adoption of

a data reuse dataflow. Figure 3.2 summarizes three baseline topologies for data reuse,

comparing the memory bandwidth requirements and the associated implementation. In
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the input stationary approach, the same input data is multiplied by all filters for a given

layer, i.e., the input is loaded only once and reused as much as possible before the next in-

put. Note that this strategy allows the computation on multiple filters simultaneously, i.e.,

given an architecture implementation with multiple MAC units, each unit would have a

different weight set, leading to a weight parallel implementation. Although this approach

requires a very low input bandwidth, it severely penalizes the weight memory access,

which must be loaded every cycle. Further, it prevents the MAC accumulation across

different clock cycles, requiring the partial result to be stored in the memory to be fetched

again later, impacting the output memory bandwidth.

Figure 3.2: Overview of data reuse topologies

Source: (VERHELST; MOONS, 2017)

A similar approach is the weight stationary, where a given weight is loaded once

and multiplied by the entire input feature map before the next weight load. When multiple

compute units are available, they are configured for an input parallel scheme to maximize

the data reuse. It takes a considerable toll on the input memory bandwidth since this strat-

egy requires a new input every cycle. Like the previous approach, the MAC accumulation

cannot span across clock cycles with an increased output memory bandwidth.

The third approach is the output stationary, which aims to minimize the output

memory bandwidth by accumulating the partial results across multiple cycles and access-

ing this memory only after the final result is ready on the accumulator. Nevertheless,

this approach requires loading both new weights and inputs every cycle, leading to high

bandwidth requirement from these memories.

A balanced implementation is achieved with the hybrid approach, which is a com-

bination of the previous three strategies. It requires a 2-dimensional MAC array where

multiple input and multiple weights are loaded every cycle, and their multiplication is lo-



50

cally stored to be combined with previous partial sums. A comprehensive demonstration

of this strategy is presented in Moons, Bankman and Verhelst (2019). A variant of this

approach is known as row stationary, although the partial sums are transmitted across the

PE units (CHEN et al., 2017). An energy comparison of reuse strategies is presented Sze

et al. (2017b) considering the AlexNet network model where the row stationary approach

achieves energy savings up to 2.5× when compared to other strategies.

A complementary strategy relies on reducing the energy cost on data movement

by introducing a multi-level memory hierarchy where each level has a different energy

cost (SZE et al., 2017a). Local data movement, i.e., within the processing elements, is

the cheapest movement operation in terms of energy while accessing the system RAM

requires orders of magnitude higher energy consumption. Figure 3.3 illustrates the typi-

cal memory hierarchy division for these neural network accelerators. This strategy is only

possible due to the temporal data locality in deep neural networks (MOONS; BANKMAN;

VERHELST, 2019).

Figure 3.3: Energy cost of data movement at different levels

Source: (SZE et al., 2017a)

Another advantage of this approach lies in the possibility of tailoring the memory

hierarchy and capacity for the target application. Optimizing the memory capacity and

communication interface has a co-dependent link with the parallelization level adopted

for the computing elements (MOONS; BANKMAN; VERHELST, 2019). This join opti-

mization leads to a hardware system with minimal data movement, maximum data reuse,

and increased energy efficiency. An extreme case is the systolic architectures like the

Google TPU, where near all the data movement is kept within the PE array. In this case,

the weights are preloaded on the functional units, and new input data moves from left

to right on the PE array while the partial sums are accumulated on the bottom. Further

details of this architecture can be found in Jouppi et al. (2017).

A promising strategy for minimal energy dissipation on data movement is the in-
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memory computing, also known as processing-in-memory (PIM), where all computations

are integrated into the memory itself. This approach is more energy-efficient than tradi-

tional digital designs with memory hierarchy as the data movement in embedded SRAM

memories is extremely high (BISWAS; CHANDRAKASAN, 2018). Comprehensive re-

views addressing the uniqueness of this approach have been published in (RAJENDRAN;

ALIBART, 2016; DENG et al., 2020; KRESTINSKAYA; JAMES; CHUA, 2020).

3.2 Exploiting network reliability

First works in deep neural networks only focused on model accuracy, with no at-

tention to algorithm complexity or hardware implementation challenges. However, DNNs

are inherently robust to perturbations in both weights and activations, especially due to

their non-linearities (VANHOUCKE; SENIOR; MAO, 2011).

Data representation is the first step towards efficient implementations of these net-

works. During training, the backpropagation algorithm often uses some normalization

to avoid overfitting. Consequently, the weight and activation values fall within a limited

range for each layer. Traditionally, all operations were performed on 32-bit floating-point

since it available in nearly all processing hardware platforms, and most algebraic libraries

are optimized for this representation.

Reducing precision is beneficial in several aspects. First, quantized models re-

quire less memory space and, consequently, less communication bandwidth. Second, this

approach is hardware-friendly since it is much simpler to implement fixed-point or even

an integer arithmetic unit when compared to the floating-point solutions. Third, hardware

like GPUs with support for low-precision arithmetic can increase parallelism to improve

energy efficiency.

Several works showed that neural networks with reduced precision could achieve

nearly the same accuracy of those implemented using floating-point operations. Cour-

bariaux, Bengio and David (2014) performed an extensive analysis of several data rep-

resentation approaches, including floating-point, fixed-point, and dynamic fixed-point.

Results show that reducing from a 32-bit floating-point implementation down to 12-bit

dynamic fixed-point has a marginal increase on the error rate, indicating that neural net-

works can indeed operate at a lower precision.

An extreme quantization approach was proposed by Courbariaux, Bengio and

David (2015), where the authors constrained all the weights to either +1 or −1 while
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keeping the backpropagation gradients with sufficient precision to update the network pa-

rameters correctly. In some cases, the weight constraint regularizes the network, increas-

ing its accuracy. Similar approaches were followed by Zhou et al. (2016) and Hubara et

al. (2016).

A generalized quantization approach is presented in Moons et al. (2017). In this

work, the authors perform a comprehensive analysis of the trade-off between accuracy

and energy efficiency for multiple bit-widths. For a custom network, the optimal data

bit-width ranges from 1 to 4 bits, depending on the accuracy requirements.

The reliability of neural networks also tolerates non-deterministic errors caused by

computation executed on the analog domain and in digital circuits operating in the near-

threshold region (MOONS; BANKMAN; VERHELST, 2019). Reducing the operating

voltage leads to memory failures and increased delay, which may cause timing viola-

tions. Nonetheless, DNNs can absorb part of stochastically induced errors when com-

bined with additional hardware support to monitor the circuit fault rate (LIN; ZHANG;

SHANBHAG, 2016).

3.3 Exploiting network sparsity

All state-of-the-art neural networks require millions of parameters to describe an

accurate model for classification tasks. The majority of these parameters reside on the

classifier, composed of fully-connected layers. However, some connections in a neural

network have minimal impact on model accuracy. For instance, an AlexNet model re-

quires more than 200 MB of storage while a VGG-16 network occupies more than 500

MB to store the network parameters (HAN; MAO; DALLY, 2015). Combining the in-

herent sparsity of neural networks with limited representation bit-width results in many

parameters tied to zero, which can be exploited for optimal energy efficiency.

In Hinton et al. (2012), the authors proposed a network where the neural con-

nections within the classifier were probabilistically pruned, i.e., the weights were set to

zero. For the CIFAR-10 classification dataset, the overall network error rate improved to

15.6%, while the baseline model achieved an error equal to 16.6%, illustrating how neural

networks can be severely affected by overfitting.

Hardware-wise, all MAC operations with either input or weights tied to zero can

be skipped entirely, avoiding spending energy to fetch and store data from memory. Fur-

ther, the PE units can be implemented with a data-gating approach to avoid changing its
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internal state when either input or weight is zero (VERHELST; MOONS, 2017). The

sparse representation also enables off-chip data compression to minimize the energy cost

of data movements between the hardware accelerator and the system memory (HAN;

MAO; DALLY, 2015). Simple compression schemes like Huffman require a small addi-

tional circuitry with significant power savings.

Additional optimization steps involve iterative parameter pruning using energy

consumption models to maximize pruning efficacy, eliminating up to 90% of model pa-

rameters (YANG; CHEN; SZE, 2017). Some approaches also combine quantization,

pruning, and data compression with even tailored datapath for inference operations di-

rectly over the compressed data, removing the deep of a decompression step on the sys-

tem (HAN et al., 2016). A comprehensive review of network pruning is presented in Sze

et al. (2017b).

3.4 Computational Platforms

The works of Steinkrau, Simard and Buck (2005) and Chellapilla, Puri and Simard

(2006) found that GPGPUs could be used to train neural networks. As these cards aim

for the parallel processing of several multiplication and addition operations, they were a

perfect match due to the nature of these algorithms, especially for convolutional neural

networks.

Since 2011 with AlexNet, the networks have become deeper, reaching up to hun-

dreds of tasks, demanding billions of operations to process a single input. Further, training

datasets are growing aggressively like, for instance, the ImageNet data that contains 1.2

million images. One of the first image datasets publicly available was MNIST, which

included images of handwritten digits, and it has only 60000 training images.

3.4.1 Central Processing Unit (CPU)

Modern processors embed several instruction sets tailored to efficiently operate on

multiple data at once, aiming to improve the system throughput. Superscalar processors

support SIMD instructions that can perform the same operation over multiple data in

an efficient way (PATTERSON; HENNESSY, 2013). This is particularly interesting in

applications like convolutional neural networks since they require several multiplication
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and addition operations to be executed over an entire feature map.

Current machine learning frameworks have embedded support for SIMD instruc-

tions as well as interprocess communications libraries to speed the training/inference pro-

cess (RYBALKIN et al., 2017). Additionally, several BLAS (Basic Linear Algebra Sub-

programs) libraries are available to improve mathematical operations – like matrix multi-

plication – by efficiently exploiting these instructions (VANHOUCKE; SENIOR; MAO,

2011). Most machine learning frameworks embed native support for these instructions.

Even with optimized instruction sets and assembly-optimized matrix multiplica-

tions, the performance is not optimal in CPU-based implementations as they have to di-

vide processing timing with other processes. Further, the lack of an optimized memory

hierarchy scheme for this type of application severely affects the computational speed due

to the frequent access to the RAM to read and write weights and activations.

3.4.2 Graphic Processing Unit (GPU)

Due to its inherent data-centric and dataflow-oriented structure, GPUs are effi-

cient off-the-shelf solutions for both training and inference phases of neural networks.

At their inner root, neural networks and video/image processing revolve around matrix

multiplications. Thus they share the same type of computation. The relative low-cost,

high availability and processing power are the reasons behind the GPUs’ dominance in

the neural network processing field.

Similarly to the BLAS libraries offered for general-purpose CPUs, libraries like

cuBLAS (NVIDIA, 2008) and cuDNN (CHETLUR et al., 2014) offers significant per-

formance increase on GPUs compared to a standard execution on these platforms. For

instance, cuDNN offer a training time speedup about 1.36× for a convolutional neural

network implemented on the Caffe framework (CHETLUR et al., 2014).

In Li et al. (2016), the authors explored a plethora of CPU and GPU combinations

aiming for faster training and inference times and energy efficiency. The authors consid-

ered the ConvNet benchmark to obtain a fair comparison between results. Despite the

higher instant power, GPUs perform better regarding throughput and energy efficiency.

For instance, a Titan X GPU required around 0.25J per image for a batch size 32 while

a CPU-based implementation consumed around 4J per image – i.e. 16× more energy –

under the same conditions.
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3.4.3 Hardware Accelerators

Although GPUs offer an enormous advantage over current CPUs for neural net-

works, they still consume a considerable amount of energy. Since the current trend is to

move the inference phase to the node that usually has a power source limitation, it is nec-

essary to develop power-efficient software and hardware solutions. For mobile systems,

CPUs and GPUs are far from being the ideal platforms due to the performance and power

dissipation limitations. Hence, the solution resides on custom hardware accelerators im-

plemented in either Field Programmable Gate Arrays (FPGA) or Application-Specific

Integrated Circuits (ASIC).

First, hardware implementations targeted custom architectures for specific neural

networks with two main objectives: first, huge speedup when compared to CPU-based

implementations and, second, overwhelming improvements concerning energy-efficiency

when compared to GPU-based applications. In fact, Nurvitadhi et al. (2017) indicates that

these custom hardware platforms may outsource CPU and GPU as computing platforms

for neural network accelerators since they can better exploit newer DNN algorithms that

integrate reduced precision operations, custom memory access schemes, zero-skip com-

putations and so on.

The first neural network hardware accelerator was proposed by Farabet et al.

(2009), targeting an FPGA implementation. The proposed design employed a PowerPC-

based soft-core implementation to control the Vector Arithmetic and Logic Unit (VALU)

that performed all the CNN-specific operations like convolution, pooling, and so on. An

evolution of this hardware was proposed in Farabet et al. (2010), and it was able to pro-

cess input images at real-time consuming near around 15W, according to the network

specification. Figure 3.4 illustrates the architecture of the proposed stream-based proces-

sor. Each processing tile is directly connected to its processing neighbors, and all system

modules are connected through multiple 16-bit data channels. The configuration bus is

reserved for setting the parameters of each processing tile according to the convolutional

network parameters.

Since then, several works aimed for custom frameworks and design flows to au-

tomatize the mapping procedure from the algorithm level to the hardware level. Wei et

al. (2017) proposed an automatic synthesis of CNN accelerators based on systolic arrays.

The authors follow a high-level synthesis (HLS) approach, converting C code directly

into FPGA bitstream. In Guo et al. (2018), the authors propose a hardware accelerator as
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Figure 3.4: ConvNet Stream Processor architecture

Source: (FARABET et al., 2010)

well as a complete mapping flow for CNNs into FPGA devices. It includes data quanti-

zation strategies, run-time configurable hardware for multiple network configuration, and

a compiler to map the CNN model onto the hardware architecture.

DianNao was one of the earliest ASIC hardware accelerators for convolutional

neural networks, and it was proposed in (CHEN et al., 2014) considering a 16-bit datapath.

The accelerator features a neural functional unit (NFU), which is responsible for perform-

ing the synapse-related computations. The NFU is controlled with a custom instruction

set, enabling the execution of generic neural networks. This accelerator outperformed a

conventional SIMD core in both throughput and energy consumption. Considering only

convolutional and classifier layers, the proposed design is, on average, 117.87× faster

and consumes 21× less than the baseline core. A family of accelerators was derived from

this implementation leading to other task-specific designs. ShiDianNao (DU et al., 2015)

was conceived for low-power and consumes 60× less than DianNao. The DaDianNao

implementation focused on high-throughput applications and achieved a top performance

of 5585 GOPS (CHEN et al., 2016).

Chen, Emer and Sze (2016) proposed the Eyeriss accelerator, and it maximizes

the memory reuse within the lower memory levels, thus reducing the energy consumption

required by the data movement on the upper levels. The energy efficiency attained by

this circuit is a consequence of three techniques. First, it breaks a multi-dimensional

convolution into several 1D convolutions, hence its row stationary characteristic. The

dataflow uses a two-step primitive mapping that occurs before run-time to manage these

primitives. Finally, it employs an optimized data handling approach to maximize the

usage of the storage hierarchy.
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Figure 3.5 illustrates how the data is reused on the Eyeriss processor considering

a 3 × 3 PE set. Considering a filter kernel of size 3 × 3, each filter row is reused across

the PEs, i.e., all PEs on the same row will store the three weights of the filter row (Figure

3.5a). Each row of the input feature map is propagated across the PEs diagonally (Figure

3.5b), and, finally, the partial sums are accumulated across the PEs vertically (Figure

3.5c). The combination of these three strategies enables the full computation of, at least,

three rows.

Figure 3.5: Row Stationary dataflow

Source: (CHEN; EMER; SZE, 2016)

Some applications do not always require high precision or even exact computing to

present satisfactory results. In compute-intensive applications like ML algorithms, there

is an excellent opportunity to improve hardware accelerators’ energy efficiency. The first

work to explore approximations at the hardware-level for neural networks is found in Du

et al. (2014). The authors show that using inexact logic the energy savings are up to

62.49% with a mean square error increase from 0.14 to 0.20.

The ApproxANN framework, proposed by Zhang et al. (2015), considers the ap-

proximation at both computation and memory access level for custom hardware acceler-

ators. First, it performs an analysis to determine which neurons have a more substantial

impact on the output and label them as critical neurons. Based on this importance-based

neural map, the framework creates a rank indicating which neurons are most likely to be

approximated. Assuming the hardware accelerator shown in Figure 3.3, there are three

approximation mechanisms: a) processing elements may skip computation and memory

accesses if the neuron being processed is not critical; b) reduced data precision through

truncation and c) approximate hardware for arithmetic operations. The authors explored

several approximation configurations to find a trade-off between application quality and

energy savings. For instance, on the MNIST dataset, the approximate version enabled

energy savings up to 35% with less than 0.5% on accuracy loss.

When considering extreme quantization approaches, Andri et al. (2016) intro-
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duced a hardware accelerator for binary neural networks where all weights were con-

strained to −1 and +1. These values were mapped to 0 and 1 to simplify the hardware

implementation. Adopting this design approach greatly simplifies the hardware as adders

and multiplexers can replace all MAC units. The proposed circuit achieves an outstanding

energy-efficiency peak of 61 TOPS/W for 65nm ASIC implementation with 0.6V supply

voltage.

One of the earliest hardware accelerators to combine a dynamic voltage-frequency-

accuracy scaling (DVFAS) approach was proposed in Moons and Verhelst (2017). This

ConvNet processor has a 16 × 16 MAC array controlled by a dedicated ASIP, and its

datapath can be configured at run-time to operate on from 1 to 16 bits at multiple fre-

quencies. Its ASIP-based approach simplifies the usage of this accelerator since it is fully

C-programmable. It also features data-gating to skip computation when either weights or

activations are zero, which has a significant impact on the dynamic power. Considering

the AlexNet network as the benchmark, this processor outperforms other state-of-the-art

dedicated processors up to 5× regarding energy-efficiency with a 35% higher frame rate.

Figure 3.6: Switched capacitor-based neuron

Source: (BANKMAN et al., 2018)

Using processing elements near memory and adopting mixed-signal design flows

are trending approaches to the design of neural network accelerators due to the improved

energy efficiency on these circuits. Bankman et al. (2018) constrained both weights and

activations to −1 and +1. In this case, the entire multiplication datapath is resumed to

several XNOR gates. The authors also employed a mixed-signal approach where the

sum of neuron inputs is achieved through a switched capacitor bank, enabling the circuit
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operation at low voltages around 0.6V – without a significant sacrifice on its performance.

Due to its 1-bit datapath and analog-based adder, the proposed system consumes only

3.86µJ to classify an image using the MNIST dataset. Figure 3.6 shows the structure

of the switched capacitor based neuron. The thermometer section applies the 256 2 × 2

filters to compute the neuron output, which is summed to a 9-bit bias. The threshold

section implements the activation function.

Instead of focusing only on CNN-specific accelerator, Ando et al. (2018) proposed

the BRein chip. This deep neural network accelerator can be configured to operate as

either a fully-connected network or as a convolutional neural network. The circuit also

supports both binary and ternary neural networks, enabling the use of higher accuracy

applications. The fundamental concept in this circuit is the use of processor-in-memory

modules that reduce the energy cost of data movement. Each PIM module can process

three layers, and it uses two SRAM banks – upper and lower modules – with an arithmetic

core between them to compute the neural activation, as seen in Figure 3.7. The silicon

prototype supports network with up to 13 layers, and it has a peak energy efficiency of

2.3 TOPS/W.

Figure 3.7: PIM Module on the BRein Architecture

Source: (ANDO et al., 2018)
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3.5 Chapter Summary

This Chapter reviewed key concepts on the hardware execution and hardware plat-

forms that present different trade-offs for executing NN kernels – the essential and most

important operations that are demanded by DNNs. Prior works geared toward hardware

acceleration of NN were reviewed, as they introduced key strategies for guiding future

research on this field. Table 3.1 presents a summary of the aforementioned optimization

techniques and strategies as well as how they can applied to different platforms to cope

with the inherent complexity of neural network models.
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Table 3.1: Summary of Optimization Techniques and their Applications

Class Strategy Goal
Platform
suitabil-

ity

Implementa-
tion

Complexity

Network
Structure

Temporal
paralleliza-

tion

Explore SIMT and SIMD
instructions on GPUs and CPUs

CPU,
GPU

Low

Multi-level
memory
hierarchy

Segment the memory accesses into
hierarchical levels to reduce the

memory access energy cost,
specially in most frequent data

FPGA,
ASIC

High

Data reuse

Minimize data movement between
memory hierarchy for faster
processing and lower energy

consumption

FPGA,
ASIC

High

In-memory
Computing

Integrate the circuit logic to the
memory itself, reducing the time
and energy required to move data

ASIC High

Network
Reliabil-
ity

Data
quantization

Reduce the number of bits for data
and parameters representation,

reducing the risk of overfitting and
improving memory usage and

energy consumption

GPU*,
FPGA,
ASIC

Medium

Binarization
Extreme data quantization scheme

where data/parameters are
represented with a single bit.

FPGA,
ASIC

Medium

Voltage
scaling

Circuits may be set to operate to a
lower power supply voltage for

increase energy performance at the
expense of some impact on the
accuracy due to timing errors.

FPGA*,
ASIC

High

Network
Sparsity

Weight
Pruning

Some weights on neural network
can be removed (set to zero) and

their computation can be skipped.

CPU*,
GPU*,
FPGA,
ASIC

Low

Data
compression

Sparse models can be compressed
to minimize the energy cost to

move the data to/from the off-chip
memory.

FPGA,
ASIC

High

*The technique cannot be fully explored in this platform
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4 ARITHMETIC KERNELS ON NEURAL NETWORKS

Recent advances in neural network architectures focused on improving the overall

accuracy while limiting the model complexity in terms of parameters and computation.

State-of-the-art networks like require hundreds of millions of MAC operations to infer

the output for a single input. Combining this amount of operations with system-specific

latency requirements in battery-constrained devices imposes a severe challenge for de-

signers.

Convolutional layers require very little storage memory as the kernel coefficients

are shared within a feature map. Conversely, these layers are responsible for most of

the computation time for a given neural network. The work of Cong and Xiao (2014)

shows that for the AlexNet CNN, which has five convolutional layers and three fully-

connected layers for the classifier, the convolutional layers consume near 91% of the in-

ference time while the classifier uses less than 1% of the time to perform its computation.

This compute-intensive characteristic of the convolutional layers offers several optimiza-

tion approaches concerning hardware acceleration in terms of both energy consumption

and achievable throughput.

Nonetheless, LSTM layers have different computation requirements as they have

fewer arithmetic operations with higher bit-width. The binarization process that is usually

adopted in CNN layers cannot be fully explored in recurrent layers due to the dependence

on previously accumulated states. In this case, multipliers and adders play an essential

role, especially in terms of critical path and dynamic power dissipation.

4.1 Two-operand Binary Adders

Adders are the basic building blocs of nearly all arithmetic circuits. Hence their

optimization is quintessential for resource optimization (DESCHAMPS; BIOUL; SUT-

TER, 2006). This circuit can be employed in more complex architectures like multipliers

and multi-operand adders.
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4.1.1 Ripple Carry Adder (RCA)

The most straightforward approach for multi-bit addition is chaining full adders

(FA) where the carry-out from the addition at weight i is transmitted to weight i + 1 as

the carry-in. In this way, the carry ripples from the least significant bit (LSB) to the most

significant bit (MSB), as illustrated in Figure 4.1

Figure 4.1: Structure of a n-bit ripple carry adder

Source: The Author

Due to its simplicity, no additional logic is required to compute the carry chain,

leading to the smallest area possible for any given operand size. Assuming that each full

adder has a critical path of two CMOS logic gates whereas each gate has a delay D, the

critical path for a n-bit ripple carry adder is given by the carry chain whose total delay is

given by:

Tdelay =

COn−1︷︸︸︷
2D +

COn−2︷︸︸︷
2D + · · ·+

CO0︷︸︸︷
2D = n× 2D (4.1)

From this equation, it is clear that as the bit-width increases, the time taken to reach

the result increases linearly because each bit depends upon the result of the previous bit.

The required area to accommodate such an adder may be calculated in terms of logic

gates, ignoring the differences in drive-loading capabilities, and others. Assuming an FA

implementation with five logic gates, the total area for a n-bit RCA is given by:

Tarea =

FAn−1︷︸︸︷
5A +

FAn−2︷︸︸︷
5A + · · ·+

FA0︷︸︸︷
5A = n× 5A (4.2)

4.1.2 Carry Select Adder

Based on the RCA structure, the carry select adder combines a block-based ap-

proach and the conditional sum principle to pre-compute slices k bits of the final result.

Each adder block is duplicated, and each replica has the same inputs except for the carry-

in. Then, a multiplexer selects which replica’s output will be copied to the adder output
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based on the carry-out of the last block. Assuming that all blocks have the same number

of bits, all the results will be ready simultaneously, resulting in a critical path composed

of a single k-bit adder and the following output selection circuits, as highlighted in blue

in Figure 4.2.

Figure 4.2: Structure of a fixed-group size carry-select adder

Source: The Author

According to Tyagi (1993), the carry select adder has a critical path complexity

proportional to O(n1/2) when the block sizes are set to the optimal size. Further, using

variable block sizes can improve performance when the gate delays are well characterized

at the design time. In this case, the first group has a small ripple carry adder. In contrast,

the subsequent groups may feature wider RCAs to match the output selection propagation

time, effectively reducing the computation delay.

4.1.3 Carry Look-Ahead Adder

Despite its small area, the ripple carry adder does not scale well in timing as the

operand sizes increases, due to the nature of its carry propagation path. Given that all

input operands’ bits are ready at a given time, the carry can be pre-computed to accelerate

the propagation path based on the following properties:

1. When two bits at the same weight i are equal to one, a carry-out is generated regard-

less of the carry-in value. This is the carry generate function that is implemented

as the logic AND between the input operands.

2. When only one of the inputs is equal to one, the carry-in will be propagated to the

carry-out. This is the carry propagate function that is defined as the logic XOR

between the input operands.

Adders that are implemented based on these functions belong to the carry look-

ahead adder (CLA) family, and they are able to dramatically reduce the time to complete



65

a sum. Adopting Gi for the generate function for the ith bit and Pi the propagate function

for the ith bit, Katz (1994, p.264) shows that “sum and carry-out can be expressed in terms

of the carry generate and carry propagate functions”:

Si =

Pi︷ ︸︸ ︷
Ai ⊕Bi⊕Ci = Pi ⊕ Ci (4.3)

Ci+1 = AiBi + AiCi +BiCi (4.4a)

= AiBi + Ci(Ai +Bi) (4.4b)

= AiBi + Ci(Ai ⊕Bi) (4.4c)

= Gi + CiPi (4.4d)

The logic transformation made from (4.4b) to (4.4c) is possible because the gener-

ate function will cover the results when bothAi andBi inputs are equal to one, eliminating

the possibility of two true inputs on the OR gate. These functions can then be arranged

recursively to parallelize the evaluation of each input carry which must arrive at the full

adder cells. Suppose a n-bit adder and assume that the first carry is given with the input,

the carry-in for each full-adder cell can be computed as follows:

c0 = Cin (4.5a)

C1 = G0 + P0C0 (4.5b)

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0 (4.5c)
...

Cn−1 = Gn−2 + Pn−2Cn−2 = Gn−2 + Pn−2Gn−3 + Pn−2Pn−3Cn−3 = . . . (4.5d)

Despite the speed advantage due to the parallelization of the carry computation

chain, the logic depth grows considerably for larger inputs, resulting in a huge die area

to accommodate the circuit. According to Katz (1994), as the inputs widen, more carries

need to be computed, requiring OR gates with an unfeasible number of inputs.

Hence, this baseline implementation of CLA is hardly used in modern circuits due

to their area inefficiency. Nevertheless, the parallel prefix computation is a strategy that

aims to mitigate the CLA computation issues since the carries “can be computed as a

chain of prefix operations” (KNOWLES, 2001, p.278). All parallel prefix-based adders

compose a new family of arithmetic circuits whose timing complexity is proportional to
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O(log n).

4.1.3.1 Kogge-Stone Adder

The implementation of all parallel prefix adders rely on the operator “o” described

in Kogge and Stone (1973), and is defined in (4.6) where (g, p) and (ĝ, p̂) are the generate

and propagate functions of bit i and bit i− 1, respectively. The final carry propagate and

generate values at the ith position are given by Gi and Pi, respectively, which rely on the

recursive concatenation of the operator o according to (4.6).

(g, p)o(ĝ, p̂) = (g + (pĝ), pp̂) (4.6)

(Gi, Pi) =

 (g1, p1) if i = 1

(gi, pi)o(Gi−1, Pi−1) if 2 ≤ i ≤ n
(4.7)

Due to the associativity of this operator, the function does not need to be calculated

sequentially. This operator, henceforth named black cell, is mapped to a hardware circuit

according to (4.8) and (4.9). Since the fundamental CLA equation has a linear recurrence

and all their input values are well-defined as a consequence of the existent PG functions,

they can be solved using the idea of recursive doubling introduced by Kogge and Stone

(1973).

Pout = PinP̂in (4.8)

Gout = Gin + (PinĜin) (4.9)

The Kogge-Stone adder relies on a carry computation tree composed of black and

white cells, whereas the latter ones are just signal buffers to transmit the values between

logic levels. As shown in Figure 4.3, this implementation aims to compute all the carries

as soon as possible, keeping a constant fanout for both black and white cells. Neverthe-

less, this constraint usually leads to increased wiring capacitance, demanding the insertion

of buffers to mitigate this problem (KNOWLES, 2001).

Given that this architecture features the maximum computation parallelism on the

carry tree, it represents the fastest binary adder architecture with a critical path propor-

tional to O(log(n)). However, this maximum speed is only theoretical, and it is hardly

achieved due to the massive hardware replication and the massive amount of interconnec-
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Figure 4.3: Carry tree of a Kogge-Stone adder

Source: The Author

tions, leading to increased capacitance and wire length caused by routing congestion.

Some variants of the Kogge-Stone try to mitigate the drawbacks of the original im-

plementation, and they mainly focus on two strategies. First, some architectures explore

higher-radix processors that compute the propagate-generate functions considering more

than two bits simultaneously. Another popular approach relies on computing fewer car-

ries, which leads to a sparse tree with fewer components whose outputs are fed to other

adders in a mixed architecture. The cells and connections highlighted in red in Figure

4.3 indicate the remaining components of a sparsity-4 Kogge-Stone adder, resulting in a

smaller circuit at the expense of a longer critical path.

4.1.3.2 Brent-Kung Adder

The Brent-Kung adder was proposed by Brent and Kung (1982), and it is an al-

ternative to the Kogge-Stone implementation, which focuses on circuit regularity and less

wiring congestion, that may improve the adder performance. The design relies on the

same white and black cells previously introduced to compose the carry computation tree,

which has two subtrees.

The first tree adopts a leaf-to-root approach like an inverted binary tree. In the first

tree level, the black cells are directly connected to the inputs. Then, at each subsequent

level, the black cells combine the pair of results computed on the previous level until the

tree is completely generated up to the last bit. From the properties of the binary tree, it is

straightforward to observe that all carries whose position is a power of two will have their

final values computed.

The second tree is responsible for computing the remaining carries using a root-

to-leaf approach. In this case, the tree root is located at the power of two nearest to
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the center. Then, the tree follows the same algorithm as the first tree. To illustrate this

operation, Figure 4.4 shows the complete carry tree for a 16-bit wide adder.

Figure 4.4: Carry tree of a Brent-Kung adder

Source: Adapted from (BRENT; KUNG, 1982)

Two fundamental properties are found on Brent-Kung adders. First, the number

of carry computation levels is equal to 2 log2 n−1, proving that the critical path increases

logarithmically with the input size. Further, each black cell’s fanout is constant and equal

to two, reducing the load requirements. Brent and Kung (1982, p.262) affirm that the area

occupied by this design is quasi-linear, that is, it increases proportionally to n× log n.

4.2 Parallel Binary Multipliers

The hardware implementation of a multiplier can be divided into three blocks, ac-

cording to Figure 4.5. The first block is the partial product generation algorithm. Then, as

these algorithms usually generate more than two multi-bit signals, they require a compres-

sion tree based on the carry-save scheme to reduce the partial products to only two values.

Since there are only two remaining values, the are recombined using a carry propagating

adder.
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Figure 4.5: General architecture for parallel binary multipliers

Inputs
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Source: The Author

4.2.1 Partial Product Generation Algorithms

Choosing the optimal partial product generation is quintessential as it has an enor-

mous impact on how the compression tree is built and the hardware associated with it.

Among the most common partial product generation algorithms is the Modified-Booth,

optimized Baugh-Wooley array, and the Radix-2m (COSTA; BAMPI; MONTEIRO, 2002)

for signed multiplication. Although these algorithms are conceived for signed inputs, they

can also compute unsigned operations is the input data is constrained.

4.2.1.1 Booth Multiplier

The first approach to compute signed multiplications was the Booth algorithm on

which “binary numbers of either sign may be multiplied by a uniform process that is

independent of any foreknowledge of the sign of these numbers” (BOOTH, 1951, p.1).

The Booth multiplier assumed that both input were represented in two’s complement.

However, this algorithm is not suitable for hardware as it requires the generation of partial

products, which must be multiplied by a non-power of two factor. This issue was solved

by Macsorley (1961), which proposed an algorithmic optimization by analyzing groups of

3 bits resulting in the multiples {0,±M,±2M} of the multiplicand. Hence, the number

of generated partial products is equal to dn/2e if n is taken as the size of the multiplier.

Further algorithm optimizations have been proposed to optimize the hardware re-
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alization of this multiplier. Bewick (1994) proposed a strategy for efficient sign propaga-

tion by adding three special bits to the first partial product, and two bits for the remaining

ones, effectively removing the entire MSB replication required previously. Based on this

strategy, Farooqui and Oklobdzija (1998) proposed a sign pre-computation technique,

which resulted in a constant (1010 . . . 01011) that should be inserted as a partial product,

requiring only the first partial product to be sign-extended by one bit.

However, none of these techniques addressed the problem inherent the negative

multiplicand multiples, which required that constant one was added on the LSB to cor-

rect the result as a consequence of the subtraction on two’s complement. Själander and

Larsson-Edefors (2008) introduced a solution to pre-compute the partial product LSB and

insert and additional signal on the next bit position, reducing the size of the final recombi-

nation adder. Figure 4.6 illustrates an 8-bit Booth multiplier with all the aforementioned

optimizations.

Figure 4.6: Modified-Booth multiplier with sign extension and LSBs pre-calculation

Source: (SJÄLANDER; LARSSON-EDEFORS, 2008)

4.2.1.2 Radix-2m multiplier

A Booth-inspired partial product generation algorithm is the Radix-2m, which was

proposed by (COSTA; BAMPI; MONTEIRO, 2002) and it relies on splitting the n-bit

input operands into groups of m bits that could be seen as individual multiplications.

Hence, the n-bit multiplier is seen as a sum of several multiplications ofm-bit digits where

each multiplication can be of three types: (i) unsigned×unsigned, (ii) signed×signed, and

(iii) signed×signed. The multiplications that operate over the W-m least significant digits

are unsigned while the remaining multiplications are signed, according to Figure 4.7. In

this work, the scope is limited to the Radix-4 (m = 2) multipliers, although higher values

of m follow the same approach.
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Figure 4.7: Radix-2m encoder distribution

Source: The Author

There are three encoder types to implement the digit multiplication. The Type-I

encoder (Figure 4.8a) implements the unsigned multiplication, and the Type-II (Figure

4.8b) encoder handles the signed×unsigned operation. Finally, the Type-III (Figure 4.9)

encoder implements the multiplication of the MSB digits, which have the sign bit, requir-

ing a more complex implementation. Note that only one Type-III encoder is required for

the Radix-2m regardless of the values of n and m. In all encoders, the A0 and A1 signals

represent any two consecutive bits on the multiplicand, whereas B0 and B1 represent any

two consecutive bits on the multiplier.

Figure 4.8: Type-I and II encoders on Radix-4 multiplier
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(b) Type-II encoder

Source: The Author

There are two types of partial products – Operand I and Operand II based on

the three encoders available for the Radix-2m multiplier. Originally, these operands were

combined using a chain of RCAs instead of employing a carry-save approach, as illus-

trated in Figure 4.10. The two LSBs of each adder (except the last one) are concatenated

with the two LSBs from Operand I to compose part of the final multiplication result.
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Figure 4.9: Type-III encoder on Radix-4 multiplier
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Source: The Author

Each operand has a different construction approach. The Operand I, for instance,

handle the unsigned×signed multiplication; hence it has n
m
−1 Type-I encoders (unsigned

operation) and one Type-II encoder (signed operation), as illustrated in Figure 4.12. Since

each encoder generates a 4-bit output for m = 2, the two output MSBs of encoder i is

combined with the two output LSBs of encoder i + 1 using ripple-carry adders. Two

exceptions arise in this operand: (i) the LSBs of the first Type-I encoded are directly

copied to the output, and (ii) the MSBs are combined with the carry-out from the previous

Figure 4.10: Partial product diagram for W=8 baseline Radix-4 multiplier

Source: The Author
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adder. There are n
m
− 1 Operand I partial products on a n-bit Radix-2m multiplier.

Figure 4.11: Internal structure of W=8 radix-4 operand I block

Source: The Author

The Operand II employs the same structure as Operand I, although it only handles

signed operations. Hence, it features a single Type-III encoder along with n
m
− 1 Type-II

encoders, as illustrated in Figure 4.12. The encoders’ outputs are combined exactly as

in Operand I. Regardless of the multiplier size, only one Operand II partial product is

generated.

Figure 4.12: Internal structure of W=8 radix-4 operand II block

Source: The Author

4.2.1.3 Baugh-Wooley Multiplier

Instead of recoding the partial products as in the Booth and Radix-2m multipli-

ers, the Baugh-Wooley algorithm aims for simpler hardware based on the unsigned array.

This scheme also considers both multiplicand and multiplier to be informed in two’s com-

plement representations, although the partial products are positive, resulting in a simpler

hardware (BAUGH; WOOLEY, 1973).

Reordering the partial products, Hatamian and Cash (1986) proposes a very reg-

ular structure to map this algorithm to hardware efficiently. Figure 4.13 shows the ar-
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ray structure of a Baugh-Wooley multiplier, where xn and yn are the multiplicand and

multiplier bits, respectively. Assuming A and X as the multiplicand and the multiplier,

respectively, of arbitrary sizes, their multiplication is given by:

P = A×X (4.10)

P = xn−1am−12
n+m−2 +

n−2∑
i=0

m−2∑
j=0

xiaj2
i+j − xn−12

n−1

m−2∑
i=0

ai2
i − am−12

m−1

n−2∑
i=0

xi2
i

(4.11)

The result obtained in (4.11) is obtained by applying the distributive multiplication

property to (4.10). The two subtractions can be eliminated using the negation property in

the two’s complement representation, resulting in a homogeneous circuit that uses only

adders. Hence, the multiplication can be described by:

2n−1

(
−2m + 2m−1 + x̄n−12

m−1 + xn−1 +
m−1∑
i=0

xn−1ȳi2
i

)
(4.12)

For optimal hardware implementation, Hatamian and Cash (1986) proposed a par-

tial product reordering, which leads to a very regular structure that disposes of the partial

products according to Figure 4.13. This scheme generates n partial products that can be

reduced using a carry-save tree. The lower partial product generation complexity leads to

a considerably larger compression tree.

Figure 4.13: Partial products layout for the Baugh-Wooley algorithm

Source: (HATAMIAN; CASH, 1986)
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4.2.2 Compression trees

Using binary adders to sum the partial products is not efficient in every aspect due

to the carry propagation. Wallace (1964) proposed an adder tree based on a redundant

representation (sum and carry) that operates without carry propagation, resulting in a

much faster multiplier. The most popular carry-save trees are the Wallace and Dadda,

both of them feature a latency that is logarithmically proportional to the number of partial

products.

4.2.2.1 Wallace Tree

This approach aims to compress the partial products as much as possible in each

level until there are only two rows of partial products to sum. The remaining signals

are ready to be recombined by a carry propagating adders. Considering this scheme, the

algorithm to generate such tree is as follows considering that only full and half adders are

available as compression cells:

1. Take any group of three bits with the same weight and sum them using a full adder.

If there are more bits of the same weight, group them with either a full or a half

adder.

2. Propagate the outputs for the next stage whereas the sum bit will have the same

weight i as the compressor inputs while the carry-out bit will have a higher weight

i+ 1.

3. If there is only a single bit left for a current weight, transfer it to the next level.

4. Repeat the steps above until there are no more than two bits left for any weight.

This algorithm is illustrated in Figure 4.14 for a generic 8 × 8 multiplier. Each

blue rectangle represents a compressor cell that can be either a half or a full adder whereas

each black dot represent either a signal from the partial product or an output of a previous

compression cell. There is no connection between compressors on the same compression

level, hence the critical path is given by the depth of the tree. In this case, the critical path

is exactly four full adder cells.
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Figure 4.14: 8× 8 multiplier with a Wallace compression tree

Source: The Author

4.2.2.2 Dadda Tree

The Dadda tree avoids the greedy approach taken in the Wallace tree as it aims to

reduce the number of operands in each stage using as few as possible compressor cells.

This algorithm, proposed by Dadda (1965), is based a geometric progression that dictates

the maximum number of summands on each stage of the tree. The available compres-

sor cells define the tree compression ratio, i.e., the ratio that the geometric progression

evolves. Considering that the full adder if the largest compression cell, the compression

ratio is equal to3/2, and the sequence would follow the given pattern:

Stage n︷︸︸︷
2 , 3︸︷︷︸

Stage n-1

,

Stage n-2︷︸︸︷
4 , 6︸︷︷︸

Stage n-3

,

Stage n-4︷︸︸︷
9 , 13︸︷︷︸

Stage n-5

. . . (4.13)

This algorithm is illustrated in Figure 4.15 assuming the same generic 8× 8 mul-

tiplier as above. In the first level of compression, the longest column has eight bits, thus

it has to be reduced to six bits to obey the progression shown above. For the subsequent

levels, the same approach is used. Compared to the Wallace multiplier, this scheme uses

less adders, resulting in a 26% smaller compression tree for an 8×8 multiplier. However,

the final propagating adder size grows from 11 to 14 bits.

4.2.2.3 High-order Compressors for Multi-Operand Circuits

The adder compressors proposed by Wallace (1964) relied on full- and half-adder

components, which could compress, at most, three inputs into two outputs. This carry-

save idea was explored to use higher-order adder compressor cells to improve circuit
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Figure 4.15: 8× 8 Dadda multiplier reduction tree

Source: The Author

speed, area, and energy consumption. The first compressor was presented in Weinberger

(1981), and it featured an arrangement to add four 1-bit inputs simultaneously. This struc-

ture was named 4-2 carry-save module, and it is composed of a combination of full adder

cells in truncated connection so that a fast compression is possible. Oklobdzija and Krish-

namurthy (2006) proposed for the first time a n-bit adder based on 4-2 adder compressors

whose structure is shown in Figure 4.16b. These circuits often require a larger silicon

area, but they benefit from a reduced dynamic power due to two characteristics:

• Well-designed compressors have limited critical path regardless of the bit-width

of the operands. Consequently, the synthesis tool does not need to increase the cell

strength to respect the timing constraints. This is particularly interesting for designs

like floating-point multipliers and high-precision circuits.

• The internal structure of adder compressors and the limited signal propagation

within the circuit are crucial factors to filter out spurious glitches that may occur

due to the unbalanced timing path existent within a circuit.

More recent works explored high-order adder compressors like 5-2, 7-2, 8-2, 16-2

and so on, with emphasis in low-power design. Figure 4.16 summarizes the implementa-

tion of some elementary adder compressors. It is worth noting that the full-adder structure

(4.16-a) is also known as the 3-2 compressor. In the 7-2 adder compressor structure pro-

posed by Rouholamini et al. (2007) the critical path is given by six XOR gates. The 7-2

compressor has seven primary inputs, two carry inputs (Cin), two carry outputs (Cout),

Sum and Carry output terms. Besides the XOR gates and MUX, the 7-2 compressor also

uses a carry generator module (CGEN).

Basic adder compressors can be combined to perform a larger number of simul-
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Figure 4.16: Adder compressors variants
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taneous additions. The 8-2 adder compressor, which allows the sum of up to 8 values

simultaneously, can be implemented with different internal combinations of basic adder

compressors. Recent works exploit four different internal structures for the hierarchical 8-

2 adder compressor using combinations of basic 3-2, 4-2, 5-2 and 7-2 adder compressors.

The four structures are shown in Figure 4.17.

Figure 4.17: Multiple 8-2 adder compressor structures
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The result value is available in two primary outputs (Sum and Carry) and up to

five carry outputs (Cout0-4). The number of carry inputs and outputs depend on the basic

adder compressors used to implement the 8-2 adder compressor. As an example, the 8-2



79

adder compressor composed of 7-2 and 3-2 adder compressors (Figure 4.17d) presents

less carry inputs (Cin0-2), and carry outputs (Cout0-2). This occurs because the internal

structure of 7-2 adder compressor is implemented with less input and output carries. The

final sum result for the 8-2 adder compressor is given by:

S = Sum+ 2(Cout0 + Cout1 + Cout2 + Cout3 + Cout4 + Carry) (4.14)

Figure 4.18 presents an addition of eight 8-bit values as an example. Note that

carry-propagating adder circuits are required to recombine the partial sums of previous

values (i.e. recombination line), since a Carry signal from the compressor n must be

added with the Sum signal of the compressor n+1 to generate the final sum (S) of bit n+1.

Figure 4.18: Sum of multiple 8-bit inputs
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4.3 Multiply-and-Accumulate (MAC) Units

Designing efficient MAC architectures have long presented several challenges that

hardware designers must overcome to embed them into real-world applications. The basic

MAC architecture includes a multiplier, an accumulator register, and an adder to sum

these values. Some MAC architectures send the register output to the partial products

compression tree to remove an additional carry-propagating adder (CPA) while others use

a dedicated adder for this final sum (ABDELGAWAD; BAYOUMI, 2007). Figure 4.19a

shows a basic MAC implementation where there are two CPAs, one to sum the partial

products and others to sum the multiplication result with the accumulator. Conversely,

Figure 4.19b embeds the accumulator directly into the compression tree, resulting in an

architecture that requires only a single CPA adder.
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Figure 4.19: Multiply-Accumulate Hardware Architecture

(a) Basic MAC Architecture (b) Fused Accumulator MAC Architecture

Source: (ABDELGAWAD, 2013)

Early works like Stelling and Oklobdzija (1997) explored how to build MAC ar-

chitectures with emphasis on speed efficiently. It is worth noting that the proposed design

did not include the accumulator register as it received three inputs to operate (A×B)+C.

Abdelgawad (2013) proposed a MAC unit with the accumulator value directly

integrated into the compression tree to avoid employing two carry-propagating adders.

Also, it featured a compression tree with adder compressors (see Section 4.2.2.3 for fur-

ther details). Compared to the basic architecture, the fused MAC presents power savings

up to 9% and delay improvement of 13%.

One of the earliest works to focus on the optimization of MAC units for CNN is

found in (GARLAND; GREGG, 2017). The authors proposed an optimized MAC for

convolutional neural networks based on weight sharing. This circuit counts each weight’s

frequency and accumulates the corresponding image value in a bin, replacing the multi-

plication logic by counters and selection logic. It contains b accumulators, one for each

weight bin. As the input pixels stream into the MAC, the pixel value is added to the bi

container, which corresponds to the weight it should multiply (Figure 4.20a). Once all in-

puts have been processed, the b accumulators are respectively multiplied by the associated
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weight values using a shared MAC unit (Figure 4.20b). The proposed MAC architecture

consumes 70% less energy than a standard implementation when applied in this type of

network.

Figure 4.20: Multiple computation phases on CNN-optimized MAC

(a) Phase 1: Weight frequency accumulation (b) Phase 2: Final MAC

Source: (GARLAND; GREGG, 2017)

4.4 Chapter Summmary

This Chapter presented a review on arithmetic circuits that are at the core of NN

hardware accelerators. Optimizing these circuits is of utmost importance for the quest of

energy-efficient accelerators for embedded devices. Recent works explored multioperand

arithmetic circuits and different data representation schemes as promising approaches to

build efficient NN execution kernels.
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5 RTLGEN FRAMEWORK FOR ARITHMETIC KERNELS EXPLORATION

Most arithmetic structures are based on mathematical equations that describe how

these modules are implemented, like carry-save adder trees. These equations often embed

recursive operations whose translation to hardware circuits is not straightforward for the

general case, i.e., for an arbitrary number of bits. Hardware description languages fail to

provide full support to describe this genericity, relying on advanced language constructs

that are often hard to understand and prone to errors. Further, despite the advancements

in interpreter and synthesis engines in current electronic design automation tools, not all

of them support these constructs, and the RTL interpretation may vary between vendors,

leading to unsatisfactory design results.

An efficient way to address this issue is to use hierarchical RTL designs based

on simple language constructions. The authors in Rocha et al. (2017) proposed a frame-

work named RTLGen that generates VHDL-based arithmetic circuits using a bottom-

up strategy where the base modules are built with explicit logical equations without

any advanced language features. The framework moves the design definition to an-

other working space in a higher abstraction level where all complex constructions can

be converted into multiple instantiations of simpler blocks, alleviating the burden on

the interpreters of EDA tools. All circuit designs are described in Python, exploring

all benefits of an object-oriented language, which is more readable and offers more re-

sources to cope with elaborate designs. The framework is freely available for use by the

community to generate custom arithmetic circuits on the following website: <http:

//lmgrocha.pythonanywhere.com>.

A key feature of RTLGen is that the generated circuits do not rely on any tech-

nology node, target platform, or synthesis tool. This interoperability is quintessential

for digital designers as it enables granular control of the circuit – mandatory in critical

applications like power-constrained environments and cryptographic circuits – and makes

seamless the transition from a prototype in an FPGA platform to an ASIC-based synthesis

flow.

Each generated circuit in RTLGen is self-contained, i.e., the generated file con-

tains all the necessary components, instances, and specifications in a hierarchical VHDL

design. This approach waives the necessity of custom libraries and constructs that deter-

mine the number of instances of a given module, signal width, among others, since all

these parameters are computed before the RTL file generation. Further, each circuit has

http://lmgrocha.pythonanywhere.com
http://lmgrocha.pythonanywhere.com
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an associated unit testbench for design verification and generation of support files for real-

istic power estimation in EDA tools. The design generation flow of RTLGen is illustrated

in Figure 5.1 for a given set of architecture parameters.

Figure 5.1: Circuit generation flow of the RTLGen
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5.1 Framework architecture

The RTLGen framework is divided into front- and back-end engines to generate

reusable HDL-described circuits. This modularity has two key benefits: (a) it simplifies

the framework extension to support new features and design constructs, and (b) it provides

a simple and usable interface to generate and reuse the arithmetic circuits.

5.1.1 Back-end engine

The RTLGen back-end engine provides all the VHDL language constructs to de-

scribe the architectures in terms of logical equations, components, architectures, and en-

tities. It also manages the integration of previously built components like partial product

encoders, compression trees, carry propagating adders, and others into new designs, solv-
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ing all dependencies to ensure that the RTL code of all modes will be properly embedded

into the final design file. This engine is composed of four modules (CodeGenerator, Op-

erationsCore, ComponentCore, VerificationCore) that are linked according to Figure 5.2.

The VerificationCore will be explored in Section 5.1.2.

Figure 5.2: Back-end framework architecture
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The OperationsCore module maps all the VHDL constructs linked to combina-

tional and sequential statements – logic equations, signal attributions, conditional state-

ments, register declarations, and others – into Python classes. Internally, it manages input

and output linking, multiple bit-width operands, and signal slicing before the RTL gen-

eration. There are three base classes that implement these functionalities: Signal, Oper-

ation and Condition. The Signal class is a placeholder for all circuit signals, while the

Operation class implements all basic functionalities common to all combinational and

sequential operations. Finally, the Condition class offers the foundation for all condi-

tional statements, both inside and outside process statements. All these classes are further

specialized to implement the particular functionalities of other VHDL constructs.

As the basic building blocks are created using the logical equations – a full adder,

for instance – they can be reused in upper-level building blocks as simple instantiated

objects. This procedure is managed by the ComponentCore module, which maps the

previously conceived designs (full adders, carry propagating adders, compressors, etc.) as

well as specific technology-related cells (isolation cells, mixed-signal components, etc.)

into components. This mapping procedure translates each component into a Python class

that can be further instantiated in any other portion of the circuit. All components are

derived from the Component base class, which provides auxiliary functions required for

component validation and instantiation, and each specialized class is a component that

implements a specific architecture.

Once a component is instantiated in Python, the ComponentCore module manages



85

the procedures to instantiate the component on the RTL design. First, it ensures that the

interface is properly linked, considering that the signals might have different bit-widths.

It can also compute the number of modules to be instantiated when there is a bit-width

mismatch between the linking signal and the interface. When the component has an

associated RTL, this module ensures that the component definition is included in the final

circuit design file.

All VHDL-based designs must have an entity, for interface definition, and an ar-

chitecture that describes all the circuit functionality with its operations and components.

The CoreGenerator module manages the link between the design architecture and the

associated entity, and it handles the integration between the design and the testbench gen-

eration. The class CodeGenerator is the base class for each type of arithmetic circuit

(adder, multiplier, MAC), and it internally generates the RTL code by sequentially check-

ing all the operations and components belonging to the associated architecture.

Therefore, the CoreGenerator module has four primary responsibilities. First, it

has to declare and instantiate all components used in the design, ensuring that all depen-

dencies are met, and all components are appropriately instantiated and declared. Then,

it has to declare all the internal signals used in operations and components, and it has to

declare all combinational and sequential operations contained in the design model. Fi-

nally, it has to create and instantiate the test mechanism according to the design-specific

parameters like test type, data source, and others.

5.1.2 Verification module

The RTLGen framework also offers an automatic unit testbench generation mod-

ule (VerificationCore) which creates SystemVerilog test files based on the state-of-the-

art Universal Verification Methodology (UVM) (ACCELERA ORGANIZATION, 2012).

UVM is an open-source standard verification methodology widely supported by all major

EDA tool vendors, and it enables creation interoperable and reusable verification IP and

unit testbenches. Further, these unit tests can be configured to dump the switching activity

into a specific file during the design simulation, which can be extremely helpful in power

estimation planning procedures on the synthesis flow.

This module provides the functionalities to create the required components of a

UVM-based verification unit. It takes as inputs a design previously built along with a

set of pass/fail equations and the stimuli generation method. The module has two fac-
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tory classes known as BenchInterface and BenchStimulus. The former manages the link

between the VHDL-written circuit and the verification core written in SystemVerilog. It

also controls whether or not the dump files will be created during the simulation. Con-

versely, the latter manages the implementation of the verification procedures according to

the specified tests, and the generation/loading of the input stimulus for the design under

test (DUT).

This approach simplifies the circuit verification as the conditions for the pass/fail

tests can be declared in terms of standard SystemVerilog arithmetic operations (multipli-

ers, adders, etc.) as well as in terms of direct comparison with golden values stored in

external files generated by other applications or models. Support for external stimuli files

is useful for non-standard operations like multiply-accumulate, approximate adders and

multipliers, modular arithmetic, and others. Likewise, the external stimuli may contain

values from real-case vector-like images, videos, and waves, which are needed to charac-

terize the target design. Therefore, the verification module offers three test strategies:

• All-automatic strategy: the simulation tool randomly generates the input stimuli.

The user determines the number of input vectors, and the pass/fail equations use

these values to compute the golden result to compare with the current circuit output.

• Semi-automatic strategy: the input stimuli are gathered from an external text file.

These values are used to compute the golden result according to the pass/fail equa-

tions used for comparison with the circuit output. In this case, the simulation tool

only needs to compute the golden result.

• Manual strategy: both the input stimuli and golden results are stored in external

files. The pass/fail test only compares the current circuit output with the expected

value. In this case, the simulation tool does not need to perform any computation.

When the testbench generation is called, the framework generates two files: (a) the

interface, and (b) stimuli. The interface file instantiates the DUT, binding its inputs and

output to the stimuli generator. It also manages the clock generation, which is parameter-

ized, a fundamental aspect for post-synthesis simulations where timing restrictions apply.

Conversely, the stimuli file creates the UVM environment and integrates the pass/fail tests

according to the selected test strategy. This file is also responsible for providing either the

external stimuli reading mechanism or routines to generate random input vectors.
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5.1.3 Front-end engine

As the basic modules like full adders and multipliers encoders are described, the

front-end engine provides a wrapper with the required functionalities to build more com-

plex designs and the associated testbenches. The main feature of this engine is the bit-hash

data structure – inspired on the work presented in (BRUNIE et al., 2013) – that holds a

list of signals in specific weight indexes, handling all links among submodules used in

the design. This bit-hash structure is based on a weight-aligned view where each column

represents a bit weight, which increases from right to left. Although the bit-hash is not

required for all arithmetic circuits, it provides a flexible and straightforward approach to

manage all the interconnections efficiently, especially in multipliers and adder compres-

sors.

Figure 5.3: Weight-aligned bit-hash for signal management
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Figure 5.3 illustrates how the bit-hash structure is populated based on an 8 × 8

unsigned array multiplier, which generates eight partial products of 8 bits. Each red circle

represents a bit of a given partial product, and it is included in a list of signals on column

i, representing the weight 2i.

Algorithm 1 demonstrates the overall flow for generating a multiplier on the RTL-

Gen framework using the functions provided by the front-end. In this case, the generation

procedure requires a list of input operands (name and bit-width), the type of partial prod-

uct generator, the compression tree type, and the desired carry propagating adder. In the

end, the framework will output the RTL file containing all the statements.

The base design structures (entity and architecture) must be initialized (line 2)

before the circuit can be defined. Then, line 2 creates the hardware that implements the

partial product generation algorithm selected by the user (PPGAlg), and it populates the
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Algorithm 1 Multiplier Generation Algorithm
Input: List of operands (A, B) and the desired algorithm for partial product generation,

compression tree and carry propagating adder;
Output: Data structure containing all VHDL components and operations to realize the

multiplier;
1: Multiplier← new Architecture
2: PPG← GeneratePP(PPGAlg, A, B)
3: BitHash← GetBitHash(PPG)
4: for Operation, Component in PPG do
5: AddOperation(Multiplier, Operation)
6: AddComponent(Multiplier, Component)
7: end for
8: while max(LenCol(BitHash)) > 2 do
9: Tree← CompressTree(CompressAlg, BitHash)

10: BitHash← GetBitHash(Tree)
11: for Operation, Component in Tree do
12: AddOperation(Multiplier, Operation)
13: AddComponent(Multiplier, Component)
14: end for
15: end while
16: Adder← new CPAdder(AdderType,BitHash)
17: AddComponent(Multiplier, Adder)

The Multiplier structure may now be printed to a regular text file that will contain the
VHDL description.

bit-hash accordingly. Once the partial products are generated, the bit-hash is recuperated

(line 3), and the operations and components that belong to the partial product generator

are added to the top-level architecture (lines 5 and 6).

Since the bit-hash has columns with more than two signals, it must be reduced

before the carry propagating adder can be instantiated. Hence, lines 8 to 15 iterates over

the data structure until all columns have, at most, two elements. The compression (line 9)

applies a carry-save-based tree compression algorithm, like Wallace or Dadda, according

to the specified parameter (CompressAlg), and it returns the newly added operations and

components for that compression level. The bit-hash is updated (line 10) with the new

version containing the remaining signals. Once the compression algorithm is finished,

the carry propagating adder is created and instantiated in lines 15 and 16, respectively,

according to the AdderType parameter. After all these steps, the final multiplier design is

ready to be exported to a text file.

In each tree compression iteration, the CompressTree function executes several

internal procedures. First, it selects the signals that will be removed from the bit-hash

and connected to the compressor cell. The signal selection depends on the selected tree
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compression algorithm. The signals not selected in this step are ignored and kept on the

bit-hash, preventing carry propagation within the same stage. This approach guarantees

that the delay for each compression level is exactly one compressor cells. Once these

steps are done, the compressor outputs are inserted into bit-hash to be properly connected

on the next iteration or CPA connection.

5.2 Framework Evaluation

Since RTLGen embeds a UVM-based verification core, all generated circuits are

guaranteed to be functionally correct. Therefore, the framework can only be evaluated

in terms of improvements in the project time-to-market and team resources optimization.

The framework benefits are evaluated considering a small set of multipliers, limiting to

three partial product generation algorithms (Modified-Booth, a modified version of the

Radix-2m(COSTA; BAMPI; MONTEIRO, 2002) and Baugh-Wooley), two compression

algorithms (Wallace and Dadda), and three recombination line adders (synthesis tool-

inferred adder, carry select and Kogge-Stone). The tool-inferred multiplier based on the

* VHDL operator is also included in the comparison.

Some arithmetic architectures are more suited for smaller data sizes due to their

complexity, while others may have an excellent performance in larger datapaths due to

their scalability. The multipliers mentioned above were generated for inputs with 8, 16,

32, and 64 bits to cover all possibilities. Performing this circuit generation task by hand

is impractical due to the number of designs (72, in total) even for an experienced digital

designer. This task is solved in RTLGen using iterative loops, and it is executed in a

short period with few resources. This design exploration has main usages: (a) it enables

the analysis of multiple architectures under the same constraints, and (b) it helps on the

characterization of standard cell libraries.

5.2.1 Power Extraction Methodology

Despite the advances in EDA tools, their power estimation methodology on syn-

thesized netlists is far too pessimistic as it assumes a probabilistic switching activity on

all nodes, and it does not model the effects of signal propagation on power dissipation.

This issue is solved by exploring the interoperability of the testbench generated by the
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RTLGen framework using the all-automatic testbench generation strategy. The synthe-

sized netlist is simulated with the input vectors generated by the testbench, stimulating

all circuit nodes. This simulation also considers the interconnection delay among gates

through the Standard Delay Format (SDF) file generated by the synthesis tool. The cir-

cuit activity is dumped by the simulation tool into stimuli files like Value Change Dump

(VCD), Toggle Count Format (TCF), or Switching Activity Interchange Format (SAIF).

These files are fed to the synthesis tool along with the previously synthesized netlist for

the accurate power estimation.

Figure 5.4: Synthesis and simulation flow

Toggle Count
Format (.tcf)

ST Microelectronics 65nm Library (.lib)

Testbench (.sv) and
Library Verilog (.v)

Genus
Synthesis

Source: (PAIM et al., 2019a)

This methodology is similar to the one presented in Paim et al. (2019a). Initially,

all RTL designs are synthesized using the Cadence Genus Synthesis (CADENCE, 2018)

tool with the Physically-Aware Layout Estimation (PLE) mode enabled. This mode per-

forms primitive floorplanning to estimate the wire length to connect all the digital cells,

and it is quintessential to take into account the effects of these wires in terms of the criti-

cal path, area, and power consumption. The netlist simulation is executed by the Cadence

Incisive Simulation Tool. The overall flow is illustrated in Figure 5.4.
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5.2.2 Multipliers Architectural Exploration with RTLGen: Synthesis Results

In this subsection the results obtained by synthesizing dozens of multipliers (of

8×8 to 64×64) is being demonstrated. All multipliers were generated by either RTLGen

or by the commercial tool own inferred multiplier for a given frequency – this latter for

the sake of comparison. All circuits were synthesized with an ST Microelectronics 65 nm

standard cell library operating at 1.0V supply voltage. A size-based sweep methodology

is adopted to find the maximum operating frequency for each input bit-width. Since the

main goal is to explore the RTLGen framework’s versatility, the synthesis tool is set to

use the standard synthesis run parameters.

Table 5.1 shows a comparison of all multiplier versions for multiple input bit-

widths whose results were obtained at slack zero (maximum operating frequency). The

table considers the maximum operating frequency (Fmax), circuit cell area (C. Area),

dynamic power dissipation (D. Power), and total power dissipation (T. Power) for all the

combinations of partial products processing, compression trees, and carry propagating

adders. The synthesis tool multipliers are used as baseline models for comparison.

Although the partial product algorithms substantially impact the quality of results

(QoR) of the synthesized circuit, it is overwhelmed by the compression tree selection

in all aspects (speed, area, and power). For instance, all multipliers using Dadda trees

presented better results than their Wallace counterparts in almost all cases. On average,

Dadda-based circuits offer 3.3% higher Fmax and 9.3% smaller cell area even at higher

speeds.

Despite the proposal of newer partial product encoders, the Modified Booth mul-

tiplier outperformed all the considered algorithms in every aspect. This outstanding per-

formance, compared with its peers, is due to the high level of optimization integrated into

this architecture, from LSB pre-computation to sign propagation optimization. Despite

the original claims in Costa, Bampi and Monteiro (2002), the Radix-4 showed the worst

performance because it lacks optimization.

Theoretically, all Kogge-Stone-based multipliers should present the highest max-

imum operating frequencies. However, this assumption does not hold as the wire effects

are considered by the synthesis tool, so the wire congestion can be a bottleneck that pe-

nalizes the circuit, as seen in the specific case of Table 5.1. For instance, the 16-bit Booth

multiplier using Dadda tree and carry select adder is slightly faster and is 5% smaller than

the version using the Kogge-Stone adder.
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Table 5.1: Circuit Speed, Area and Power Dissipation Comparison @ Maximum Fre-
quency and Worst-case PVT conditions

Wallace Tree Dadda Tree

Size Mult. Adder Fmax C. Area D. Power T. Power Fmax C. Area D. Power T. Power.
(MHz) (µm2) (µW) (µW) (MHz) (µm2) (µW) (µW)

8× 8

Array-Uns
Tool 452.7 1890.2 749.0 751.5 499.7 1962.0 917.7 920.2

C-Select 451.3 2096.1 823.6 826.5 485.8 2212.6 1012.8 1015.8
K-Stone 451.8 2226.6 870.4 873.5 412.1 1855.4 721.8 724.2

M-Booth
Tool 462.5 2450.8 1158.1 1161.7 501.0 2134.6 1273.7 1276.7

C-Select 467.3 2647.3 1243.6 1247.6 497.2 2260.4 1171.5 1174.7
K-Stone 475.3 2840.8 1252.5 1256.7 495.7 2435.2 1263.7 1267.3

Radix-4
Tool 471.7 3571.4 1372.8 1378.0 475.0 2993.1 1195.9 1200.0

C-Select 443.4 3138.2 1177.5 1181.8 452.0 2752.9 1121.8 1125.6
K-Stone 454.5 2918.2 1129.9 1134.0 476.2 3288.0 1243.8 1248.6

B-Wooley
Tool 451.8 1763.8 803.7 806.0 489.6 2068.0 979.0 981.7

C-Select 452.2 2135.6 957.6 960.6 469.6 2126.3 1001.4 1004.3
K-Stone 454.5 2032.2 945.7 948.6 463.1 1966.6 913.9 916.5

S. Tool N/A 401.7 1612.0 709.5 711.6

16× 16

Array-Uns
Tool 380.5 8904.9 2531.5 2542.8 383.3 7100.1 2274.1 2282.5

C-Select 352.4 9483.8 2577.6 2589.8 356.4 7664.8 2221.5 2230.8
K-Stone 357.1 8637.2 2356.5 2367.4 375.5 8087.0 2547.4 2557.5

M-Booth
Tool 396.9 8091.7 2898.2 2909.6 403.0 8522.3 3282.8 3294.6

C-Select 392.8 9111.4 3265.4 3278.4 398.1 8263.8 3202.1 3213.9
K-Stone 390.2 9571.1 3411.4 3425.2 395.1 8700.1 3207.9 3220.1

Radix-4
Tool 365.0 12600.1 3395.8 3412.1 365.4 10657.4 3161.4 3174.7

C-Select 357.1 13119.6 3432.7 3450.0 366.5 12060.4 3417.9 3433.7
K-Stone 352.4 12679.2 3381.6 3398.1 367.8 12212.7 3478.1 3494.0

B-Wooley
Tool 381.3 9107.3 2633.1 2644.7 374.4 6505.7 2151.0 2158.5

C-Select 366.0 9594.4 2789.6 2801.9 372.1 7911.3 2532.3 2542.2
K-Stone 369.3 9814.0 2794.1 2806.9 370.4 7437.6 2369.6 2378.5

S. Tool N/A 395.2 7142.2 2684.2 2693.9

32× 32

Array-Uns
Tool 318.1 35870.1 7845.9 7890.1 322.8 28901.1 7288.1 7321.3

C-Select 290.9 35885.2 7230.9 7274.4 297.9 31844.8 7165.4 7203.7
K-Stone 292.6 36265.3 7264.9 7308.5 316.2 34193.1 8179.1 8220.5

M-Booth
Tool 321.4 29599.4 8119.4 8159.4 331.5 26371.3 7755.7 7789.5

C-Select 308.8 31203.6 8105.6 8149.0 322.6 28861.6 8008.7 8048.3
K-Stone 311.3 31944.6 8241.3 8284.6 324.5 29484.5 8636.5 8675.6

Radix-4
Tool 300.2 44667.0 9564.8 9618.6 293.8 36141.6 8164.8 8204.8

C-Select 275.5 43820.4 8702.3 8754.7 289.6 40287.0 8973.6 9021.1
K-Stone 285.3 43739.8 8921.2 8973.0 293.2 40943.2 9123.8 9172.1

B-Wooley
Tool 311.1 35196.2 7586.0 7629.1 325.7 30972.8 7771.0 7807.7

C-Select 283.1 34287.8 6810.8 6852.2 298.1 32492.7 7336.2 7375.3
K-Stone 282.6 32685.1 6530.9 6570.1 318.2 34278.9 8238.2 8280.2

S. Tool N/A 309.3 22642.9 6596.9 6614.5

64× 64

Array-Uns
Tool 267.1 133899.5 23567.4 23725.3 277.2 107101.3 20835.5 20954.0

C-Select 238.1 128600.2 19900.2 20049.4 250.0 110924.8 19177.5 19300.1
K-Stone 259.7 139051.6 23674.0 23838.7 272.3 117946.4 23352.0 23486.3

M-Booth
Tool 268.9 102998.0 21533.9 21663.3 281.3 95656.1 22675.2 22791.1

C-Select 243.7 104598.0 19983.4 20115.8 255.7 98441.2 20418.2 20543.2
K-Stone 260.6 109949.3 22333.9 22472.3 268.9 99602.4 22138.7 22262.3

Radix-4
Tool 262.1 163242.7 29093.1 29284.9 258.1 145539.7 26902.6 27067.9

C-Select 246.1 172206.8 28994.0 29202.1 242.5 159011.8 26542.3 26729.1
K-Stone 258.2 177336.1 32195.2 32406.6 257.4 168142.0 31122.2 31321.4

B-Wooley
Tool 267.3 128695.8 22744.6 22894.6 281.6 114199.8 23171.1 23301.5

C-Select 243.5 130369.7 20772.5 20925.5 250.0 113492.1 19598.3 19726.8
K-Stone 254.2 129878.8 21729.9 21881.4 270.0 115556.5 22140.9 22270.7

S. Tool N/A 267.5 85302.4 18903.8 19004.9

Source: The Author
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Table 5.2: Synthesis QoR Comparison at same frequency of operation.
Wallace Tree Dadda Tree

Size Mult. Adder C. Area D. Power T. Power C. Area D. Power T. Power.
(µm2) (µW) (µW) (µm2) (µW) (µW)

8× 81

Array-Uns
Tool 1566.8 595.4 597.3 1635.4 601.0 603.0

C-Select 2057.1 761.4 764.2 2225.6 774.9 778.0
K-Stone 1880.8 674.7 676.9 2350.9 727.3 730.6

M-Booth
Tool 1603.2 675.8 677.7 2261.0 888.9 892.0

C-Select 2195.4 941.7 944.7 2478.3 994.9 998.3
K-Stone 2019.7 812.2 814.7 2516.3 954.3 957.9

Radix-4
Tool 2136.7 773.6 776.2 2724.3 889.0 892.6

C-Select 2619.8 1037.0 1040.4 3125.2 1134.4 1138.8
K-Stone 3086.7 1062.7 1066.7 2944.2 1017.9 1021.9

B-Wooley
Tool 1694.2 669.9 671.9 1711.8 720.2 722.5

C-Select 2160.6 924.3 927.3 2183.0 826.9 829.8
K-Stone 2050.4 788.5 791.2 2433.1 815.7 819.2

S. Tool N/A 1663.5 814.3 816.5

16× 162

Array-Uns
Tool 4346.7 840.6 844.6 4599.4 786.3 790.2

C-Select 4765.3 933.7 937.8 5181.8 844.1 848.8
K-Stone 3933.3 872.7 875.0 4397.6 783.7 786.6

M-Booth
Tool 4318.1 1072.1 1076.1 4694.6 1123.1 1127.6

C-Select 4705.0 1176.5 1180.7 4887.5 1102.7 1107.2
K-Stone 4471.0 1121.0 1124.3 4784.5 1223.0 1226.9

Radix-4
Tool 5542.2 1001.4 1006.0 6408.0 1031.8 1037.9

C-Select 6128.7 1055.9 1061.5 6526.5 1081.2 1087.1
K-Stone 5386.7 1034.3 1037.7 5303.5 1029.7 1032.9

B-Wooley
Tool 4339.9 814.4 818.0 4637.9 795.4 799.3

C-Select 4585.9 870.7 874.5 5157.9 861.8 866.5
K-Stone 4001.9 909.9 912.3 4422.6 815.6 818.5

S. Tool N/A 4004.0 934.6 938.4

32× 323

Array-Uns
Tool 13600.1 1535.8 1543.7 15838.2 1604.2 1615.2

C-Select 16759.6 2120.6 2133.4 18066.4 1825.7 1840.1
K-Stone 14791.4 2344.6 2352.6 15358.2 1972.4 1980.6

M-Booth
Tool 16138.2 2045.9 2059.5 16860.0 2275.0 2289.4

C-Select 17155.3 2736.0 2751.0 18426.2 2485.7 2502.6
K-Stone 16293.2 2952.7 2964.8 17084.1 2640.7 2653.3

Radix-4
Tool 18439.2 1867.0 1877.3 19914.4 1912.3 1925.0

C-Select 21792.2 2176.3 2194.0 22954.4 2238.1 2256.7
K-Stone 19338.8 2480.2 2490.2 19615.4 2198.2 2208.2

B-Wooley
Tool 13229.8 1565.5 1572.7 15778.4 1596.1 1607.0

C-Select 16574.5 1921.3 1933.9 18015.4 1840.8 1855.2
K-Stone 14455.5 2328.1 2335.6 15116.9 1978.5 1986.5

S. Tool N/A 13136.2 3088.0 3098.9

64× 641

Array-Uns
Tool 51385.9 4012.2 4038.2 54114.3 4132.3 4160.6

C-Select 64745.7 5061.8 5111.1 66808.6 4800.7 4851.4
K-Stone 54457.0 5780.3 5807.1 56538.5 5226.9 5254.9

M-Booth
Tool 58032.0 6450.0 6495.0 64734.3 5765.4 5820.4

C-Select 64599.1 6934.9 6991.5 69560.9 6523.5 6587.4
K-Stone 63822.7 8074.5 8123.3 62884.6 7570.1 7616.8

Radix-4
Tool 70862.5 4695.7 4734.2 72205.6 4660.5 4701.8

C-Select 86803.6 6144.1 6210.1 85311.2 5740.2 5803.9
K-Stone 73161.9 6452.3 6488.9 73372.5 5977.2 6013.8

B-Wooley
Tool 51506.5 4158.7 4185.0 54276.0 4054.3 4082.6

C-Select 63635.5 4849.8 4896.9 66435.2 4820.7 4870.4
K-Stone 54552.2 5767.3 5794.2 56642.0 5170.1 5198.2

S. Tool N/A 56331.6 16262.2 16317.3
1 Target frequency 400 MHz 2 Target frequency 200 MHz 3 Target frequency 133 MHz
4 Target frequency 100 MHz

Source: The Author
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It is worth mentioning that a direct comparison of power and area in Table 5.1

is not fair. The multipliers at higher frequencies not only will require larger cells to en-

sure the transition time, but also the dynamic power is directly proportional to the clock

frequency. Therefore, each group of multipliers with the same input bit-width was syn-

thesized, aiming at a specific operational frequency. The target synthesis frequencies for

multipliers with input sizes 8, 16, 32, and 64 bits are 400 MHz, 200 MHz, 133 MHz, and

100 MHz, respectively. The selected frequencies are lower than the maximum attainable

frequencies for two reasons: first, it reduces the overall circuit fan-out, ensuring that all

circuits respect the timing constraints. These results are shown in Table 5.2 and indicate

the cell area (C. Area), dynamic (D. Power), and total power (T. Power) dissipation for

each multiplier. In all cases, the tool-inferred multipliers are outperformed by all RTLGen

designs in all aspects.

Results in in Table 5.2 shows the same tendencies as the ones presented in Ta-

ble 5.1. For instance, Dadda-based multipliers outperform Wallace-based multipliers in

nearly all situations. The RTLGen benefits are evident, especially in higher bit-width

multipliers (32 and 64 bits) as the synthesis tools endeavor does not lead to good results

in that particular frequency range. In the case of the 32-bit tool-inferred multiplier, the

Baugh-Wooley circuit with Wallace tree and a tool-inferred adder dissipates 48% less

power with an area penalty about 20%. For the 64-bit version, the power dissipation sav-

ings are even more substantial as the tool-inferred multiplier dissipates nearly four times

more than the best circuit generated by RTLGen. In this case, the best result is achieved

by a Baugh-Wooley partial product generator associated with a Dadda compression tree

and a tool-inferred adder.

The flexibility, extensibility, and interoperability offered by RTLGen along with

the promising results, indicate the framework efficiency when determining the most suit-

able architecture for a constraint set. Further, most EDA tools do not focus on offering an

optimized mapping method for multiplier circuits, which may negatively impact the QoR

in larger projects.

5.3 Case study: optimized Radix-2m multiplier

The flexibility of RTLGen allows the optimization of state-of-the-art arithmetic

operators. As a case study, the Radix-2m multiplier is a suitable choice for optimization

as recent works like Pieper, Costa and Monteiro (2013) and Martins, Fonseca and Costa
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(2015) do not propose an efficient sign propagation, a key element on multipliers’ perfor-

mance. The proposed architectures rely on replicating the most significant bit to match

the alignment of partial products as well as intermediary ripple-carry adders on the partial

product generation, which severely increases the circuit’s critical path.

5.3.1 Efficient Signal Extension Method for Radix-2m Parallel Multiplier

All Radix-2m multiplier architectures proposed so far have limited power effi-

ciency and maximum operating frequency due to the adoption of internal RCAs and naïve

sign-extension. Hence, this work proposes a suitable optimization strategy to improve

the circuit QoR based on two approaches: (i) replacement of all intermediary RCAs

for a carry-save approach, allowing the adoption of a compression tree, and (ii) pre-

computation of the sign bits to avoid the MSB replication. This optimization targets

Radix-2m multipliers for m = 2, although this strategy can be scaled for other values of

m.

Removing the intermediary RCA requires aligning all encoder outputs according

to their respective bit weight, as illustrated in Figure 5.5 for an 8-bit multiplier. Note

that only the bits represented by a black square need to be extended as they convey the

sign information for that particular operand. This approach can be directly mapped to

the bit-hash structure on RTLGen to build a compression tree based on Wallace or Dadda

algorithms. Although the RCA substitution for a compression tree leads to a smaller area

and critical path due to fewer components, it still requires replicating the MSB of the

signed encoders.

x = −xn−1 +
n−2∑
i=0

xi2
−i (5.1)

(−xn−1) + 1− 1 = (1− xn−1)− 1 = ¯xn−1 − 1 (5.2)
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Figure 5.5: Weight-aligned partial products without RCAs
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The sign bit extension can be optimized by exploring the properties of the two’s

complement representation (5.1) based on the approach adopted by Farooqui and Oklob-

dzija (1998). In this case, all signed partial products are assumed to be negative, according

to (5.2), so their representation has an infinite sequence of ones from right to left starting

on the negated version of the MSB. If the partial product is negative, the sum between

the sequence of ones and the partial product will remain unchanged as the negated MSB

will be zero. On the other hand, if the partial product is positive, the negated MSB will be

one that will eliminate the entire sequence of ones due to the carry propagation. Accord-

ing to the two’s complement representation, this sequence of ones can be represented as

−1 = 111 · · · 11. This process is illustrated in Figure 5.6a.

Once the sign extension is written in terms of −1, it must be further simplified

to reduce the number of constant terms. The following steps give the complete sign

extension algorithm:

1. Negate the MSB of the signed partial products and add a −1 element on the same

weight position. Keep in mind that this step does not introduce any discrepancy to

the result.

2. Starting from the least significant bit to the MSB, start removing the−1s according
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Figure 5.6: Sign extension optimization on Radix-4 multiplier
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to rules 3) to 5).

3. If there are two −1 values on weight i, remove these terms and add a −1 on weight

i+ 1 since −1 + (−1) = −2 (111 · · · 10b).

4. If there is only one −1 element on weight i, substitute it for a 1 and propagate a −1

to the next weight.

5. If there are multiple 1, sum them and propagate the carry accordingly to reduce the

number of constants and, consequently, the hardware size.

6. Repeat steps 3) to 5) for weight i until all −1 have been cleared.

7. Once weight i is cleared, move to next weight until all positions have been pro-

cessed.

8. If there are constants (−1, 1) to the left of the MSB, ignore them to avoid useless

computation.

The multiplier with optimal sign extension and minimal constant insertion is shown

in Figure 5.6b, considering 8-bit inputs. All sign bits are negated (black squares with a top

bar), requiring seven additional NOT gates, which can be incorporated directly into the

encoders. Finally, the constants can be seen as an additional partial product represented

as “0010110”, although the zeros are ignored since they do not convey any information

for the circuit.
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Table 5.3: Circuit Area and Power Dissipation Comparison at Maximum Speed
8 bits 16 bits 32 bits 64 bits

Multiplier Max Freq. C. Area T. Power E/op Max Freq. C. Area T. Power E/op Max Freq. C. Area T. Power E/op Max Freq. C. Area T. Power E/op
(MHz) (µm2) (µW) (pJ/op) (MHz) (µm2) (µW) (pJ/op) (MHz) (µm2) (µW) (pJ/op) (MHz) (µm2) (µW) (pJ/op)

NR Wallace 344.9 2075.8 645.8 1.9 196.2 6716.3 1066.1 5.4 109.9 23562.8 1938.6 17.6 57.1 78194.5 3353.9 65.6
NR Dadda 357.1 2033.7 674.6 1.9 208.3 6627.9 1108.3 5.3 111.1 20803.6 1831.3 16.5 57.8 75280.9 3376.2 58.4

NR-SO Wallace 344.8 1947.9 638.4 1.8 196.0 6113.1 996.8 5.1 109.9 21002.8 1780.6 16.2 57.8 69218.2 2929.4 50.7
NR-SO Dadda 357.1 1878.2 679.6 1.9 208.3 5975.8 1082.1 5.2 111.1 18092.4 1683.6 15.2 57.8 65187.2 2887.8 50.0

Baseline 302.8 2333.8 929.7 3.1 149.3 8006.4 914.6 6.1 76.9 32765.2 2513.0 32.7 38.3 128500.8 8840.9 230.8

Source: The Author

5.3.2 Performance evaluation

The RTLGen framework was set to generate three versions of the Radix-4 multi-

plier to assess the benefits of the proposed optimizations: baseline, RCA-less optimization

(NR) with Dadda and Wallace compression trees and the optimized sign extension with-

out intermediary RCAs (NR-SO) architectures considering input widths of 8, 16, 32 and

64 bits. All multipliers employ an RCA as the recombination adder since the optimization

focus on the partial product generation and compression. The circuits were synthesized

for the ST Microelectronics 65 nm CMOS standard cell library with a power supply of

1.0V using the Cadence Genus synthesis solution with all synthesis efforts set to low for

minimal interference. For comparison purposes, all results are obtained at the maximum

attainable frequency to extract the circuit quality of results under extreme use cases. The

accurate power estimation is guaranteed as it employs the same flow presented in Section

5.2.1.

Table 5.3 summarizes the results considering the maximum attainable frequency

(Max Freq.), cell area (C. Area), total power dissipation (T. Power) and energy per op-

eration (E/op) for all Radix-4 variants. Both optimization strategies led to circuits that

outperformed the baseline version in all cases, and the benefits are more pronounced for

larger bit-widths given the longer critical paths due to intermediary adders in the partial

product generation and the non-optimal sign extension.

The removal of intermediary ripple-carry adders (version NR) boosts the maxi-

mum attainable frequency by a large margin with improvements ranging from 17.9% for

8-bit multipliers, up to 50.9% for 64-bit multipliers. The introduction of the carry-save ap-

proach on the partial product compression has a higher impact on the maximum frequency

that the sign optimization as the compression tree has a critical path that scales logarith-

mically. The difference between tree compression algorithms is minimal as Dadda-based

multipliers presented a maximum frequency of 2.87% higher on average than their Wal-

lace counterparts.
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The optimized multipliers operate at a higher frequency, and they also show re-

markably smaller circuit areas at that speed, a direct consequence of better resource uti-

lization. The baseline version requires 24.3%, 33.9%, 81.1%, and 97.1% more area than

the best case for multipliers of 8, 16, 32, and 64 bits. The efficiency of compression trees

becomes more evident as the operand’s bit-width increases. Also, Dadda trees have a

smaller circuit area than Wallace trees – 5.6% in our case – as they employ a less greedy

algorithm for compressor allocation. Comparing NR and NR-SO versions, the latter occu-

pies 10.2% less area on average as a reduced number of compressor cells is required due

to the smaller number of terms on the tree.

A key point of the improved Radix-4 multiplier is the reduction of circuit power

dissipation. The compression tree cells are less prone to timing glitches as the only carry

propagation dependency is mainly restricted to the recombination line. Since all cir-

cuits were characterized for different clock frequencies, the E/op metric is a more reliable

power efficiency indicator. In that sense, the optimized versions require less energy per

operation than the baseline implementation with an energy efficiency increase ranging

from 16.4% (worst case, 16 bits) to 78.6% (best case, 64 bits). Considering the best

case in each bit-width, the average improvement in energy efficiency is 47%. The lower

number of elements to be compressed in the NR-SO version results in architectures that

consume 6.5% less than the version without the sign extension optimization.

5.4 Chapter Summary

The RTLGen framework, presented in this chapter, is a highly flexible, powerful,

and versatile Python-based tool that provides an easy platform to describe and generate

a plethora of arithmetic circuits along with a unit testbench generated automatically. The

modular architecture simplifies the framework extension to support newer architectures.

It also features a bit-hash structure that easily manages wire interconnections in multi-

operand circuits like multipliers.

The framework was used to generate several multiplier architectures to be synthe-

sized using an industrial ASIC flow. Results showed that commercial synthesis tools fail

to natively provide efficient arithmetic circuits in terms of speed, circuit area and power

dissipation when compared with RTLGen-based multipliers.
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6 CORNET FRAMEWORK: A DEEP LEARNING-BASED SOLUTION FOR HR

ESTIMATION

Medicine is evolving from reactive disease care to active care that is predictive,

preventive, personalized, and participatory (4P). It provides patients and health care work-

ers with personalized information about each person’s unique health experience (FLORES

et al., 2013). This paradigm shift has two key benefits: (a) it may anticipate disease detec-

tion, which results in better prognosis outcome, and (b) it allows better resource allocation

on the health system.

Wearable health-monitoring devices are becoming ubiquitous as advances in both

signal processing techniques, and hardware implementation enabled embedding multi-

ple sensors in a single compact and low-power chip. With the evolution of IoT, these

sensors can be connected to healthcare networks – providing data of patients with chronic

diseases – and social media where users can keep track of their fitness programs (SATIJA;

RAMKUMAR; MANIKANDAN, 2017). Further, remote health monitoring reduces health-

care costs and improves resource allocation on health systems (YANG et al., 2018) as it

provides data that can be used to accelerate the diagnostic process as well as the treatment

selection.

6.1 Heart Rate estimation

Heart rate (HR) monitoring provides essential physiological information, which

states the health condition of a given person. Professional and amateur athletes rely on

HR measurements to improve their performance on the field as it indicates physiological

adaptation, exercise intensity, and workout effort (STRATH et al., 2000). Further, indi-

viduals with heart-related diseases may require constant monitoring during daily activities

and the sleeping process to help on both the diagnostic process and the selection of the

best-suited treatment for optimal outcome (ISLAM et al., 2015).

Wearable sensors have enabled continuous and pervasive vital sign monitoring in

ambulant environments, aiding patient care (SESHADRI et al., 2019). In that regard, sev-

eral companies offer personal health monitoring devices based on smartbands and smart-

watches like Fitbit, Apple Watch, among others (KHUSHHAL et al., 2017; DIAZ et al.,

2015). Besides HR monitoring, these devices can measure sleep quality, track the fitness
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evolution, breathing cycles, and other relevant vital signs. There are multiple techniques

to accomplish these measurements, although the most common are based on electrocar-

diography and photoplethysmography.

6.1.1 Electrocardiogram (ECG)

The sinusoidal cardiac rhythm is due to periodic depolarization and repolarizations

of the cardiac muscle, and it is controlled by the sinoatrial (SA) and atrioventricular (AV)

pacemaker nodes. This muscle contains several cells that are electrically charged when

the muscle is at rest, and when they are stimulated, they depolarize and the cardiac mus-

cle contract (MARTIS; ACHARYA; ADELI, 2014). The electrical impulse propagates

throughout the heart and the electric field changes in size and direction.

Electrocardiogram (ECG) signals measure the different electrical phases of the

heart excitation, as illustrated in Figure 6.1. The depolarization of each cell group in

the heart is an equivalent current dipole source, describing a vector variable in time

(SÖRNMO; LAGUNA, 2005). At any given instant, only a group of cells enters this

state, generating a current. The ECG will measure the sum of these currents flowing

through the cardiac tissue.

Figure 6.1: Electrical potentials of the heart

Source: (SÖRNMO; LAGUNA, 2005)

The resulting ECG signal measure different heart phases that dictate the cardiac
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rhythm. Figure 6.2 illustrates the P-QRS-T wave phases, where P is the atrial depo-

larization, the QRS complex indicate the ventricular depolarization, and T reflects the

ventricular repolarization (SÖRNMO; LAGUNA, 2005). For heart estimation purposes,

the QRS complex is crucial as it features the largest amplitude on the ECG signals. The

interval between two R peaks represents the period of a ventricular cardiac cycle, i.e., this

period indicates the basal heart rate.

Figure 6.2: Wave definitions of the cardiac cycle

Source: (SÖRNMO; LAGUNA, 2005)

Measuring such low-intensity signals requires several electrodes placed on dif-

ferent places of the chest. Clinical ECG equipment often has 12 leads to measure all

the potential vectors of the heart accurately. This approach is robust to motion artifacts

that could affect the ECG recording. Nonetheless, the equipment cost and its clunkiness

make it impractical for daily usage as a non-stop monitoring system. An alternative ver-

sion for ambulatory measurements is the Holter device, a 3-lead ECG placed as a chest

strap that allows daily activities without being connected to an external device. Despite

the robustness of ECG to motion artifacts, they are not exempt from noise sources like

bad lead contact or power source interference. Further, these devices do not work when

submerged, imposing restrictions on the activity type that can be performed by a given

subject.
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6.1.2 Photoplethysmography (PPG)

Despite the reliability of ECG measurements to motion artifacts, it requires sev-

eral probes placed on specific spots on the human body linked to an external processing

device, limiting its usability on daily activities (BISWAS et al., 2019a). Photoplethysmo-

gram monitoring is a simple, effective, and low-cost bio-monitoring alternative to ECG,

although it can be used to monitor other vital signals. This technique measures the blood

volume change, in a non-invasive fashion, on the microvascular tissue under the skin due

to the inherent pulsatile characteristic of the cardiovascular system (ALLEN, 2007; AOY-

AGI; MIYASAKA, 2002).

PPG is based on pulse oxymetry, which relies on a light source – a light-emitting

diode (LED) – to illuminate the skin and a photodetector (PD) to capture the attenuation

of the reflected or transmitted light associated with perfusion changes. The interaction of

the emitted light with the heterogeneous structure of blood and tissues leads to different

physical effects – like scattering, absorption, etc. – and it is directly dependent on the

emitter optical wavelength (ANDERSON; PARRISH, 1981). Although red and near-

infrared lights are used in PPG devices, the green LEDs are predominant because the

shorter wavelength is less prone to deep tissue movements, and it results in better readings

on the cardiac activity due to its better signal-to-noise ratio (SNR) (BISWAS et al., 2019a).

Figure 6.3: PPG working principle

(a) PPG placement (b) Light attenuation under human tissue

Source: (TAMURA et al., 2014) and (SUN; THAKOR, 2016)

Figure 6.3a illustrates how the LED and PD can be placed on the body for PPG
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measurements. On the transmissive mode (top), the LED and the photodetector are placed

on opposite sides, so the cardiac activity is measured in terms of light attenuation. Al-

though this approach often has better SNR, it has a severe limitation in terms of placement

because the light must be able to pass through the tissue like earlobes, fingertips, and so

on, which may interfere with daily activities (TAMURA et al., 2014). Hence, reflective

mode (bottom) is preferred as both LED and PD are side-by-side, effectively removing

all sensor placement restrictions. In this mode, the LED illuminates the skin while the PD

measures how much light is reflected by the tissue. Nevertheless, reflection-mode PPG

is significantly affected by motion artifacts and sensor pressure disturbances, limiting the

physiological interpretation of the captured signals (BISWAS et al., 2019a).

The working principle of PPG sensors is illustrated in Figure 6.3b. As the light

penetrates the tissues down to the blood vessels, the diastolic and systolic movements

create variations on the transmitted/reflected light captured by the photodetector. The de-

tected signal has a steady (DC) and a pulsatile (AC) components. The former depends

on the tissue thickness and composition, absorbance by the skin pigmentation, blood vol-

ume, and it slowly changes according to respiration. The AC component captures the

blood volume changes during the cardiac cycles, whereas the main frequency compo-

nent is directly related to the heart rate. Further, the AC signal amplitude depends on the

contact force between the sensor patch and the skin (TAMURA et al., 2014).

Most wrist-based modules employ PPG sensors allowing unobtrusive daily usage.

However, the signal quality in these devices is affected due to motion artifacts (MA), re-

sulting from activities of daily living. MA are generally due to three reasons: the subject

physical movement, sensor module displacement relative to the skin, and sensor deforma-

tion resulting from long-term daily usage. These effects cause the spectral component of

the MA to overpower the heart-beat related PPG component.

6.1.3 Public datasets for HR estimation

Significant advances in wrist-worn PPG research was due to the availability of

public datasets with specific protocols. For the Signal Processing Cup (SPC) fostered

by the IEEE in 2015, the authors in Zhang, Pi and Liu (2015) made public a dataset

containing 23 records of healthy subjects with age ranging from 18 to 58 years old. All

recordings were captured using a 2-channel pulse oximeter with green LED (wavelength:

515 nm) along with a 3-axis accelerometer to measure the subject’s motion. To capture
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the ground-truth HR, all subjects wore a chest-worn ECG with wet electrodes. The raw

data were recorded with a sampling rate of 125 Hz and transmitted to a computer using

Bluetooth. This dataset is commonly known as the IEEE SPC dataset.

The subjects performed three different types of activities, namely T1, T2, and T3.

The first 12 subjects performed activity T1 which consists in a protocol that involves

walking and running on a treadmill with the following speeds and duration, in order: 1-2

km/h for 0.5 min, 6-8 km/h for 1 min, 12-15 km/h for 1 min, 6-8 km/h for 1 min, 12-15

km/h for 1 min, and 1-2 km/h for 0.5 min. This protocol explores the correlation between

past and current body states as the heart rate on protocol start is entirely different from

the one in the end, even though the subject is walking in both situations.

Table 6.1: IEEE SPC dataset overview

Subjects Age Weight Height Gender Healthy Activity
(years) (kg) (cm) (M/F) (T1/T2/T3)

1-12 18-35 N/A N/A N/A Healthy T1

13 20 64 162 M Healthy T2

14 29 70 169 M Healthy T2

15 21 77 188 M Healthy T2

16 21 77 188 M Healthy T3

17 19 54 174 M Healthy T3

18 20 64 162 M Healthy T3

19 20 57 174 M Healthy T3

20 19 70 180 M Healthy T2

21 19 70 180 M Healthy T3

22 21 73 180 M Healthy T3

23 58 70 156 F Abnormal T2

Source: Adapted from (CHUNG; LEE; LEE, 2019)

Records 13, 14, 15, 20, and 23 performed T2 activity, which involved running,

push-ups, handshaking, stretching, and other upper arm movements. The remaining sub-

jects (16-19, 21, 22) executed activities T3, which consisted of intensive fore and upper

arm movements like boxing, which are activities very correlated with intense motion ar-

tifacts in PPG signals. Table 6.1 shows an overview of the IEEE SPC dataset. Several

works ignore record 13 as it is considered an extra dataset, and it was made available later

than the other records.

Other works also developed publicly available custom datasets, even though they

are not extensively explored in the literature. In Jarchi and Casson (2016), the authors cre-
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ated a dataset with nine records with the same subject performing four activities: walking

and running on a treadmill, bike exercise with low resistance/high speed, and bike exer-

cise with high resistance/low speed. The data was captured using a wrist-worn PPG using

a green LED (wavelength: 510 nm), a 3-axis accelerometer, and a 3-axis gyroscope for

motion estimation and a chest-worn ECG sensor for the ground-truth. Another dataset

was proposed in Lee, Chung and Lee (2019), and it included 24 subjects (10 males, 14

females), which performed a modified version of the Bruce protocol on a treadmill in five

stints that interleaved 2 minutes of walking with 3 minutes of running. The records were

captured using a 3-channel wrist PPG with green LED (wavelength: 525 nm) along with

a 3-axis accelerometer and gyroscope sensors. For the ground-truth heart rate, the authors

used a Holter device to capture the ECG data.

6.2 CorNET framework for HR estimation

The CorNET framework proposed by Biswas et al. (2019b) was the first machine

learning-based solution for HR estimation from PPG signals on ambulant environments.

It combines the advantages of feed-forward CNNs as feature extractors and the recurrent

nature of LSTMs suited for time series handling. The framework relies on ECG-generated

HR measurements as ground truth during the training phase, learning the relationship

between each PPG window and the HR computed from the corresponding ECG frame.

Once trained, the network can estimate the HR from single-channel PPG mea-

surements without any additional data like accelerometers and additional PPG channels.

The framework adopts a subject-specific (personalized) training methodology instead of

a subject-independent (generalized) approach based on the fact that biological signals are

heavily dependent on physiological aspects like age, sex, weight, physical activity habits,

and so on. However, the work in Rocha et al. (2019) proposes a subject-independent

training methodology based on two premises: (a) it is more feasible for deployment in

embedded applications due to faster training times, and (b) training on multiple subjects

may improve the model ability to incorporate the inherent physiological variations on the

human body. As an additional experiment, the framework was evaluated on a custom

dataset obtained with specific wrist-worn smartband able to capture PPG data along with

an off-the-shelf chest-worn ECG monitoring band.
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6.2.1 Network structure

Conversely to the popular image classification neural networks that translate pixel

images into discrete categories, the CorNET model must infer a continuous HR value

from voltage values that might include motion artifacts that corrupt the PPG signal, low-

ering the model accuracy. This issue is addressed using a data-driven approach that allows

the neural network to learn unique features using convolutional layers and combine the

temporal dependencies with recurrent layers to generate an output vector which can be

combined with a dense layer (DL) for the final HR estimation.

The CorNET network employs two 1-D convolutional layers, which act as a fea-

ture extractor of the incoming data. The convolution between the CNN filters and the

input PPG signal generate points on the temporal-feature domain. Each CNN layer has

32 filters (nF ), and each filter has 40 coefficients (sF ) operating with a stride of one sam-

ple. Both layers use ReLU as activation functions whose outputs are connected to a batch

normalization and 4-to-1 max-pooling layers.

A major problem in traditional CNNs is that they cannot guarantee that the output

is phase invariant, requiring complementary layers that perform time pooling to mitigate

this issue (PURWINS et al., 2019). In HR estimation, this is particularly troublesome as

the precise moment of a given heartbeat within a PPG window is fundamental to correctly

identifying the relevant features linked to the estimated heart rate.

Figure 6.4: CorNET architecture operating on 1-D input samples to predict HR
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The ability to capture temporal dependencies of the LSTMs makes them a suitable

choice to solve the phase variance issue as they can recover the sequence of local trends

caused by the cardiac activity. Hence, the CorNET network has two sequentially con-

nected LSTM layers after the CNN layers, whereas each layer has 128 hidden units. The

hidden state of the last LSTM is fed to a regression layer with a single neuron with 128
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connections, which is followed by a linear transfer function to estimate a real-valued heart

rate. The overall network structure can be seen in Figure 6.4. All the structural parame-

ters were defined following a heuristic grid search, which looked for the minimal number

of parameters that yielded the best HR estimation performance (BISWAS et al., 2019b).

Table 6.2 summarizes the number of parameters in the model as well as the number of

operations required per output inference.

Table 6.2: Complexity Evaluation of CorNET

Layer Trainable
Parameters MACs

Memory
Requirement

(bytes)
CNN-1 1312 1.2 M 5248
CNN-2 40992 8.2 M 163968

LSTM-1 82432 4.1 M 329728
LSTM-2 131584 6.6 M 526336

Dense 128 128 512

Total 256448 ∼20.1 M ∼1000k

6.2.2 Training methodology and evaluation

The CorNET framework for HR estimation was modeled on the Lasagne 0.2dev1

(DIELEMAN et al., 2015) library configured to use Theano (THEANO DEVELOP-

MENT TEAM, 2016) 0.9.0 as the computation backend. The training procedure was exe-

cuted on an Nvidia GTX 1080 GPU with cuDNN 7.6 for faster training time (CHETLUR

et al., 2014). For the parameters update, the original work in Biswas et al. (2019b) adopts

the Root Mean Square Propagation (RMSProp) optimizer with default hyperparameters

while the work in Rocha et al. (2020) adopts the Adam optimizer with default parameters

for the non-binary framework implementation.

There are two training methodologies for the CorNET framework. The leave-one-

window-out (LOWO) strategy is a personalized method (subject-specific) based on the

premise that each subject has specific physiological factors. In this method, for a given

subject, each window is removed from the data pool and used as the testing dataset, while

the remaining ones are used as the training dataset. Further, three windows on the training

dataset adjacent to the testing window are removed to ensure that there is no data overlap

between training and testing datasets as the windows have a 6 seconds overlap.

In Rocha et al. (2019), the authors propose a leave-one-subject-out (LOSO) strat-
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egy, a generalized method that assumes that training in a broader population enables the

model to more likely integrate the physiological variations into a single model. The bene-

fits of this strategy are twofold: (a) it is easier to be deployed on a large scale as it does not

require a large amount of data for each specific subject, and (b) it might help to identify if

the subject has any type of cardiopathy. This method relies on removing the entire data of

the subject under test (SUT) from the global dataset while the remaining subject records

form the training dataset, ensuring that there is no overlap between training and testing

data. Once the model is trained, the data from the SUT is used to evaluate the model

capability to generalize for unseen data.

All training methods are validated using a 5-fold cross-validation method on the

training dataset, and the model with the lowest validation error is chosen. Each fold is

trained for 200 epochs, considering a batch size of 25 and 32 for LOWO and LOSO,

respectively, with an initial learning rate of 0.001 associated with a decaying factor of

0.98 after each epoch.

Regardless of the target dataset, the input PPG data is pre-filtered with a 4th order

band-pass Butterworth filter with cut-off frequencies set to 0.2 Hz and 4 Hz to eliminate

DC/near-DC components and frequency noises. These frequencies are selected in terms

of the heart’s pulsatile characteristic, limiting the estimated heart rates to 12 BPM and

240 BPM, respectively. Although these frequencies are outside the typical physiological

limits of the heart, they ensure a safety margin on input data. Further, a z-score normal-

ization (zero mean, unit variance) is applied to the inputs as the class labels (HR) do not

have a normal distribution, and smaller input values improve the training performance

(STÖTTNER, 2019).

The metrics adopted to evaluate the model performance are the mean absolute

error (MAE) and the standard deviation of the absolute error (SDAE) of the estimated

heart rate in beats per minute (BPM). These are the standard metrics on the PPG-based

HR estimation state-of-the-art (ZHANG; PI; LIU, 2015). The MAE is computed in a

window-by-window basis considering the HR estimated by the CorNET model (HRi
E)

and its ground-truth counterpart HR computed offline from the ECG data (HRi
T ), as stated

in (6.1), where N is the number of PPG windows for a given subject.

MAE =
1

N

N−1∑
i=0

abs(HRi
E − HRi

T ) (6.1)

The overall performance evaluation of the CorNET network using both LOWO
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and LOSO training strategies is presented in Table 6.3 considering the IEEE SPC dataset.

It also compares the CorNET performance against the HR estimation from PPG data

proposed in Troika (ZHANG; PI; LIU, 2015), Joss (ZHANG, 2015), WFPV (TEMKO,

2017), and Chung (CHUNG; LEE; LEE, 2019). These works use signal processing tech-

niques instead of machine learning methods and rely on additional accelerometer data

to reduce motion artifacts. The analysis considers the MAE for each dataset record and

each group of subjects performing a specific activity (T1, T2, and T3). Note that only

the WFPV and Chung methodologies consider the 23 records on the IEEE SPC dataset

because record 13 was considered extra training data since this dataset became public.

Therefore, the error reported for all subjects (1-23) on these two methodologies includes

this specific record. Yet, this single record does not significantly impact the comparison

of the HR estimation approaches.

As expected, all methodologies report the smallest MAE on the subjects perform-

ing activity T1 since they follow a very specific protocol. This is particularly relevant

for CorNET due to an increased amount of similar data on the training dataset, which is

directly correlated with the model’s ability to capture the relevant characteristics of the

input signal. Despite using only the PPG data, the CorNET with the LOWO strategy has

comparable performance to other works. Compared to Troika and Joss, the LOWO ap-

proach has a 27.84% and 5.28% lower MAE, respectively, considering all subjects, and it

is only outperformed by the Chung algorithm.

Nevertheless, the overall performance of the LOSO approach is not optimal when

compared to its counterparts. Compared to the LOWO approach, it has an MAE 2.8×

higher considering all records. This worse performance is mainly due to the limited num-

ber of records on the dataset, as the LOSO methodology aims for a generalized approach.

For instance, the work in (ROCHA et al., 2019) reports the accuracy of the LOSO ap-

proach for only the first 12 subjects, achieving an absolute error of 3.16±6.02 BPM.

When the full dataset is employed on the training process, the reported absolute error is

32.32% higher than when the dataset is limited to only the subjects performing the same

activity.

For a more in-depth analysis, subjects 9 and 17 were selected to illustrate the

HR estimation performance of the CorNET LOSO as they represent the best and worst

subjects, respectively. Figure 6.5 shows the predicted (blue) and ground-truth (orange)

HR for record 9, indicating the current subject running speed in each time interval. The

CorNET framework can closely follow the HR changes across the activity duration. Note
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Table 6.3: Performance evaluation of HR estimation algorithms and CorNET

Record Troika Joss WFPV Chung CorNET CorNET
(LOWO) (LOSO)

1 2.29±2.18 1.33± 1.19 1.25± 1.15 0.73±0.59 6.23± 9.44 4.26 ± 3.01
2 2.19±2.37 1.75± 1.66 1.41± 1.30 0.81±0.68 1.83± 5.18 9.10 ± 7.52
3 2.00±1.50 1.47± 1.27 0.71± 0.59 0.54±0.41 0.89± 3.49 3.79 ± 3.31
4 2.15±2.00 1.48± 1.41 0.97± 0.88 0.72±0.58 0.49± 2.29 3.22 ± 3.13
5 2.01±1.22 0.69± 0.51 0.75± 0.57 0.59±0.43 0.40± 1.01 2.35 ± 1.82
6 2.76±2.51 1.32± 1.09 0.92± 0.75 0.87±0.69 3.08± 6.47 2.76 ± 1.98
7 1.67±1.27 0.71± 0.54 0.65± 0.50 0.66±0.52 1.34± 4.42 2.18 ± 1.36
8 1.93±1.47 0.56± 0.47 0.97± 0.83 0.63±0.52 3.64±10.19 10.84 ± 8.68
9 1.86±1.28 0.49± 0.41 0.55± 0.48 0.43±0.35 3.30± 6.81 1.68 ± 1.04

10 4.70±2.49 3.81± 2.43 2.06± 1.29 1.44±0.98 1.77± 3.96 8.49 ± 7.06
11 1.72±1.29 0.78± 0.51 1.03± 0.68 1.14±0.73 0.41± 1.37 3.22 ± 2.19
12 2.84±2.30 1.04± 0.81 0.99± 0.70 0.96±0.68 0.50± 1.05 4.14 ± 3.40
13 - - 3.54± 4.08 2.51±2.85 - -
14 6.63±8.76 8.07±10.09 9.59±12.20 0.60±0.99 1.60± 2.29 9.67 ± 8.75
15 1.94±2.56 1.61± 2.01 2.57± 3.16 0.91±1.34 0.24± 0.56 4.35 ± 3.44
16 1.35±1.04 3.10± 2.69 2.25± 1.87 1.04±0.82 1.60± 3.87 7.03 ± 6.96
17 7.82±4.88 7.01± 4.49 3.01± 1.99 1.72±1.29 2.04± 5.02 12.62 ± 9.15
18 2.46±2.00 2.99± 2.52 2.73± 2.29 1.07±0.87 0.95± 3.02 5.41 ± 4.63
19 1.73±1.28 1.67± 1.23 1.57± 1.15 0.90±0.67 0.28± 0.60 4.31 ± 2.79
20 3.33±3.90 2.80± 3.46 2.10± 2.41 1.32±1.59 0.28± 0.65 5.28 ± 3.54
21 3.41±2.43 1.88± 1.32 3.44± 2.45 1.23±0.89 0.67± 1.09 11.45 ± 9.27
22 2.69±2.12 0.92± 0.74 1.61± 1.26 1.35±1.07 0.42± 0.73 3.67 ± 2.79
23 0.51±0.59 0.49± 0.57 0.75± 0.88 0.69±0.82 0.75± 0.88 2.35 ± 2.16

Records 1-12 (T1)
MAE 2.34±2.47 1.28±2.61 1.02±1.25 0.79±0.60 1.99±4.64 4.67 ± 3.71

Records 14-23 (T2 and T3)
MAE 3.19±3.61 3.05±3.35 2.95±3.71 1.07±1.02 2.95±3.71 6.61 ± 5.35

Records 1-23 (T1, T2 and T3)
MAE 2.73 ± 2.99 2.08±1.91 1.97±2.48 0.99±0.88 1.97±2.48 5.55 ± 4.45

Source: The Author

that this subject has a steady and progressive HR increase without significant peaks in a

short period.

Conversely, Figure 6.6 shows the HR estimation analysis for subject 17. The

quickly and acute HR rise associated with the activity type (intense upper-arm exercises)

creates severe challenges for the model as it cannot find similar patterns on the data of

other subjects of the training dataset. Since the data is captured from a wrist-worn PPG

sensor, the intense motion artifacts cannot be easily removed when no additional data
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is used, leading to huge variations on the predicted HR that might not correspond to a

plausible physiological change.

Figure 6.5: PPG Estimated vs true ECG HR for Subject 9

Source: The Author

Figure 6.6: PPG Estimated vs true ECG HR for Subject 17

Source: (ROCHA et al., 2020)
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6.3 Chapter Summary

This Chapter presented a brief overview of heart rate estimation from both ECG

and PPG sensors. This biomedical application fostered the development of several algo-

rithms to achieve real-time HR estimation capability from PPG data due to its low cost,

portability and non-intrusive characteristic.

CorNET was one of the first deep learning-based implementation targeting this

biomedical application. It combines CNNs and LSTMs to explore the feature extraction

characteristic of the former with the inherent ability of capturing temporal dependencies

of the latter. Results showed that CorNET is in pair with other state-of-the-art HR esti-

mation algorithm based on traditional signal processing techniques.
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7 STREAM-BASED HARDWARE IMPLEMENTATION FOR BINARY CORNET

FRAMEWORK

Computing- and power-efficiency are crucial in wearable devices as they have

limited resources – especially power delivery – given the small form factor and usability

requirements. Despite the efficiency of modern embedded general-purpose processors,

they do not comply with the requirements to execute efficiently compute-intensive appli-

cations like neural networks. Hence, a custom hardware implementation is required for

the binary CorNET (bCorNET) neural network.

7.1 CorNET model modifications

The CorNET framework is not adapted for embedded platforms as initially pro-

posed in Biswas et al. (2019b) since it is a pure software implementation that relies on

floating-point computations without any processing constraints like energy consumption,

computation capacity available, and so on. Hence, two essential modifications were pro-

posed in Rocha et al. (2019) to adapt the original framework into a low-power, hardware-

suited implementation through input data quantization and weight binarization.

7.1.1 Data quantization

The floating-point representation adopted in available PPG databases is not suit-

able for real-time embedded devices due to the huge complexity. Hence, these devices

must adopt data quantization to reduce the complexity requirements. This strategy has

two main benefits: first, the arithmetic modules are considerably simpler as they can

adopt a fixed-point implementation, and it may help on overfitting in neural networks due

to the induced quantization error. It is essential to determine the optimal value range as

it impacts both network accuracy and the input bit-width. This issue is addressed using

a learning-based quantization approach that seeks, during training, the best input range

to represent the incoming data. The proposed quantization method follows a uniform

quantization rule:
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quantize(x) = round(clip(x,−1, 1)×M)/M (7.1)

Q(x) = s× quantize
(
x− p
s

)
+ p (7.2)

In these equations, x is the network input, and M is the number of strictly positive

quantization levels, which is given byM = 2(nb−1)−1. Following a previous exploration,

nbwas set to 5 bits. Further, the quantization has two additional parameters learned during

the network training: s is a scaling factor, and p is an offset parameter that helps determine

the optimal quantization range. This strategy limits the number of different input levels

to M , and these values are specific to each model.

7.1.2 Model binarization

Neural network models are defined through thousands of parameters that are nat-

urally defined using floating-point representation, and these models require thousands

of operations per valid output. This complexity can be addressed through network bi-

narization to reduce both memory requirements and constraints on the hardware imple-

mentation. Model binarization was introduced on the BinaryConnect network (COUR-

BARIAUX; BENGIO; DAVID, 2015), and it has been proven as an efficient technique on

CNN networks to reduce model complexity (COURBARIAUX; BENGIO, 2016; RASTE-

GARI et al., 2016).

Despite the several binarization strategies available on the literature, both CNN

and LSTM layers on bCorNET are binarized using the error-aware binarization technique

proposed in Hou, Yao and Kwok (2016). In this approach, the error introduced by the

binarization is considered on the training process, and the weights are updated accordingly

to minimize the training loss. The full-precision weights are used during the update phase,

while the inference phase is computed using the binarized values. Here, the parameters

that belong to the same weight set (e.g., W∗ = [0.325,−0.325 · · · − 0.325]) have the

same magnitude, although the sign may differ. The magnitude is factored out, and it

can be interpreted as a scaling factor λ∗ associated with each weight set W∗ that can be

rewritten as W∗ = 0.325 × [1,−1 · · · − 1]. Each weight set can be stored in terms of a

fixed-point scaling factor and a binary sequence corresponding to each value sign.

Each binary CNN (bCNN) layer has a single scaling factor shared with all filters
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belonging to that layer. Then, each element x on the output tensor of filter k ∈ [0, nF −1]

in a given layer is computed according to (7.3), where nF is the number of filters in that

layer and sF is the number of coefficients in each filter. Since bCorNET adopts the same

structural parameters defined for the CorNET model, both nF and sF are set to 40.

okx = bin

(
ReLU

(
λqWc

nC−1∑
c=0

sF−1∑
i=0

wb
ciIi+x

))
(7.3)

Each output is computed multiplying the filter binary coefficients (wci) with a slice

of the input feature map I composed of sF values, starting at position x. The bCNN1 in-

puts are quantized to 5 bits, while bCNN2 operates with both inputs and weights in a

binarized fashion. Further, λqWc is a scaling factor derived from the binarization process,

which is specific to each layer. Since the incoming PPG data is 1-dimensional, the Equa-

tion (7.3) is reduced to only the second sum operation due to the single input channel.

Conversely, the second bCNN layer has nF input channels as it is sequentially connected

to bCNN1.

The binarization on the LSTM (bLSTM) layers is slightly different as there are

internal computations that cannot be entirely binarized without losing the layer function-

ality. Each layer is comprised of an input gate (it), a forget gate (ft), an output gate (ot)

and a cell state gate (ut). These gates compute intermediary values from the current input

(xt) and the previous hidden state (ht−1) as follows:

iqt = σ(λqWi(W
b
i x

b
t) + λqUi(U

b
i h

b
t−1)) (7.4)

f q
t = σ(λqWf (W b

fx
b
t) + λqUf (U b

fh
b
t−1)) (7.5)

oqt = σ(λqWo(W
b
ox

b
o) + λqUo(U

b
oh

b
t−1)) (7.6)

uqt = tanh(λqWu(W b
ux

b
t) + λqUu(U b

uh
b
t−1)) (7.7)

cqt = f q
t × c

q
t−1 + iqt × u

q
t (7.8)

hbt = sign(oqt × tanh(cqt )) (7.9)

These equations assume that xt is the input to a given LSTM layer, W∗ and U∗ are

weight matrices, and ht is the output of the LSTM. From the LSTM definition, the ht and

ct values become the ht−1 and ct−1 values, respectively, on the next timestep. Further, the

superscripts b and q indicate binarized and quantized values, respectively. The number of

bits for all quantized values is determined by the LUT implementation parameters of the
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non-linear functions, described on Section 7.2.5.

The binarization strategy ensures that MAC operations are performed with bina-

rized operands (weights and inputs), except for the first bCNN layer whose inputs are

quantized accordingly. Since most of the weights are represented using a single bit, the

network’s memory footprint is reduced by a factor of 32, approximately, compared to the

standard 32-bit floating-point representation of the software model. The identical struc-

ture between CorNET and bCorNET ensures that the number of MAC operations and

trainable parameters remains constant, yet with two key advantages: (a) the MAC op-

erations are reduced to XNOR operations based on a popcount algorithm, and (b) the

memory requirements are reduced from ∼1000 kbytes to ∼31 kbytes.

7.1.3 Training optimization for model binarization

Model binarization leads to non-differentiable weight update functions, which

breaks the ground premise of the backpropagation algorithm. In bCorNET, this issue is

addressed using the straight-through estimator (STE) proposed in Courbariaux and Ben-

gio (2016). Further, the loss function optimizer is a modified version of the Adam algo-

rithm. This binarization-aware optimizer was proposed in Hou, Yao and Kwok (2016),

and it relies on an additional step to compute the current curvature matrix that leads to the

smallest loss value, which is used to update the full-precision weight parameters. A key

element in this process is using the binarized values during the feed-forward step while

keeping the original full-precision parameters for the best training outcome.

7.2 System architecture

Hardware accelerators for CNN-based neural networks have been widely explored

in the literature, as explored in Section 3.4.3. However, very few works address the im-

plementation challenges of LSTM-based networks, given their recurrent nature and high

memory requirements. The first move towards a custom hardware implementation for the

bCorNET network was proposed in (ROCHA et al., 2019), introducing an FPGA-based

of binary LSTM layers. A follow-up of this work was proposed in Rocha et al. (2020),

which introduced a stream-based hardware architecture for the bCorNET network, which

fully integrates the binary CNN and LSTM layers along with the quantized dense layer.
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The proposed hardware architecture top-level for HR estimation is illustrated in Figure

7.1. Each layer on the network model is translated into a dedicated block on the hardware

architecture in a trade-off between flexibility and energy efficiency.

Figure 7.1: bCorNET hardware accelerator architecture

Source: The Author

The architecture relies on a pipelined approach for processing the entire network

in a streaming fashion, saving both memory requirements and system latency. As each

layer has data ready at the output, it sends a signal to the system controller, which acti-

vates the subsequent layer and enables the previous layer to fetch new data. A non-stream

version of this architecture would require near 100 kbits of additional memory for inter-

mediary storage, and it would take three times longer to process a PPG window entirely.

This design choice is suited for embedded circuits in wearables as it leads to smaller

circuit footprint and operating frequency, two fundamental aspects to reduce power dis-

sipation (KILANI et al., 2020). Given the identical network architecture of CorNET and

bCorNET, the number of MAC operations and trainable parameters remain unchanged,

however: (a) all the MAC computations are reduced to XNOR operations plus popcount,

and (b) a considerable reduction is achieved in the memory footprint for weight storage,

since the latter requires only ∼31 kbytes instead of ∼1000 kbytes.

For optimal resource utilization, the datapath width is not constant for all blocks.

The incoming PPG data is quantized to 5 bits according to the network definition defined

in Section 7.1.1, while each layer has a custom data width to comply with specific re-

quirements. For instance, CNN and LSTM layers have intrinsic architecture differences

– like using non-linear functions – which entails different data representation constraints.

Further, all arithmetic operators used on the hardware blocks were generated using the

RTLGen framework presented in Chapter 5. Since the main goal is obtaining an energy-

efficient hardware architecture, circuit-level low-power techniques like data- and clock-

gating were employed in all suitable modules.
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7.2.1 CNN1 Layer

The first convolutional layer handles the incoming 1-dimensional PPG and, given

that each window has 1000 samples and the stream-like dataflow aspect of the network,

this module adopts a weight-parallel implementation with input data reuse to minimize

data movement. Figure 7.2 shows the proposed architecture for this layer, composed of an

input buffer, a register file (RF) for weight storage, an array of multipliers, and an adder

tree.

Figure 7.2: CNN1 layer architecture
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Source: (ROCHA et al., 2020)

Each filter computation is composed of 40 multiply-accumulate operations, and it

is completed in a single cycle due to complete parallelization. Despite the model binariza-

tion, this module operates in a hybrid fashion with quantized inputs and binary weights,

so the multiplier is reduced to a multiplexer to select between the data value and its 2’s

complement version. Each multiplier output is 6-bit wide to ensure that the 5-bit incom-

ing PPG data does not overflow when computing the 2’s complement. The adder tree

operates in a carry-save scheme with a synthesis tool-inferred adder on the recombination

line, so the layer output is 11 bits wide to ensure that no overflow occurs. The layer output

is then connected to a binarizer module before the max-pooling.

Keeping data local for computation is proven to be more energy-efficient as the en-

ergy cost for each data access on external memories is humongous (VERHELST; MOONS,

2017). Hence, the input buffer receives the data sequentially from an external data source

(e.g., analog front-end, memory, etc.) and it has two roles: (a) control the communica-

tion between the CNN and external modules, and (b) offer a quick and efficient way for

the CNN1 to access data. It features a register-based FIFO memory able to store up to
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43 words and capable of serial write (from external source) and parallel read (by filter

multipliers).

Since each CNN1 filter has 40 coefficients and the layer adopts a sliding window

with a stride of 1, each loaded filter can be reused four times, considering the input buffer

storage capacity. This approach requires the usage of multiplexers on the buffer output

to select 40 words out of the 43 available. Reusing each filter four times results in four

sequential outputs for each filter, so no intermediary memory is required to store the

binarized CNN1 results before the 4:1 max-pooling kernel.

The input buffer external interface is 20-bit wide, corresponding to 4 words of

5 bits per reading request. When a new PPG window is available, the controller starts

fetching new data every cycle, filling the buffer in 11 cycles. Note that in the last cycle,

only three words are loaded into the buffer, and the first filter coefficients are loaded into

the multipliers, starting the window processing. Due to input reuse, a new set of filter

coefficients is loaded every 4 cycles, and a subsequent input data fetches occur after all

the 32 filters have been multiplied by the current input set, i.e., the input buffer loads 4

new data words into the highest addresses after 4× 32 = 128 cycles.

7.2.2 Binarizer and Max-pooling layers

Each convolutional layer is followed by a ReLU activation function, a batch nor-

malization layer, and a hard tanh function used to binarize the data for the next layer. In

this case, the ReLU eliminates all negative values and sends them to the BN layer, which

applies a scale-and-shift operation to remove the covariate shift. Then, the binarization

function applies a hard threshold comparison with the threshold set to zero to determine

if the output must be +1 or −1 (corresponding to 0 and 1 in binary representation respec-

tively). The batch normalization output (oBN ) is computed according to (7.10), where µ

and σ are the batch mean and variance, respectively, γ and β are the linear scale and shift

parameters and ε is a numeric stability constant set to 10−4 (IOFFE; SZEGEDY, 2015;

DIELEMAN et al., 2015). Given the weight binarization method employed on the con-

volutional layer, the BN layer input can be expressed in terms of αoC , where oC is the

accumulated value on the CNN layer and α is the scaling factor associated with the filters.

oBN =
αoC − µ√
σ2 + ε

γ + β (7.10)
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The binarization function must detect if the oBN value is positive or negative and

set the output accordingly (+1 or −1). Then, rewriting (7.10) shows that the oBN value

will only be positive if the CNN value (oC) is higher than a threshold whose value is

derived from parameters learned during training, as shown in (7.11). The ReLU activation

can be ignored as the shift parameter on the batch norm layer will ensure that only positive

oC values can be mapped to +1, i.e., all negative and some positive oC values will be

mapped to −1.

αoC − µ√
σ2 + ε

γ + β ≥ 0 =⇒ oC ≥
µ

α
− β
√
σ2 + ε

γα
(7.11)

Each CNN layer has specific output range requirements since the CNN1 operates

in single-channel input while CNN2 operates with 32 input channel. After a careful anal-

ysis of the CNNs outputs for the entire dataset, all thresholds can be quantized to an 8-bit

dynamic fixed point as this bit-width offers enough range to represent the values obtained

from (7.11). Hence, the binarizer is reduced to a filter-specific threshold comparator

whose thresholds are derived from model parameters, effectively reducing the hardware

implementation complexity.

Figure 7.3: Binarizer architecture
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The binarizer unit features a register file to store the thresholds and a comparator,

as illustrated in Figure 7.3. Both input data and thresholds are m-bit wide, and each

binarizer unit can have p comparators in parallel. Further, p determines the number of

input channels and RF read ports connected to each comparator. According to (7.11),

each CNN filter will have an associated threshold which is accessed using the same filter

address used on the CNN module. When p ≥ 1, only the first filter address is informed as

the RF controller assumes that the remaining addresses are contiguous to the first one, so

the thresholds are outputted in a burst-like reading fashion. Support to parallel comparison

is mandatory to cope with the required throughput after at different pipeline stages. While

CNN1 outputs one value per clock cycle, CNN2 outputs four values per cycle, requiring

four parallel comparators to avoid pipeline stalling and extra temporary memory.
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All data is binarized before the max-pooling layer as it reduces the implementa-

tion complexity of the former. For a non-binarized approach, the pooling unit requires a

comparator, like the one employed on the binarization, regardless of the pooling strategy

(minimum, average, or maximum). Conversely, the pooling unit implementation can be

simplified to a single logic gate if the inputs are binarized. Hence, as the CorNET model

employs max-pooling layers, the hardware implementation of these modules is shown in

Figure 7.4, and it features a multiplexer, an OR gate, and a register.

Figure 7.4: Binary max-pooling unit
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This architecture employs a serial approach to compute the 4:1 max-pooling. A

new value is directly written to the register every four cycles, and it represents the first

value of the 4:1 pooling kernel, effectively bypassing the OR gate. In the next three cycles,

the multiplexer selects the comparator value computed from the current input and current

register value to update the register. The feedback loop, along with the OR gate, ensures

that if one of the four values is one, the max-pooling output will be one.

7.2.3 Transposition Buffer

Although the CorNET model employs 1-D PPG windows of 1000 samples, the

CNN1 output feature map has 32 channels, one per filter, and each channel contains 961

convolved values. Binarization and pooling effectively reduce the number of samples in

each channel to 240 (b961/4c) values so that the feature map can be seen as a matrix of

32 columns and 240 lines. As the hardware implementation of the first CNN adopts an

input reuse scheme, this feature map is generated in a sample-wise fashion due to the

max-pooling, i.e., all the values in the same row must be computed before moving to the

next row. Nonetheless, the CNN2 layer requires that each input channel has at least 40

elements corresponding to the filter size (sF ). In this case, each filter computation must

read the values from all input channels in a channel-wise manner.

This problem is addressed using a transposition buffer, illustrated in Figure 7.5,
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which features a row-wise writing scheme by the CNN1 with a column-wise reading

mechanism by the convolutional filters of CNN2. The buffer maximizes the data reuse

and improves the system latency as it enables the CNN2 computation before the entire

CNN1 output feature map is completely computed.

Figure 7.5: Transposition buffer architecture
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The transposition buffer features a 32-bit shift register and a FIFO-based memory

of size 32× 40 bits able to hold 40 values for each one of the 32 CNN1 filters. The input

interface has a 1-bit data signal connected to the shift register that receives a new data

value every four clock cycles from the 4:1 max-pooling unit, which corresponds to each

CNN1 filter output. After 4 × 32 = 128 cycles, the register holds a new valid value, and

the buffer controller writes this value to the memory. Further FIFO writes will occur every

time that the current value of the shift register has been completely overwritten. Once the

FIFO is full, the controller sends a signal to the CNN2 to initiate the data processing. This

process is repeated until the current PPG window has been completely processed, i.e., the

240 samples of each input channel have been written to the transposition buffer.

Since the FIFO memory is updated every 128 cycles, it constraints the CNN2 block

execution time to 128 cycles to process the entire memory contents, hence the output

interface has K parallel channels (columns) where each is 40 bits wide (corresponding to

the filter size). For each data read request, the controller selectsK columns from the FIFO

and increments the internal read counter to keep track of how many valid columns are left.

AlthoughK can assume any value between 1 and 32, this implementation assumesK = 2

as it ensures the memory throughput required by CNN2 while minimizing the interface

requirements.
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7.2.4 CNN2 Layer

Increasing the number of input channels from 1 to 32 poses an enormous com-

puting challenge, even with the reduction of data dimensionality due to max-pooling.

Further, the stream-based architecture dictates that the CNN2 must process the entire in-

put data batch will all input channels in 128 cycles before the memory buffer is refreshed,

and the computation moves to the next step. Each data batch read from the memory

buffer corresponds to an output line on the CNN2 output feature map. The computation

cost associated with this operation can be computed according to (7.12) where Cin is the

number of input channels (in this case, 32), sF is the filter size (40 samples), and nF is

the number of filters in this layer, which is also 32.

#OP = Cin × sF × nF = 32× 40× 32 = 40960 (7.12)

Completing these operations within the execution time constraint requires the

module to be capable of computing 40960/128 = 320 operations per clock cycle. Since

each filter has 40 coefficients and 32 filters/input channels on this layer, this throughput

can be achieved with intra- and inter-filter parallelization. If all 40 coefficients are com-

puted in parallel, the 320 operations/cycle is achieved with eight parallel filters. Figure

7.6 illustrates the proposed architecture composed of eight (M = 8) convolution process-

ing elements (PEC) in parallel, a register file for weight storage, a set of adder trees and

an accumulator bank.

Figure 7.6: Internal CNN2 hardware architecture
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This architecture adopts a hybrid data access scheme, which enables the process-

ing of multiple convolution filters (F∗) over multiple input channels (K∗). Choosing the
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right number of parallel filters and input channels is quintessential for optimal resource

allocation since there are eight PEs available. Further, F and K determine the communi-

cation bandwidth for the register file and memory buffer, respectively. These parameters

are defined in terms of M as F = M/I for I ∈ [1, 2, 4, 8]. Table 7.1 shows an analysis

of multiple combinations of F and K considering bandwidth requirements, the latency

per output, and memory accesses and data reuse metrics. This analysis shows that the hy-

brid scheme offers the optimal solution as it maximizes both weight and input data reuse;

hence, the (4, 2) pair was chosen as it reduces the external communication requirements

with the memory buffer. The PEC on the same line belongs to the same filter (red line),

and they are applied on different input channels (green line) whose result is accumulated

with the previous values of the respective accumulator (selected from the green box).

Each input channel is shared among all processing elements on the same column.

Table 7.1: Resource allocation analysis on CNN2 architecture
(F , K) combination

Metrics Input stationary (8, 1) Weight stationary (1, 8) Hybrid (2, 4) & (4, 2)

Input interface width (bits) 1× 40 8× 40 I × 40

1st output latency (cycles) 31× 4 + 1 = 125 5 (32/I − 1)× 32×I
M

+ 1

# Input accesses 32× 4 = 128 32× 32/8× 4 = 512 32×4
I

# Weight accesses 32× 32/8× 4 = 512 32× 4 = 128 128× 4

# Input reuse 32 1 M/I

# Weight reuse 1 32 I

Memory access schedule Every 4 cycles Every cycle Every 32×I
M

cycles

Weight access schedule Every cycle Every 4 cycles Every cycle

Source: The Author

As both inputs and weights are binarized (bipolar variables), the multiplication

can be implemented with XNOR operations along with a bit counting hardware (KIM;

SMARAGDIS, 2016). The XNOR gate is a simpler and faster substitute for the binary

multiplication due to its truth table, and computing the number of ones on the XNOR

output gives the multiplication result. Yet, mapping the [−1, +1] pair to [0, 1] causes a

shift on final result which must be compensated with Equation 7.13 where popcount is

the XNOR result bit count and NB is the input bit-width.

Ab ×Bb = 2× popcount(XNOR(A,B))−NB (7.13)

Each PEC module implements a multiplication of 40-dimensional binary vectors
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using the popcount algorithm. Figure 7.7 depicts the PEC architecture, and it is divided

into three blocks: (i) XNOR array: performs binary multiplications; (ii) a carry save-based

adder tree to accumulate the multiplication results (popcount), and (iii) fixed shift-add

block to compensate the bias added by popcount.

Figure 7.7: The internal architecture of a PEC
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Since each convolution filter has different weight values for each input channel,

the weight register file stores 40960 bits. The RF contains 32 banks (divided into four

segments, each having eight groups) where each bank has 32 lines of 40 bits. As the

architecture computes four filters over two input channels, the RF controller takes two

addresses to select the eight PEC weight sets. The first address selects the group within a

filter segment while the second address selects the line from that particular bank, which

corresponds to the input channel being processed. Each weight data request occurs in a

burst-like manner, i.e., the controller outputs the four contiguous filters – filters 0 to 3, for

instance – for the two adjacent input channels – channels 2 and 3.

The architecture favors the input reuse scheme, so when the memory buffer sends

the ready signal, the CNN2 controller loads the weight set corresponding to filters 0-3

and input channels 0-1 into the PEC, as shown in Figure 7.6. The filter computations

are accumulated with the respective accumulation register, which is reset every time the

memory buffer is updated. Once the computation of these filters is done, the controller

rolls over and loads the weight set corresponding to filter 4-7, considering the same two

input channels (0-1), accumulating the results on the appropriate registers. Figure 7.8

illustrates the execution flow for all filters and input channels. Given that four filters

are computed per clock cycle, and there are 32 filters, the current input channels are

processed in 32/4 = 8 cycles. Once the current input channels have been processed, the
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controller requires new data from the buffer and starts the process again without resetting

the accumulators. Since each input data request fetches two input channels per clock

cycle, this process is repeated 32/2 = 16 times.

Figure 7.8: CNN2 execution sequence diagram
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The last two feature maps are loaded 120 clock cycles after the CNN2 compu-

tation start. At this point, all the filters have already accumulated the multiplications of

previous channels, and the filters 0-3 are the first ones to be processed, which means that

their final value will be available at the clock cycle 121. The remaining filters will be

processed consecutively, and the accumulators 28-31 will be updated with the final value

on the clock cycle 128, as shown in the green block in Figure 7.8. As soon as the first ac-

cumulators have their updated result (cycle 121), the binarization process can start before

the second max-pooling.

The interface between the CNN2 block and the binarizer outputs four accumu-

lators at the time due to the number of filters computed in parallel, which entails in a

binarizer block with four comparators in parallel to cope with the system throughput.

Further, there are 32 1-bit max-pooling units to store the intermediary pooling values of

each output filter as the CNN2 architecture does not generate four outputs in-a-row like

the CNN1 module. In this case, each max-pooling unit will receive a new value every

128 cycles, which is the time frame to process one output row, so the units must keep

the values between updates. Adopting parallel units is an area and latency trade-off since

adopting the same CNN1 sequential outputs per filter would require adding 96 bits to the

memory buffer (7.5% area increase), which would result in a latency penalty of 384 cy-

cles. The final result on the 4:1 pooling blocks, i.e., the current timestep vector for the

LSTM layer is obtained after processing four CNN2 outputs (4×128 = 512 cycles). Note

that the max-pooling registers are used as input buffers for the bLSTM1 layer.
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7.2.5 Binary LSTM layer

Long short-term memory layers have increased implementation complexity due to

their recurrent nature, which requires intermediary data storage. These layers operate over

two input data sources: the timestep input (xt) – generated by the CNN2 output and stored

on the max-pooling registers – and the previous hidden state (ht−1) – stored internally to

the layer – to compute the current cell and hidden states. On the bCorNET framework,

both bLSTMs share the same number of neurons, although the first layer assumes an input

timestep width (sz) of 32 bits while the second one assumes that sz is equal to 128.

Since both binary LSTM layers adopt the same binarization scheme and number

of neurons, they share the same hardware architecture, shown in Figure 7.9. According

to the binarization equations in Section 7.1.2, each layer is divided into three serially

attached computation modules: binary MAC computation, gate non-linearity operations,

and state/output computations. Further, it has eight register files for weight storage and

eight registers for weight-scaling storage, which are not shown in Figure 7.9. The register

file in the first LSTM is composed of four 32b× 128 blocks and four 128b× 128 blocks.

Similarly, LSTM2 has eight similar blocks of 128× 128 bits.

Figure 7.9: Binary LSTM architecture for both LSTM layers in bCorNET
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This architecture adopts a mixed data representation scheme because even though

the input and weight binarization, the gates’ outputs cannot be binarized without severely

impacting the network accuracy. The LSTM layer employs a fixed-point implementation

whose precision is fine-tuned to obtain an optimal trade-off between quantization-induced

accuracy loss and circuit performance. Hence, both input and output interfaces are binary,

while the internal computations are represented in a Qn.m fixed-point format.
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Figure 7.10: Internal architecture of a PEL
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The binary MAC computation section has eight binary processing elements (PEL)

– shown in Figure 7.10) – along with four adders to combine the convolved inputs with

the respective convolved hidden state. Each PEL multiplies the binary input (either xt or

ht−1) by the associated binary weights (W* or U*). As both layers have 128 neurons (or

LSTM units), there are 128 different weight sets for each (xt, ht−1) pair, and each pair is

processed in one cycle. Note that the PEL architecture is similar to PEC (see Figure 7.7),

although it features a fourth block where the output is multiplied by the scaling factor

(λ∗), ignored on the CNN modules.

As each MAC computation is finished, the results are combined using a carry-

propagating adder before the pipeline register. The weight-scaling parameters define the

adder width as they scale the popcount output in each PEL. In this segment, n is set to 25

bits to accommodate the integer part (8 bits) and the fractional part (17 bits). The former

is defined according to the popcount maximum value while the latter is derived from the

non-linear computation blocks. All adders are based on a carry select architecture with

variable group size as it offers the best trade-off between speed and area.

While CNN activation functions could be binarized, all non-linear (NL) operations

on the LSTM gates are based on sigmoid and hyperbolic tangent functions, which are ex-

pensive to compute and cannot benefit from binarization techniques (TIMMONS; RICE,

2020). Hence, these functions were implemented using lookup tables (LUT) aiming for

a better trade-off between circuit area footprint and approximation error. The accuracy

of these non-linearities are highly affected by the bit-width, so they define most of the
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datapath bit-width. Since the internal datapath adopts the Qn.m fixed-point representa-

tion, the optimal values for n and m are determined based on heuristic analysis of three

parameters relative to the LUT design: (i) number of LUT segments; (ii) fraction size (m)

and (iii) maximum input data range (n −m). Further, the sigmoid function can be com-

puted as a function of the hyperbolic tangent, according to (7.14), simplifying the LUT

implementation.

σ(x) = tanh
(x

2

)
+ 0.5 (7.14)

The quantization step size dictates the minimal distance between two input values

(x value) to determine the output value, and it is determined by the inverse of the number

of segments. The number of segments is constrained to a power of 2, constraining the

step size to a negative power of 2 that can be implemented as a shift, leading to simpler

hardware. In this exploration, LUTs with 32, 64, and 128 segments were tested. Further,

the input range dictates how small the step size as the latter is a given by (7.15). The input

range lower bound is set to 4 as lower values would affect the accuracy near the function

edges considerably, and the upper bound was limited to 8 as the accuracy improvements

would require a non-optimal number of fraction bits.

Step size =
Maximum input range
Number of segments

(7.15)

The step size alone cannot determine the LUT accuracy as it only dictates the

input quantization. Since the outputs of both sigmoid and hyperbolic tangent functions

are constrained to [0, 1] and [−1, 1], respectively, the fraction size (m) will determine

the output quantization step size. The actual word width on each LUT block is set to

m+ 1 to account for the sign bit as the values are represented in two’s complement. This

exploration considered values of m ranging from 6 to 18 bits.

For improved accuracy, the LUT employs a linear output interpolation, which does

not require any complex arithmetic operator since the division process is implemented

using an adder and a shift as the step size of the x-axis is a negative power of two. The

interpolation is implemented according to Equation 7.16 where y0 is the LUT segment

corresponding to the input (iLUT ), y1 is the next segment on the LUT, and x0 is the largest

quantized input smaller than iLUT . Note that the difference between x0 and x1 is always
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a negative power of 2, so the division is reduced to a shift operation.

tanhLUT (iLUT ) = y0 + (y1 − y0)
(
iLUT − x0
x1 − x0

)
(7.16)

Figure 7.11: LUT interpolation example for the tanh function

Source: The author

Figure 7.11 illustrates how the interpolation is computed assuming iLUT = 0.85.

This input value falls between the 0.75 and 1.00 quantized points that have associated

output values (y0 and y1, respectively) on the LUT. At this point, the accuracy drop is

reduced from 8.1% to 0.77% when comparing the baseline LUT implementation with the

interpolation-based implementation.

Nevertheless, the non-linear function accuracy itself is not the best metric to de-

termine the best set of parameters for the LUT implementation. Then, Figure 7.12 shows

the mean absolute error of the predicted HR over the first 12 data recordings on the train-

ing dataset for the exploration of a different number of segments, fraction size, and input

range. The black line represents the full-precision software implementation of the acti-

vation functions. The optimal accuracy-area trade-off is given by a LUT implementation

with 32 segments, m = 17 bits for the fraction size and 5 bits for the integer part on the

input representation, i.e., the value of n is 17 + 5 = 22 bits.

The hyperbolic tangent LUT implementation follows the architecture shown in

Figure 7.13. It features a ROM to store the quantized tanh values, an input/output lim-

iter block (in blue), and the output interpolation circuit (in gray). Due to the hyperbolic

tangent symmetry, the ROM memory only needs to store half the quantized curve points.

Ensuring the entire output range requires computing the absolute value of the input and

determine the input sign (ABS). Then, the absolute value is used to access the ROM

memory, while the sign is used to correct the output sign through a two’s complement
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Figure 7.12: Fixed-point LUT implementation trade-off exploration

Source: (ROCHA et al., 2020)

computation block (2C).

Figure 7.13: Lookup table architecture for tanh function
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The light blue block on Figure 7.13 checks whether or not the input (iLUT ) is

outside the range used to compute the values stored on the ROM memory. If the input

magnitude is larger than the maximum range of the tanh x-axis (8, in this case), the circuit

in gray is bypassed, and the output magnitude is rounded to 1 (in fixed-point format), then

the output sign is corrected accordingly. If the iLUT value is within the valid range, the five

most significant bits are used to select the segments y0 and y1, where y0 is the quantized

tanh point corresponding to the current iLUT value and y1 is the next point on the ROM
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memory. The gray block implements the output interpolation circuit, according to (7.16).

7.2.6 Quantized dense layer

The regression layer is responsible for translating the computed hidden state of

the bLSTM2 into a real-valued HR. Opposite to other layers in the system, this single

neuron dense layer relies on a MAC operation with binary input data and quantized weight

values. The weight quantization follows the bit-width constraint determined by the LUT

implementation. For optimal resource allocation, the dense layer architecture, illustrated

in Figure 7.14, is based on a serial approach to match the data production rate of bLSTM2.

It features a register file to store 128 weights of 18 bits, a multiplexer to select between

the stored value and its 2’s complement value and an accumulator. This accumulator will

not overflow since the output is normalized following the training methodology.

Figure 7.14: Quantized dense layer architecture
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Source: The author

As each value of the last bLSTM2 hidden state (ht) is computed, this value is

also fed to the quantized dense layer to determine the multiplication sign. Since a new

input value is available every cycle, an internal counter generates the address to access the

weight memory. After 128 cycles, the accumulator has the updated normalized heart rate

(HRn) for that input PPG window. The accumulator adder employs a carry-select adder

for optimal balance between performance, area, and power consumption.

7.3 Timing Analysis

The primary target of the bCorNET framework is on-node processing, where the

overall system performance can be assessed in terms of latency and throughput. The sys-

tem operation is divided into configuration and evaluation phases, as illustrated in Figure

7.15. During the configuration phase, all the weights, thresholds, and scaling factors are
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serially loaded into the respective register files, and the system top level controller man-

ages the entire process. Sequential loading of the network parameters helps saving mem-

ory bandwidth and reduces the interface requirements with a negligible latency penalty as

it happens only once.

Figure 7.15: Overall architecture timing sequence
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Once all the modules have been properly configured, the system changes to the

evaluation phase, which will set the system to predict an HR based on the current PPG

window. Based on the stream architecture concept, the system adopts a 6-stage pipelined

design – CNN1 bundle, transposition buffer, CNN2, max-pooling, LSTM1, LSTM2 – to

achieve a balance between speed and system latency. The CNN1, binarizer, and sequential

max-pooling modules comprise the first pipelining stage, so the computation happens on

the same cycle, which helps saving latency cycles at the expense of a slightly longer

critical path. Each filter has a valid max-pooled output every four cycles when it is ready

to be stored on the transposition buffer. Since the buffer holds 32× 40 bits, it takes 5120

(i.e. 4× 32× 40) cycles to be filled and ready to output data.

After the buffer is filled, the CNN2 module is enabled, and it has 128 cycles to

process the entire buffer content to obtain one valid output for each filter. Differently than

CNN2, the second convolutional layer and max-pooling units are two separate pipeline

stages. Hence, a valid LSTM1 input timestep is ready on the register of the second max-

pooling layer after 4 CNN2 outputs have been processed, which is equivalent to 4×128+

1 = 513 cycles. Considering the buffer filling (5120 cycles) and the CNN2 with max-

pooling (513 cycles) latencies, the first LSTM layer can start processing the first timestep
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after 5120 + 513 = 5633 cycles from the start of the evaluation phase. At this point, the

first four stages are full of data.

LSTMs are considerably more complex due to their intra-layer pipelining and the

recurrent nature. Each bLSTM layer sequentially processes its 128 neurons according to

the timing diagram shown in Figure 7.16, assuming that all the timesteps are ready to be

processed. It is important to note that despite the serial processing strategy adopted on

the LSTM layers, they finish the timestep processing before the CNN2 max-pooling has

available data on the output, requiring a pipelining stall between timesteps, achieved with

clock-gating for power saving. Although stalling the pipeline is not optimal, it is a trade-

off between the computation capability of the LSTM layers and the additional memory

for a more serialized architecture.

Figure 7.16: Timing diagram for bLSTM layers
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Each LSTM layer has a two-stage pipeline for MAC computation (PE exec) and

non-linear processing (NL exec). All PEL are activated once the data is available on the

input, processing one neuron per clock cycle. After 128 cycles, the hidden state shift

register (SREG) has the updated hidden state, and its contents are copied to HREG to be

used on the next timestep.Due to their recurrent nature, both LSTM layers must complete

processing timestep t before it starts processing the t + 1 timestep since the hidden state

ht is required to compute ht+1. Therefore, each layer completes a timestep processing

in 130 cycles. Once the HREG is updated on bLSTM1, the bLSTM2 is activated, effec-

tively all system pipeline stages. The dense layer is activated when the bLSTM2 start the

NL processing of the last timestep to reduce latency as it also adopts a serial processing

strategy.

The total system latency (SL) is given by the complete processing of an 8s PPG
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window, i.e., the system has to fill the memory buffer, process the 240 lines of the max-

pooled CNN1 output feature map and one timestep by each bLSTM layer. Note that the

last CNN2 input feature map line is not considered due to the LSTM pipelining. Hence:

SL = 5120 + (240− 1)× 128 + 260 = 35972 cycles (7.17)

7.4 Evaluation of the bCorNET framework on ASIC and FPGA platforms

The bCorNET framework evaluation has two key aspects: (a) accuracy measure-

ments on the binarized/quantized model with LUT-based non-linear functions, and (b)

performance comparison on both FPGA and ASIC platforms. For the accuracy mea-

surements, the bCorNET framework was trained and evaluated using the methodology

presented in Section 6.2.2. For the hardware evaluation, each platform has a specific

methodology to be followed.

The evaluation on 22 subjects, comparing bCorNET using both software and hard-

ware models, is shown in Table 7.2. Despite the quantization of both non-linear functions

and weight scaling factors, the accuracy drop is about 9.7%, moving from an MAE of

6.67±5.49 to 7.32±5.68. Since the LSTMs operate on a recurrent fashion, considering

the value from the previous iteration, the quantization error is accumulated through

Considering the RTL-based evaluation models, subject 23 shows the best results

(2.92±2.13) whose HR estimation is shown in Figure 7.17. Note that the quantization

error can improve the accuracy as illustrated by subject 23, which has a 7.2% lower MAE

if compared with the full precision software version.

Conversely, the worst result is presented by subject 8 (15.00±11.26), whose HR

estimation is shown in Figure 7.18. The intense motion artifact on this subject poses a

severe challenge for the model to differentiate noise from the actual HR component on

the PPG data. However, the first 12 records showed the lowest error on average as they

have more subjects executing the same activity.

7.4.1 Hardware Synthesis

All bCorNET hardware modules were described in Verilog, and the same design

files were used for both target platforms. For a proof-of-concept demonstration for real-
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Table 7.2: Binary CorNET Evaluation
Record Binary CorNET Binary CorNET (RTL)

1 5.70 ± 4.14 5.80 ± 4.07
2 9.51 ± 7.89 9.38 ± 9.19
3 5.52 ± 4.29 5.37 ± 3.24
4 3.75 ± 2.96 4.48 ± 3.95
5 3.18 ± 2.58 4.44 ± 2.70
6 3.38 ± 3.30 4.20 ± 3.47
7 2.49 ± 1.67 3.53 ± 2.76
8 13.30 ± 11.77 15.00 ± 11.26
9 3.17 ± 2.30 3.86 ± 2.90

10 12.84 ± 9.24 13.12 ± 11.74
11 7.42 ± 5.46 7.92 ± 4.74
12 4.17 ± 3.75 4.22 ± 3.49
13 - -
14 11.19 ± 9.17 12.90 ± 12.22
15 5.39 ± 4.67 6.66 ± 5.66
16 8.56 ± 7.15 8.77 ± 7.89
17 13.63 ± 11.53 13.22 ± 11.40
18 5.08 ± 3.52 5.92 ± 4.51
19 3.16 ± 3.09 3.54 ± 3.37
20 6.09 ± 5.45 8.15 ± 7.15
21 10.25 ± 9.49 11.83 ± 9.83
22 5.76 ± 5.24 5.79 ± 4.37
23 3.15 ± 2.12 2.92 ± 2.13

Record 1-12 (T1)
MAE±SDAE 6.20 ± 4.95 6.78 ± 5.29

Record 13-23 (T2 and T3)
MAE±SDAE 7.23 ± 6.14 7.97 ± 5.97

Record 1-23 (T1, T2 and T3)
MAE±SDAE 6.67 ± 5.49 7.32 ± 5.68

Source: The Author

time operability, the design was synthesized for FPGA using the Xilinx Vivado Design

Suite v2018.3 synthesis tool for a Kintex 7 (XC7K70T) device. For this platform, the

design explores device-specific features like DSP modules and block RAM (BRAM) units

to improve the synthesis quality of results with a smaller area and better timing. Table 7.3

reports the bCorNET accelerator synthesis results, showing it is able to achieve real-time

HR computation with a small circuit footprint. There are no works on the literature that
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propose a joint CNN-LSTM accelerator for a fair comparison. Yet, Table 7.3 also reports

the circuit usage for other similar architectures to clarify the clear benefits of quantization

Figure 7.17: PPG Estimated vs true ECG HR for Subject 23

Source: The author

Figure 7.18: PPG Estimated vs true ECG HR for Subject 8

Source: The author
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and binarization on the device resource usage with respect to non-binary implementations.

Table 7.3: FPGA Implementation results
(CHANG; CULURCIELLO, 2017) (GUO et al., 2017) bCorNET

Input Precision 16b Fixed 12b Fixed 5b Fixed
Network Arch LSTM Variable LSTM bCNN+bLSTM+qDense
Platform XC7Z045 XCKU060 XC7K70T
LUTs 61834 294000 100250
DSPs - 1505 54
BRAMs - 119 21
GOPS - 2520 27
Frequency (MHz) 142.0 200.0 10

Source: The Author

Conversely, the ASIC implementation flow does not rely on any technology-specific

memory cores to optimize register files and FIFO memories. Therefore, all memory-

related components are mapped to registers available on the standard cell library. The

synthesis flow was performed using the Cadence GenusTM synthesis tool (CADENCE,

2018) considering a standard cell library from an ST 65nm process with standard Vt

transistors operating with a supply voltage of 1.0V. For accurate power estimation, the

methodology proposed in (PAIM et al., 2019b) was adopted with PLE mode activated on

the synthesis tool.

The target frequency was set 1 MHz for two reasons: (a) several biomedical sensor

platforms have internal components operating at this speed, like in (KONIJNENBURG

et al., 2016; SCHONLE et al., 2017), and (b) considering the total system latency, it

still offers a real-time capability for HR inference as the computation would be finish

in about 36ms for each PPG window. Table 7.4 summarizes the synthesis results for

the bCorNET framework. There are no works on the literature that proposed a similar

hardware accelerator for an ASIC platform prohibiting any comparison.

7.5 Chapter Summary

This Chapter described bCorNET, a model that embedded modifications on the

original CorNET model to make it suitable for running on edge devices. This is achieved

by the combination of quantization and binarization techniques to reduce the memory and

computational requirements.

Further, it presented a tailored stream-based hardware architecture to maximize the

efficiency of the bCorNET model in terms of resource requirements, energy consumption
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Table 7.4: ASIC Implementation results

Data precision 5-bit (inputs) / binary (weights)

Network Arch CNN+LSTM+Dense

Process 65 nm

Energy/window (µJ) 56.1

Mem. (kbits) 260

Cell Area (µm2) 3399657

Gates (NAND2 Eq.) 1634450

Op. Frequency (MHz) 1

Source: The Author

and throughput. The circuit has a small area footprint and it requires a very low clock

frequency to achieve real-time operation. The design was synthesized for FPGA platform

as a proof-of-concept, and for an ASIC platform to assess the circuit characteristics for

embedding it into a wearable device.
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8 CONCLUSIONS

The work developed in this thesis led to contributions to the field of arithmetic

operators as well as in the design of efficient hardware architectures for embedded neu-

ral networks. This chapter concludes this thesis, pointing the main contributions, and

discussing future directions for this research.

8.1 Main findings

Chapter 5 presented a highly flexible framework to generate RTL designs for

arithmetic operators. The modular architecture simplifies the framework extensibility

needed to support new algorithms that may be used in arithmetic operations. Due to the

algorithmic-level description of circuits and the automatic testbench generation system,

the framework proves to be a very efficient tool for digital designers to explore design al-

ternatives to fulfill specific design requirements. The framework efficiency was assessed

through the generation of several multiplier combinations that were synthesized consid-

ering a commercial technology and synthesis flow. Results showed that state-of-the-art

EDA tools do not have optimized multiplier-aware mapping algorithms. Further, its flex-

ibility allowed the optimization of the Radix-2m multiplier, resulting in a smaller, more

energy-efficient architecture than the baseline implementation. The framework is a rel-

evant contribution to the community as it publicly available for use by digital designers

looking for optimized arithmetic circuits.

Chapter 6 presented an alternative training methodology for the CorNET frame-

work, allowing a more generalized approach that is more suited for deployment in embed-

ded devices. Further, considering other subjects on the training dataset makes the model

more prone to capture the subtle physiological differences in each subject.

The hardware implementation for the binarized CorNET framework presented in

Chapter 7 is the first circuit realization tailored for a recurrent neural network. Few works

in the literature have addressed the hardware complexity inherent to LSTM layers. It

involved binarization and quantization processes on the network model, which led to

low degradation impact (< 1.2bpm) on the overall model accuracy when considering 22

recordings from the IEEE SPC dataset. The bCorNET framework is the first binary deep

learning model for heart rate estimation available on the scientific community. Further,

the proposed hardware architecture is suitable for embedded applications given the small
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circuit footprint and low clock frequency required to operate on real-time HR estimation.

The uniqueness of the proposed circuit is a significant contribution as it explores the im-

plementation challenges of binary LSTMs, which were not subject to the due research,

and it addresses the dataflow issues of stream architectures.

8.2 Future directions

The inherent robustness of neural networks makes them an excellent application

for approximate computing techniques. In that sense, there is a plethora of methods and

techniques that could be explored, especially in the context of recurrent neural networks

where the hardware exploration has not received significant attention.

Also, many research projects require energy-efficient arithmetic operators as the

current EDA tools do not always implement the best architecture. This issue could be

solved with the RTLGen framework, which will integrate state-of-the-art arithmetic cir-

cuits that include approximate adders and multipliers. The framework can also be ex-

tended to generate complete arithmetic units in both fixed and floating points.

Finally, other architectural explorations can be performed on the bCorNET frame-

work to improve the system accuracy and, if possible, reducing the overall complexity

for optimal energy efficiency. These explorations may include adapting the architecture

to consider additional input signals like accelerometers or multiple PPG channels, hyper-

parameter tuning, and layer and filter rearrangement. The framework can also be extended

to measure multiple output signals like heart rate variability, blood pressure, blood oxygen

saturation, among others.
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