
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

MATEUS PAIVA FOGAÇA

Finding Placement-Relevant Clusters With
Fast Modularity-Based Clustering

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Microelectronics

Advisor: Prof. Dr. Ricardo A. da L. Reis
Coadvisor: Prof. Dr. Andrew B. Kahng

Porto Alegre
Jun 2020



CIP — CATALOGING-IN-PUBLICATION

Fogaça, Mateus Paiva

Finding Placement-Relevant Clusters With Fast Modularity-
Based Clustering / Mateus Paiva Fogaça. – Porto Alegre: PGMI-
CRO da UFRGS, 2020.

88 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica, Porto Alegre,
BR–RS, 2020. Advisor: Ricardo A. da L. Reis; Coadvisor: An-
drew B. Kahng.

1. Microelectronics. 2. EDA. 3. Physical Design. 4. Floor-
planning. 5. Placement. 6. Modularity-Based Clustering. I. Reis,
Ricardo A. da L.. II. Kahng, Andrew B.. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Men are rather reasoning than reasonable animals,

for the most part governed by the impulse of passion.”

— ALEXANDER HAMILTON



ACKNOWLEDGMENTS

I want to thank the many colleagues and friends have that contributed to my aca-

demic life. Many thanks to Cristina Meinhardt, Guilherme Flach, Jucemar Monteiro,

Ygor Aguiar, Eder Monteiro, Gracieli Posser, Cristal Villalba, Geancarlo Abich, Marcelo

Johann, among many others! I acknowledge my advisor, Prof. Ricardo Reis, for his

guidance and commitment to my professional growth.

The current thesis is not the result of an “one man army” – It is the result of

a collaboration that started in 2018 when Prof. Andrew Kahng has accepted me as a

visiting Ph.D. student in his research group. I want to thank him for this lasting and

profitable collaboration. I also thank Lutong Wang (UCSD), Mingyu Woo (UCSD) and

Eder Monteiro (UFRGS) for putting their hard work in the project that resulted in the

current thesis. I have written the remainder of the present document using the plural form

to honor the effort of everyone that has contributed to the project.

I send a special acknowledgment to Prof. Paulo Butzen, not only for helping in

the elaboration of the present document but also for reminding me that I have friends

willing to help without any expectation of return. Thanks for the enormous technical and

emotional support, Paulo! :-)

Finally, I acknowledge CAPES for the financial support throughout most of my

Ph.D. and DARPA/Precision Innovations, Inc. for the financial support in the final months

of my Ph.D.



ABSTRACT

In advanced technology nodes, IC implementation faces an increasing design complexity

as well as ever-more demanding design schedule requirements. This raises the need for

new decomposition approaches that can help reduce problem complexity, in conjunction

with new predictive methodologies that can help to avoid bottlenecks and loops in the

physical implementation flow. Notably, with modern design methodologies it would be

very valuable to better predict the final placement of the gate-level netlist: this would en-

able more accurate early assessment of performance, congestion and floorplan viability in

the SOC floorplanning/RTL planning stages of design. In this work, we study a new crite-

rion for the classic challenge of VLSI netlist clustering: how well netlist clusters “stay to-

gether” through final implementation. We propose the use of several evaluators of this cri-

terion. We also explore the use of modularity-driven clustering to identify natural clusters

in a given graph without the tuning of parameters and size balance constraints typically

required by VLSI CAD partitioning methods. We find that the netlist hypergraph-to-graph

mapping can significantly affect quality of results. Further, we empirically demonstrate

that modularity-based clustering achieves better correlation to actual netlist placements

than traditional VLSI CAD methods (our method is also 2× faster than use of hMetis for

our largest testcases). Finally, we propose a flow with fast “blob placement” of clusters.

The “blob placement” is used as a seed for a global placement tool that performs place-

ment of the flat netlist. With this flow we achieve 20% speedup on the placement of a

netlist with 4.9M instances with less than 3% difference in routed wirelength.

Keywords: Microelectronics. EDA. Physical Design. Floorplanning. Placement. Modularity-

Based Clustering.



Encontrando Grupos Relevantes ao Posicionamento

com Agrupamento Baseado em Modularidade

RESUMO

Em nodos tecnológicos avançados, a implementação de circuitos integrados deve lidar

com o aumento da complexidade dos projetos e também com cronogramas mais restritos.

Portanto, cria-se a necessidade de novas abordagens de decomposição que ajudem a re-

duzir a complexidade do problema e novas metodologias preditivas para evitar gargalos

e iterações no fluxo de implementação. Em metodologias de projeto modernas, seria útil

predizer o posicionamento do circuito em nível de portas lógicas. Essa habilidade tornaria

possível avaliar com maior precisão a planta baixa de um circuito em termos de desem-

penho e congestionamento ainda nas etapas de projeto da planta baixa e planejamento da

descrição do circuito em nível de transferências de registradores de sistemas em chip. Este

trabalho apresenta um novo critério de avaliação do problema clássico de agrupamento do

circuito em nível de portas lógicas: avaliar se as portas lógicas de um grupo “permanecem

próximas” ao longo do fluxo de implementação. Métodos para a avaliação desse critério

são propostos. Além disso, o trabalho utiliza uma classe de técnicas de agrupamento cha-

mada de agrupamento baseado em modularidade para identificar “grupos naturais” em

um grafo, dispensando a necessidade de ajustes de parâmetros do algoritmo ou restrições

de balanceamento de tamanho dos grupos, tradicionalmente necessários em técnicas de

particionamento utilizadas por ferramentas de CAD (do inglês, computer-aided design).

Os experimentos realizados mostram que o mapeamento do circuito de hipergrafo para

um grafo afeta significativamente a qualidade dos resultados. Também demonstra-se em-

piricamente que grupos obtidos com técnicas de agrupamento baseadas em modularidade

possuem uma maior correlação com o posicionamento quando comparadas com técni-

cas de particionamento tradicionalmente empregadas por ferramentas de CAD (A técnica

utilizada neste trabalho também é 2× mais rápida que a ferramenta de particionamento

tradicional hMetis nos maiores casos de teste). Por fim, é proposto um fluxo no qual se

realiza posicionamento de grupos (“posicionamento de bolhas”). O “posicionamento de

bolhas” é utilizado com ponto de partida (“semente”) para uma ferramenta de posiciona-

mento global. A ferramenta de posicionamento global utiliza a semente para realizar o

posicionamento das portas lógicas do circuito. O fluxo proposto permite reduzir em 20%

o tempo do posicionamento do circuito e a diferença nos resultados é menor que 3% em



termos de comprimento de fios.

Palavras-chave: Microeletrônica. Automação do Projeto Eletrônico. Projeto Físico.

Planta Baixa. Posicionamento. Agrupamento Baseado em Modularidade.



LIST OF ABBREVIATIONS AND ACRONYMS

AS Alpha shape

BP “Blob placement”

CAD Computer-aided design

CH Convex hull

CL Number of clusters

CNM Clauset Newman Moore

CPU Central processing unit

CTS Clock tree synthesis

DARPA Defense Advanced Research Projects Agency

DBi Davies–Bouldin index

DBSCAN Density-based spatial clustering of applications with noise

DRC Design rule checking

DSP Digital signal processing

DT Delaunay triangulation

EDA Electronic design automation

ERC Electrical rule checking

GDSII Graphic Design System II

HDL Hardware description language

HLC Hierarchical Louvain clustering

HPWL Half-perimeter wirelength

I/O Input/output

IC Integrated circuit

IDEA Intelligent Design of Electronic Assets

ISPD International Symposium on Physical Design



LC Louvain clustering

LIFO Last in, first out

LVS Layout versus schematic

NP Nondeterministic polynomial

PDK Process design kit

RAM Random access memory

R&D Research and development

RTL Register-transfer level

SC Silhouette coefficient

SCAN Structural clustering algorithm for networks

SOC System on chip

SP “Seeded placement”

SPICE Simulation program with integrated circuit emphasis

TT Typical-typical corner

VHDL Very high speed integrated circuit hardware description language

VILE Very illegal

VLSI Very large scale integration

VRC Variance ratio coefficient

VT Threshold voltage

WL Wirelength



LIST OF FIGURES

Figure 2.1 VLSI design flow. ..........................................................................................19
Figure 2.2 A hyperedge (a) decomposed using the clique (b) and the star (c) models. ..22
Figure 2.3 Alternative 2-way partitioning solutions of a circuit netlist (left). The

first solution, obtained with cut1 (upper), produces 2 partitions with 2 edges
between them. The second solution, obtained with cut2 (lower), produces 2
solutions with 4 edges between them......................................................................23

Figure 2.4 Community structure for a set of webpages based on hyperlinks. Each
color represents a community. ................................................................................24

Figure 2.5 The bounding-box of 4-pin net. The half-perimeter wirelength is the
summation of the width (W) and height (H) of the bounding-box. ........................24

Figure 3.1 The hMetis flow. ............................................................................................27
Figure 3.2 Example of communities in a graph. Bold black lines are edges con-

necting vertices that belong to the same community; Gray lines are edges
connecting vertices that belong to different communities and dashed red lines
outline the communities. ........................................................................................30

Figure 3.3 Dendrogram of the clustering found by Newman for the “Karate club”
benchmark. Numbers are the vertices indices and the shapes represent the
ground-truth communities.......................................................................................34

Figure 3.4 Runtime comparison between CNM and Wakita and Tsurumi. ....................36
Figure 3.5 Values of modularity for CNM and Wakita and Tsurumi. For the latter,

different weighting schemes are shown. .................................................................36
Figure 3.6 Outline of Louvain algorithm. The algorithm has two phases: modular-

ity optimization and community aggregation. Each iteration of the two phases
is called a pass. ......................................................................................................38

Figure 3.7 A graph with two clusters, one hub and one outlier. The clusters are
formed by vertices 0-5 and 7-12. Vertex 6 is a hub and vertex 13 is an outlier. ....39

Figure 3.8 (a) placement grid with a row outlined in blue lines and a site outlined
in green; (b) global placement of a circuit with six instances; (b) legalization
of the placement from (a) and (c) detailed placement where instances D and
F are swapped.........................................................................................................42

Figure 3.9 Evolution of global placement techniques.....................................................43
Figure 3.10 ePlace modeling of the placement problem as an electrostatic system:

instances are modeled as positive charges whose electric quantity is the in-
stance area. Instance density is modeled as an electric force that spreads
instances apart. ........................................................................................................47

Figure 3.11 ePlace result (a) without fillers, (b) with fillers and (c) after fillers are
removed. Instances are drawn in red and fillers are drawn in blue.........................47

Figure 4.1 The process of “shelling” the cluster shape. Figure (a) shows a cluster
with total cell area equal to 4.6 × 103µm2 and shape area equal to 23.0 ×
103µm2. Thus, the utilization of the cluster is equal to 20.2%. The cluster’s
“shell” is the set of red instances that are on the boundary of the shape. In (b),
the cluster shape is recomputed after removing the shell from (a). The final
shape has area equal to 11.6× 103µm2 and utilization equal to 40.1%.................51



Figure 4.2 Different approaches to correlate clusters with the placement for the
circuit ispd18_test2 (MANTIK et al., 2018): (a) the placement with each
instance colored according to its cluster, followed by (b) the convex hulls; (c)
the alpha shapes; and (d) the Delaunay triangulations of the clusters. ...................52

Figure 4.3 Netlist decomposition. ...................................................................................56
Figure 4.4 Experiment 1 flow: Each netlist is modeled as a graph using the clique

and star decompositions. In using clique, we compare five edge-weighting
approaches. Furthermore, we evaluate the use of I/O proximity weights in
the graph edges. Next, Louvain clusters the graphs. Finally, the clustering
solutions are evaluated in terms of DBi, VRC and SC. ........................................57

Figure 4.5 The average improvement of Lengauer w/o I/O proximity weights over
the other graph models. ........................................................................................58

Figure 4.6 Experiment 2 flow: Comparison of Louvain with hMetis 2-way and k-
way. .......................................................................................................................60

Figure 4.7 Comparison between Louvain and hMetis in terms of DBi, VRC and
SC. ..........................................................................................................................62

Figure 4.8 Experiment 3 flow: The netlist graphs are clustered with Louvain and
the clustering results are evaluated using placement under five floorplan as-
pect ratios: 1:1, 1.5:1, 2:1, 2.5:1 and 3:1. ...............................................................63

Figure 4.9 The deltas of DBI, VRC and SC from the floorplan with aspect ratio 1:1
to aspect ratios 1.5:1, 2:1,2.5:1 and 3:1. Values are normalized according to
Equations (4.8)-(4.10).............................................................................................64

Figure 4.10 Visual comparison of MegaBoom_14 with different aspect ratios and
same utilization. The images have been scaled for a better visualization. The
red arrow highlights two blue clusters blending together. ......................................65

Figure 4.11 Experiment 4 flow: We synthesize the same design in 14nm, 28nm and
65nm. Next, we cluster the netlist graphs using Louvain. Finally, we compare
the results visually and numerically using DBi, VRC and SC. ..............................66

Figure 4.12 Clustering results for (a) MegaBoom_28 and (b) MegaBoom_65. Com-
pare with MegaBoom_14 from Figure 4.10(a). .....................................................67

Figure 4.13 Graphic representation of the Variation of DBi, VRC and SC for net-
card, leon3mp and MegaBoom when compared to their implementation in
14nm. Values are normalized according to Equations (4.8)-(4.10). .......................67

Figure 5.1 Experimental fast placement flow. ................................................................71
Figure 5.2 MegaBoom_14: (a) flat placement, (b) “blob placement” and (c) “seeded

placement”. ............................................................................................................72
Figure 5.3 Runtime improvement of “seeded placement” over flat placement...............74
Figure 5.4 Runtime breakdown of our fast placement flow. ...........................................74
Figure 5.5 Post-route wirelength degradation of “seeded placement” over flat place-

ment.........................................................................................................................74



LIST OF TABLES

Table 3.1 Summary of the partitioning algorithms studied in this work and their
category according to Alpert and Kahng (1995).......................................................25

Table 3.2 Summary of the community detection methods to be discussed in this
Section.......................................................................................................................31

Table 3.3 Global placement tools studied in our work and their taxonomy....................44

Table 4.1 Description of net weighting alternatives........................................................54
Table 4.2 Benchmarks and attributes. .............................................................................57
Table 4.3 Netlist tuning. ..................................................................................................59
Table 4.4 Comparison among number of clusters (CL) and values of DBi, VRC,

SC and runtime (CPU) for Louvain and hMetis. We highlight the best result
for each evaluation criterion in each design..............................................................61

Table 4.5 Variation of DBi, SC and VRC with aspect ratios 1.5:1, 2:1, 2.5:1 and 3:1
compared to their implementation with aspect ratio 1:1. Values are normalized
according to Equations (4.8)-(4.10). .........................................................................64

Table 4.6 Variation of DBi, VRC and SC for netcard, leon3mp and MegaBoom
when compared to their implementation in 14nm. Values are normalized ac-
cording to Equations (4.8)-(4.10)..............................................................................67

Table 5.1 Benchmark attributes and results of fast placement using “seeded place-
ment.” The runtime of fast placement is broken into Louvain clustering (LC),
hierarchical Louvain clustering (HLC), “blob placement” (BP) and “seeded
placement” (SP). Refer back to Table 4.2 for the instance complexities..................73



CONTENTS

1 INTRODUCTION.......................................................................................................15
2 PRELIMINARIES......................................................................................................19
2.1 Design Flow of Digital Circuits ..............................................................................19
2.2 Hyperedge Decomposition......................................................................................21
2.3 Partitioning..............................................................................................................22
2.4 Clustering and Community Detection ..................................................................22
2.5 Half-Perimeter Wirelength ....................................................................................23
3 LITERATURE REVIEW...........................................................................................25
3.1 VLSI Netlist Partitioning .......................................................................................25
3.1.1 Move-Based Approaches .......................................................................................26
3.1.1.1 hMetis .................................................................................................................27
3.1.1.2 MLPart ................................................................................................................27
3.1.2 Geometric Representation-Based Approaches ......................................................28
3.1.3 Combinatorial Formulations ..................................................................................28
3.1.4 Clustering Approaches...........................................................................................29
3.2 Community Detection.............................................................................................30
3.2.1 Finding and Evaluating Community Structure in Networks (NEWMAN; GIR-

VAN, 2004) .........................................................................................................31
3.2.2 Fast Algorithm for Detecting Community Structure in Networks (NEWMAN,

2004) ...................................................................................................................32
3.2.3 Finding Community Structure in Very Large Networks (CLAUSET; NEW-

MAN; MOORE, 2004) .......................................................................................33
3.2.4 Finding Community Structure in Mega-Scale Social Networks (WAKITA;

TSURUMI, 2007) ...............................................................................................34
3.2.5 Fast Unfolding of Communities in Large Networks (BLONDEL et al., 2008).....35
3.2.6 SCAN: A Structural Clustering Algorithm for Network (XU et al., 2007)...........37
3.2.7 A Novel Similarity-Based Modularity Function for Graph Partitioning (FENG

et al., 2007) .........................................................................................................39
3.2.8 Modularity-Driven Clustering for Hypergraphs ....................................................40
3.3 Placement.................................................................................................................41
3.3.1 Global Placement Tools .........................................................................................43
3.3.1.1 ePlace ..................................................................................................................46
3.3.1.2 RePlAce ..............................................................................................................48
4 FINDING PLACEMENT-RELEVANT CLUSTERS WITH FAST MODULARITY-

BASED CLUSTERING....................................................................................49
4.1 Problem Definition ..................................................................................................49
4.2 Methodology ............................................................................................................50
4.2.1 Clustering Visualization.........................................................................................50
4.2.2 Clustering Solution Evaluation ..............................................................................52
4.2.3 Graph Model of the Netlist ....................................................................................54
4.3 Experimental Setup and Results ...........................................................................55
4.3.1 Evaluation of Different Graph Models ..................................................................56
4.3.2 Comparison With Traditional VLSI Clustering Methods......................................60
4.3.3 Robustness With Respect to Design Floorplan......................................................63
4.3.4 Validation Across Technology Nodes....................................................................66
4.4 Conclusion ...............................................................................................................68
4.4.1 Directions for Future Works ..................................................................................69



5 FAST PLACEMENT OF INSTANCES WITH BLOB AND SEEDED PLACE-
MENT.................................................................................................................70

5.1 Prototype Blob and Seeded Placement Flow ........................................................70
5.2 Experimental Setup and Results ...........................................................................73
5.3 Conclusions..............................................................................................................75
5.3.1 Directions for Future Works ..................................................................................75
6 FINAL CONCLUSIONS............................................................................................77
REFERENCES...............................................................................................................78
APPENDIX A — PUBLICATIONS, AWARDS AND INTERNSHIPS ....................86
A.1 Publications ............................................................................................................86
A.2 Awards.....................................................................................................................87
A.3 Internships ..............................................................................................................88



15

1 INTRODUCTION

Modern systems-on-chips (SOCs) aggregate billions of transistors within a single

die, and drivers ranging from mobility to deep learning suggest that the Moore’s-Law

scaling of design complexity will continue (ITRS, 2015). EDA tools are continually chal-

lenged to incorporate new strategies to scale tool capacity without sacrificing quality of

results or overall design schedule. Moreover, despite substantial R&D investments by the

EDA industry, costs of IC design (engineers, tools, schedule) continue to rise. A recent

keynote by Olofsson (OLOFSSON, 2018) asks, “Has EDA failed to keep up with Moore’s

Law?”

It is well-known that the ability to predict downstream outcomes of physical im-

plementation algorithms and tools can enable reduction of loops (iterations) in the de-

sign flow, thus saving tool runtime and overall design schedule (KAHNG, 2018). The

paradigm of physical synthesis is still the major success story along such lines, but this

paradigm is now over two decades old. The recent DARPA Intelligent Design of Elec-

tronic Assets (IDEA) program (DARPA, 2018) highlights the cost crisis of modern IC

design, and seeks to develop a framework capable of performing the complete RTL-to-

GDSII flow without human interaction in 24 hours (OLOFSSON, 2018; DARPA, 2018).

New tools that can help to avoid future failures (congestion, failed timing, etc.) while still

in the early stages of floorplan definition or RTL planning appear mandatory to achieve

the IDEA program goal.1

Clustering is a universal strategy for problem size reduction and for helping to en-

force “known-correct” structure in solutions. Clustering has been used for many years

in a wide range of EDA applications, including placement (ROY et al., 2006), clock

tree synthesis (SHELAR, 2007) and, more recently, grouping of instances into differ-

ent power domains (BLUTMAN et al., 2017). While many clustering methods for VLSI

have been proposed, they have largely focused on net cuts (hyperedge min-cut, cluster

perimeter, Rent parameter (RENTCON, 2008), etc.). Further, existing heuristics typi-

cally require design-dependent tuning and suboptimal heuristics. For instance, the well-

known multilevel Fiduccia-Mattheyses (FIDUCCIA; MATTHEYSES, 1982) implemen-

tations hMetis (KARYPIS et al., 1997) and MLPart (CALDWELL; KAHNG; MARKOV,

2000) require a priori the target number of partitions as an input, and each aims to balance

1This is a long-standing challenge to design productivity and the EDA industry. That so many commer-
cial RTL planning and “RTL signoff” efforts have been made over the past 25 years (Tera Systems, Aristo,
Silicon Perspective, Atrenta SpyGlass-Physical, Oasys, etc.) indicates the difficulty of this challenge.



16

the number of vertices or total vertex area across the partitions, which conflicts with the

min-cut objective.

In this work, we seek to identify clusters of logic in a given gate-level netlist that

will remain together throughout the physical implementation flow. Additionally, we pro-

pose a prototype flow that performs a fast placement of the netlist. This is a fundamentally

different criterion than the min-cut or Rent-parameter criteria of previous clustering meth-

ods in VLSI CAD. We envision that such a clustering capability will help enable new

predictors of performance and congestion during early physical floorplanning and RTL

planning. For example, gates within the same cluster would be known to have spatial

locality; this knowledge would then inform synthesis, budgeting and global interconnect

planning optimizations. And, if combined with “blob placement” of clusters, fast evalua-

tion of netlist and floorplan viability could be achieved.

Among the contributions of this work, we mention three broad aspects. The first

aspect is the evaluation and application of community detection algorithms within the

VLSI CAD context. Community detection is a comparatively recent class of graph clus-

tering methods used to find densely-connected nodes in large networks such as those

arising in social media, telecommunications and bioinformatics (FORTUNATO; HRIC,

2016). Community detection methods rely on metrics that help identify natural clusters

inside graphs, notably, the modularity criterion (NEWMAN; GIRVAN, 2004). Our study

centers on Louvain (BLONDEL et al., 2008), a well-known fast and efficient modularity-

based graph clustering algorithm with near-linear runtime in sparse graphs. Louvain can

cluster graphs with up to 700M edges within 12 minutes, using a single thread.

The second aspect is our study of new measures of the correlation between a

netlist clustering method and the actual placement of netlists. The absence of previous

work in this vein may be due to the fact that previous clustering techniques have aimed

to drive placement algorithms instead of predicting them (i.e., the final evaluation of a

clustering technique was the quality of the placement itself). We study three classical

concepts from computational geometry to evaluate this correlation: convex hulls (CH),

alpha shapes (AS), and Delaunay triangulations (DT) (BERG et al., 1997). The primary

purpose of these techniques is to retrieve the geometric shape of a set of scattered points,

a goal that correlates very closely to the concept of a cluster. To compare different clus-

tering results, we apply the Davies–Bouldin index (DBi) (DAVIES; BOULDIN, 1979),

Variance Ratio Criterion (VRC) (CALIńSKI; HARABASZ, 1974) and Silhouette Coef-

ficient (SC) (ROUSSEEUW, 1987), which are traditionally used to evaluate how “well-



17

separated” clusters are. For spatial data, such as placements of standard-cell instances,

our evaluation criteria measure (i) the distances from instances to the center of gravity of

the clusters they belong and (ii) the distance among the center of gravity of clusters. In a

“good” clustering solution, the ratio between (i) and (ii) is a small numeric value.

The third aspect is the proposal of a prototype flow that performs fast placement

of clusters to predict the flat placement. In doing so, we feed a state-of-the-art analytic

placement tool with a cluster netlist that is significantly smaller than the gate-level netlist.

Then, we use the cluster locations to generate an initial placement for the gate-level netlist.

Finally, we finish the placement with a fast call of incremental placement. We compare

predicted and actual gate-level netlist placement in terms of routed wirelength with a

leading commercial tool router.

Our contributions are summarized as follows.

1. We employ modularity-based clustering in conjunction with VLSI-relevant graph

edge-weighting to predict groups of logic gates that will remain together through

the stages of physical implementation – without the need for user tuning.

2. We explore the use of convex hulls, alpha shapes, and Delaunay triangulations to vi-

sualize and measure the correlation between the netlist clustering and the “ground-

truth” actual placement.

3. We adopt Davies–Bouldin index (DAVIES; BOULDIN, 1979), Variance Ratio Cri-

terion (CALIńSKI; HARABASZ, 1974) and Silhouette Coefficient (ROUSSEEUW,

1987) as criteria to compare clustering results. These criteria are extensively used

for evaluation of spatial clustering but have not been explored by the EDA commu-

nity.2

4. We perform experiments showing 50% better clustering quality on average for Lou-

vain (BLONDEL et al., 2008) versus the traditional VLSI netlist clustering tool

hMetis (KARYPIS et al., 1997), with 2× faster runtime than hMetis for our largest

benchmark.

5. We demonstrate an experimental flow that performs fast “blob placement” of clus-

ters as a potential basis for future early-stage netlist and floorplan evaluation. Our

flow can closely predict instances that remain together in the actual gate-level place-

ment with a speed up of 50% compared to flat placement for a testcase with 1.2M

2The silhouette metric has not been widely used in the VLSI CAD clustering literature, with (KAHNG;
LI; WANG, 2016) being the only example of which we are aware.



18

instances and 20% speed up for a testcase with 4.5M instances.3

The remainder of the current thesis is organized as follows. Chapter 2 introduces

the basic concepts for the understanding of this thesis. Chapter 3 gives an overview of

the existing literature on VLSI partitioning, modularity clustering and placement. Chap-

ter 4 presents our comparison between traditional VLSI clustering methods and modular-

ity based clustering while Chapter 5 proposes our prototype “blob placement flow”. In

Chapter 6, we present our final remarks.

3Note that the core motivation and contribution of our current work is to rapidly predict the placement.
If instance placements can be quickly known, an expert designer is able to tune the flow setup (e.g., with
small modifications to floorplan, density screens, grouping, etc.) to improve the quality of results or to fix
timing and routability issues. In this context, our work provides a methodology to improve the outcomes
and/or the turnaround time of the netlist-to-placement phase of the implementation flow. Additionally, our
flow can be used to generate the actual placement in contexts where the quality of results can be sacrificed
to reduce the placement runtime.



19

2 PRELIMINARIES

In this Chapter, our goal is to provide for the reader the fundamental background

to understand the current thesis. We start reviewing the design flow of digital circuits in

Section 2.1. In Section 2.2, we show how VLSI CAD algorithms represent the netlist

hypergraph with graphs. Sections 2.3 and Section 2.4 define the concepts of partitioning

and clustering. Finally, Section 2.5 presents wirelength estimation with half-perimeter

wirelength. Readers with background on VLSI CAD literature may skip this Chapter.

2.1 Design Flow of Digital Circuits

The VLSI design flow is a set of steps that transform the functional description of

a system into geometric masks that allow the system to be manufactured as an integrated

circuit. Each step is performed by teams of engineers with expertise in their field. Due

to the tight design schedule, engineers rely on hundreds of licenses of foundry-qualified

EDA tools and massively parallel servers. Figure 2.1 depicts the design flow according to

Kahng et al. (2011).

Figure 2.1: VLSI design flow.

Source: Kahng et al. (2011).



20

The first step of the flow is the system specification. This step consists in defining

the overall goals and requirements of the system in terms of functionality, performance

and area. The production teams also decide what is the target technology for the product.

Next, the architectural design determines how the system is going to meet the system

specification in terms of analog and mixed-signal blocks, memory configuration, number

of cores, DSPs, I/Os, IP blocks, die packing interface, power requirements, technology

process choice, layer stacks choice, etc.

In the functional and logic design, the functionality and connectivity of each

module in the architecture are defined. The high-level behavior of the system is mod-

eled using hardware description languages (HDLs), such as Verilog and VHDL. These

descriptions are validated in terms of behavior and timing using thorough simulations.

After validation, logic synthesis tools translate the high-level description into a circuit.

This is done by specifying the system description and a technology library and results in

a list of signal nets and logic gates mapped to the technology (e.g. logic gates mapped

to standard cells.) The result of this step is called gate-level netlist. However, some crit-

ical elements, such as RAMs and I/Os, have to be validated by SPICE simulations using

transistor-level descriptions. Such descriptions are generated in the circuit design.

The physical design produces a geometric description of the design. Kahng et al.

(2011) divide the physical design into six steps:

• Partitioning. Splits the flat netlist into smaller modules so they can be designed

and analyzed individually. Partitioning allows algorithms that do not scale well to

be applied in the modern and complex system-on-chip designs. Partitions can also

be assigned to different teams and designed in parallel.

• Chip planning. Commonly referred to as floorplanning. Determines the area and

location of the design modules. Also determines the location of I/O ports and

macro blocks. The chip planning also is responsible for the realization of power

and ground networks.

• Placement. Finds a location for each element of the netlist while trying to optimize

an objective function. Common placement objectives include wirelength, timing,

routability and power distribution. A review of placement algorithms is presented

in Section 3.3.

• Clock tree synthesis (CTS). Performs the topology generation, buffering and rout-

ing of the clock network. The CTS usually tries to minimize the clock network

power and latency given a skew target.



21

• Routing. Traces the signal paths using metal wires and vias.

• Timing closure. Optimizes the performance of the circuit using techniques such as

sizing, cloning, buffering, Vt swapping, incremental-detailed placement and rout-

ing. Such optimizations are traditionally called after every step of the physical

design.

Verification is the step that assesses whether the final layout meets the design

specification and respects the technology rules. The verification is performed using ex-

traction and analysis tools. The formal verification tool checks if the netlist from a given

stage of the flow (“target”) has the same functionality as a known “golden” netlist (e.g.,

pre-route netlist (target) vs. RTL (golden).) The design rule check (DRC) verifies geo-

metric constraints such as minimum metal area and distance. The layout versus schematic

(LVS) compares the functionality of the layout with the netlist generated in the logic de-

sign. The electrical rule checking (ERC) verifies whether the design respects fanout, slew

and capacitance constraints and whether the power and ground distribution is well formed.

Extraction tools derive the electric parameters of the design. These parameters are used

by timing and power analysis tools to assess if the design meets the timing and power

budgets. If the design does not pass in any of these verifications, the designers need to do

incremental changes. These changes are often performed manually by designers as even

small perturbations in the layout may create new violations.

Once the layout passes the verifications it is sent to the foundry for fabrication.

In the foundry, the design is patterned using a lithographic process upon silicon wafers.

Finally, the chips in the silicon wafer are diced and placed in packages and tested. The

chips that pass the testing are ready to be commercialized.

2.2 Hyperedge Decomposition

The circuit netlist is a hypergraph H(V,X) in which the nodes of the netlist (in-

stances, macro blocks, ports) compose the set of vertices V and the signal nets compose

the set of hyperedges X . However, many algorithms in the literature only work with

graphs. Therefore, some models have been proposed to decompose the set of hyperedges

into an equivalent set of edges E to represent the netlist using a graph G(V,E). The

clique and star models depicted in Figure 2.2, are examples of decomposition models

commonly used in placement algorithms (VISWANATHAN; CHU, 2004). In the clique



22

model every hyperedge is replaced by a complete graph (i.e., all vertices are connected

among themselves by a binary connection) and the star model introduces an additional

vertex connected to every other vertex by a binary connection.

Figure 2.2: A hyperedge (a) decomposed using the clique (b) and the star (c) models.

Source: from author.

2.3 Partitioning

In partitioning, the graph vertices are divided into groups, called partitions. The

most common goal is to minimize the number of connections between partitions. Par-

titioning algorithms belong to a category called min-cut partitioning, where cut is the

sum of the edge weights crossing between partitions. Figure 2.3 presents a netlist graph

and two possible cuts. The solution of cut1 presents a better solution since it has only 2

connections between partitions while cut2 has 4 connections between partitions.

2.4 Clustering and Community Detection

Clustering, or cluster analysis, is a field that aims to divide a set of objects into

homogeneous groups, called clusters (WIERZCHON; KLOPOTEK, 2018). Two objects

belonging to the same cluster should have more similarity than objects belonging to dif-

ferent clusters (WIERZCHON; KLOPOTEK, 2018). Clustering has been applied to a

wide range of applications in VLSI, like placement (ALPERT et al., 2005), CTS (HAN;

KAHNG; LI, in press) and flop tray design (KAHNG; LI; WANG, 2016).

Community detection is a type of clustering in which the objects being clustered

are vertices of a graph usually originated from social or biological networks (NEWMAN;

GIRVAN, 2004). The similarity is given by the connections between vertices – the num-

ber of edges inside the clusters, which are referred to as communities, should be higher



23

Figure 2.3: Alternative 2-way partitioning solutions of a circuit netlist (left). The first so-
lution, obtained with cut1 (upper), produces 2 partitions with 2 edges between them. The
second solution, obtained with cut2 (lower), produces 2 solutions with 4 edges between
them.

Source: Kahng et al. (2011).

than the number of edges spamming multiple clusters. Figure 2.4 depicts the outcome of

the community detection algorithm of Newman and Girvan for a set of webpages (NEW-

MAN; GIRVAN, 2004). The color of each vertex denote the community the vertex has

been assigned to and the edges represent hyperlinks between pages.

2.5 Half-Perimeter Wirelength

In the VLSI CAD tools, many optimization engines need to estimate wirelength

efficiently. Many placement algorithms (and research) adopt the half-perimeter wire-

length (HPWL) as an optimization goal and for solution quality measurement. HPWL

is computed as follows. Consider the 4-pin net in Figure 2.5. The HPWL consists of

the half-perimeter (summation of width and height) of the net pins’ bounding-box. The

half-perimeter can be computed in linear time, by just traversing all pins of the net once.

Additionally, HPWL matches the minimum routed wirelength for nets with up to 3 pins.



24

Figure 2.4: Community structure for a set of webpages based on hyperlinks. Each color
represents a community.

Source: Newman and Girvan (2004).

Figure 2.5: The bounding-box of 4-pin net. The half-perimeter wirelength is the summa-
tion of the width (W) and height (H) of the bounding-box.

P0

P1

P2

P3

bounding-box

H

W

Source: from author.



25

3 LITERATURE REVIEW

The scope of our present work spans three topics of interest: VLSI partitioning

tools, community detection and placement. This Chapter presents a brief review of the

literature and state-of-the-art on these topics.

3.1 VLSI Netlist Partitioning

Partitioning is extensively studied in VLSI research for many applications. For

instance, one common strategy to cope with modern ICs complexity is to decompose the

system into smaller logic and physical portions which can be implemented in parallel us-

ing partitioning. After implementation, these portions can be reassembled in a single die.

Other applications include stacked voltage domain designs (BLUTMAN et al., 2017) and

speed up of placement algorithms (ALPERT et al., 2005). In this Section, the literature

on VLSI partitioning algorithms is studied following the taxonomy proposed by Alpert

and Kahng (1995). Table 3.1 presents a summary of the partitioning algorithms studied

in this work.

Table 3.1: Summary of the partitioning algorithms studied in this work and their category
according to Alpert and Kahng (1995).

Reference Category
Kernighan-Lin algorithm

Move-based approaches

(KERNIGHAN; LIN, 1970)
Fiduccia-Mattheyses algorithm
(FIDUCCIA; MATTHEYSES, 1982)
hMetis
(GEORGE; VIPIN, 1998)
MLPart
(CALDWELL; KAHNG; MARKOV, 2000)
Barnes (1981) Geometric representation-based approaches
Yang and Wong (1994)

Combinatorial formulationsBlutman et al. (2017)
Rajaraman and Wong (1995)

Clustering approachesAlpert et al. (2005)

Source: from author.



26

3.1.1 Move-Based Approaches

Move-based approaches start from an initial arbitrary solution and try to improve it

by iteratively swapping a single vertex from one partition to another or by swapping pairs

of vertices belonging to different partitions. The core of these approaches is frequently

inspired by the Kernighan-Lin (KERNIGHAN; LIN, 1970) and Fiduccia-Mattheyses al-

gorithms (FIDUCCIA; MATTHEYSES, 1982).

The Kernighan-Lin algorithm has been introduced in 1970 to perform 2-way par-

titioning. The algorithm computes the cut improvement of swapping random pairs of

vertices and stores the pair with best cut improvement. After being stored, the vertices of

the pair are marked as fixed, i.e. cannot be selected again as candidates for swap. This

process is repeated until all nodes become fixed. The algorithm then effectively swaps

only the set of pairs that present the largest values of cut improvement. This is called a

pass. After one pass, all vertices are unmarked as fixed. The algorithm stops when the

gain seen after the pass is less than a threshold.

In 1982, Fiduccia and Mattheyses propose an extension to the Kernighan-Lin al-

gorithm, called Fiduccia-Mattheyses, with multiple improvements: (i) the algorithm per-

forms single-vertex swaps, allowing unbalanced unbalancing between partitions; (ii) sup-

port for hypergraphs; (iii) support for area constraints in partitions and (iv) faster selec-

tion of candidates to swap. While the overall flow is similar, the Fiduccia-Mattheyses

cost function is modified. The gain of swapping a node from one partition to another is

measured as:

∆G = FS(v)− TE(v) (3.1)

where v is the vertex; FS(v) is the number of nets or (hyper) edges connected to v but

not connected to any other vertex in the same partition, and TE(v) is the number of

nets or (hyper) edges connected to v and not connected to any vertex from the other par-

tition. Next, we discuss two Fiduccia-Mattheyses-based tools hMetis (KARYPIS; KU-

MAR, 1999) and MLPart (CALDWELL; KAHNG; MARKOV, 2000), widely used in

academic and commercial flows.



27

3.1.1.1 hMetis

Karypis et al. propose a multilevel hypergraph partitioning algorithm called hMetis

(GEORGE; VIPIN, 1998; KARYPIS; KUMAR, 1999). The flow of hMetis is composed

of three phases: (i) coarsening phase, (ii) initial partitioning phase and (iii) refinement

phase. In the coarsening phase, the size of the hypergraph is iteratively reduced by con-

tracting vertices and edges. Karypis et al. study contracting schemes, called matching

schemes and describe them in Karypis et al. (1997). Once the hypergraph is sufficiently

coarse, the initial partitioning phase builds N random 2-way partitions and uses the

Fiduccia-Mattheyses to refine each solution. In the end, the solution with the best min-

cut among all is chosen. In the refinement phase, the vertices and edges are iteratively

uncontracted to obtain the original hypergraph. At each level, refinement algorithms are

applied to improve the solution obtained in the initial partitioning phase. The hMetis flow

is depicted in Figure 3.1.

Figure 3.1: The hMetis flow.

Source: George and Vipin (1998).

3.1.1.2 MLPart

Caldwell et al. propose MLPart, a multilevel partitioning tool similar to hMetis

but with improvements in the 2-way partitioning and in the coarsening scheme (CALD-

WELL; KAHNG; MARKOV, 2000). The Fiduccia-Mattheyses implementation of ML-

Part starts by putting all vertices in a single partition, a strategy called VILE (“very ille-

gal”) initial solution. The acceptance criterion for legal moves is relaxed, meaning that

movements are accepted if they do not increase the balancing constraints. Their imple-



28

mentation and the gain of a movement is randomized in the first iterations. Caldwell et

al. also implement a LIFO Fiduccia-Mattheyses algorithm (HAGEN; J.-H.; KAHNG,

1995) along with a “wiggling” strategy. For its multilevel partitioning, MLPart employs

the strategy of edge coarsening from Alpert, Huang and Kahng (1997) and Karypis et al.

(1997). Their edge coarsening scheme differs from previous works because it updates the

graph continuously while clustering is performed. MLPart also adds balancing constraints

when performing contraction of edges and vertices.

3.1.2 Geometric Representation-Based Approaches

This class is composed of partitioning algorithms that rely on the geometric em-

beddings of the netlist to achieve better partitioning results. Some algorithms represent

the geometric embeddings with an adjacency matrix C, where each element Cij is the

sum of the edge weights connecting vertices i and j. Other methods use the Laplacian

matrix L = C −M , where D is a N ×N diagonal matrix where N is the number of ver-

tices in the netlist graph and each element Dii is the degree of vertex i. Hall et al. show

that the second eigenvector (ν2) of the Laplacian matrix represents the 1D placement of

the vertices with minimum squared wirelength (HALL, 1970). The graph can be divided

into two partitions by sorting the vertices according to the entries of ν2 and then assign-

ing the first half of the vertices to one partition and the second half to the other. Later,

Barnes (1981) and Alpert, Kahng and Yao (1999) extend this strategy to perform k-way

partitioning.

3.1.3 Combinatorial Formulations

Combinatorial formulations encompass partitioning methods based on formula-

tions that can capture complex objective functions and constraints such as network flow.

Yang and Wong (1994) apply network flow to perform 2-way min-cut partitioning. They

propose a methodology to represent the netlist as a flow network and show how to per-

form balanced 2-way partitioning using a max-flow min-cut technique. More recently,

Blutman et al. (2017) show how to extend this formulation to comprehend timing and

layout information to perform partitioning on stacked voltage domain designs.



29

3.1.4 Clustering Approaches

Clustering approaches are often taxonomized as being either bottom-up or top-

down. Bottom-up methods start with each module being an individual cluster, with clus-

ters being iteratively merged until a given condition is satisfied. Top-down methods start

with a single cluster and iteratively split clusters into two or more (smaller) clusters. For

instance, Rajaraman and Wong (1995) propose a bottom-up polynomial time algorithm

for clustering networks aiming to minimize delay and subject to capacity constraints. Al-

ternatively, Alpert et al. (2005) propose a semi-persistent clustering technique to speed

up placement. Li, Behjat and Kennings (2007) propose a bottom-up clustering algorithm

based on a score function that aims to reduce the number of nets in the clustered netlist

and penalize large clusters. Yan, Chu and Mak (2010) use clustering to reduce the netlist

size and speed up placement. A “safe condition” is devised and guarantees that clustering

will not degrade wirelength. Rakai et al. (2012) devise a bottom-up clustering algorithm

that relies on wirelength prediction of nets.



30

3.2 Community Detection

This Section presents a study on community detection methods. These methods are

closely related to graph partitioning, as the ones covered in Section 3.1 and hierarchical

clustering studied in sociology (NEWMAN; GIRVAN, 2004). Communities are defined as

the division of the vertices of the graph into groups within the connections are denser and

between and between which the connections are sparser (NEWMAN; GIRVAN, 2004).

Figure 3.2 depicts a graph divided into 3 communities, highlighted by dashed red lines.

Community detection differs from graph partitioning as follows.

• Community detection methods do not impose a target number of communities, in

contrast with partitioning methods for which users define the target number of par-

titions.

• The communities do not have to be balanced in terms of area, number of edges or

vertices.

• Community detection methods do not minimize cut, since it is natural for larger

communities to have higher numbers of edges connected to them.

Figure 3.2: Example of communities in a graph. Bold black lines are edges connecting
vertices that belong to the same community; Gray lines are edges connecting vertices that
belong to different communities and dashed red lines outline the communities.

Source: Newman and Girvan (2004).

Community detection methods may be divided into three categories: divisive meth-

ods find communities by iteratively removing edges from the graph (GIRVAN; NEW-

MAN, 2002; NEWMAN; GIRVAN, 2004; RADICCHI et al., 2004); agglomerative meth-

ods iteratively merge vertices and communities (PONS; LATAPY, 2006; BLONDEL et

al., 2008) and optimization methods maximize an objective function (CLAUSET; NEW-



31

MAN; MOORE, 2004; WU; HUBERMAN, 2004; NEWMAN, 2006) using heuristic

methods (e.g. simulated annealing (KIRKPATRICK; GELATT; VECCHI, 1983)).

The remaining of this Section studies the evolution of the so-called modularity-

driven community detection methods. Table 3.2 summarizes the method to be discussed

from Sections 3.2.1 through 3.2.7. Section 3.2.1 starts showing how modularity has been

first introduced by Newman and Girvan to evaluate the outcome of community detection

methods. Then, Sections 3.2.2 through 3.2.4 show how modularity has become an ob-

jective function and how to effectively optimize it. Section 3.2.5 discusses the fast and

effective Louvain algorithm, that will be used later in this work. Sections 3.2.6 and 3.2.7

discuss the limitations of modularity-driven techniques and present the alternative met-

rics structural similarity and similarity-based modularity. Section 3.2.8 concludes with a

brief review of modularity-based community detection on hypergraphs.

Table 3.2: Summary of the community detection methods to be discussed in this Section.

Reference Objective function Category
Newman and Girvan, 2004 Edge betweenness Divisive

Newman, 2004 Modularity Agglomerative
Clauset et al., 2004 Modularity Agglomerative

Wakita and Tsusumi, 2007 Modularity + consolidation ratio Agglomerative
Blondel et al., 2008 Modularity Agglomerative

Xu et al., 2007 Structural similarity Agglomerative
Feng et al., 2007 Similarity-based modularity Agglomerative

Source: from author.

3.2.1 Finding and Evaluating Community Structure in Networks (NEWMAN; GIR-

VAN, 2004)

Newman and Girvan propose three divisive methods for community detection

(NEWMAN; GIRVAN, 2004). In each iteration, the methods find the pair of connected

vertices with least similarity to remove. The process is repeated iteratively until some

stop condition is met. The end goal of this process is to divide the graph into smaller

pieces. Each piece is an output community. Newman and Girvan propose three heuristics

to quantify a pair of vertices similarity:

• Shortest-path betweenness. Compute the shortest path between any pair of nodes

and find how many paths run along each edge.



32

• Random-walk betweenness. For each edge, compute the expected number of

times a random walk between every two pairs of nodes will run along the current

edge.

• Current-flow betweenness. Models every edge of the graph as one resistance with

a constant value. Each pair of nodes is considered a source and sink of current. The

heuristic computes the current in each edge for every pair of nodes. The values of

the current for each edge are summed up.

Newman and Girvan compare their heuristics using artificial and real-world graphs

whose ground-truth communities are known. However, they highlight that in most real-

world problems, the ground-truth communities are not known. To tackle this problem, the

authors propose a metric, called modularity, aiming to evaluate the quality of the division

of a graph into communities. Modularity is defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(C(i), C(j)) (3.2)

whereQ is the modularity value; Aij is the sum of the edge weights between communities

i and j; ki is the sum of the edges weights connected to i; m is computed as m =

1
2

∑
ij Aij; C(i) is the community of vertex i and δ(C(i), C(j)) assumes value 1 if C(i) is

equal to C(j) and 0 otherwise.

The correlation between modularity and the ground-truth communities for a given

graph has been assessed using artificial-generated test cases. Newman and Girvan have

noticed peaks of modularity (E.g.: Q > 0.7) for solutions whose communities have cor-

related well with the ground-truth.

3.2.2 Fast Algorithm for Detecting Community Structure in Networks (NEWMAN,

2004)

Girman and Newman show that modularity is a good metric to assess the out-

come of a community detection algorithm (NEWMAN; GIRVAN, 2004). Following this

assumption, Newman finds the answer to the question “If a high value of modularity rep-

resents a good community division, why not simply optimize modularity over all possible

divisions to find the best one?” (NEWMAN, 2004). Of course, it is infeasible to explore

all the solution space for graphs with thousands or millions of vertices, but approximation

algorithms could be applied.



33

Newman proposes a greedy agglomerative algorithm that starts with every vertex

as a sole member of a community. Then, the algorithm repeatedly merges communities

together in pairs. At each step, the algorithm chooses the pair of communities that results

in the best increase in modularity. Since it is impossible to increase the value of modular-

ity by merging pairs that do not have an edge between them, the algorithm only considers

pairs of neighboring communities. The modularity delta of joining two communities is

computed as

∆Q =
1

2m

∑
i,j

[
Aij + Aji − 2

kikj
2m

]
(3.3)

where ∆Q is the variation of modularity value;Aij is the sum of the edge weights between

communities i and j; ki is the sum of the edges weights connected to to i and m is

computed as m = 1
2

∑
ij Aij .

Each pass of this algorithm has a complexity of O(|E| + |V |), where |E| is the

number of edges in the graph and |V | is the number of vertices. There is a total of |V |− 1

passes to construct the dendrogram (EVERITT; SKRONDAL, 2002) of the graph. The

entire algorithm runs inO((|E|+|V |)|V |) andO(|V |2) in sparse graphs. Figure 3.3 repre-

sents the outcome of Newman’s algorithm for the “Karate club” benchmark (ZACHARY,

1977) as a dendrogram. The dendrogram is a graphical representation of hierarchical

clustering. In Figure 3.3, the shapes at the bottom level represent the known ground-truth.

Girvan and Newman’s only assigns vertex 10 to a “wrong” cluster.

3.2.3 Finding Community Structure in Very Large Networks (CLAUSET; NEW-

MAN; MOORE, 2004)

Clauset et al. propose optimized data structures to speed up Newman’s algorithm

so it can be applied in larger and sparser graphs (CLAUSET; NEWMAN; MOORE, 2004).

While Newman uses an adjacency matrix to represent the graph, Clauset et al. propose the

use of a ∆Q matrix that stores the change in modularity by joining every pair of vertices

i and j. Since most real-life graphs are sparse, they propose to apply data structures

optimized for sparse matrices. In addition, they propose to use fast data structures to keep

track of the highest deltas of modularity.

In summary, the authors propose three data structures:

• A sparse matrix ∆Qij containing the delta of modularity for every pair of vertices.



34

Figure 3.3: Dendrogram of the clustering found by Newman for the “Karate club” bench-
mark. Numbers are the vertices indices and the shapes represent the ground-truth com-
munities.

Source: Newman (2004).

The authors propose to implement each row of the matrix as a balanced binary tree,

so elements can be efficiently inserted and found.

• A max heap containing the largest ∆Q for every row of the matrix along with labels

identifying the indices of the vertices to join.

• A vector containing the values of the normalized degree of the vertices.

The algorithm, called CNM, may be outlined in three steps:

1. Initialize the values of ∆Q, the vector and the max heap.

2. Find the largest ∆Q, merge communities and update the matrix, the max heap and

the vector.

3. Repeat (2) until only one community remains.

3.2.4 Finding Community Structure in Mega-Scale Social Networks (WAKITA; TSU-

RUMI, 2007)

According to Wakita and Tsurumi (WAKITA; TSURUMI, 2007), the CNM algo-

rithm only scales well for graphs with up to 500K vertices. They diagnose the cause of

the inefficiency being the unbalanced nature of the process of merging vertices and com-



35

munities. Their experiments show only a small number of communities growing very

fast. Wakita and Tsurumi hence propose an extension to the CNM algorithm whose goal

is to balance the size of communities during the merging process. In their extension, the

candidate pairs of communities to be merged are ranked by the weighted delta in mod-

ularity, instead of delta of modularity solely. They propose weighting schemes called

consolidation ratio that are expressed as:

consolidation_ratio(ci, cj) = min(h(ci)/h(cj), h(cj)/h(ci)) (3.4)

where ci and cj are the communities and h is a weighting scheme function. Wakita and

Tsurumi propose three weighting schemes:

• HE. The value of h for a given community is equal to the number of edges connect-

ing the community to its neighbors;

• HE’. First, a set of pairs that produce the best delta modularity for each community

is computed. The best pairs are then ranked as in HE.

• HN. The value of h for a given community is equal to the number of vertices from

the original graph that belongs to the given community.

Figure 3.4 shows how the vanilla CNM algorithm and Wakita and Tsurumi extension

scale for graphs with up to 1M vertices. Figure 3.5 shows the values of modularity vs.

iterations ("progress of analysis") in a graph with 500K vertices.4 The HE’ heuristic

is able to outperform CNM in terms of performance and modularity while HE and HN

outperform CNM in performance but perform 21-28% worse than vanilla CNM.

3.2.5 Fast Unfolding of Communities in Large Networks (BLONDEL et al., 2008)

Blondel et al. propose an agglomerative modularity-driven method, called Lou-

vain algorithm (BLONDEL et al., 2008). In the beginning, each vertex of the graph is

considered a community. The first phase of the Louvain algorithm iterates through all

vertices of the graph. For each vertex, Louvain computes the cost of moving the given

vertex from its current community to the neighboring communities. The vertex is moved

to the neighboring community that presents the higher cost. The vertex remains in the

original community if the maximum cost is not positive. The cost is given by the modu-

4In Figure 3.5, Wakita and Tsurumi multiply the value of modularity by the squared number of edges in
the graph.



36

Figure 3.4: Runtime comparison between CNM and Wakita and Tsurumi.

Source: adapted from Newman (2004).

Figure 3.5: Values of modularity for CNM and Wakita and Tsurumi. For the latter, differ-
ent weighting schemes are shown.

Source: adapted from Newman (2004).



37

larity delta, which is efficiently computed using equation 3.3 The first phase is repeated

until modularity stops improving.5

The second phase builds a new graph in which the vertices are the communities

found in the first phase. The edges among the vertices of the new graph are the sum of

the edges between the vertices of the corresponding communities on the old graph. Edges

between nodes belonging to the same community are summed up and create a self-loop

in the new graph. After the second phase is completed, the first phase is performed again,

upon the new graph, and so forth. Each iteration between the first and second phases is

called a pass. The algorithm stops when there is no gain in modularity after a pass.

Figure 3.6 depicts the steps of the Louvain algorithm. The input of the example

is a graph with 16 vertices and 53 edges (all edges have weight = 1). In the first phase,

the Louvain algorithm finds 4 communities, depicted in red, green, blue and gray. The

second phase builds a new graph with 4 nodes corresponding to the communities found

in the first phase and, 9 edges. The output of the second pass is a graph with 2 vertices

and 3 edges.

Unlike previous approaches, Louvain is fast and scalable. Experiments performed

by Blondel et al. show linear runtime complexity with respect to the number of vertices in

sparse graphs. For instance, Louvain is able to perform community detection in a graph

with 118M vertices in 152 minutes. Since each pass reduces the size of the graph, most

of the runtime is spent on the first iteration.

3.2.6 SCAN: A Structural Clustering Algorithm for Network (XU et al., 2007)

Modularity-driven methods do not detect and isolate two very common structures

found in graphs: hubs and outliers. Consider the graph depicted in Figure 3.7. Vertices

0 through 5 and 7 through 12 clearly form two clusters. However, vertex 6 is equally

connected with three other vertices from both clusters and, therefore, is considered a hub;

Vertex 13 is connected only with vertex 9 and does not clearly make part of the any cluster,

therefore it is called an outlier.

5One might note that the order in which nodes are iterated changes the output of the algorithm. However,
Blondel et al. have performed experiments showing that the variation in modularity is not significant.



38

Figure 3.6: Outline of Louvain algorithm. The algorithm has two phases: modularity
optimization and community aggregation. Each iteration of the two phases is called a
pass.

Source: Blondel et al. (2008).

Xu et al. devise a metric, called structural similarity, that measures how strongly

connected two vertices are (XU et al., 2007). The structural similarity metric is a real

number ranging from 0 to 1, defined as:

χ(u, v) =
|Γ(u) ∩ Γ(v)|√
|Γ(u)||Γ(v)|

(3.5)

where χ(u, v) is the value of structural similarity of vertices u and v, and Γ(u) is a set of

vertices comprising u and its topological neighbors. The more similar is the neighborhood

of two adjacent vertices, higher is the value of their structural similarity and may be used

to find clusters, hubs and outliers.

Xu et al. also propose an algorithm called SCAN, based on the traditional clus-

tering algorithm DBSCAN. SCAN uses a heuristic to find vertices to be used as seeds

for clusters and then apply structural similarity to expand the seeds and form clusters.

The vertices not assigned to any clusters after the execution of SCAN are classified as

hubs or outliers. The algorithm requires O(|E|2/|V |) runtime. Most of the runtime of the

algorithm comes from the computation of structural similarity which takes O(|E|/|V |)

runtime.



39

Figure 3.7: A graph with two clusters, one hub and one outlier. The clusters are formed
by vertices 0-5 and 7-12. Vertex 6 is a hub and vertex 13 is an outlier.

Source: Xu et al. (2007).

3.2.7 A Novel Similarity-Based Modularity Function for Graph Partitioning (FENG

et al., 2007)

Inspired by the ideas of modularity and structural similarity, Feng et al. propose a

new metric, called similarity-based modularity (FENG et al., 2007), defined as:

Qs =
NC∑
i=1

(
ISi

TS
− DSi

TS

2
)

(3.6)

where Qs is the similarity-based modularity; NC is the number of communities, ISi is

the similarity of vertices within the community i, DSi is the structural similarity between

vertices of the community i and the remaining vertices of the graph and TS is the total

similarity between all pairs of vertices of the graph.

Feng et al. use a genetic algorithm to compare modularity and similarity-based

modularity as alternative objective functions for community detection. Feng et al. find

similarity-based modularity to be more accurate in artificial graphs. Several similarity-

based modularity community detection algorithms have been proposed since then (SH-

IOKAWA; FUJIWARA; ONIZUKA, 2015; SHIOKAWA; ONIZUKA, 2017), but none

scales as well as the Louvain Algorithm.



40

3.2.8 Modularity-Driven Clustering for Hypergraphs

In Section 3.2, we have provided an overview about modularity-driven clustering

of graphs. Nevertheless, the data of many practical applications, such as social networks

and VLSI netlists, are described using hypergraphs. One way to tackle problem instances

arising in such applications is to use a hypergraph-to-graph mapping method (HEUER;

SCHLAG, 2017). In doing so, some information in hyperedges with degrees greater than

two may be lost. Some research has intended to enable the modularity criterion to hyper-

graphs. Neubauer and Obermayer (2009) and Neubauer and Obermayer (2010) propose

a modularity criterion and optimization method for k-partite k-uniform hypergraphs. Ku-

mar et al. (2018) and Kumar et al. (2019) propose a modularity criterion for hypergraphs

of any degree and a method to integrate the proposed criterion into the Louvain algorithm.

Additionally, Kumar et al. devise an incremental weighting scheme to balance the number

of vertices per cluster. Finally, Kamiński et al. (2019) adapt the modularity criterion for

hypergraphs using the Chung-Lu model (CHUNG; LU, 2002). Kamiński et al. show that

their criterion correlates well with hyperedge cut and adjust the CNM algorithm to use

the proposed criterion. The CNM code is available as Julia scripts on GitHub (SZUFEL,

2020).

Despite the above-mentioned efforts to extend modularity-driven clustering to hy-

pergraphs, to the best of our knowledge there is no available, open-source and scalable

tool that serves the hypergraph clustering context in the way that Louvain presently serves

the modularity-driven graph clustering context. For instance, we have tried to cluster our

testcases from Chapter 4 using Szufel (2020). However, a design with 8K cells, which is

much smaller than the netlists arising in our present work, takes an average of 25 minutes

when we sweep the number of iterations of the algorithm from 500 to 10000 with step

of 500. In contrast, Louvain can cluster a design with 1.4M instances in 7 minutes. On

the small testcase jpeg_encoder_14 with 44K instances, the scripts from (SZUFEL, 2020)

crash due to stack overflow.



41

3.3 Placement

We now present an overview of the literature on instance placement. Placement,

like partitioning, has been one of the most researched topics in EDA since the early 1970s.

Placement tools aim to find a good position for each element of the netlist. Modern place-

ment algorithms, especially in industry, model placement as a multiobjective problem.

Traditional placement objectives include total wirelength, timing and congestion.

In cell-based design, placement tools have to assign instances to positions aligned

to a placement grid. The placement grid is composed of rows and rows are divided into

slices called sites (Figure 3.8(a)). Instances usually have one row-height and variable

site-widths. Nevertheless, some standard cell libraries in modern technologies provide

multi-height cells for complex functions (e.g., muxes, registers and latches) to achieve

better intra-cell routing, save area and improve design for manufacturability (BAEK et

al., 2008). When the placement tool has to place a netlist simultaneously composed of

standard cells and macro blocks, the problem becomes much more complex and is called

mixed-size placement (YAN; VISWANATHAN; CHU, 2009). Instance placement is a

NP-hard combinatorial problem. Placement tools cope with the problem complexity by

dividing placement into three steps: global placement, legalization and detailed place-

ment.

Global placement algorithms aim to optimize wirelength (VISWANATHAN; CHU,

2004; KAHNG; WANG, 2006), timing (CHAN; CONG; RADKE, 2009; KAHNG; WANG,

2004) and routability (HSU et al., 2014; CHENG et al., 2019) while spreading the in-

stances in the placement region.6 In this step, the alignment to the placement grid con-

straint is relaxed to reduce the problem complexity. Figure 3.8(b) depicts a global place-

ment solution. There is a broad literature on global placement and, therefore, we detail

this literature separately in Section 3.3.1.

Legalization aligns instances to overlap-free sites in rows with less movement

(displacement) as possible. Figure 3.8(c) shows the legalized solution of the global place-

ment from Figure 3.8(b). Hill (2002) proposes a fast and greedy algorithm that traverses

instances by ascending or descending x coordinate and assigns each instance to the nearest

available overlap-free on-grid position. In Hill (2002), instances are moved only once dur-

ing legalization. Abacus (SPINDLER; SCHLICHTMANN; JOHANNES, 2008) works

6Academic global placement tools can outperform commercial tools on specific criteria such as wire-
length and routing overflow but usually underperform commercial tools in highly constrained multiobjective
optimization (MARKOV; HU; KIM, 2015).



42

Figure 3.8: (a) placement grid with a row outlined in blue lines and a site outlined in green;
(b) global placement of a circuit with six instances; (b) legalization of the placement from
(a) and (c) detailed placement where instances D and F are swapped.

Row

site

(a) Placement grid

A

B

C

E

F
D

(b) Global placement

A

B

C

E

FD

(c) Legalization

A

B

C

E

DF

(d) Detailed placement

Source: from author.

similarly to Hill (2002) but allows instances already legalized to move again. Whenever

an instance is assigned to a grid position, a dynamic programming algorithm replaces the

cells in the same row, aiming to minimize the total displacement. Jezz (PUGET et al.,

2015) extends Abacus by providing an efficient cache system that stores available grid

positions and supports placement obstacles. BonnPlace (BRENNER, 2013) proposes a

network flow-based legalization algorithm that minimizes total and maximum displace-

ment. Eh?Legalizer (DARAV et al., 2018) implements a network-based flow that effec-

tively legalizes high-density areas by considering several candidate paths. Finally, Do,

Woo and Kang (2019) propose a fence region and multi-height-aware legalization algo-

rithm. Do, Woo and Kang (2019) perform legalization in three steps: pre-legalization

legalize cells placed in invalid fence regions; multi-deck standard cell legalization assign

cells to overlap-free on-grid locations and quality refinement applies simulated annealing

to reduce the total displacement.



43

Detailed placement performs local movements aiming to improve placement qual-

ity or take into consideration advanced design rules. Flach et al. (2016) devise a set of

drive strength-aware local movements to improve timing. Jung et al. (2018) apply the

Bézier curve to smooth critical paths. Monteiro, Johann and Behjat (2019) implement a

network flow to remove instances from high-density areas with minimal impact on tim-

ing. Heo et al. (2019a) present a dynamic programming formulation to maximize power

staple insertion. Heo et al. (2019b) propose a detailed placement heuristic to minimize

diffusion break effects.

3.3.1 Global Placement Tools

We adopt the survey of Markov, Hu and Kim (2015) as a basis for our studies on

global placement. Figure 3.9 presents the evolution of global placement algorithms.7 Par-

titioning approaches have been broadly employed in global placement in the early 1970s

until the 1980s. Later, the stochastic algorithms based on the meta-heuristic simulated an-

nealing have emerged as the most successful algorithms for global placement due to the

quality of their results. Due to scalability issues, min-cut and analytic approaches over-

take simulated annealing approaches between the 1990s and 2010s. Analytic techniques

have been the most employed in modern global placement algorithms. In the remainder of

this Section, we give an overview of works belonging to each category. Table 3.3 shows

the global placement tools studied in our current work.

Figure 3.9: Evolution of global placement techniques.

… 1970’s 1980’s 1990’s 2000’s 2010’s …

Partitioning Simulated
Annealing

Analytic 
Techniques

Min-Cut & 
Analytic 

Techniques

Source: from author. Based on the studies of Markov, Hu and Kim (2015).

Simulated-annealing based approaches are best represented by the timing-driven

placement tool TimberWolf (SWARTZ, 1993; SWARTZ; SECHEN, 1995). The algo-

7We note to the reader that Figure 3.9 estimates when each category/class of algorithm had most of the
focus of attention in academia and industry. However, throughout this Section, we try to present the most
recent publication of the placement tools.



44

Table 3.3: Global placement tools studied in our work and their taxonomy.

Reference Category
RAMP

Partitioning approaches

(CHENG; KUH, 1984)
PROUD
(TSAY; KUH; HSU, 1988)
GORDIAN
(KLEINHANS et al., 1991)
BonnPlace
(BRENNER; STRUZYNA; VYGEN, 2008)
TimberWolf

Simulated annealing based approaches
(SWARTZ, 1993)
Dragon
(TAGHAVI; YANG; CHOI, 2005)
CAPO

Min-cut based approaches(CALDWELL; KAHNG; MARKOV, 1999)
FastPlace

Analytic approaches

(VISWANATHAN; CHU, 2004)
SimPL
(KIM; LEE; MARKOV, 2013)
MAPLE
(KIM et al., 2012)
Naylor, Donelly and Sha (2001)
APlace
(KAHNG; WANG, 2006)
NTUPlace
(CHEN et al., 2008)
ePlace
(LU et al., 2015)
RePlAce
(CHENG et al., 2019)

Source: from author.

rithm of Timberwolf optimizes timing by assigning higher weights to theK worst timing-

violating paths during the iterations of simulated annealing. Most of the late 1980s EDA

flows have adopted the TimberWolf placement tool (MARKOV; HU; KIM, 2015). The

commercial success of TimberWolf is so substantial that TimberWolf Systems, Inc. main-

tains the tool until today (TIMBERWOLF, 2014). However, VLSI designs are too big to

perform simulated annealing upon the flat netlist. Simulated annealing-based tools com-

bine other strategies to reduce the problem size. For example, TimberWolf performs

clustering on the netlist. When the clustered netlist is sufficiently small, simulated an-

nealing is applied upon a a cluster netlist to generate the initial solution. Then, Tim-

berWolf starts flattening the netlist again between iterations of the simulated annealing.



45

Dragon (TAGHAVI; YANG; CHOI, 2005), on the other hand, uses hMetis to employ

recursive bisection on the netlist and applies simulated annealing upon the intermediate

partitions. A post-processing step performs local refinement on the flat netlist and re-

moves overlaps.

Partitioning and min-cut based approaches. PROUD (TSAY; KUH; HSU,

1988) is an example of a partitioning based global placement algorithm. The main idea

of PROUD is to place instances modeling a resistive network analogy solved using lin-

ear equations with the Gauss-Seidel method. After solving the linear equations, PROUD

partitions the netlist and placement area into two parts using the center of mass of the in-

stances’ placement. After the partitioning, PROUD reruns the global placement on each

partition individually. Many iterations of partitioning followed by global placement are

applied until a stop condition is found. The algorithm proposed in PROUD has been

later adapted for industrial designs by Cadence’s QPlace in the early 1990s. Min-cut

based placement tools work similarly, but use min-cut driven graph partitioners to break

the netlist and the placement region into smaller pieces. For instance, CAPO (CALD-

WELL; KAHNG; MARKOV, 1999; ROY et al., 2006) employs the Fiduccia-Mattheysis

algorithm in a top-down manner to determine the partitions. The placement region is

split according to the total instance area of each partition. When partitions/regions are

sufficiently small, CAPO uses a branch-and-bound formulation to determine instances lo-

cation in each region. CAPO’s code has been used by companies such as Synplicity and

Achronix (MARKOV; HU; KIM, 2015).

Analytic approaches are commonly divided into quadratic formulations and non-

linear optimization. FastPlace (VISWANATHAN; CHU, 2004) models global placement

as a convex quadratic problem solved using the conjugate gradient method. The main

drawback of the quadratic formulation is the presence of many overlaps among instances.

To remove the overlaps, FastRoute proposes the use of a cell shifting heuristic, followed

by the addition of spreading forces. SimPL (KIM; LEE; MARKOV, 2013) models half-

perimeter wirelength as a quadratic objective function and more simple yet effective

spreading forces based on a heuristic called look-ahead legalization. MAPLE (KIM et

al., 2012), from IBM, extends SimPL by implementing multilevel placement based on

netlist clustering.

Non-linear optimization approaches optimize log-sum-exp functions. They are

inspired in Synopsys (NAYLOR; DONELLY; SHA, 2001) modelling of half-perimeter

wirelength using log-sum-exp. APlace (KAHNG; WANG, 2006) presents an implementa-



46

tion of Naylor, Donelly and Sha (2001) patent. The partitioning based NTUPlace (CHEN

et al., 2008), commercialized by MediaTec, takes into consideration pre-placed blockages

and density constraints. More recently, ePlace (LU et al., 2015) models global placement

as an electrostatic system and RePlAce (CHENG et al., 2019) improves ePlace in terms

of final half-perimeter wirelength, routability and scalability. In the next two Sections, we

study ePlace and RePlAce.

3.3.1.1 ePlace

Lu et al. (2015) propose ePlace, a nonlinear placement algorithm. Unlike Naylor,

Donelly and Sha (2001) and APlace (KAHNG; WANG, 2006), ePlace does not opti-

mize the log-sum-exp approximation of the half-perimeter wirelength. Instead, ePlace

optimizes the weighted average wirelength model proposed by (HSU; CHANG; BAL-

ABANOV, 2011) that presents a smaller error with respect to the actual half-perimeter

wirelength. The main contribution of ePlace is a novel density function called eDensity

which models the placement problem as a 2D electrostatic system. In doing so, every

instance of the netlist is modeled as a positive particle whose quantity is equal to the

area of the instance. The electric force that spreads instances is computed based on the

Lorentz force law. Figure 3.10 shows the electrostatic modeling of the placement prob-

lem. If only particles originated from the netlist are taken into consideration, the system

overspreads the instances, as shown in Figure 3.11(a). Consequently, the final wirelength

is too large. Hence, filler particles are inserted. The filler particles are equally-sized

rectangles, and the number of fillers inserted is the minimum required to achieve a user-

specified target density for the placement. Figure 3.11(b) shows the filler particles in blue

and Figure 3.11(c) shows the final placement with filler cells taken into consideration.

Additionally, ePlace solves the system of forces using the Nesterov Method, which

presents faster convergence than the conjugate gradient used by other analytic placement

tools. Finally, ePlace presents shorter wirelength and faster runtime than the leading

academic tools for the ISPD2005 (NAM et al., 2005) and ISPD2006 (NAM, 2006) contest

benchmarks.



47

Figure 3.10: ePlace modeling of the placement problem as an electrostatic system:
instances are modeled as positive charges whose electric quantity is the instance area.
Instance density is modeled as an electric force that spreads instances apart.

Source: Lu et al. (2015)

Figure 3.11: ePlace result (a) without fillers, (b) with fillers and (c) after fillers are re-
moved. Instances are drawn in red and fillers are drawn in blue.

(a) (b)

(c)

Source: Lu et al. (2015)



48

3.3.1.2 RePlAce

RePlAce (CHENG et al., 2019) improves many aspects of ePlace, targeting a more

routing-friendly placement solution. The first contribution is the computation of two den-

sity penalty factors – The first one is computed per bin of a density grid and the second is

computed per instance. With the addition of the density penalty factors, a better spreading

of cells is obtained, resulting in a more routable solution. The second main contribution

is an adaptive behavior for the density penalty factor considering the half-perimeter wire-

length curve. The adaptive behavior aims to better allocate the optimization effort be-

tween wirelength and instance density. The last contribution is a layer-aware cell inflation

technique based on global routing congestion information. RePlAce integrates the global

router NCTU-GR (LIU et al., 2013) and performs global routing to estimate the routing

congestion of the current placement solution. The information obtained with NCTU-GR

is used to guide the cell inflation technique.



49

4 FINDING PLACEMENT-RELEVANT CLUSTERS WITH FAST MODULARITY-

BASED CLUSTERING

In Chapter 3, we have provided a literature review on VLSI partitioning, commu-

nity detection and placement. We now answer the question: "Can we predict instances

that remain together in the physical implementation flow with clustering algorithms?" To

answer this question, we use two well-known tools. The first one is the hypergraph par-

titioning tool hMetis (GEORGE; VIPIN, 1998), which has been successfully applied in

the VLSI designs for many years. The second one is Louvain (BLONDEL et al., 2008), a

fast and effective modularity-based community detection algorithm. Our goal is to assess

whether we can find a better correlation between clustering and placement using modern

techniques arisen from the artificial intelligence field, such as Louvain. We also show that

Louvain does not need any user-input parameter in contrast with hMetis.

However, since netlists are hypergraphs and Louvain input is a graph, a netlist

to graph mapping is needed. Therefore, we test three netlist to graph mapping schemes

from the VLSI literature. Furthermore, we tune the graph model using five graph edge

weighting alternatives and I/O proximity weights. Finally, we propose visual and numeric

criteria to compare hMetis and Louvain in terms of the correlation between clustering and

placement.

The remainder of this Chapter is organized as follows. We give the problem for-

mulation in Section 3.1; we present details about the hypergraph to graph mapping and

evaluation criteria in Section 3.2; we discuss the experimental setup and results in Section

3.3 and we make our conclusions in Section 3.4.

4.1 Problem Definition

In this work, we use the term cluster to refer to a group of densely-connected

instances. Densely-connected means that the number of the interconnections among ele-

ments inside the group is much higher than the number of connections spanning different

groups. The process of finding the clusters of a netlist is called clustering.

Our goal is stated as follows:

Given (i) a mapped netlist and (ii) information about the standard cell library,

find clusters containing instances that are expected to remain close to each other



50

along the stages of the implementation flow.

4.2 Methodology

We now present the methodology adopted in the present work. We start by show-

ing the visualization techniques used to assess the correlation between clustering solutions

and the actual placement. Then, we propose three numeric criteria to compare the quality

of clustering results in terms of correlation with placement. We conclude by showing our

graph modeling of the netlist.

4.2.1 Clustering Visualization

One intuitive approach to measure the correlation between the clusters and their

actual placement is to retrieve their shapes for visualization and density measurement. In

computational geometry, many applications need to restore the geometry from a set of

scattered points. If we consider each cell as a singular point, the problems become very

similar. We can represent the geometry of a given cluster using its convex hull (BERG et

al., 1997), i.e., the minimum convex polygon that contains the center of all cells. Once

the convex hull is computed, we calculate its utilization as the total cell area divided by

the hull area. If the utilization is lower than a threshold, we remove the points comprising

the hull and recompute the hull. In our work, we define a threshold of 64% utilization

and set the maximum number of times the process can repeat as 25. We call this process

“shelling” and depict an example in Figure 4.1. Figure 4.2(a) depicts a “ground-truth”

placement along with a cluster, with cells colored according to their clusters. Figure 4.2(b)

draws the corresponding convex hulls. However, if we examine the highlighted blue

cluster in Figure 4.2(b), we see that convex hulls do not offer a compelling prospect. The

hull fails to convey the bad clustering outcome and has a low utilization of 38%.

Alpha shapes (EDELSBRUNNER; KIRKPATRICK; SEIDEL, 1983), examples

of which are shown in Figure 4.2(c), are a type of “shape formed by a pointset” wherein

a parameter alpha defines the squared radius of a circle that is used to carve away space

around the given points. The remaining space comprises the alpha shape of the pointset.8

Alpha shapes are appealing in that – for appropriately chosen alpha – they provide more

8When alpha = ∞, the alpha shape is the convex hull of the pointset (i.e., the convex hull is a special
case of alpha shape). When alpha = 0, the alpha shape is the set of points of the pointset.



51

Figure 4.1: The process of “shelling” the cluster shape. Figure (a) shows a cluster with
total cell area equal to 4.6 × 103µm2 and shape area equal to 23.0 × 103µm2. Thus,
the utilization of the cluster is equal to 20.2%. The cluster’s “shell” is the set of red
instances that are on the boundary of the shape. In (b), the cluster shape is recomputed
after removing the shell from (a). The final shape has area equal to 11.6 × 103µm2 and
utilization equal to 40.1%.

(a)

(b)

Source: from author.

accurate representations of pointsets than do convex hulls. In the following, for the test-

cases we study where dimensions of layout regions are in the 150µm to 500µm range, we

empirically use alpha = 2500µm2. In Figure 4.2(c), we see that the alpha shape reveals

how the blue cluster discussed earlier is clearly divided into two pieces, each of which is

dense with utilization of ∼66%.

Our last approach to retrieve cluster shapes is derived from the Delaunay trian-

gulation (DT), depicted in Figure 4.2(d). The DT is the geometric dual of the Voronoi

diagram over a given pointset. One can infer the cluster shape and outliers by analyzing

the sizes and density of DT edges of a given cluster. Statistical data may also be extracted

from the distribution of edge lengths to assess the clustering solution.



52

Figure 4.2: Different approaches to correlate clusters with the placement for the circuit
ispd18_test2 (MANTIK et al., 2018): (a) the placement with each instance colored ac-
cording to its cluster, followed by (b) the convex hulls; (c) the alpha shapes; and (d) the
Delaunay triangulations of the clusters.

(a) (b)

(c) (d)

Source: from author.

4.2.2 Clustering Solution Evaluation

Convex hulls, alpha shapes and DT are useful for visual and manual debugging.

For solution evaluation, we propose three criteria. Recall that the main goal of our work

is to predict groups of logic gates that will remain together through the stages of physical

implementation. This goal correlates well with the goal of spatial clustering techniques.

For our experiments, we adopt the Davies–Bouldin index (DBi) (DAVIES; BOULDIN,

1979), Variance Ratio Criterion (VRC) (CALIńSKI; HARABASZ, 1974) and Silhouette

Coefficient (SC) (ROUSSEEUW, 1987), traditionally used for spatial clustering evalua-



53

tion, as indicators of cluster quality.9 The DBi is defined as:

DBi =
1

n

n∑
i=1

maxi 6=j

(
σi + σj
l(ρi, ρj)

)
(4.1)

where n is the number of clusters, σi is the the average distance from the cluster elements

to the centroid of cluster i, ρi is the centroid of cluster i and l(ρi, ρj) is the distance

between centroids ρi and ρj . In DBi, smaller values of σi(σj) indicate more denser clusters

and higher values of l(ρi, ρj) indicate well-separated clusters. Therefore, smaller values

of DBi indicate a better clustering solution. VRC is defined as:

V RC =
Tr(B)

Tr(W )
× N − n

n− 1
(4.2)

where Tr(B) is the trace of matrix B, and N is the total number of elements being

clustered. The between-clusters dispersion (B) and within-clusters dispersion (W ) are

computed as

B =
n∑
i

ni(ρi − ρ)(ρi − ρ)T (4.3)

W =
n∑
i

∑
x∈ci

(x− ρi)(x− ρi)T (4.4)

where ni is the number of elements in cluster i, ρ is the centroid of all elements being

clustered and x is the coordinate (x, y) of an element in cluster ci. Higher values of B

indicate well-separated clusters and smaller values of W indicate denser clusters. There-

fore, higher values of VRC indicate a better clustering solution. Additionally, the VCR

criterion tends to be higher in solutions with smaller number of clusters. Finally, SC is

defined as:

SC =
n∑

i=1

bi − ai
max(ai, bi)

(4.5)

9To ensure a correct comparison, we implemented DBi, VRC and SC in the same way as in (SCIKIT
LEARN, 2020).



54

where ai is the average pairwise distance over all elements of a given cluster i and bi is

the average pairwise distance of an element of a given cluster i and all elements of the

nearest cluster. SC is a numeric value ranging from -1 to 1. In SC, smaller values of ai

indicate denser clusters and higher values of bi indicate well-separated clusters. Values of

SC closer to 1 indicate a better clustering solution.

4.2.3 Graph Model of the Netlist

In most of the optimization steps, the netlist is expressed as a direct hypergraph

G = (V,E), where V is the set of vertices that represent the instances and E is the set

of the direct hyperedges that represent the nets. Some techniques, such as Louvain, can-

not handle the notion of hyperedges. Consequently, a translation method to represent a

hypergraph by a weighted graph is needed. The clique and star decompositions are often

used in a variety of applications. The clique decomposition replaces the hyperedge by a

complete graph, i.e., every pair of vertices is connected by a single edge. To “correctly

represent” nets of different sizes, edge weighting techniques are required. Ihler, Wagner

and Wagner (1993) prove that there is no perfect weighting for the clique decomposition.

In this work, we evaluate the five different edge weighting schemes for the clique de-

composition presented in Table 4.1. The star decomposition replaces the hyperedges with

edges connected to a virtual node. In this work, the edges created by the star decomposi-

tion have weight equal to 1.

Table 4.1: Description of net weighting alternatives.
Name Weight per edge Rationale

Lengauer (LENGAUER, 1990) 1/(ph − 1) Set the total weight of the net cut to be at least one.
Huang (HUANG; KAHNG, 1995) 4/(ph(ph − 1)) Set the expected weight of a net cut to be one.
Tsay-Kuh (TSAY; KUH, 1991) 2/ph Minimize the squared wirelength of the net.
Tsay-Kuh-2 (TSAY; KUH, 1991) (2/ph)3 Minimize the Manhattan wirelength of the net.
Frankle-Karp (FRANKLE; KARP, 1988) 2/p1.5h Minimize the worst deviation from the square of the

spanning tree.

Source: from author.

The traditional clique or star decompositions are usually not enough to capture all

the nuances necessary to match the clustering with actual placement. Our experiments

show that giving higher weights to edges closer to I/O pins improves the quality of the



55

clustering in a subset of testcases.10 Therefore, we also add a weighting scheme based on

topological depth aiming to keep cells closer to I/Os in the same cluster. Specifically, we

define the edge weights as:

wh,2 = min((d(I)), (d(O))) (4.6)

wh = wh,1
1

(wh,2 + 1)
(4.7)

Figure 4.3(a) depicts a netlist with two input ports, four instances, and one output

port. The number above each instance represents the topological distance to the closest

I/O. Figure 4.3(b) shows the equivalent graph using the traditional clique decomposi-

tion, in which the number related to each edge represents its weight using the Lengauer

weighting scheme. Figure 4.3(c) shows the equivalent graph using the star decomposition

(virtual nodes are drawn as circles with a dashed outline). Finally, Figure 4.3(d) integrates

the notion of I/O proximity according to Equation (4.7). In Subsection 4.3.1 we present

experiments discussing the impact of adding netlist information. We note in Section 4.4

that incorporation of timing information (slack, etc.) in the graph modeling remains an

open issue for future work.

4.3 Experimental Setup and Results

We implement our modularity-based clustering approach using Rsyn (FLACH et

al., 2017; RSYN, 2016) and run all experiments on an Intel Xeon E5-2695 dual-CPU

server at 2.1GHz with 256GB RAM. Our analyses are performed in a set of open design

blocks (OPENCORES, 1999). We use a commercial synthesis tool to generate our gate-

level netlists. We run synthesis to reach the smallest clock period that does not generate

timing violation based on TT corner on each PDK. Our testcases are synthesized in three

industrial technologies: 14nm, 28nm and 65nm. We then perform I/O placement and

remove all buffers using a commercial place-and-route tool. The placement we use in our

experiments is generated by the academic global placement tool RePlAce v1.1.1 (CHENG

et al., 2019; REPLACE, 2018) and the legalization tool OpenDP v0.1.0 (DO; WOO;

KANG, 2019; OPENDP, 2020).

10In the experiments of Fogaça et al. (FOGAçA et al., 2019), the addition of I/O proximity weights
improves the quality of results in terms of DBi by 28%, on average. In Section 4.3.1, we extend the
experiments of (FOGAçA et al., 2019) and observe that I/O proximity weights only improve DBi in when
combined with Tsay-Kuh-2 edge weights and the Star decomposition.



56

Figure 4.3: Netlist decomposition.

(a) Netlist

(b) Clique decomposition using
Lengauer weighting scheme

(c) Star decomposition (d) Clique decomposition with I/O
proximity weights

Source: from author.

Table 4.2 presents the number of instances, nets, and I/Os of each testcase. The

number after each testcase name indicates the testcase enablement, i.e., technology node.

We conduct four experiments. Our first experiment evaluates the results of Louvain using

different graph models of the netlist. Our second experiment compares the efficiency of

our methodology to an existing VLSI clustering technique. Our third experiment stud-

ies the robustness of our formulation for different design floorplans. Finally, our forth

experiment compares the performance of Louvain clustering across all the enablements.

4.3.1 Evaluation of Different Graph Models

In our first experiment, we compare the clique decomposition using different

weighting schemes and the star decomposition. We also evaluate the use of I/O prox-

imity weights in our graphs. The flow of this experiment is shown in Figure 4.4.



57

Table 4.2: Benchmarks and attributes.

Design Insts Nets I/Os
jpeg_encoder_14 44083 45018 49
ldpc_decoder_14 38559 40610 4100

netcard_14 272865 274704 1849
leon3mp_14 316537 316791 333

MegaBoom_14 1249594 1254352 945
jpeg_encoder_28 46962 47775 49
ldpc_decoder_28 40402 42506 4100

netcard_28 235277 237122 1849
leon3mp_28 400836 401091 333

MegaBoom_28 1419923 1425174 945
netcard_65 239901 241740 1849

leon3mp_65 325041 325295 333
MegaBoom_65 1169564 1174669 945

Source: from author.

Figure 4.4: Experiment 1 flow: Each netlist is modeled as a graph using the clique and
star decompositions. In using clique, we compare five edge-weighting approaches. Fur-
thermore, we evaluate the use of I/O proximity weights in the graph edges. Next, Louvain
clusters the graphs. Finally, the clustering solutions are evaluated in terms of DBi, VRC
and SC.

Lengauer Tsay-Kuh Frankle-Karp

Huang Tsay-Kuh-2 Star dec.

Louvain

Netlist

Solutions

DBi, VRC and SC

×
I/O weights

Source: from author.



58

Table 4.3 shows the values of DBi, VRC and SC for each approach alone and

with I/O proximity information of Equation (4.7). To compare the weighting schemes

in the “Average” row, we first normalize DBi, VRC and SC per benchmark using the

values of Lengauer without I/O proximity weights as the reference for normalization. We

then compute the average of the normalized values for each column.11 We find that the

addition of I/O proximity weights significantly improves DBi and VRC for Huang and

Tsay-Kuh-2 weighting schemes and improves DBi for the Star decomposition. Lengauer,

Tsay-Kuh and Frank-Karp show better DBi, VRC and SC without I/O proximity weights.

Lengauer without I/O proximity weights presents the best results in terms of DBi, VRC

and SC. The superiority of Lengauer without I/O proximity weights can also be observed

in Figure 4.5, in which we present its average improvement over the other graph models.

Therefore, all of our following experiments are performed using Lengauer without I/O

proximity weights.

Figure 4.5: The average improvement of Lengauer w/o I/O proximity weights over the
other graph models.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Lengauer
Huang

Tsay-Kuh
Tsay-Kuh-2

Frankle-Karp
Star dec.

Le
ng

au
er

w
/o

 I/
O

 w
ei

gh
ts

 im
pr

ov
.

DBi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lengauer
Huang

Tsay-Kuh
Tsay-Kuh-2

Frankle-Karp
Star dec.

VRC
w/o I/O weights w/ I/O weights

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Lengauer
Huang

Tsay-Kuh
Tsay-Kuh-2

Frankle-Karp
Star dec.

SC

Source: from author.

11Since SC are values in the range -1 to 1, we add 1 to the values of SC before normalization.



59

Ta
bl

e
4.

3:
N

et
lis

tt
un

in
g.

D
es

ig
n

L
en

ga
ue

r
H

ua
ng

T
sa

y-
K

uh
T

sa
y-

K
uh

-2
Fr

an
kl

e-
K

ar
p

St
ar

de
co

m
po

si
tio

n
D

B
i

V
R

C
SC

D
B

i
V

R
C

SC
D

B
i

V
R

C
SC

D
B

i
V

R
C

SC
D

B
i

V
R

C
SC

D
B

i
V

R
C

SC

w/oI/Oweights

jp
eg

_e
nc

od
er

_2
8_

55
3.

5
54

95
-0

.0
57

4.
9

36
22

-0
.1

44
5.

0
27

34
-0

.1
68

5.
8

35
22

-0
.1

92
3.

9
36

68
-0

.0
99

3.
6

19
01

-0
.1

64
jp

eg
_e

nc
od

er
_2

8_
70

3.
6

49
88

-0
.0

96
4.

7
30

80
-0

.1
71

4.
0

41
22

-0
.1

06
3.

7
34

76
-0

.1
88

4.
1

36
35

-0
.1

01
3.

1
25

48
-0

.1
51

ld
pc

_d
ec

od
er

_2
8_

55
38

.3
8

-0
.6

14
63

.2
9

-0
.7

01
41

.9
8

-0
.6

18
56

.5
11

-0
.7

56
32

.4
8

-0
.6

18
76

.6
10

-0
.3

43
ld

pc
_d

ec
od

er
_2

8_
70

40
.1

9
-0

.6
16

42
.0

8
-0

.7
10

42
.5

8
-0

.6
09

39
.0

11
-0

.7
53

38
.6

8
-0

.6
22

49
.6

17
-0

.3
30

ne
tc

ar
d_

28
_5

5
3.

2
24

74
5

0.
00

6
22

.1
25

74
-0

.2
83

15
.6

83
96

-0
.2

11
19

.0
28

21
-0

.2
83

23
.3

53
22

-0
.1

90
8.

9
69

69
-0

.2
31

ne
tc

ar
d_

28
_7

0
3.

7
24

92
1

-0
.0

13
23

.7
25

96
-0

.2
82

11
.2

80
66

-0
.2

46
16

.8
26

20
-0

.2
67

13
.3

51
13

-0
.2

07
7.

2
66

57
-0

.2
13

le
on

3m
p_

28
_5

5
1.

7
12

04
83

0.
07

4
8.

0
31

24
7

-0
.2

45
4.

0
78

66
3

-0
.0

29
53

.0
95

92
-0

.3
08

3.
5

73
88

4
-0

.0
54

3.
9

73
31

1
-0

.0
91

le
on

3m
p_

28
_7

0
1.

6
12

28
99

0.
06

6
11

.6
29

15
6

-0
.2

48
3.

2
74

77
6

-0
.0

27
55

.2
89

76
-0

.3
42

1.
9

81
22

4
-0

.0
25

2.
3

76
29

4
-0

.1
01

M
eg

aB
oo

m
_2

8_
55

2.
1

37
51

26
0.

06
5

21
.0

21
94

5
-0

.3
52

2.
2

40
46

78
0.

03
1

30
.7

13
49

6
-0

.3
58

2.
1

37
08

53
-0

.0
17

2.
9

47
69

11
0.

11
8

M
eg

aB
oo

m
_2

8_
70

1.
5

32
92

31
0.

04
3

21
.6

11
93

9
-0

.4
34

3.
1

36
52

99
0.

05
6

33
.2

10
75

9
-0

.3
87

2.
1

35
42

74
0.

01
6

3.
1

21
04

73
0.

01
5

A
ve

ra
ge

1.
0

1.
0

1.
0

5.
5

0.
4

0.
7

2.
0

0.
7

0.
9

11
.7

0.
4

0.
7

2.
0

0.
7

0.
9

1.
7

0.
8

1.
1

w/I/Oweights

jp
eg

_e
nc

od
er

_2
8_

55
4.

4
19

22
-0

.2
66

4.
1

15
29

-0
.3

50
7.

6
15

93
-0

.2
82

4.
2

13
00

-0
.3

45
3.

8
21

48
-0

.2
52

5.
0

12
94

-0
.3

87
jp

eg
_e

nc
od

er
_2

8_
70

4.
7

18
59

-0
.2

48
5.

1
15

98
-0

.3
58

5.
3

14
93

-0
.2

89
5.

4
12

38
-0

.3
40

3.
4

18
82

-0
.2

41
5.

2
13

55
-0

.3
74

ld
pc

_d
ec

od
er

_2
8_

55
40

.7
8

-0
.6

60
48

.3
8

-0
.7

38
53

.1
7

-0
.6

39
52

.8
10

-0
.7

47
36

.6
8

-0
.6

61
29

.8
9

-0
.6

08
ld

pc
_d

ec
od

er
_2

8_
70

38
.7

8
-0

.6
61

38
.6

8
-0

.7
38

37
.0

8
-0

.6
54

48
.7

11
-0

.7
47

41
.0

7
-0

.6
42

62
.0

8
-0

.6
37

ne
tc

ar
d_

28
_5

5
17

.4
22

66
-0

.4
17

29
.2

19
59

-0
.4

49
11

.1
34

23
-0

.3
92

21
.2

14
75

-0
.5

52
32

.7
18

60
-0

.4
77

7.
6

91
35

-0
.1

76
ne

tc
ar

d_
28

_7
0

18
.5

21
14

-0
.4

13
15

.0
20

61
-0

.4
37

10
.7

33
94

-0
.3

88
13

.6
13

70
-0

.5
79

22
.9

20
79

-0
.4

67
8.

4
96

80
-0

.1
56

le
on

3m
p_

28
_5

5
3.

7
69

92
3

-0
.0

79
5.

4
20

89
1

-0
.2

73
3.

4
60

30
2

-0
.1

09
8.

9
97

24
-0

.4
15

4.
6

58
48

2
-0

.0
87

2.
0

97
30

2
-0

.0
73

le
on

3m
p_

28
_7

0
2.

5
81

64
9

-0
.0

39
5.

0
21

09
7

-0
.2

59
3.

1
62

43
9

-0
.0

93
10

.4
95

76
-0

.4
08

5.
0

59
64

0
-0

.0
85

2.
6

94
11

1
-0

.0
39

M
eg

aB
oo

m
_2

8_
55

1.
7

30
75

69
-0

.0
36

5.
3

96
12

8
-0

.2
24

2.
0

29
06

38
-0

.0
90

5.
0

63
94

0
-0

.2
37

2.
7

19
84

54
-0

.1
92

1.
7

39
78

38
0.

00
5

M
eg

aB
oo

m
_2

8_
70

1.
8

28
74

94
-0

.0
01

14
.2

73
20

2
-0

.2
38

1.
9

23
22

60
-0

.0
93

8.
2

45
15

9
-0

.2
97

2.
3

20
67

58
-0

.1
78

2.
9

17
17

24
-0

.0
61

A
ve

ra
ge

2.
1

0.
6

0.
8

3.
6

0.
3

0.
7

1.
8

0.
5

0.
8

3.
5

0.
4

0.
6

2.
9

0.
5

0.
8

1.
5

0.
6

0.
9

So
ur

ce
:f

ro
m

au
th

or
.



60

4.3.2 Comparison With Traditional VLSI Clustering Methods

We now discuss the correlation between our clustering formulation and the ac-

tual cell placement as compared with the traditional min-cut clustering tool hMetis. As

discussed in Section 3.2.5, the modularity criterion guides Louvain toward high-quality

clustering solutions without the need for input parameters. On the other hand, hMetis is

a Fiduccia-Mattheyses-based partitioning tool that relies on a less robust criterion, called

“cut”, and needs input parameters from the user; this itself presents a challenge when we

seek a fair comparison versus hMetis. To perform a fair comparison we explore two input

parameters of hMetis: (i) the number of clusters and (ii) the unbalance factor.12 Addi-

tionally, hMetis performs 2-way partitioning if the target number of clusters is a power

of 2 and k-way partitioning otherwise. In our experiments, we first run hMetis in 2-way

partitioning mode targeting the nearest power of 2 to the number of clusters found by

Louvain. We run hMetis in k-way partitioning mode targeting the same number of clus-

ters found by Louvain. We execute each mode with three settings of unbalance factor:

10%, 20% and 40%, and report the best of the three.

Figure 4.6: Experiment 2 flow: Comparison of Louvain with hMetis 2-way and k-way.

hMetis 2-way

Netlist

Solutions

DBi, VRC and SC

hMetis k-wayLouvain

NetlistNetlist graph

Source: from author.

12In hMetis, the unbalance factor is an integer value ranging from 1 to 49 and represents the percentage
of difference allowed among its partitions in terms of number of vertices.



61

Table 4.4 and Figure 4.7 compare Louvain and hMetis using DBi, VRC, SC and

runtime. Our criteria are normalized using Louvain values as the reference before com-

puting the average numbers. The normalization follows the same procedure adopted in

Table 4.3. For each criterion, we show the best value among the runs with 10%, 20% and

40% unbalance factor. Louvain outperforms hMetis for our largest testcases, leon3mp

and MegaBoom, in terms of DBi, VRC and SC. In ldpc_decoder, Louvain outperforms

hMetis in terms of DBi.

The results of hMetis vary considerably depending on the input configuration. In

jpeg_encoder, there is a 1.4× DBi gap and a 2.2× SC gap between hMetis in 2-way and

k-way partitioning modes. On average, Louvain shows 6.7× and 5.2× better DBi than

hMetis in 2-way and k-way partitioning modes, respectively. hMetis shows better VRC

results by 1.6× and 1.7× in 2-way and k-way partitioning modes. Similarly, hMetis

shows better SC by 1.2× compared to Louvain in both 2-way and k-way partitioning

modes. However, Louvain outperforms hMetis for our largest testcases. For instance, in

MegaBoom, Louvain shows 9.7× and 11.4× better VRC than hMetis in 2-way and k-way

partitioning modes, respectively.

Table 4.4: Comparison among number of clusters (CL) and values of DBi, VRC, SC and
runtime (CPU) for Louvain and hMetis. We highlight the best result for each evaluation
criterion in each design.

Design
Louvain hMetis 2-way hMetis k-way

#CL DBi VRC SC CPU(s) #CL DBi VRC SC CPU(s) #CL DBi VRC SC CPU(s)
jpeg_encoder_28 84 3.6 4987.89 -0.096 2 64 3.1 10171 0.042 13 84 2.2 12987 0.096 14
ldpc_decoder_28 73 40.1 8.67188 -0.616 3 64 72.8 26 -0.210 18 73 95.3 28 -0.264 19
netcard_28 72 3.7 24920.5 -0.013 25 64 3.5 67680 0.122 145 72 3.6 55675 0.101 138
leon3mp_28 70 1.6 122899 0.066 75 64 10.2 33347 -0.053 191 70 21.4 28753 -0.088 179
MegaBoom_28 40 1.5 329231 0.043 448 70 35.1 33897 -0.119 826 40 13.0 28793 -0.137 912
Average 1 1 1 1 6.7 1.6 1.2 4.5 5.2 1.7 1.2 4.6

Source: from author.
One of the key advantages of Louvain is its almost linear runtime in sparse graphs.

Louvain is 6× faster than the fastest hMetis run for the smallest benchmark, ldpc_decoder

(18s). In the largest benchmark, MegaBoom, Louvain is 1.8× faster than the fastest

hMetis run (826s). On average, Louvain is 4.5× faster than hMetis.13

13We note that hMetis is a Fiduccia-Mattheyses-based partitioning tool. Every iteration of the Fiduccia-
Mattheyses algorithm has the runtime complexity of O(|V |), where |V | is the number of vertices in the
hypergraph. In contrast, Louvain has runtime complexity of O(|V |log|V |). As noted in Section 3.2.5,
every “pass” (iteration) of Louvain reduces the graph size based on the current clustering result. In our ex-
periments, most of the Louvain runtime comes from the first “pass”. Additionally, previous studies suggest
that Louvain converges in less than 5 iterations for most graphs (BLONDEL et al., 2008). In practice, by re-
ducing the graph size after every “pass”, the Louvain algorithm converges faster than Fiduccia-Mattheyses-
based heuristics.



62

Figure 4.7: Comparison between Louvain and hMetis in terms of DBi, VRC and SC.

-0.14

0.82

-0.05

5.38

22.40

-0.39

1.38

-0.03

12.38

7.67

-1.00

4.00

9.00

14.00

19.00

24.00

jpeg_encoder_28
ldpc_decoder_28

netcard_28
leon3mp_28

MegaBoom_28

Lo
uv

ai
n 

im
pr

ov
.

DBI
2-way k-way

(a) 1:1

-0.51 -0.69 -0.63

2.69

8.71

0.38 0.29 0.45

4.27

11.43

-1.00

4.00

9.00

14.00

jpeg_encoder_28
ldpc_decoder_28

netcard_28
leon3mp_28

MegaBoom_28

Lo
uv

ai
n 

im
pr

ov
.

VRC
2-way k-way

(b) 1:1

-1.44
-0.66

-10.38

1.80

3.77

-2.00

-0.57

-8.77

2.33

4.19

-12.00

-9.00

-6.00

-3.00

0.00

3.00

6.00

jpeg_encoder_28
ldpc_decoder_28

netcard_28
leon3mp_28

MegaBoom_28

Lo
uv

ai
n 

im
pr

ov
.

SC
2-way k-way

(c) 1:1

6.5
6.0 5.8

2.5
1.8

7
6.3

5.5

2.4
2.0

0.0

2.0

4.0

6.0

8.0

jpeg_encoder_28
ldpc_decoder_28

netcard_28
leon3mp_28

MegaBoom_28

Lo
uv

ai
n 

im
pr

ov
.

Runtime
2-way k-way

(d) 1:1

Source: from author.



63

4.3.3 Robustness With Respect to Design Floorplan

In this subsection, we show the robustness of Louvain using different floorplan

configurations. Figure 4.8 shows our experiment flow. First, we cluster the netlist graphs

using Louvain. Next, we run the placement tool with 1:1, 1.5:1, 2:1, 2.5:1 and 3:1 floor-

plan aspect ratios and measure the difference in DBi, VRC and SC.

Figure 4.8: Experiment 3 flow: The netlist graphs are clustered with Louvain and the
clustering results are evaluated using placement under five floorplan aspect ratios: 1:1,
1.5:1, 2:1, 2.5:1 and 3:1.

Placement
floorplan 1.5:1

Louvain

Solutions

Placement
floorplan 2:1

Placement
floorplan 1:1

Netlist graph

Placement
floorplan 3:1

Placement
floorplan 

2.5:1

Visualization, DBi, VRC and SC

Source: from author

Table 4.5 and Figure 4.9 show the delta from the floorplan with aspect ratio 1:1 to

aspect ratios 1.5:1, 2:1, 2.5:1 and 3:1. The values of our evaluation criteria are normalized

using Equations (4.8)-(4.10), so that 0 means no change with respect to aspect ratio 1:1,

positive values mean improvement and negative values mean degradation. We observe a

significant variation in every criterion when we change the floorplan. For instance, we

see a 93% improvement in VRC for MegaBoom considering the aspect ratio 2:0 and 61%

degradation of DBi in netcard considering aspect ratio 2.5:1. The numbers do not follow

any trend and the standard deviation can be as large as 79%.

∆DBi = 1− DBiar
DBi1:1

(4.8)

∆V RC =
V RCar

V RC1:1

− 1 (4.9)



64

∆SC =
SCar − SC1:1

|SC1:1|
(4.10)

Table 4.5: Variation of DBi, SC and VRC with aspect ratios 1.5:1, 2:1, 2.5:1 and 3:1
compared to their implementation with aspect ratio 1:1. Values are normalized according
to Equations (4.8)-(4.10).

Design
1.5:1 2.0:1 2.5:1 3.0:1

DBi VRC SC DBi VRC SC DBi VRC SC DBi VRC SC
jpeg_encoder_14 0.20 -0.03 -0.25 -0.02 0.17 -0.50 0.06 0.17 -0.18 -0.09 0.60 0.25
ldpc_decoder_14 -0.20 -0.12 0.02 0.16 0.22 -0.13 -0.13 0.22 -0.01 0.18 0.13 -0.24
netcard_14 -0.13 -0.32 -0.35 0.02 -0.18 -0.26 -0.61 -0.18 0.19 -0.06 0.52 0.41
leon3mp_14 -0.31 -0.04 -0.38 -0.32 0.10 0.02 -0.01 0.10 -0.62 0.10 0.12 -1.41
MegaBoom_14 0.22 -0.01 -0.45 0.22 0.93 -0.22 0.19 0.93 -0.22 0.02 2.03 -0.13
Average -0.04 -0.10 -0.28 0.01 0.25 -0.22 -0.10 0.25 -0.17 0.03 0.68 -0.22
Std. dev. 0.24 0.13 0.19 0.21 0.41 0.19 0.31 0.41 0.30 0.11 0.79 0.71

Source: from author.
Figure 4.9: The deltas of DBI, VRC and SC from the floorplan with aspect ratio 1:1 to
aspect ratios 1.5:1, 2:1,2.5:1 and 3:1. Values are normalized according to Equations (4.8)-
(4.10).

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

jpeg_encoder_14
ldpc_decoder_14

netcard_14
leon3mp_14

MegaBoom_14Va
ria

tio
n 

ag
ai

ns
t a

sp
ec

t 
ra

tio
 1

:1

DBi

1.5:1 2.0:1 2.5:1 3.0:1

(a)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

jpeg_encoder_14
ldpc_decoder_14

netcard_14
leon3mp_14

MegaBoom_14Va
ria

tio
n 

ag
ai

ns
t a

sp
ec

t 
ra

tio
 1

:1

VRC

1.5:1 2.0:1 2.5:1 3.0:1

(b)

-1.5

-1.0

-0.5

0.0

0.5

jpeg_encoder_14
ldpc_decoder_14

netcard_14
leon3mp_14

MegaBoom_14Va
ria

tio
n 

ag
ai

ns
t a

sp
ec

t 
ra

tio
 1

:1

SC

1.5:1 2.0:1 2.5:1 3.0:1

(c)

Source: from author.



65

The reason for this behavior can be seen in Figure 4.10. The significant variation

in our evaluation criterion comes from the chaotic behavior of the placement tool. The

neighborhood and shape of the clusters determine our evaluation criteria. We highlight

four clusters to compare the different placement solutions. Clusters 1 and 2 are placed

next to each other in all the five solutions. However, in aspect ratio 1:1, cluster 1 is at the

core boundary, while in aspect ratio 2.5:1 both clusters are not in the core boundary. We

observe similar behavior in clusters 3 and 4. Clusters 3 and 4 are placed next to clusters 1

and 2 in aspect ratio 1.5:1 and 2.5:1, but are placed far apart in the other aspect ratios. We

may conclude that DBi, VRC and SC are good metrics by which to compare clustering

solutions for the same ground-truth placement, but not by which to compare the same

clustering for different placements.

Figure 4.10: Visual comparison of MegaBoom_14 with different aspect ratios and same
utilization. The images have been scaled for a better visualization. The red arrow high-
lights two blue clusters blending together.

(a) 1:1 (b) 1.5:1

(c) 2:1 (d) 2.5:1 (e) 3:1

Source: from author.



66

4.3.4 Validation Across Technology Nodes

Ideally, Louvain would find a similar number of clusters for different gate-level

netlists originated from the same RTL (e.g., two netlists, one synthesized in a 14nm en-

ablement and the other in a 28nm enablement). However, the features of the netlist graph

(e.g., average cardinality of the vertices) may vary depending on the enablement used in

the synthesis. The difference happens due to the number and types of logic functions

available in the standard cell library and their implementation (e.g., number of avail-

able VTs and drive strengths). In this experiment, we assess the robustness of Louvain

by comparing leon3mp, MegaBoom and netcard synthesized using three enablements:

14nm, 28nm and 65nm. Figure 4.11 shows our experiment flow.

Figure 4.11: Experiment 4 flow: We synthesize the same design in 14nm, 28nm and
65nm. Next, we cluster the netlist graphs using Louvain. Finally, we compare the results
visually and numerically using DBi, VRC and SC.

Louvain

Solutions

Netlist graph in 28

Netlist graph in 14 Netlist graph in 65

Visualization, DBi, VRC and SC

From Table 4.2, the reader can see the impact of these details in synthesis –

e.g., MegaBoom_14 has 6.8% more instances than MegaBoom_65 and 13% fewer in-

stances than MegaBoom_28. netcard_14 has 12% more instances than netcard_28 and

netcard_65. The difference is more significant between leon3mp_14 and leon3mp_28

(27%). The difference in synthesis affects the values of DBi, VRC and SC, as shown in

Table 4.6 and Figure 4.13. For example, MegaBoom_28 presents 3× better VRC and

1.48× better SC than MegaBoom_14, and MegaBoom_65 has 1.19× better VRC than

MegaBoom_14. However, netcard_65 presents 2.35× worse SC than netcard_14. Fig-

ure 4.12 shows the instances of MegaBoom_28 and MegaBoom_65, colored according

to Louvain clustering. The visualization for MegaBoom_14 can be seen in Figure 4.10(a).

The number of clusters found by Louvain also changes significantly. MegaBoom_28 and



67

MegaBoom_65 have 40 and 37 clusters, respectively, in contrast to 27 clusters of Mega-

Boom_14.

Figure 4.12: Clustering results for (a) MegaBoom_28 and (b) MegaBoom_65. Compare
with MegaBoom_14 from Figure 4.10(a).

(a) (b)

Source: from author.

Table 4.6: Variation of DBi, VRC and SC for netcard, leon3mp and MegaBoom when
compared to their implementation in 14nm. Values are normalized according to Equa-
tions (4.8)-(4.10).

Design DBi VRC SC
netcard_28 -0.03 -0.07 0.82
netcard_65 -1.87 -0.71 -2.35
leon3mp_28 0.32 0.30 0.48
leon3mp_65 0.28 -0.01 0.64
MegaBoom_28 0.55 3.23 1.48
MegaBoom_65 0.39 1.19 0.25

Source: from author.

Figure 4.13: Graphic representation of the Variation of DBi, VRC and SC for netcard,
leon3mp and MegaBoom when compared to their implementation in 14nm. Values are
normalized according to Equations (4.8)-(4.10).

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

netcard_28nm
netcard_65nm

leon3mp_28nm
leon3mp_65nm

MegaBoom_28nm
MegaBoom_65nm

Va
ria

tio
n 

ag
ai

ns
t t

he
 1

4n
m

 n
et

lis
t

DBi VRC SC

Source: from author.



68

The numerical and visual results of Louvain for a given RTL synthesized in 14nm,

28nm and 65nm technology nodes vary significantly. Therefore, we conclude that the

current implementation of Louvain is not “robust” with respect to changes of technology

nodes. As a possible extension of this work, we believe the “robustness” of Louvain could

be improved using hints from the RTL hierarchy. For instance, Louvain could assign

higher weights to edges that connect instances belonging to the same RTL hierarchy.

4.4 Conclusion

In this Chapter, we have tackled the problem of predicting instances that remain to-

gether throughout the physical implementation flow using netlist clustering. We proposed

the use of convex hulls, alpha shapes and Delaunay triangulation as methods for visual-

ization and manual debugging of the correlation between clustering and actual placement.

We have shown in a practical example that the Delaunay triangulation is the best way for

visualization of cluster shapes and outliers. To compare clustering solutions, we have pro-

posed the use of three numerical criteria: Davies-Bouldin index, variance ratio coefficient

and silhouette coefficient.

We have applied the fast modularity-based graph clustering algorithm Louvain in

VLSI for the first time. In performing netlist to graph mapping, we have compared the

clique and star decomposition methods and five edge weighting alternatives. Additionally,

we have evaluated the use of I/O proximity weights. Our first experiment has shown that

using clique decomposition with the Lengauer edge weighting scheme leads to clustering

results with the best overall values of DBi, VRC and SC. We also show that works, the

use of I/O proximity weights does not lead to better results for all consistently weighting

schemes.

In our second experiment, we have assessed the superiority of Louvain clustering

when compared to hMetis, a traditional VLSI clustering tool – Louvain presents the best

results of DBi on average. Louvain also outperforms hMetis in all metrics for our two

largest testcases. In terms of runtime, Louvain is, on average, 4.5× faster than hMetis.

Furthermore, in contrast with hMetis, Louvain does not need user-input parameters.

Our third experiment has evaluated the robustness of Louvain clustering using

floorplans with different aspect ratios. We have noticed a considerable variation in DBi,

VRC and SC. However, we have demonstrated through visualization that this variation

comes from the chaotic behavior of the placement tool. The visualization has also shown



69

that the neighborhood of clusters remains the same. Therefore, we conclude that Louvain

clustering is robust to different floorplan configurations.

The final experiment has compared Louvain clustering solutions for the same RTL

synthesizes with different technologies. We conclude that the gate-level netlist changes

considerably in terms of the number of instances depending on the technology. We ob-

serve a difference of up to 27% in the number of instances in our experiments. The dif-

ferences in the gate-level netlists affect the results of Louvain clustering. In one testcase

the number of clusters between MegaBoom_14 and MegaBoom_65 is around 37%. The

values of DBi, VRC and SC also change significantly among technologies. From this ex-

periment, we conclude that Louvain clustering is not robust across different technologies.

4.4.1 Directions for Future Works

The experiment on Section 4.3.1 has shown that the graph mapping of the netlist

has a significant impact on the quality of the results. We list three directions for studies

aiming to improve the present work:

• Timing weights. Improve cluster quality by modeling timing information as edge

weights. E.g., increase edge weights based on slacks or critical paths.

• Machine learning-based graph mapping. We believe machine learning could iden-

tify patterns on the netlist graph and guide the graph mapping of the netlist.

• Hierarchy weights. Instances belonging to the same hierarchy in the RLT tend to be

placed together. It is possible to identify RTL hierarchy in the mapped netlist in the

instances names (e.g., "hier1/hier2/inst1"). Giving higher weights to edges between

instances that belong to the same hierarchy can potentially lead to better clustering

results.



70

5 FAST PLACEMENT OF INSTANCES WITH BLOB AND SEEDED PLACEMENT

The results of the previous Section suggest that modularity-based clustering can

achieve stronger correlation with the eventual netlist placement when compared to a tra-

ditional VLSI netlist clustering approach. In this Section, we “close the loop” with place-

ment: we demonstrate how the modularity-based clustering is a promising foundation for

extremely fast placement and potential assessment of netlist and floorplan early in the

physical implementation flow.

We propose two techniques. The first one, called “blob placement”, consists of

placing a clustered netlist. In the clustered netlist, the cells from a given cluster are con-

sidered a single instance. Our clustered netlists have approximately 50–100× fewer in-

stances than the flat netlists. Hence, “blob placement” is potentially much faster than

the flat placement. Our second technique, called “seeded placement”, flattens the placed

clustered-netlist and spread the instances with a global placement technique. Finally, we

implement a prototype fast placement flow with “blob placement” and “seeded place-

ment” techniques, which aims to significantly reduce the placement runtime with mini-

mum impact in routed wirelength.

The remainder of this Chapter is organized as follows: in Section 5.1, we detail

our prototype flow. In Section 5.2, we perform experiments to assess the quality of our

prototype flow in terms of runtime and final routed wirelength. Finally, in Section 5.3 we

make our conclusions.

5.1 Prototype Blob and Seeded Placement Flow

We have developed a simple experimental flow to predict final placement using (i)

modularity-based clustering without any user configuration or tuning, (ii) a “blob place-

ment” step that performs cluster placement and shaping, and (iii) a fast placement of the

flat netlist using a “seeded placement” originated from the “blob placement”. The flow is

depicted in Figure 5.1.

The initial step of our flow maps the flat gate-level netlist to a graph representation

as described above, and then feeds this graph to Louvain. The output of Louvain is an

initial set of clusters determined naturally according to the modularity criterion; we call

these initial clusters root blobs.

The next step of our flow is to hierarchically break down the root blobs into smaller



71

Figure 5.1: Experimental fast placement flow.

Hierarchical 
Louvain clustering

“Blob placement”

“Seeded 
placement”

Graph

Gate-level netlist

Flat gate-level 
placement

Graph mapping

Louvain clustering
Root blobs

Leaf blobs

Instances placed in
the center of blobs

Source: from author.

blobs (i.e., clusters), also using Louvain for modularity-based clustering. In our experi-

ments, a single iteration of hierarchical clustering is sufficient to produce small blobs.

Then, we create a new netlist, consisting of the current set of blobs, which we refer to as

leaf blobs. The nets of the new netlist are induced based on the cell instances that belong

to each leaf blob. We assign higher weights to intra-root blob nets, i.e., nets that connect

leaf blobs that originate from the same root blob. We also assign higher weights to nets

that connect leaf blobs to I/Os. In our experiments, nets connecting inter-root blobs have

weight = 1, nets connecting intra-root blobs have weight = 4, and nets that connect to

I/Os have weight = 400. These values have been empirically determined. Furthermore,

we note that our clusters are not loosely-connected. In MegaBoom_14, MegaBoom_28

and MegaBoom_65, we observe 21K, 12K and 19K clusters, and 72K, 59K and 74K

inter-cluster nets, respectively. The same behavior is observed in other testcases, such as

netcard_14 and leon3mp_14 that have 2.8K and 2.6K clusters, and 27K and 37K nets,

respectively.

Figure 5.2(b) depicts the outcome of “blob placement” for the MegaBoom_14

that has 27 root blobs and 21K leaf blobs. The root blobs contain an average of 46K

instances and leaf blobs contain an average of 59 instances. We adapt the open-source

academic tool RePlAce to perform the blob placement. In doing so, we inflate the blob

dimensions by 20%, to simulate the utilization settings from the original placement. The



72

total runtime for the hierarchical breakdown of the gate-level netlist into leaf blobs, plus

RePlAce placement, is 12min for MegaBoom_14 (1.2M instances), using a single thread

of a 2.1GHz Xeon server.14

Next, we create a “seeded placement” based on the blob locations. In the “seeded

placements”, we restore the initial flat netlist and place each instance in the center co-

ordinate of the blob that represents the instance cluster. Finally, we feed the “seeded

placement” to RePlAce which spreads the instances while minimizing the wirelength.

Figure 5.2(a) shows the original flat placement, Figure 5.2(b) shows the blob placement

and Figure 5.2(c) shows the “seeded placement” for MegaBoom_14.

Figure 5.2: MegaBoom_14: (a) flat placement, (b) “blob placement” and (c) “seeded
placement”.

(a) (b)

(c)

Source: from author.

14The hierarchical use of Louvain could be modified to trivially exploit availability of multiple threads.



73

5.2 Experimental Setup and Results

We now compare our prototype flow with the flat placement. Table 5.1 summa-

rizes the testcase information, routed wirelength and runtime of the flat placement and

fast placement to a set of six testcases. Our testcases are synthesized using 65nm, 28nm

and 14nm industrial technologies following the same recipe from Chapter 4. We use a

commercial tool to perform global routing and extract routed estimated wirelength infor-

mation. As shown in Figure 5.3, our experimental flow presents runtime speed ups that

range from 20% (MegaBoom_X4_14) to 50% (MegaBoom_14 and MegaBoom_65). In

Figure 5.4, the total runtime of fast placement is broken into Louvain clustering, hierar-

chical Louvain clustering, “blob placement” and “seeded placement”. The largest chunk

of runtime in our experimental flow comes from the “seeded placement” itself, followed

by Louvain clustering. The hierarchical Louvain clustering is the step that scales best. We

also note that hierarchical Louvain clustering is parallelizable because the step consists

of applying clustering hierarchically in the root blobs – for an 8-thread CPU, the runtime

can be potentially reduced between 6× and 8×. Figure 5.5 shows that the use of “seeded

placement” causes a minimal degradation in wirelength that ranges from 0.4% (Mega-

Boom_X2_14) to 2.8% (MegaBoom_X3_14). We observe a slight improvement of 0.9%

in the wirelength of MegaBoom_65.

Table 5.1: Benchmark attributes and results of fast placement using “seeded placement.”
The runtime of fast placement is broken into Louvain clustering (LC), hierarchical Lou-
vain clustering (HLC), “blob placement” (BP) and “seeded placement” (SP). Refer back
to Table 4.2 for the instance complexities.

Design I/Os

Flat placement Fast “seeded placement”
Inst Nets

WL(m) CPU(s) WL(m)
LC HLC BP SP Total

(×106) (×106) CPU(s) CPU(s) CPU(s) CPU(s) CPU(s)
MegaBoom_14 1.2 1.2 945 21 1941 21.3 268 266 184 437 1156
MegaBoom_28 1.4 1.4 945 36 1623 36.2 335 108 116 408 967
MegaBoom_65 1.1 1.1 945 57.5 1613 57 164 100 104 432 800

MegaBoom_14_X2 2.5 2.5 1888 41.6 3214 41.8 705 271 440 1299 2714
MegaBoom_14_X3 3.7 3.7 2831 62.3 5211 64.1 1020 415 943 1933 4311
MegaBoom_14_X4 4.9 4.9 3774 83.4 8642 85.6 1418 572 1400 3492 6882

Source: from author.



74

Figure 5.3: Runtime improvement of “seeded placement” over flat placement.

50%

40% 40%

16% 17%
20%

0%

10%

20%

30%

40%

50%

60%

MegaBoom_65
MegaBoom_14

MegaBoom_28
MegaBoom_14_X2

MegaBoom_14_X3
MegaBoom_14_X4

Ru
nt

im
e 

im
pr

ov
em

en
t

Source: from author.

Figure 5.4: Runtime breakdown of our fast placement flow.

0.23
0.35

0.21
0.26 0.24 0.21

0.23
0.11

0.13
0.10

0.10
0.08

0.16
0.12

0.13
0.16 0.22

0.20

0.38 0.42

0.54
0.48 0.45

0.51

0.00

0.20

0.40

0.60

0.80

1.00

MegaBoom_65
MegaBoom_14

MegaBoom_28
MegaBoom_14_X2

MegaBoom_14_X3
MegaBoom_14_X4

Ru
nt

im
e

Louvain Clustering Hirarchical Louvain clustering
"Blob placement" "Seeded placement"

Source: from author.

Figure 5.5: Post-route wirelength degradation of “seeded placement” over flat placement.

-0.87%

1.43%

0.56% 0.48%

2.89%
2.64%

-1.00%

0.00%

1.00%

2.00%

3.00%

MegaBoom_65
MegaBoom_14

MegaBoom_28
MegaBoom_14_X2

MegaBoom_14_X3
MegaBoom_14_X4

W
ire

le
ng

th
 in

cr
ea

se

Source: from author.



75

5.3 Conclusions

In this Chapter, we have presented a prototype flow to enable fast placement of in-

stances. First, we have proposed a methodology to create a cluster netlist from Louvain’s

clustering solution. Then, we have used a global placement tool to perform fast place-

ment of clusters – a technique that we call “blob placement.” We have visually shown

that “blob placement” correlates well with the flat placement of the netlist. Finally, we

have demonstrated how to flatten the “blob placement” from using a technique that we

call “seeded placement.”

Our experiments have shown that our prototype flow can achieve considerably

less runtime when compared to the flat placement. To further assess the correlation of

our prototype fast placement flow and flat placement, we have matched the post-route

wirelength of our prototype fast placement flow against the post-route wirelength of the

flat placement. In doing so, we have observed an impact of less than 3% on the quality of

the results.

The presented results reveal the potential of our prototype fast placement flow to

predict the actual flat placement and hence opens the door to early netlist and floorplan

evaluation. Next, we give directions to enhance the runtime and the quality of the results

of our prototype flow.

5.3.1 Directions for Future Works

We have presented a prototype fast placement flow to assess that we can efficiently

predict flat placement using clustering. Although the results presented in the last present a

substantial runtime speedup with similar quality of results, we now offer many directions

in which our flow can be improved.

• Parallelism. As mentioned in Section 5.2, we performed hierarchical Louvain in a

single core, while the problem is highly parallelizable. The runtime could be scaled

down almost linearly with the number of cores available.

• Cluster netlist. Our methodology for the creation of the cluster netlist is purely

based on empirical data. We believe that embedding timing weights (e.g., timing

paths) and netlist information (e.g., tangled logic inside blobs, similar to (JINDAL

et al., 2010)) could lead to better results. Please note that this is closely related to



76

the graph modeling of the netlist used in the clustering (Section 4.2.3).

• Placement. Our global placement has been designed to perform placement of stan-

dard cells. Standard cells have different widths but the area ratio among standard

cells is usually of a few dozens. In our clustered netlist, the cluster area range from a

few dozen instances to thousands of instances. In this case, a mixed-size placement

tool could better handle the cluster netlist.



77

6 FINAL CONCLUSIONS

In the present work, we study netlist clustering in the context of enabling early

feedback at physical floorplanning and RTL planning stages of design. Our new criterion

for clustering assesses whether netlist clusters “stay together” through final physical im-

plementation. We support evaluation of this criterion via several methods, including the

use of (i) alpha shapes and Delaunay triangulation of a cluster’s placed locations for man-

ual debug and visualization and (ii) the Davies-Bouldin index, Variance Ratio Criterion

and Silhouette Coefficient as numerical criteria.

For the purpose of predicting cohesion in final layouts, we find that modularity-

driven clustering, as exemplified by the Louvain (BLONDEL et al., 2008) algorithm, is

clearly superior to mincut- or Rent parameter-driven methods (KARYPIS et al., 1997)

(CALDWELL; KAHNG; MARKOV, 2000) (RENTCON, 2008) that have dominated the

VLSI CAD literature. Importantly, the modularity criterion allows identification of “nat-

ural” clusters in a given graph without parameter tuning, and without imposition of bal-

ancing constraints; yet, it may also be applied hierarchically as needed. We also show that

the hypergraph-to-graph mapping is critical to successful application of modularity-based

clustering: our initial study of mapping techniques suggests that a weighting approach

of Lengauer (LENGAUER, 1990) is effective in conjunction with Louvain. Comparisons

with traditional hMetis-based clustering (KARYPIS et al., 1997) show that our Louvain-

based approach achieves on average 50% better correlation to actual netlist placements,

as well as 2× faster runtimes for our largest testcases. Last, we demonstrate the potential

of using modularity-based clustering with fast “blob placement” of clusters and “seeded

placement” to efficiently evaluate netlist and floorplan viability in early stages of design.

Our work leaves a number of open directions for future research. First, we believe

that much richer tuning of the hypergraph-to-graph mapping is possible according to ad-

ditional instance and netlist attributes. Second, static timing analysis can be used to inject

timing information into the net weighting, likely improving the clustering results. Third,

design hierarchy and structure may also help clustering to “avoid mistakes”, i.e., by pro-

viding name or clock contexts to additionally guide the graph construction and hence the

clustering. Finally, we believe that parallelism can be exploited to speed up our prototype

“seeded placement” flow.



78

REFERENCES

ALPERT, C. et al. A Semi-persistent Clustering Technique for VLSI Circuit Placement.
In: Proc. International Symposium on Physical Design. San Francisco: ACM, 2005.
p. 200–207.

ALPERT, C. J.; HUANG, J.-H.; KAHNG, A. B. Multilevel Circuit Partitioning. In: Proc.
Design Automation Conference. Anaheim: ACM, 1997. p. 530–533.

ALPERT, C. J.; KAHNG, A. B. Recent Directions in Netlist Partitioning: A Survey.
Integration, the VLSI Journal, v. 19, p. 1–81, 1995.

ALPERT, C. J.; KAHNG, A. B.; YAO, S.-Z. Spectral Partitioning With Multiple
Eigenvectors. Elsevier Discrete Applied Mathematics, v. 90, n. 1, p. 3–26, 1999.

BAEK, S.-H. et al. Ultra-High Density Standard Cell Library Using Multi-Height Cell
Structure. SPIE Smart Structures, Devices, and Systems, p. 70–77, 2008.

BARNES, E. R. An algorithm for partitioning the nodes of a graph. In: Proc. Conference
on Decision and Control including the Symposium on Adaptive Processes. San
Diego: IEEE, 1981. p. 303–304.

BERG, M. d. et al. Computational Geometry: Algorithms and Applications. Santa
Clara: Springer, 1997.

BLONDEL, V. D. et al. Fast Unfolding of Communities in Large Networks. SISSA/IOP
Journal of Statistical Mechanics: Theory and Experiment, v. 10, p. 1–12, 2008.

BLUTMAN, K. et al. Floorplan and Placement Methodology for Improved Energy
Reduction in Stacked Power-Domain Design. In: Proc. Asia and South Pacific Design
Automation Conference. Chiba: IEEE, 2017. p. 444–449.

BRENNER, U. BonnPlace Legalization: Minimizing Movement by Iterative
Augmentation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 32, n. 8, p. 1215–1227, 2013.

BRENNER, U.; STRUZYNA, M.; VYGEN, J. BonnPlace: Placement of Leading-Edge
Chips by Advanced Combinatorial Algorithms. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, v. 27, n. 9, p. 1607–1620,
2008.

CALDWELL, A. E.; KAHNG, A. B.; MARKOV, I. L. Optimal Partitioners and
End-Case Placers for Standard-Cell Layout. In: Proc. International Symposium on
Physical Design. Monterey, California, USA: ACM, 1999. p. 90–96.

CALDWELL, A. E.; KAHNG, A. B.; MARKOV, I. L. Improved Algorithms for
Hypergraph Bipartitioning. In: Proc. Asia and South Pacific Design Automation
Conference. Yokohama: IEEE, 2000. p. 661–666.

CALIńSKI, T.; HARABASZ, J. A Dendrite Method for Cluster Analysis. Journal of
Communications in Statistics – Theory and Methods, v. 3, n. 1, p. 1–27, 1974.



79

CHAN, T. F.; CONG, J.; RADKE, E. A rigorous framework for convergent net
weighting schemes in timing-driven placement. In: Proc. International Conference on
Computer-Aided Design. San Jose: IEEE, 2009. p. 288–294.

CHEN, T. et al. NTUplace3: An Analytical Placer for Large-Scale Mixed-Size
Designs With Preplaced Blocks and Density Constraints. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 27, n. 7, p.
1228–1240, 2008.

CHENG, C. et al. RePlAce: Advancing Solution Quality and Routability Validation
in Global Placement. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 38, n. 9, p. 1717–1730, 2019.

CHENG, C. K.; KUH, E. S. Module Placement Based on Resistive Network
Optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 3, n. 3, p. 218–225, 1984.

CHUNG, F.; LU, L. Connected Components in Random Graphs with Given Expected
Degree Sequences. Springer Annals of Combinatorics, v. 6, n. 2, p. 122–145, 2002.

CLAUSET, A.; NEWMAN, M. E. J.; MOORE, C. Finding Community Structure in Very
Large Networks. APS Physical Review E, v. 70, n. 6, p. 66111–66116, 2004.

DARAV, N. K. et al. Eh?Legalizer: A High Performance Standard-Cell Legalizer
Observing Technology Constraints. ACM Transactions on Design Automation of
Electronic Systems, v. 23, n. 4, p. 43:1–43:25, 2018.

DARPA. DARPA Rolls Out Electronics Resurgence Initiative. 2018. Available from
Internet: <https://www.darpa.mil/news-events/2017-09-13>. Accessed in: 11 Dec. 2018.

DAVIES, D. L.; BOULDIN, D. W. A Cluster Separation Measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, v. 1, n. 2, p. 224–227, 1979.

DO, S.; WOO, M.; KANG, S. Fence-Region-Aware Mixed-Height Standard Cell
Legalization. In: Proc. Great Lakes Symposium on VLSI. Tysons Corner: ACM, 2019.
p. 259–262.

EDELSBRUNNER, H.; KIRKPATRICK, D.; SEIDEL, R. On the Shape of a Set of
Points in the Plane. IEEE Transactions on Information Theory, v. 29, n. 4, p. 551–559,
1983.

EVERITT, B.; SKRONDAL, A. The Cambridge dictionary of statistics. [S.l.]:
Cambridge University Press Cambridge, 2002.

FENG, Z. et al. A Novel Similarity-Based Modularity Function for Graph Partitioning.
In: Proc. International Conference on Data Warehousing and Knowledge Discovery.
Regensburg: Springer, 2007. p. 385–396.

FIDUCCIA, C. M.; MATTHEYSES, R. M. A Linear-Time Heuristic for Improving
Network Partitions. In: Proc. Design Automation Conference. Las Vegas: IEEE, 1982.
p. 175–181.

https://www.darpa.mil/news-events/2017-09-13


80

FLACH, G. et al. Drive Strength Aware Cell Movement Techniques for Timing Driven
Placement. In: Proceedings of the 2016 on International Symposium on Physical
Design. [S.l.]: Association for Computing Machinery, 2016. p. 73–80.

FLACH, G. et al. Rsyn: An Extensible Physical Synthesis Framework. In: Proc.
International Symposium on Physical Design. Portland: ACM, 2017. p. 33–40.

FOGAçA, M. et al. Finding Placement-Relevant Clusters With Fast Modularity-Based
Clustering. In: Proc. Asia and South Pacific Design Automation Conference. Tokyo:
ACM, 2019. p. 569–576.

FORTUNATO, S.; HRIC, D. Community Detection in Networks: A User Guide.
Elsevier Physics Reports, v. 659, p. 1–44, 2016.

FRANKLE, J.; KARP, R. M. Circuit Placements and Costs Bounds by Eigenvector
Decomposition. In: Proc. International Conference on Computer-Aided Design.
Santa Clara: IEEE, 1988. p. 414–417.

GEORGE, K.; VIPIN, K. hMETIS – A Hypergraph Partitioning Package. 1998.
Available from Internet: <http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/manual.
pdf>. Accessed in: 24 Mar. 2019.

GIRVAN, M.; NEWMAN, M. E. J. Community Structure in Social and Biological
Networks. Proc. National Academy of Sciences of the United States of America,
v. 99, p. 7821–7826, 2002.

HAGEN, L. W.; J.-H., H.; KAHNG, A. B. On Implementation Choices for Iterative
Improvement Partitioning Algorithms. In: Proc. European Design Automation
Conference. Brighton: IEEE, 1995. p. 144–149.

HALL, K. M. An r-Dimensional Quadratic Placement Algorithm. Management Science,
v. 17, n. 3, p. 219–229, 1970.

HAN, K.; KAHNG, A. B.; LI, J. Optimal Generalized H-Tree Topology and Buffering
for High-Performance and Low-Power Clock Distribution. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, in press.

HEO, S. i. et al. Detailed Placement for IR Drop Mitigation by Power Staple Insertion
in Sub-10nm VLSI. In: Proc. Design, Automation & Test in Europe & Conference.
Florence: IEEE, 2019. p. 830–835.

HEO, S. i. et al. Diffusion break-aware leakage power optimization and detailed
placement in sub-10nm vlsi. In: Proc. Asia and South Pacific Design Automation
Conference. Tokyo: ACM, 2019. p. 550–556.

HEUER, T.; SCHLAG, S. Improving Coarsening Schemes for Hypergraph Partitioning
by Exploiting Community Structure. In: Proc. International Symposium on
Experimental Algorithms. Kalamata: Springer, 2017. p. 21:1–21:19.

HILL, D. Method and System for High Speed Detailed Placement of Cells Within an
Integrated Circuit Design. 2002. US Patent 6,370,673.

http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/manual.pdf


81

HSU, M.; CHANG, Y.; BALABANOV, V. TSV-Aware Analytical Placement for 3D
IC Designs. In: Proc. Design Automation Conference. New York: IEEE, 2011. p.
664–669.

HSU, M. et al. NTUplace4h: A Novel Routability-Driven Placement Algorithm for
Hierarchical Mixed-Size Circuit Designs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 33, n. 12, p. 1914–1927, 2014.

HUANG, D. J.-H.; KAHNG, A. B. When Clusters Meet Partitions: New Density-Based
Methods for circuit decomposition. In: Proc. European Design and Test Conference.
Paris: IEEE, 1995. p. 60–64.

IHLER, E.; WAGNER, D.; WAGNER, F. Modeling Hypergraphs by Graphs with the
Same Mincut Properties. Elsevier Information Processing Letters, v. 45, n. 4, 1993.

ITRS. International Technology Roadmap for Semiconductors. 2015. Available from
Internet: <http://www.itrs2.net/>. Accessed in: 6 May 2020.

JINDAL, T. et al. Detecting Tangled Logic Structures in VLSI Netlists. In: Proc. Design
Automation Conference. Anaheim: IEEE, 2010. p. 603–608.

JUNG, J. et al. OWARU: Free Space-Aware Timing-Driven Incremental Placement
With Critical Path Smoothing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 37, n. 9, p. 1825–1838, 2018.

KAHNG, A. B. INVITED: Reducing Time and Effort in IC Implementation: A Roadmap
of Challenges and Solutions. In: Proc. Design Automation Conference. San Francisco:
ACM, 2018. p. 1–6.

KAHNG, A. B.; LI, J.; WANG, L. Improved Flop Tray-based Design Implementation for
Power Reduction. In: Proc. International Conference on Computer-Aided Design.
Austin: IEEE/ACM, 2016. p. 20:1–20:8.

KAHNG, A. B. et al. VLSI Physical Design: From Graph Partitioning to Timing
Closure. New York: Springer, 2011.

KAHNG, A. B.; WANG, Q. An Analytic Placer for Mixed-Size Placement and
Timing-Driven Placement. In: Proc. International Conference on Computer Aided
Design. San Jose: IEEE, 2004. p. 565–572.

KAHNG, A. B.; WANG, Q. A Faster Implementation of APlace. In: Proc. International
Symposium on Physical Design. San Jose: ACM, 2006. p. 218–220.

KAMIńSKI, B. et al. Clustering Via Hypergraph Modularity. Public Library of Science
One, v. 14, n. 11, 2019.

KARYPIS, G. et al. Multilevel Hypergraph Partitioning: Application in VLSI Domain.
In: Proc. Design Automation Conference. Anaheim: ACM, 1997. p. 526–529.

KARYPIS, G.; KUMAR, V. Multilevel K-way Hypergraph Partitioning. In: Proc.
Design Automation Conference. New Orleans: ACM, 1999. p. 343–348.

KERNIGHAN, B. W.; LIN, S. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal, v. 49, n. 2, p. 291–307, 1970.

http://www.itrs2.net/


82

KIM, M.-C.; LEE, D.-J.; MARKOV, I. L. SimPL: An Algorithm for Placing VLSI
Circuits. Communications of the ACM, v. 56, n. 6, p. 105–113, 2013.

KIM, M.-C. et al. MAPLE: Multilevel Adaptive Placement for Mixed-Size Designs. In:
Proc. International Symposium on International Symposium on Physical Design.
Napa: ACM, 2012. p. 193–200.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by Simulated
Annealing. Science, v. 220, n. 4598, p. 671–680, 1983.

KLEINHANS, J. M. et al. GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Otimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 10, n. 3, p. 356–365, 1991.

KUMAR, T. et al. Hypergraph Clustering: A Modularity Maximization Approach.
arXiv, 2018.

KUMAR, T. et al. A New Measure of Modularity in Hypergraphs: Theoretical Insights
and Implications for Effective Clustering. In: Proc. International Conference on
Complex Networks and Their Applications. Lisbon: Springer, 2019. p. 286–297.

LENGAUER, T. Combinatorial Algorithms for Integrated Circuit Layout. New
York: Wiley & Sons, Inc., 1990.

LI, J.; BEHJAT, L.; KENNINGS, A. Net Cluster: A Net-Reduction-Based Clustering
Preprocessing Algorithm for Partitioning and Placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 26, n. 4, p. 669–679,
2007.

LIU, W. et al. NCTU-GR 2.0: Multithreaded Collision-Aware Global Routing With
Bounded-Length Maze Routing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 32, n. 5, p. 709–722, 2013.

LU, J. et al. ePlace: Electrostatics-Based Placement Using Fast Fourier Transform and
Nesterov’s Method. ACM Transactions on Design Automation of Electronic Systems,
v. 20, n. 2, p. 17:1–17:34, 2015.

MANTIK, S. et al. ISPD 2018 Initial Detailed Routing Contest and Benchmarks. In:
Proc. International Symposium on Physical Design. Monterey: ACM, 2018. p.
140–143.

MARKOV, I. L.; HU, J.; KIM, M. Progress and Challenges in VLSI Placement Research.
Proceedings of the IEEE, v. 103, n. 11, p. 1985–2003, 2015.

MONTEIRO, J.; JOHANN, M.; BEHJAT, L. An optimized cost flow algorithm to spread
cells in detailed placement. ACM Transactions on Design Automation of Electronic
Systems, v. 24, n. 3, 2019.

NAM, G.-J. ISPD 2006 Placement Contest: Benchmark Suite and Results. In: Proc.
International Symposium on Physical Design. San Jose: ACM, 2006. p. 167.

NAM, G.-J. et al. The ISPD2005 Placement Contest and Benchmark Suite. In: Proc.
International Symposium on Physical Design. San Francisco: ACM, 2005. p. 216–220.



83

NAYLOR, W. C.; DONELLY, R.; SHA, L. Non-linear optimization system and
method for wire length and delay optimization for an automatic electric circuit
placer. 2001. US Patent 6,301,693.

NEUBAUER, N.; OBERMAYER, K. Towards Community Detection in k-partite
k-uniform Hypergraphs. Proc. Workshop on Analyzing Networks and Learning with
Graphs, Whistler, p. 1–9, 2009.

NEUBAUER, N.; OBERMAYER, K. Community Detection in Tagging-Induced
Hypergraphs. Proc. Workshop on Information in Networks, New York, p. 24–25,
2010.

NEWMAN, M. E.; GIRVAN, M. Finding and Evaluating Community Structure in
Networks. APS Physical review E, v. 69, p. 1–15, 2004.

NEWMAN, M. E. J. Fast Algorithm for Detecting Community Structure in Networks.
APS Physical Review E, v. 69, n. 6, p. 66133–66137, 2004.

NEWMAN, M. E. J. Finding Community Structure in Networks Using the Eigenvectors
of Matrices. APS Physical Review E, v. 74, n. 3, p. 36104–36122, 2006.

OLOFSSON, A. Silicon Compilers - Version 2.0. 2018. Available from Internet:
<http://www.ispd.cc/slides/2018/k2.pdf>. Accessed in: 11 Dec. 2018.

OPENCORES. OpenCores: Open Source IP-Cores. 1999. Available from Internet:
<http://www.opencores.org>. Accessed in: 11 Dec. 2018.

OPENDP. Open Source Detailed Placement engine. 2020. Available from Internet:
<https://github.com/The-OpenROAD-Project/OpenDP/tree/0.1.0>. Accessed in: 12 Apr.
2020.

PONS, P.; LATAPY, M. Computing Communities in Large Networks Using Random
Walks. Journal of Graph Algorithms and Applications, v. 10, n. 2, p. 191–218, 2006.

PUGET, J. C. et al. Jezz: An effective legalization algorithm for minimum displacement.
In: Proc. Symposium on Integrated Circuits and Systems Design. Salvador: IEEE,
2015. p. 1–5.

RADICCHI, F. et al. Defining and Identifying Communities in Networks. Proc. National
Academy of Sciences of the United States, v. 101, n. 9, p. 2658–2663, 2004.

RAJARAMAN, R.; WONG, D. F. Optimum clustering for delay minimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 14,
n. 12, p. 1490–1495, 1995.

RAKAI, L. et al. A New Length-Based Algebraic Multigrid Clustering Algorithm.
Hindawi VLSI Design, p. 395260, 2012.

RENTCON. RentCon: Rent Parameter Evaluation Using Different Methods. 2008.
Available from Internet: <https://vlsicad.ucsd.edu/WLD/index.html>. Accessed in: 11
Dec. 2018.

http://www.ispd.cc/slides/2018/k2.pdf
http://www.opencores.org
https://github.com/The-OpenROAD-Project/OpenDP/tree/0.1.0
https://vlsicad.ucsd.edu/WLD/index.html


84

REPLACE. RePlAce: Advancing Solution Quality and Routability Validation
in Global Placement. 2018. Available from Internet: <https://github.com/
The-OpenROAD-Project/RePlAce/tree/1.1.1>. Accessed in: 11 Dec. 2018.

ROUSSEEUW, P. J. Silhouettes: a Graphical Aid to the Interpretation and Validation
of Cluster Analysis. Journal of Computational and Applied Mathematics, v. 20, p.
53–65, 1987.

ROY, J. A. et al. Min-Cut Floorplacement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 25, n. 7, p. 1313–1326, 2006.

RSYN. Rsyn: An Extensible Physical Synthesis Framework. 2016. Available from
Internet: <https://github.com/RsynTeam/rsyn-x>. Accessed in: 11 Dec. 2018.

SCIKIT LEARN. scikit-learn. 2020. Available from Internet: <https://scikit-learn.org/
stable/modules/clustering.html>. Accessed in: 12 Apr. 2020.

SHELAR, R. S. An Efficent Clustering Algorithm for Low Power Clock Tree Synthesis.
In: Proc. International Symposium on Physical Design. Austin: ACM, 2007. p.
181–188.

SHIOKAWA, H.; FUJIWARA, Y.; ONIZUKA, M. SCAN++: Efficient Algorithm for
Finding Clusters, Hubs and Outliers on Large-scale Graphs. Proc. VLDB Endowment,
v. 8, n. 11, p. 1178–1189, 2015.

SHIOKAWA, H.; ONIZUKA, M. Scalable Graph Clustering and Its Applications. In:
. Encyclopedia of Social Network Analysis and Mining. New York: Springer,

2017.

SPINDLER, P.; SCHLICHTMANN, U.; JOHANNES, F. M. Abacus: Fast legalization
of standard cell circuits with minimal movement. In: Proc. International Symposium
on Physical Design. Portland: ACM, 2008. p. 47–53.

SWARTZ, W.; SECHEN, C. Timing Driven Placement for Large Standard Cell Circuits.
In: Proc. Design Automation Conference. New York: IEEE/ACM, 1995. p. 211–215.

SWARTZ, W. P. Automatic Layout of Analog and Digital Mixed Macro/Standard
Cell Integrated Circuits. Thesis (PhD) — Yale University, New Haven, CT, USA, 1993.

SZUFEL. Clustering Via Hypergraph Modularity. 2020. Available from Internet:
<https://gist.github.com/pszufe/>. Accessed in: 1 May 2020.

TAGHAVI, T.; YANG, X.; CHOI, B.-K. Dragon2005: Large-Scale Mixed-Size
Placement tool. In: Proc. International Symposium on Physical Design. San
Francisco: ACM, 2005. p. 245–247.

TIMBERWOLF. TimberWolf Systems, Inc. 2014. Available from Internet:
<http://www.twolf.com/>. Accessed in: 7 May 2020.

TSAY, R.-S.; KUH, E. S. A Unified Approach to Partitioning and Placement. IEEE
Transactions on Circuits and Systems, v. 38, p. 521–533, 1991.

TSAY, R.-S.; KUH, E. S.; HSU, C.-P. PROUD: A Sea-of-Gates Placement Algorithm.
IEEE Design & Test of Computers, v. 5, n. 6, p. 44–56, 1988.

https://github.com/The-OpenROAD-Project/RePlAce/tree/1.1.1
https://github.com/The-OpenROAD-Project/RePlAce/tree/1.1.1
https://github.com/RsynTeam/rsyn-x
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://gist.github.com/pszufe/
http://www.twolf.com/


85

VISWANATHAN, N.; CHU, C. C.-N. FastPlace: Efficient Analytical Placement
Using Cell Shifting, Iterative Local Refinement and a Hybrid Net Model. In: Proc.
International Symposium on Physical Design. Phoenix: ACM, 2004. p. 26–33.

WAKITA, K.; TSURUMI, T. Finding Community Structure in Mega-scale Social
Networks. In: Proc. International Conference on World Wide Web. Banff: ACM,
2007. p. 1275–1276.

WIERZCHON, S.; KLOPOTEK, M. Modern Algorithms of Cluster Analysis. New
York: Springer, 2018.

WU, F.; HUBERMAN, B. A. Finding Communities in Linear Time: a Physics Approach.
The European Physical Journal B, v. 38, n. 2, p. 331–338, 2004.

XU, X. et al. SCAN: A Structural Clustering Algorithm for Networks. In: Proc.
International Conference on Knowledge Discovery and Data Mining. San Jose:
ACM, 2007. p. 824–833.

YAN, J. Z.; CHU, C.; MAK, W.-K. SafeChoice: A Novel Clustering Algorithm for
Wirelength-Driven Placement. In: Proc. International Symposium on Physical Design.
New York: ACM, 2010. p. 185—-192.

YAN, J. Z.; VISWANATHAN, N.; CHU, C. Handling Complexities in Modern
Large-Scale Mixed-Size Placement. In: Proc. Design Automation Conference. San
Francisco: ACM, 2009. p. 436—-441.

YANG, H.; WONG, D. F. Efficient Network Flow Based Min-cut Balanced Partitioning.
In: Proc. International Conference on Computer-Aided Design. San Jose: ACM,
1994. p. 50–55.

ZACHARY, W. W. An Information Flow Model for Conflict and Fission in Small
Groups. Journal of Anthropological Research, v. 33, n. 4, p. 452–473, 1977.



86

APPENDIX A — PUBLICATIONS, AWARDS AND INTERNSHIPS

A.1 Publications

Journals:

1. M. Danigno, M. Fogaça, E. Monteiro, J. Ferreira, A. Oliveira, R. Reis and P. Butzen,

“Algorithms for Access Point Selection at Pre-Routing Stage”, Journal of Inte-

grated Circuits and Systems, to appear late 2020.

2. M. Fogaça, A. B. Kahng, E. Monteiro, R. Reis, L. Wang and M. Woo, “On the

Superiority of Modularity-Based Clustering for Determining Placement-Relevant

Clusters”, Integration: The VLSI Journal 74 (2020), pp. 32–44.

Conferences:

1. V. Bandeira, M. Fogaça, E. M. Monteiro, I. Oliveira, M. Woo, R. Reis, “Fast and

Scalable I/O Pin Assignment with Divide-and-Conquer and Hungarian Matching”,

Proc. International New Circuits and Systems Conference, to appear June 2020.

2. M. Danigno, P. F. Butzen, J. Ferreira, A. Oliveira, E. Monteiro, M. Fogaça and

R. A. da L. Reis, “Proposal and Evaluation of Pin Access Algorithms for Detailed

Routing”, Proc. International Conference on Electronics Circuits and Systems,

2019, pp. 602-605.

3. T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng, M.

Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta, S. Reda, M. Saligane, S. S.

Sapatnekar, C. Sechen, M. Shalan, W. Swartz, L. Wang, Z. Wang, M. Woo and B.

Xu, “Toward an Open-Source Digital Flow: First Learnings from the OpenROAD

Project”, Proc. Design Automation Conference, 2019, pp. 76:1–76:4. (Invited

Paper)

4. T. Ajayi, D. Blaauw, T.-B. Chan, C.-K. Cheng, V. A. Chhabria, D. K. Choo, M.

Coltella, S. Dobre, R. Dreslinski, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng,

M. Kim, J. Li, Z. Liang, U. Mallappa, P. Penzes, G. Pradipta, S. Reda, A. Rovin-

ski, K. Samadi, S. S. Sapatnekar, L. Saul, C. Sechen, V. Srinivas, W. Swartz, D.

Sylvester, D. Urquhart, L. Wang, M. Woo and B. Xu, “OpenROAD: Toward a Self-

Driving, Open-Source Digital Layout Implementation Tool Chain”, Proc. Gov-

ernment Microcircuit Applications and Critical Technology Conference, 2019, pp.

1105–1110.



87

5. M. Fogaça, A. B. Kahng, R. Reis and L. Wang, “Finding Placement-Relevant Clus-

ters With Fast Modularity-Based Clustering”, Proc. Asia and South Pacific Design

Automation Conference, 2019, pp. 569–576.

6. G. Flach, M. Fogaça, J. Monteiro, M. O. Johann and R. A. da L. Reis, “Rsyn:

An Extensible Physical Synthesis Framework”, Proc. International Symposium on

Physical Design, 2017, pp. 33–40.

7. M. Fogaça, G. Flach, J. Monteiro, M. O. Johann, R. Reis, “Quadratic timing objec-

tives for incremental timing-driven placement optimization”, Proc. International

Conference on Electronics, Circuits and Systems, 2016, pp. 620–625.

8. M. Fogaça, G. Flach, J. Monteiro, M. O. Johann, R. Reis, “Drive Strength Aware

Cell Movement Techniques for Timing Driven Placement”, Proc. International

Symposium on Physical Design, 2016, pp. 73-80.

9. J. Monteiro, N. K. Darav, G. Flach, M. Fogaça, R. A. da L. Reis, A. A. Kennings,

M. O. Johann, L. Behjat, “Routing-Aware Incremental Timing-Driven Placement”,

Proc. Annual Symposium on VLSI, 2016, pp. 290–295.

10. G. Flach, J. Monteiro, M. Fogaça, J. C. Puget, P. F. Butzen, M. O. Johann, R. A. da

L. Reis, “An Incremental Timing-Driven flow using quadratic formulation for de-

tailed placement”, Proc. International Conference on Very Large Scale Integration,

2015, pp. 1–6.

A.2 Awards

• ICCAD 2015 CAD Contest on Incremental Timing-driven Placement – 1st place

award.

• ICCAD 2016 CAD Contest on Incremental Timing-driven Placement – 2nd place

award.

• ISPD 2018 Contest on Initial Detailed Routing – 4th place award.



88

A.3 Internships

• The author has joined the Synopsys, Inc. (Mountain View, CA) Design Compiler

team for a six months internship as a Technical Intern, from August 2017 to Febru-

ary 2018. In the course of his internship, the author has studied algorithms for

timing and area optimization during physically-aware synthesis.

• The author has spent six months as a Visiting PhD Student in Prof. Andrew Kahng’s

research group at the University of California, San Diego (La Jolla, CA). Prof.

Kahng’s lab has one of the most traditional and influential VLSI CAD research

groups. During his visit, the author has had the opportunity to get in contact with

cutting-edge research and to know some industry and academic experts.

• The author has had a six-month internship as a Software Engineer Intern at Cadence

Design Systems, Inc. (Austin, TX) from February 2019 to August 2019. During

his internship, the author has joined the Early Global Route team and has studied

and developed algorithms for global routing and track assignment.


	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Design Flow of Digital Circuits
	2.2 Hyperedge Decomposition
	2.3 Partitioning
	2.4 Clustering and Community Detection
	2.5 Half-Perimeter Wirelength

	3 Literature Review
	3.1 VLSI Netlist Partitioning
	3.1.1 Move-Based Approaches
	3.1.1.1 hMetis
	3.1.1.2 MLPart

	3.1.2 Geometric Representation-Based Approaches
	3.1.3 Combinatorial Formulations
	3.1.4 Clustering Approaches

	3.2 Community Detection
	3.2.1 Finding and Evaluating Community Structure in Networks NewmanG04
	3.2.2 Fast Algorithm for Detecting Community Structure in Networks Newman04b
	3.2.3 Finding Community Structure in Very Large Networks ClausetNM04
	3.2.4 Finding Community Structure in Mega-Scale Social Networks WakitaT07
	3.2.5 Fast Unfolding of Communities in Large Networks BlondelGLL08
	3.2.6 SCAN: A Structural Clustering Algorithm for Network XuYFS07
	3.2.7 A Novel Similarity-Based Modularity Function for Graph Partitioning FengXYS07
	3.2.8 Modularity-Driven Clustering for Hypergraphs

	3.3 Placement
	3.3.1 Global Placement Tools
	3.3.1.1 ePlace
	3.3.1.2 RePlAce



	4 Finding Placement-Relevant Clusters With Fast Modularity-based Clustering
	4.1 Problem Definition
	4.2 Methodology
	4.2.1 Clustering Visualization
	4.2.2 Clustering Solution Evaluation
	4.2.3 Graph Model of the Netlist

	4.3 Experimental Setup and Results
	4.3.1 Evaluation of Different Graph Models
	4.3.2 Comparison With Traditional VLSI Clustering Methods
	4.3.3 Robustness With Respect  to Design Floorplan
	4.3.4 Validation Across Technology Nodes

	4.4 Conclusion
	4.4.1 Directions for Future Works


	5 Fast Placement of Instances With Blob And Seeded Placement
	5.1 Prototype Blob and Seeded Placement Flow
	5.2 Experimental Setup and Results
	5.3 Conclusions
	5.3.1 Directions for Future Works


	6 Final Conclusions
	References
	Appendix A — Publications, awards and internships
	A.1 Publications
	A.2 Awards
	A.3 Internships


