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“The intentions of a tool are what it does.

A hammer intends to strike,

a vise intends to hold fast, a lever intends to lift.

They are what it is made for.

But sometimes a tool may have other uses that you don’t know.

Sometimes in doing what you intend,

you also do what the knife intends, without knowing.”’

— PHILIP PULLMAN, HIS DARK MATERIALS
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ABSTRACT

Microarrays are one of the major techniques employed in the study of genes expression,

but the identification of expression patterns from microarray datasets is a significant chal-

lenge to overcome. In this work, besides reviewing the application of machine learning in

the tasks of microarray classification and gene selection, a new approach using Neuroevo-

lution, a machine learning field that combines neural networks and evolutionary compu-

tation, is proposed for simultaneously classifying microarray data and autonomously se-

lecting the subset of more relevant genes. The algorithm FS-NEAT was adapted by the

addition of three new structural operators designed for better exploring this high dimen-

sional space. A rigorous filtering and preprocessing protocol was also employed to select

quality microarray datasets for the experiments, selecting 13 datasets from three differ-

ent cancer types (breast, colorectal, and leukemia). The results from different experiments

show that the proposed method was able to successfully classify microarray samples when

compared with other alternatives in the literature, including regular FS-NEAT and SVM,

while also finding subsets of genes that can be generalized for other algorithms and carry

relevant biological information. This approach detected 177 genes capable of differing

classes, 82 of them already being associated to their respective cancer types in the liter-

ature and 44 being associated to other types of cancer, becoming potential targets to be

explored as cancer biomarkers.

Keywords: Machine learning, neuroevolution, feature selection, classification, super-

vised learning, NEAT, microarray, gene expression, gene selection.



N3O: Uma expansão de NEAT para melhorar a classificação e seleção de

características aplicada a dados de microarranjo

RESUMO

Microarranjos são uma das principais técnicas empregadas no estudo de expressão gênica,

mas a identificação de padrões de expressão a partir de conjuntos de dados de microar-

ranjo é um desafio significativo a se superar. Neste trabalho, além de revisar a aplicação de

aprendizado de máquina nas tarefas de classificação de microarranjos e seleção de genes,

uma nova técnica utilizando Neuroevolução, um campo do aprendizado de máquina que

combina redes neurais e computação evolutiva, é proposta para simultaneamente classi-

ficar dados de microarranjo e automaticamente selecionar o subconjunto de genes mais

relevantes. O algoritmo FS-NEAT foi adaptado através da adição de três novos opera-

dores estruturais projetados para melhor explorar este espaço de busca de alta dimensi-

onalidade. Um rigoroso protocolo de filtragem e preprocessamento foi empregado para

selecionar conjuntos de dados de microarranjo de qualidade para os experimentos, sele-

cionando 13 conjuntos de dados de três tipos diferentes de câncer (mama, colorretal e

leucemia). Os resultados de diferentes experimentos mostram que o método proposto foi

capaz de classificar amostras de microarranjos satisfatoriamente quando comparado com

outras alternativas da literatura, incluindo FS-NEAT padrão e SVM, enquanto também

encontrando subconjuntos de genes que podem ser generalizados para outros algoritmos

e carregam informação biológica relevante. Esta abordagem detectou 177 genes capa-

zes de diferenciar classes, dos quais 82 já foram associados aos seus respectivos tipos de

câncer na literatura e 44 foram associados a outros tipos de câncer, tornando-se alvos em

potencial a serem explorados como biomarcadores de câncer.

Palavras-chave: aprendizado de máquina, neuroevolução, seleção de características,

classificação, aprendizado supervisionado, NEAT, microarranjo, expressão gênica, sele-

ção de genes.
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1 INTRODUCTION

Microarray technology allows the study of several biological questions: it can

aid in the understanding of the basic functionalities of an organism, or the behavior of

complex diseases. However, despite the large number of available tools for microarray

gene expression analysis, the identification of gene expression patterns is still a significant

challenge (WALSH et al., 2015).

Machine learning algorithms have been employed in microarray data analysis in

order to help to make sense of the large volume of data, often with the two objectives of

sample classification and gene selection. The first is a supervised learning task: given

a gene expression pattern, it aims to identify its label correctly. For instance, it may be

used for creating a classifier able to tell a normal tissue apart from a tumoral tissue. This

approach has many applications in clinical diagnostics and has been successfully tested

with different algorithms in the past years (LEUNG; CAVALIERI, 2003).

The other task, gene selection, is a subdivision of the more general problem of

feature selection (MIAO; NIU, 2016), a form of dimensionality reduction. Gene selection

can improve the classification result and is also useful in the biological context by aiding

in biomarkers identification as it finds subsets of genes that have a better discriminatory

capacity. This work describes the design and application of a new extension of the Neu-

roevolution algorithm known as NEAT, as a tool to perform classification and identify

gene expression patterns in microarray data autonomously.

1.1 Thesis overview

To facilitate the understanding of the work being presented, the next two chapters

of this thesis are introductory reviews. Chapter 2 offers a background in the statistical

and computational methods referred in this work, with the emphasis in Neuroevolution.

Chapter 3 introduces microarray experiments and discusses in more detail the tasks of

microarray classification and gene selection.

The next segment of the thesis is focused on the proposed method itself. Chap-

ter 4 explains the process of obtaining and dealing with microarray data, and Chapter 5

describes the design of the computational method being proposed. In Chapter 6 the ex-

periments and results are explained and discussed, and Chapter 7 wraps up the work.
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2 STATISTICAL AND COMPUTATIONAL METHODS

Before explaining the problems being tackled by this work in Chapter 3, an under-

standing of the available computational tools needed for the different tasks is necessary.

This chapter is a brief introduction to one statistical test and several machine learning and

optimization algorithms that will be later employed. Special focus is given to the topic

of Neuroevolution, the main computational strategy behind the new method described in

Chapter 5.

2.1 Kruskal–Wallis one-way analysis of variance

The Kruskal-Wallis one-way analysis of variance (KRUSKAL; WALLIS, 1952),

also referred as Kruskal–Wallis H test, is a nonparametric statistical test for discovering if

samples originate from the same distribution. It compares two or more groups of equal or

different sample sizes. Since it is nonparametric there is no need to assume the normal dis-

tribution of the data, unlike the one-way analysis of variance (ANOVA) (ARMSTRONG;

SLADE; EPERJESI, 2000), its parametric equivalent. The null hypothesis is that there is

no difference between the distribution of the groups being tested.

The test is computed by ranking all samples from all groups together, and then

calculating the H value using the Equations 2.1, 2.2, and 2.3.

H = (N − 1)

∑g
i=1 ni(ri − r)2∑g

i=1

∑ni

j=1(rij − r)2
(2.1)

ri =

∑ni

j=1 rij

ni

(2.2)

r =
1

2
(N + 1) (2.3)

In whichN is the total number of samples in all groups, g is the number of groups,

ni is the number of samples in the group i, rij is the rank of sample j from group i con-

sidering the rank among all samples, ri is the average rank of samples in group i, and r is

the average of all rij . The p-value is approximated using chi-squared by Pr(χ2
g−1 ≥ H).
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2.2 Support vector machine

Support vector machine (SVM) (CORTES; VAPNIK, 1995) is a classical super-

vised learning method for classification that works by finding the hyperplane (being just

a line in 2D or a plane in 3D) capable of splitting data points into different classes. This

separating hyperplane acts as a decision boundary, and the "learning" consists in finding

a separating hyperplane that maximizes the distance between itself and the closest data

points from each class, called the support vectors. In the cases in which the data is not lin-

early separable, kernels are used to transform the data by mapping it to higher dimensions

where a separating hyperplane can be found (HARRINGTON, 2012).

SVM usually performs well on new datasets without the need for modifications.

It is also not computationally expensive, has low generalization errors and, in the case

of the low dimensionality of the data, is interpretative. It is, however, sensitive to kernel

choice and parameter tuning, and only capable of performing binary classification without

algorithmic extensions (HARRINGTON, 2012).

2.3 Genetic algorithms

Stochastic methods comprise the class of algorithms that make use of randomness

to find optimal or near-optimal solutions for hard problems (LUKE, 2009). Metaheuris-

tics are a general subdivision of such algorithms, applied to a large number of different

types of problems. Among them, populational methods keep sets of possible candidate

solutions for a given problem, and these solutions are gradually changed until it converges

to a local solution (LUKE, 2009).

Many populational methods are inspired by Biology, among them evolutionary

algorithms, that incorporate concepts from genetics and evolution. Since the decade of

1970, Genetic Algorithms (GA) are some of the most important algorithms of this kind

(LUKE, 2009). A GA operates iteratively, setting "fitness" values for the solutions (called

"individuals"), as a way to define how fit they are, and then selects and changes them,

creating a new population (LUKE, 2009).

The individuals are represented as a "genome", in which each gene correspond to

a particular attribute of the solution. There are several genome representations, two of

the most common being binary or real values vectors (KUTHAN; LANSKY, 2007). A

popular method for selection in GA is the "tournament selection", that selects individuals
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in the population by promoting "tournaments" between k randomly picked individuals

and selecting the winner of the tournaments (the individual with the best fitness among

the participants) (MILLER; GOLDBERG et al., 1995). Experimental tests showed that it

can outperform other methods of selection (ZHANG; KIM, 2000; SHARMA; WADHWA,

2014).

The principal change operators in GA are mutation and crossover. There are sev-

eral ways to mutate an individual, but it is basically a random perturbation in its genome.

The crossover combines two individuals, called "parents", exchanging the genes in their

genomes and creating a new individual with characteristics from both, called "offspring",

that possibly has a better fitting than the parents, being a better solution for the task at

hand (GOLDBERG, 1989). The core idea is that the fittest individuals in each iteration,

called a "generation", are selected for crossover, generating better solutions, while the bad

solutions are removed from the population, and the random mutation operator improves

the exploration of the search space (LUKE, 2009). Another common operator is "elitism",

that simply copies to the next generation a fraction of the best individuals in the current

generation, in order to preserve the best historical solutions found in the course of the

algorithm (BALUJA; CARUANA, 1995).

2.4 Artificial neural networks

Artificial neural networks (ANNs) are a group of machine learning methods in-

spired by the flow of information in the biological brain, used for estimating or approxi-

mating any function (HORNIK, 1991), being largely used in classification and regression

tasks. They are formed by neurons, the processing unity, linked by connections usually

forming a layering structure. A neuron is composed of three basic elements: (i) a set

of input connections, defined by a weight that multiplies the input signal; (ii) an aggre-

gation function, that combines all input signals multiplied by the connections weights;

(iii) an activation function that transforms the output of the neuron and usually introduces

non-linearity.

Equation 2.4 represents a neuron k, with x0, x1, ..., xm being the input signals plus

a bias bk, that can increase or decrease the threshold for activation, wk0, wk1, ..., wkm are

the weights of the neuron connections, Φ is the activation function, and yk is the output of

the neuron (HAYKIN, 1998). Fig. 2.1 illustrates this model of a neuron. A neural network

can be seen as an oriented graph through which flows a signal from the input nodes to the
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Figure 2.1: Model of an artificial neuron.
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Source: Adapted from Haykin (1998)

computing nodes.

yk = Φ

(
m∑

j=0

wkjxj + bk

)
(2.4)

Neural networks with multiple layers are often called a multilayer perceptron

(MLP), and in case they do not have any loop on their structures they are also referred as

feed-forward networks. These MLP consist of an input layer that receives the real data

values, a succession of one or more layers of neurons called the hidden layers, and an

output layer. Usually, the outputs of neurons in one layer are fully connected to the inputs

of the neurons in the next layer. This architecture is illustrated in Fig. 2.2, representing a

generic MLP with three input nodes, four hidden nodes, and two output nodes. MLP are

commonly used in supervised learning, in which the algorithm "learns" by facing labeled

data and performing small changes in its internal parameters (weights and biases) in or-

der to produce outputs closer to the real label. One of the most common algorithms for

training a neural network is the error back-propagation (LINNAINMAA, 1976; HAYKIN,

1998).

This algorithm can be divided into two steps: feedforward and backpropagation.

In the first one, the input vector is passed by the input layer to the next layer, and the
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Figure 2.2: Model of a multilayer perceptron.

INPUT
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values are propagated forward until the last layer is reached. In the second step, the error

(the difference between the correct answer and the network output) is sent back through

the network, that adjusts its weights and biases to approximate the output and the correct

answer (HAYKIN, 1998; LINNAINMAA, 1976). The most used algorithms for perform-

ing this parameter optimization are gradient descent variations (KIEFER; WOLFOWITZ,

1952).

One of the biggest challenges in designing a MLP is to define its topology, i.e.,

the number of neurons, layers, and connections. The creation of the network structure is

one of the most important factors for its success, and generally, it needs to be planed with

a specific task and data previously defined. Carelessly creating a network structure can

cause inefficient and inadequate results (CURTEANU; CARTWRIGHT, 2011). Large

neural networks are also computationally expensive to train and needs large amounts of

data, besides being prone to overfitting.

Overfitting happens when the model performs well on the training data, but fails

to generalize and has poor performance when facing new data (test data). This means

that the ANN, instead of learning about the true and generic characteristics of the task,

simply "memorized" the patterns it was exposed to in the training. One way to avoid this

problem is to expand the dataset, for example performing new experiments or observa-

tions, but this can be expensive and not always possible depending on the kind of data. A

variation of this is the addition of artificially generated data, that are often real samples

slightly modified. This approach, however, is not advised when dealing with experimen-

tal data, since it would add arbitrary changes to values that should represent real-world

phenomena.

Another strategy commonly used with ANNs is the incorporation of regularization
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in the training of the network. L2 regularization, also known as weight decay, is one of

the most popular techniques to mitigate overfitting (NG, 2004). It makes the optimization

prefer networks with smaller weights, what makes the model simpler, usually capable of

better generalization, by penalizing networks with large weights and biases with the term

in Equation 2.5.

Reg =
λ

2n

c∑

k=1

w2
k (2.5)

In Equation 2.5, n is the number of samples in the dataset, c is the number of

connections, wk is the weight of connection k, and λ is the regularization parameter, that

must be a positive value set by the programmer. This value is added to the cost function

being minimized.

2.5 Neuroevolution

Neuroevolution is the process of creating and training neural networks with Evo-

lutionary Computation (EC). EC makes use of concepts borrowed from biology, such as

inheritance, selection, and random variation, adapting them to solve computational prob-

lems. EC is easily parallelized, does not require a large amount of data, and can create so-

lutions based on any fitness criteria (SIPPER; OLSON; MOORE, 2017). Neuroevolution

uses EC to find the best neural networks, and is more efficient than other methods for prob-

lems with continuous state space and high dimensionality, besides having better memory

representation (GOMEZ; MIIKKULAINEN, 1999; GOMEZ; MIIKKULAINEN, 2002).

Many neuro evolutive methods only operate over neural networks with fixed topol-

ogy, usually with few hidden layers and a full-connected architecture, and optimizes the

weights and biases. The topology of a network, however, also affects its functionality

and could be part of the evolutive process (ANGELINE; SAUNDERS; POLLACK, 1993;

BRANKE, 1995; GRUAU F.; PYEATT, 1996; YAO, 1999).

2.5.1 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) is an algorithm for building

and training neural networks using GA to evolve the topology and weights. This method

is adequate for problems without a known satisfactory network structure (STANLEY;
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MIIKKULAINEN, 2002). The networks are encoded as a "genome", that keeps the con-

nection information (Fig 2.3a).

NEAT starts with a random initial population, in which each individual is a neural

network, and all individuals share the same minimal topology, i.e., input nodes, output

nodes, and connections between them with random weights. This initial condition is im-

portant to not introduce useless complexity in the solutions since only the new structures

that benefit the networks fitness are kept. If the algorithm was initialized with random

structures, neurons and connections not needed could be present since the beginning, and

it would be impossible to remove them, what could cause a negative impact on the evo-

lution. This approach also produces smaller and simpler results (STANLEY; MIIKKU-

LAINEN, 2002).

From this initial population of neural networks, new ones are iteratively created

through the traditional GA operators, especially mutation, that can change the weight of

a connection or the bias of a neuron, add new hidden neurons, or add a new connection

between two neurons (Fig. 2.3b), and crossover, that combines two individuals (Fig 2.4).

Mutation in NEAT never removes a neuron or connection because it could cause incon-

sistencies during the evolution. Instead, a marker can be defined to ignore a connection

between neurons (STANLEY; MIIKKULAINEN, 2002).

The biggest challenge in this strategy is how to combine two different neural net-

works during crossover without producing a defecting network, since the topologies of

the parents could be not directly compatible with neurons and connections exchange. Be-

cause of this, NEAT uses historical markers, a numerical value given to each new structure

that appears during the evolutive process and that is passed along without changes in the

crossover. They allow the method to correctly align the same parts of the topology of two

distinct networks, creating a new functional neural network that does not break its parents

structural organization. Historical markers are set at the end of each generation, so if two

identical new structures arise in different individuals theirs markers have the same value

(STANLEY; MIIKKULAINEN, 2002).

The last problem of implementing NEAT is that adding new structures to existing

neural networks, without any adjustment, is usually prejudicial to them. In this case, neu-

ral networks would receive new neurons and connections that would produce unfavorable

results immediately, causing them to be discarded from the population, even if their nov-

elties are beneficial in the long term. Due to this, NEAT uses speciation, also known as

niche, a technique that clusters the individuals by their structural similarity using the his-
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Figure 2.3: (a) Representation of the genome of one individual (neural network) in a
population in NEAT. The numbers at the top in bold are the historical markers used for
identifying the structural novelties. The second information is the connection between
two nodes. "DIS" indicates if the particular gene is enabled or disabled (in this case it is
ignored). The values of connections weights and neurons biases are omitted for clarity.
Gray rectangles represent input nodes, white circles represent hidden nodes, blue circles
represent output nodes, arrows represent a connection between nodes, and dotted arrows
represent disabled connections. (b) Illustration of the two possible structural mutations in
NEAT. "Add connection" adds a connection with random weight between two randomly
selected nodes in the network, in this case, nodes 3 and 5, and generates a new historical
marker. "Add node" creates a new node with random bias in the place of an existing
connection, that is disabled, and creates two new connections, one from the disabled
connection origin node and the new node, that receives the weight value of the disabled
connection, and one from the new node to the disabled connection destination node, that
receives a random weight value. In the example, the new node 6 is added between nodes
3 and 4, that were already connected. The changes are coloured in yellow.

Source: Adapted from Stanley and Miikkulainen (2002)
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torical markers, and promotes competition only inside the same niche. The compatibility

between individuals is computed using the Equation 2.6 (STANLEY; MIIKKULAINEN,

2002) in which c1, c2, and c3 are coefficients set by the user, N is the number of structures

in the largest network, E is the number of excess structures, D is the number of disjoint

structures, and W̄ is the average weight differences of matching structures. This way,

the networks have time to adjust, not being simply discarded as soon as they are created

(STANLEY; MIIKKULAINEN, 2002).

d = c1
E

N
+ c2

D

N
+ c3W̄ (2.6)
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Figure 2.4: Example of NEAT crossover between two individuals, in which the red parent
has better fitness than the blue parent. Their genes are aligned using the historical marker
(numbers in bold) in order to avoid structural errors. The offspring receives genes with
equal probability from any of the parents if they are present in both, or from the parent
with better fitness if they are disjoint or excessive.
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Source: Adapted from Stanley and Miikkulainen (2002)

NEAT is a powerful tool for the artificial evolution of neural networks, and exper-

iments have shown that it is more efficient than other neuro evolutive methods. Evolving

the topology with the connection weights is an advantage, optimizing and complexifying

the solutions simultaneously (STANLEY; MIIKKULAINEN, 2002).

2.5.2 Feature Selective NEAT

NEAT has been used for the task of feature selection by several studies (SO-

HANGIR; RAHIMI; GUPTA, 2014; SOHANGIR; RAHIMI; GUPTA, 2013; TAN et al.,

2009), one of the most relevant being Feature Selective NEAT (FS-NEAT) (WHITESON

et al., 2005), that is both a simple and efficient alternative for FS (PAPAVASILEIOU;

JANSEN, 2017b; PAPAVASILEIOU; JANSEN, 2016; ETHEMBABAOGLU; WHITE-

SON et al., 2008). In FS-NEAT the minimalist start of NEAT is changed, and instead of

a fully connected topology, only one random input is connected to one random output in

each individual in the first generation. This difference is illustrated in Fig. 2.5. A new



24

mutation operator is also included, that adds inputs to a network by connecting it to an

output (Fig. 2.6).

Figure 2.5: Examples of initial topology for (a) NEAT and (b) FS-NEAT. The first pop-
ulation of networks in regular NEAT has input and output layers fully connected, while
FS-NEAT has networks with randomly selected connections between one input and one
output. Dotted inputs are currently not selected by the network.

Source: Adapted from Whiteson et al. (2005)
(a) NEAT

(b) FS-NEAT

Figure 2.6: Example of the extra FS-NEAT structural mutation, that adds a new input in
a network by creating a connection with random weight value between the input being
added and one output.

ADD INPUT

This kind of network will lack the needed structure for a favorable result, but,

guided by the evolutive algorithm, it will grow in complexity towards networks capable

of solving the task without all the inputs. At the end, the inputs that are not directly or

indirectly connected to an output node are discarded, since their information is not being

used. This way, FS-NEAT automatically does FS without meta-learning, while creating

smaller networks.
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Further studies concluded that FS-NEAT outperforms other neuro evolutive meth-

ods for FS that start with all inputs selected if the majority of the inputs are irrelevant or

redundant (PAPAVASILEIOU; JANSEN, 2017b; PAPAVASILEIOU; JANSEN, 2016). It

was also observed that the use of the modified hyperbolic tangent (tanh) (Equation 2.7)

as activation of the hidden nodes and the modified Gaussian function (Equation 2.8) as

activation of the output nodes makes the algorithm converge faster, improves the FS and

accuracy, and generates smaller networks in comparison with other combinations of acti-

vation functions (PAPAVASILEIOU; JANSEN, 2017a). The behavior of both activation

functions is illustrated in Fig. 2.7.

Φ(x) = tanh(4.9× 0.5x) (2.7)

Φ(x) = exp(−5(x− µ)2

2σ2
), µ = 0, σ = 1 (2.8)

Figure 2.7: Activation functions for FS-NEAT
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This may be related to a tradeoff between the global approximation in the hidden

layers and refined local search in the output layer (PAPAVASILEIOU; JANSEN, 2017a).
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This could be due to the “smooth” transitions produced by the Gaussian function, and its

catchment region that, even for vectors far from the center, will always be larger than zero

(KRUSE et al., 2016; PAPAVASILEIOU; JANSEN, 2017a).

2.6 Machine learning for biological data

Although this chapter is focused on the computational aspects of the cited algo-

rithms, it is relevant for this work to understand how the field of machine learning is being

applied in biological research. In a previous work, that can be read in the Appendix A, we

present a full review on the use of machine learning methods in Evolutionary developmen-

tal biology (Evo-Devo) studies, including many of the aforementioned techniques. While

out of the scope of this specific work, genomics and microarray data are also extensively

discussed in this review, corroborating with key ideas of Chapter 3.

2.7 Chapter conclusion

This chapter introduces several computational and statistical methods in a broad

and general way. The Kruskal-Wallis one-way analysis of variance is a nonparametric

test that allows the determination if two or more groups of samples came from the same

distribution. SVM is a simple but effective algorithm for data classification, and ANNs

can be created and used in the task of FS by incorporating ideas from GA. All this infor-

mation will be essential for chapters 5 and 6, in which it will be used for the construction

of the proposed method. Moreover, statistical tests, such as the Kruskal-Wallis one-way

analysis of variance, or classifiers, such as SVM and ANN, can be important tools when

dealing with gene expression data from microarrays experiments, as will be seen in the

next chapter.
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3 MICROARRAY DATA ANALYSIS

As the last chapter, the aim of this one is to briefly introduce key topics that will

later be useful for the comprehension of the method being proposed and the found results.

This chapter reviews some biological concepts about gene expression, and then focus in

the microarray technology and how this kind of data can be analyzed, especially how it

can be used for the creation of classifiers or the identification of informative genes.

3.1 Gene expression

The DNA contains the codification for all RNA and protein molecules needed

for the construction of an organism’s cells, and the complete DNA sequence (ranging

from millions to billions of nucleotides, depending on the organism) is present in all

cells. Even so, the structure and function of different cell types of the same multicellular

organism can be remarkably different, while the genome remains the same (ALBERTS,

2015; GILBERT, 2000).

These differences are due to different sets of genes (specific segments of DNA)

in each cell type being expressed, i.e., the information from genes being transcribed in

RNA (and often producing proteins as the final result). For the majority of genes, the

most important control of expression is the beginning of RNA transcription, but this can

be changed by the environment, for instance, due to signals from other cells (ALBERTS,

2015).

Many processes are common to all cells in the same organism, resulting in the

same gene products, such as DNA repair enzymes and structural proteins of chromo-

somes, so the set of expressed genes is the same in all cells. On the other hand, some

RNAs and proteins are found only in specialized cells and not anywhere else, meaning

the correspondent genes are only being expressed in that specific cell type. A classic ex-

ample is hemoglobin, exclusively expressed in red blood cells. A typical human cell has

around 30,000 genes, of which 30% to 60% are expressed simultaneously at some level.

Comparing patterns of RNA expression in different human cell types reveals a variation

in expression from one type to another in nearly all genes, even though this variation is

often small (TAO et al., 2017; ALBERTS, 2015).

Knowing a gene’s expression can be useful to predict its function by identifying

which other genes share the same expression pattern. If a set of genes are expressed
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with high correlation under different situations, they probably are coordinately regulated

and act together in the cell, for example encoding proteins that are involved in the same

coordinated activity (ALBERTS, 2015). It can also be used to study the differences in

expression between cells or tissues of the same type under two different conditions, for

instance a disease state, providing a method for understanding its mechanisms (TAO et

al., 2017).

A possible way for discovering which genes among the thousands in the cell

genome are being differentially expressed between different cell types, environments, or

conditions, is measuring the amount of messenger RNA (mRNA) being produced. DNA

microarray, described in the next section, was the first technology to allow the analysis of

thousands of different RNAs at the same time (ALBERTS, 2015).

3.2 Microarray experiments

The field of functional genomics requires the analysis of large amounts of informa-

tion from several biological experiments, such as evaluating the expression levels of thou-

sands of different genes under some specific condition. This large-scale gene expression

analysis was made possible to a great extent by the advent of the microarray technology

(WHITWORTH, 2010). Microarrays are available from different platforms, providing in-

formation on mRNA, micro RNA (miRNA), long non-coding RNA (lncRNA), and exon

arrays (TAO et al., 2017; WANG et al., 2014; GORRETA; CARBONE; BARZAGHI,

2012; DENIZ; ERMAN, 2017). This allowed the study of several biological questions,

from the basic functionality of an organism to the understanding of complex diseases,

including cancer (TAO et al., 2017). The use of microarrays to analyze mRNA, however,

continues to be the most common of those, and the identification of expression patterns is

still a challenge (WALSH et al., 2015). RNAseq is another technology available for those

studies, and is gradually replacing microarray as the major technique applied to gene ex-

pression analysis. While this work focuses on microarray, the use of data coming from

RNAseq is also viable.

A microarray experiment consists of a glass slide with DNA molecules on it. The

molecules are fixed in a specific order and locations, that are called spots and contain mil-

lions of copies of identical DNA molecules, per spot, that correspond to just one specific

gene, named probes (MURPHY, 2002; WHITWORTH, 2010). Usually these molecules

are mRNA molecules extracted from the cells and transcribed into cDNA labeled with
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fluorescent dyes. This way, cDNA sequences in the studied sample will hybridize to

the specific spots in the glass slide that have their complementary sequence, so that the

amount of dye in each spot will be proportional to the amount of that particular cDNA

sequence in sample. Finally, the spots are excited by a laser, allowing the detection of

the wavelengths of the dyes. The amount of the emitted fluorescence corresponds to

the amount of nucleic acid expressed in the sample (MURPHY, 2002; WHITWORTH,

2010). This is the procedure in a single-channel experiment, that only uses one dye color,

but there is also the possibility of a dual-channel experiment, which uses two dyes, one

for each sample group, allowing a more direct comparison between them. This process is

showed in Fig. 3.1.

Figure 3.1: Diagram of a single-channel microarray experiment. The cell samples
can come from patient tissues, animal model tissues, etc. The RNA is extracted from the
samples, labeled with the fluorescent dyes, and hybridized to a microarray. The image is
then scanned from the microarray.
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Source: Adapted from BioNinja1 and Laboratory-Equipment.com2

1 <http://ib.bioninja.com.au/standard-level/topic-3-genetics/35-genetic-modification-and/
cdna-and-microarrays.html> 2 <https://www.laboratory-equipment.com/pba/

spotlight-2-turbo-microarray-fluorescence-scanner-arrayit.php>

Since the result of the experiment is a color image of the spots in the glass slide,

and the color intensity of each spot is the gene expression information, the next step is

image processing and analysis to retrieve the expressions values. The image processing

detects the spots and filters noisy signals, then determines the spot area and discovers

the signal intensity by comparing it against the background intensity (WHITWORTH,

http://ib.bioninja.com.au/standard-level/topic-3-genetics/35-genetic-modification-and/cdna-and-microarrays.html
http://ib.bioninja.com.au/standard-level/topic-3-genetics/35-genetic-modification-and/cdna-and-microarrays.html
https://www.laboratory-equipment.com/pba/spotlight-2-turbo-microarray-fluorescence-scanner-arrayit.php
https://www.laboratory-equipment.com/pba/spotlight-2-turbo-microarray-fluorescence-scanner-arrayit.php
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2010). The raw data is not the best option for biological knowledge discovery, mostly due

to the presence of noise and the variability between the different technologies involved

(RESSOM et al., 2009). Due to that, many methods of background correction, data trans-

formation, data normalization, as well as statistical validation are available and should

be applied (WHITWORTH, 2010; RESSOM et al., 2009). The final result can be rep-

resented as a 2D matrix, in which rows represent the probe names (genes) and columns

represent the samples of the experiment, usually from distinct conditions, in the case of

single-channel, or the whole experiment, in the case of dual-channel. Each element in the

matrix is a continuous numerical value indicating the expression of that particular gene for

that particular sample (RESSOM et al., 2009). A gene expression matrix from a regular

microarray experiment will commonly have thousands of rows and dozens or hundreds of

columns (RESSOM et al., 2009).

Figure 3.2: Flowchart of a microarray experiment. Expansion of the pipeline showed
in Fig. 3.1. The image scanned from the microarray is analysed, resulting in the raw signal
data that is filtered and normalized. Finally, the data can be further investigated in order
to create classifiers, discover informative genes, find new knowledge, perform pathway
analysis, among other analysis (LEUNG; CAVALIERI, 2003). The steps approached in
this work are highlighted in blue.
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Source: Adapted from Leung and Cavalieri (2003)

Once the gene expression data from the microarray experiment is available and

analyzed, the result is a set of differentially expressed genes (DEG) that can be further in-

vestigated. Two of the most common applications, classification and gene selection, will

be described in the next sections. The application of unsupervised learning (clustering al-
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gorithms) (Fig. 3.2 - Exploratory data analysis) is also widespread, but not without facing

some criticism. Allison et al. (2006) point out that there are problems with reproducibility,

validation, and biological relevance of these experiments.

3.3 Microarray classification

One of the most relevant possibilities of microarray analysis is class prediction

(Fig. 3.2 - Classification). This supervised learning task refers to the use of a classifier

capable of labeling new samples based on their genes expression (LEUNG; CAVALIERI,

2003). First, a set of samples whose original group (for example control and disease) is

known, called the "training set", is used to train a model in assigning to each of those

samples its correct group. Once the training is finished, the model is evaluated with new

samples (the "testing set") to check its predictive abilities (ALLISON et al., 2006).

Microarray classifiers are promising in clinical diagnosis (LEUNG; CAVALIERI,

2003; QUACKENBUSH, 2001), with successful results (KHAN et al., 2001; SHIPP et

al., 2002). The main objective would be the creation of general classifiers capable of being

a trustworthy routine diagnostic tool for cases that are difficult to differentiate with other

available techniques (LEUNG; CAVALIERI, 2003). Several studies have already tested

the efficacy of different machine learning algorithms for this task, such as ANNs, SVM,

k-Nearest Neighbors, and Random Forest (PETERSON et al., 2005; DÍAZ-URIARTE;

ANDRES, 2006; STATNIKOV; WANG; ALIFERIS, 2008; PIROOZNIA et al., 2008).

There is no single microarray prediction method considered optimal, nor consen-

sus in which one is superior (ALLISON et al., 2006). Comparison studies, however, point

to SVM and random forest as being more efficient methods (LEE et al., 2005; PIROOZ-

NIA et al., 2008), with SVM having the upper hand (STATNIKOV; WANG; ALIFERIS,

2008). SVM also seems to be the supervised learning method of choice in works of gene

selection (ANG et al., 2016).

The field of deep learning (DL), that uses MLPs with several layers, has recently

attracted attention as a powerful tool for the analysis of a wide variety of biological data

(PARK; KELLIS, 2015; ANGERMUELLER et al., 2016; MAMOSHINA et al., 2016;

MIN; LEE; YOON, 2017; CHING et al., 2018). The performance of neural networks

in the task of microarray classification, however, is surprisingly lagging behind older

machine learning algorithms (PIROOZNIA et al., 2008; LEE et al., 2005). A possi-

ble explanation has been attributed to the use of gradient-based optimization methods
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and backpropagation (GUPTA et al., 2015). It is also believed that for the sample sizes

available in microarray experiments, simpler methods outperform the more complex al-

gorithms (ALLISON et al., 2006). The advantage of SVMs over ANNs would be their

better generalization ability that can be obtained with few training samples and scales the

importance of outliers, associated with they being well suited for high-dimensional data

and faster to train (RESSOM et al., 2009).

Neuroevolution, discussed in the last chapter, avoids some of the pitfalls encoun-

tered by the need of having a fixed topology and backpropagation (MARCUS, 2018;

MORSE; STANLEY, 2016; SUCH et al., 2017). The minimalist structure of NEAT (Sec-

tion 2.5.1), for instance, creates smaller and simpler neural networks. Regarding microar-

ray data, some of Neuroevolution components have already been used in the task of clas-

sification with promising results (GARRO; RODRÍGUEZ; VAZQUEZ, 2017; GUPTA et

al., 2015; LUQUE-BAENA et al., 2013), making this group of strategies a promising

focus for future research.

One of the greatest challenges in microarray classification is the aforementioned

problem of overfitting (Section 2.4) and the balance between accuracy and generalizabil-

ity (LEUNG; CAVALIERI, 2003; ALLISON et al., 2006). This is especially true for

microarray data, that usually have few samples but thousands of features (RESSOM et

al., 2009), since with fewer samples there is a larger chance of algorithms clinging to

specific patterns of the training set, losing generalizability (ALLISON et al., 2006).

3.4 Gene selection

Overfitting is closely associated with the "curse of dimensionality" (VERLEY-

SEN; FRANÇOIS, 2005), when the data have a large number of dimensions, increasing

computational processing time, memory consumption, and causing interpretability im-

pairments. Datasets that only possess a small number of samples are also affected by

the "large p, small n" problem, as is the case of most microarray experiments. The DL

methods mentioned in the last section, for example, rely on training sets with thousands

or millions of samples, very rare numbers for microarrays. Taking this in consideration,

the application of methods for dimensionality reduction becomes imperative (GARRO;

RODRÍGUEZ; VÁZQUEZ, 2016; ANG et al., 2016).

Dimensionality reduction is the process of lowering the number of features of the

data, i.e., the number of genes for microarray data. This is not only important from the
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computational and the classification perspective, but also from the point of view of bi-

ological research and useful information extraction. The discovery of genes capable of

differentiating samples from different populations (different target annotations, i.e., the

samples classes) is an important aspect of microarray data analysis (Fig. 3.2 - Identifica-

tion of differentially expressed genes) (LAZAR et al., 2012). Finding these genes, that are

sometimes referred to as biomarkers, or informative genes, is used as means to help in the

precise identification of diseases or as potential drugs targets (LAZAR et al., 2012).

The major group of algorithms for dimensionality reduction is feature extraction,

a set of methods that transforms the original feature space into a different space with a

new set of axis by combining its features and finding the ones that most preserve the

original information (VARSHAVSKY et al., 2006). This new feature space often has bet-

ter discriminatory power, but the extracted features lack physical or biological meaning

for better interpretation (ALELYANI; TANG; LIU, 2013; KRIZEK, 2008; ANG et al.,

2016). Some examples of feature extraction methods are Principal Component Analysis

(PCA) (JOLLIFFE; CADIMA, 2016), Singular Value Decomposition (KLEMA; LAUB,

1980), Factor Analysis (FRUCHTER, 1954), and t-Distributed Stochastic Neighbor Em-

bedding (MAATEN; HINTON, 2008). ANNs are also known for their abilities in feature

extraction due to the unsupervised feature learning, autoencoders being the best example

(HINTON; SALAKHUTDINOV, 2006).

While feature extraction can be useful from the computational view, its lack of in-

terpretability leaves it with little use for the discovery of informative genes. A subgroup of

techniques, called feature selection (FS), however, solves this problem by choosing small

subsets of features instead of combining them, usually through the removal of irrelevant,

redundant, or noisy features. This is better suited for biological data since it leads to better

performance and model interpretability (MIAO; NIU, 2016). Examples of such methods

are Minimum Redundancy Maximum Relevance (DING CAND PENG, 2005), Informa-

tion Gain (ALHAJ et al., 2016), Chi-Square (JIN et al., 2006), Fisher Score (GU; LI;

HAN, 2012), Relief (KIRA; RENDELL, 1992), and Lasso (FONTI; BELITSER, 2017).

Compared with feature extraction, FS is less general and may provide less discriminatory

power, but once again, in the context of informative genes discovery, the lack of physical

meaning in feature extraction is prohibitive (ALELYANI; TANG; LIU, 2013; KRIZEK,

2008; ANG et al., 2016).

Gene selection is the name given to the application of FS in microarray data, with

the objective of discovering subsets of genes capable of separating samples from different
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populations. It is necessary when dealing with data that contains noisy, irrelevant, or

redundant gene expressions, and can be effectively used for tumor detection at early stages

and more reliable cancer diagnosis, prognosis, or clinical treatment (BOULESTEIX et al.,

2008; ANG et al., 2016).

This is not a trivial task. Identifying the subset of genes across all samples with

the best discriminative power is only possible in the classification of pre-identified groups,

since it is usually the case of disease prediction (LAZAR et al., 2012). The set of DEGs,

however, does not always provide the best predictive power, and there is no method con-

sidered superior (ALLISON et al., 2006). Moreover, a single feature, when observed

alone, may be irrelevant, but in combination with other features it may become highly rel-

evant (GHEYAS; SMITH, 2010; ANG et al., 2016). Ideally, the selected features should

be all the strongly relevant and sometimes weakly relevant, meaning that features that are

useful for improving accuracy prediction when they are non-redundant and do not cause

a negative impact in the evaluation measures, while the noisy, redundant, or irrelevant

features are discarded (ANG et al., 2016). Redundant features should be discarded due

to their significant statistical relations with other features, not for only having worthless

information (ANG et al., 2016), what is coherent for the computation, but can cause the

solution to miss informative genes with highly correlated expressions. The setting of a

threshold for considering a feature relevant or not is also a difficult task. It is needed to

balance the false positives and false negatives, and account for the multiple hypothesis-

testing problem when statistical tests are performed for thousands of genes (LEUNG;

CAVALIERI, 2003).

Gene selection is still an open problem with many challenges and new alternatives

emerging. There are already several methods for FS and DEGs discovery, and many

algorithms are only slightly different among them (LAZAR et al., 2012). The literature

usually groups the methods for gene selection in four types, as presented below.

Filter: as the first methods to be used, they only consider the intrinsic attributes of the

data combined with an evaluation criteria (distance, information, dependency, con-

sistency, etc.) and are not necessarily used as classifiers. Most filters are univariate

and considers the problem as a ranking problem. They are independent of specific

learning algorithms, providing more general solutions that can be used by different

classifiers. Filters are also known to be faster and more computationally efficient

than the other groups of methods. The drawback is that they ignore the relationships

between different features and the effects that they have when combined. They also
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ignore the interaction between the selected features and the classifier, leading to

varying prediction power (LAZAR et al., 2012; ANG et al., 2016).

Wrapper: the selection is made using some optimization algorithm, and then wrapping

a classifier around the selected features, using its accuracy as the criteria of eval-

uation. The set of most discriminative features is found by the minimization of

the classification error, what often gives better results than filters. Wrappers, how-

ever, are highly dependent on the learning algorithm being used as classifier, and

the solutions are not general, meaning that there is no guarantee that the quality of

performance of the selected features will be transferable for other classifiers. Wrap-

pers are also more likely to suffer from overfitting and present huge computational

costs, since the training of the classifier needs to be performed again for each new

subset being evaluated, making them a less common choice than filters (LAZAR et

al., 2012; ANG et al., 2016).

Embedded: the FS is built-in the learning algorithm, so the selection and classification

are performed together. When compared with wrappers, this approach is more ef-

ficient, because it avoids the repetition of training a classifier, and is less prone to

overfitting, while achieving similar performance and considering the interactions

between features. Nevertheless, the computational complexity in high-dimensional

data is still a challenge (ANG et al., 2016).

Hybrid: together with embedded methods, they are novelties in FS. Hybrid methods

are a combination of different methods (that can be or not of the same group),

different selection algorithms, or different criteria, in an attempt to merge their

distinct strengths. The most common combination is between filters and wrappers

(ANG et al., 2016).

Most studies on the gene selection subject are focused in filters, due to their gener-

ability and computational efficiency (ANG et al., 2016). While the evaluation of filters is

independent of any classifier, wrapper and embedded methods use the classifier accuracy

itself, despite also requiring strategies to search the feature space to perform the selec-

tion (LAZAR et al., 2012). Based in different studies, however, the hybrid methods are

the ones with better results, by combining the strengths of the other approaches, reduc-

ing the computational costs by narrowing the total search space, and lowering the risk of

overfitting (ANG et al., 2016).
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Nevertheless, many challenges persist. Technical defects in the experiments, for

example, scanning errors, can cause samples to be mislabeled (ANG et al., 2016). Mi-

croarrays also suffer from class imbalance problems, when each class has a distinct num-

ber of samples, making the accuracy less informative (POWERS; GOLDSZMIDT; CO-

HEN, 2005; LAZAR et al., 2012). The difference between the several technologies and

analyses standards of each microarray platform makes cross-platform comparison prob-

lematic. More important, the retrieval of biological information from the gene expressions

is not an easy task, and the determination of the relevancy or the redundancy of a gene

is difficult, leading to unexpected biases and mistakes in conclusions. Despite the large

number of methods available in the literature, there is still a lot of room for improvements

and innovations (ANG et al., 2016).

3.5 Microarray and Neuroevolution

Regarding microarray classification and gene selection, a few works have used

some of Neuroevolution components, making this group of strategies a promising fo-

cus for future research, because they avoid some of the problems of traditional DL and

through algorithms, like NEAT, can produce simpler models, better suited for dealing with

overfitting. Luque-Baena et al. (2013) performed gene selection using the Welch t-test as

a filter and then GA to choose the subsets of features, combining mutual information and

classification models to predict the outcome of cancer data. The main innovation was

the use of the C-Mantec (Competitive Majority Network Trained by Error Correction)

algorithm as a classifier, a constructive neural network model.

Gupta et al. (2015) used GA to evolve neural networks for the task of breast cancer

diagnosis, combining it with backpropagation to perform local search. Garro, Rodríguez

and Vazquez (2017) focused on microarray classification by designing a strategy that first

uses Artificial Bee Colony (ABC) optimization for FS, and then creates an ANN through

Differential Evolution (DE), an algorithm akin to GA, to be used as classifier. Withal

these works used ideas from Neuroevolution for building classifiers for microarray data,

without incorporating the gene selection as part of the evolutive process.

Despite not being directly related to these works, it is also worth mentioning that

NEAT has already been employed in the creation of artificial gene regulatory networks

(CUSSAT-BLANC; HARRINGTON; POLLACK, 2015).
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3.6 Chapter conclusion

This chapter started with a brief overview of gene expression, to then explain the

process of a microarray experiment and how the expression data of thousands of genes

can be analyzed by several algorithms. The use of machine learning for the creation of

classifiers useful as diagnostic tools and the importance of FS in order to find informative

genes were discussed to a greater extent. At the end, some applications of Neuroevolution

in these tasks were presented. The next chapter describes how microarray data can be

obtained and preprocessed before further analysis.
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4 DATA OBTAINMENT AND PREPROCESSING

Before describing the proposed method itself in Chapter 5, it is important to take

a moment to explain how the microarray data for this research was obtained and manipu-

lated, in order to provide a diversity of test cases for the computational method while also

ensuring a high quality control with a rigorous filtering and preprocessing pipeline. For

this work the focus was on human cancer experiments, due to their relevance and to the

abundance of public available data. The literature also contains vast material on cancer

studies, allowing further validation of the results obtained in Chapter 6 by comparing them

with finds in published experiments. In order to provide more diversity in the datasets,

three cancer types were chosen as targets: breast, colorectal, and leukemia. All the major

steps in this and the following chapters are illustrated in Fig. 4.1, that summarizes the

whole method.

4.1 Data obtainment

To obtain multiple microarray datasets (GSEs), the raw data of leukemia, breast,

and colorectal cancers were downloaded from the GEO (Gene Expression Omnibus1)

database using the GEOquery package (DAVIS; MELTZER, 2007) for the R platform2

(Fig. 4.1 - Data Obtainment). GEO is an international public repository for high-throughput

functional genomics data, including different types of microarrays.

With the aim of selecting the most homogeneous and reliable datasets (Fig. 4.1 -

Preprocessing), several criteria were adopted:

1. Exclusion of studies that used chemotherapics, any kind of gene therapies, or that

employed interfering molecules as miRNA and small interfering RNA (siRNA),

since those molecules are usually employed to impair the given expression of target

genes - thus, altering the expression profile of the chosen experiment;

2. Exclusion of studies that used any kind of xenograft technique. Xenograft studies,

in this case, are those in which the human tumoral tissues are transplanted into an-

other organism, usually mice or rat models, to evaluate growth and effect patterns.

Hence, they were excluded to assure that no bias from another organism biochemi-

1<https://www.ncbi.nlm.nih.gov/geo/>
2<[www.r-project.org]>

https://www.ncbi.nlm.nih.gov/geo/
[www.r-project.org]
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Figure 4.1: Summary of the methodological steps taken in this work. After data ob-
tainment, the microarray datasets were normalized and the low quality samples were ex-
cluded. The genes were filtered using the Kruskal-Wallis H Test (Section 2.1) and the
remaining data was employed in the Neuroevolution process, from which the best neural
network was chosen. Finally, the neural networks were used to perform the microar-
ray classification, and its inputs used for gene selection. The final selected genes, which
represent distinct expression patterns, were submitted to a functional enrichment analysis.
Additionally, an extensive search in the scientific literature was conducted to see the types
of cancer that the selected genes were associated to.

cal profile could alter the results;

3. Exclusion of microarrays that used any form of Knockdown (KO) cultures, or

specifically selected mutations. KO cultures are those that delete a specific gene

from the genome, so the lack of such molecule could be studied. Therefore, it is

essential to excluded such cases, because the lack of a gene will alter the expression

profile of a given microarray;
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4. Selection of studies performed exclusively on Homo sapiens;

5. Selection of datasets only with at least six normal (control) samples and six experi-

mental (tumoral) samples. This was a technical decision needed for the correct use

of the cross-validation described in Section 6.1.2;

6. Selection of studies with a clear description of the protocols followed in the exper-

iments. It is common for some studies to be uploaded to the GEO database without

proper description, since GEO is a free public database, with no clear control of

uploads. These studies were ignored because their origins could be considered

doubtful.

Besides that, only data generated with microarray chips from the company Affymetrix3

were selected, with the goal of keeping the data as consistent as possible. Among the ma-

jor companies that offer microarray technologies, like Illumina4 and Agilent5, Affymetrix

has the most standardized probe names and raw data, enhancing the reliability of the sub-

sequent analyzes. In addition to the selected GSEs, the original microarray dataset from

Golub et al. (1999)6 with AML and ALL leukemia subtypes was included in order to

provide a comparison with other methods in the literature.

4.2 Preprocessing steps

After data obtainment, background correction and Robust Multichip Average (RMA)

normalization of all selected GSEs were performed by the R package affy (GAUTIER et

al., 2004). After normalization, datasets were analyzed by the R package arrayQuality-

Metrics (KAUFFMANN; GENTLEMAN; HUBER, 2009), to access the sample quality

of the selected microarrays. Samples that displayed low quality in at least half of any pa-

rameters measured by arrayQualityMetrics were discarded from the final pool. Table 4.1

summarizes the chosen GSEs, their specifications, and the number of excluded samples.

The normality of the distribution of the genes expression in the datasets listed

in Table 4.1 was tested with the D’Agostino and Pearson’s test that combines skew and

kurtosis (D’AGOSTINO, 1971; D’AGOSTINO; PEARSON, 1973). It was observed that

most of the genes did not follow a normal distribution with p-value < 0.01.
3<http://www.affymetrix.com/analysis/index.affx>
4<https://www.illumina.com/>
5<https://www.agilent.com/>
6<https://github.com/ramhiser/datamicroarray>

http://www.affymetrix.com/analysis/index.affx
https://www.illumina.com/
https://www.agilent.com/
https://github.com/ramhiser/datamicroarray
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Table 4.1: List of GSEs and datasets employed in this work.
Datasets Cancer Type Samples Excluded Samples* Genes Classes
GSE42568 Breast 121 5 54675 2
GSE45827 Breast 155 4 54675 6
GSE10797 Breast 66 None 22277 3
GSE44076 Colorectal 246 52 49386 2
GSE44861 Colorectal 111 6 22277 2
GSE8671 Colorectal 64 1 54675 2
GSE21510 Colorectal 148 105 54675 2
GSE32323 Colorectal 44 11 54675 2
GSE41328 Colorectal 20 2 54675 2
GSE9476 Leukemia 64 None 22283 5
GSE14317 Leukemia 26 1 22277 2
GSE63270 Leukemia 104 3 54675 2
GSE71935 Leukemia 51 6 54675 2
Golub et al. (1999) Leukemia 72 NA 7129 2

*Includes: (i) samples excluded prior to the analysis, due to the presence of one or more samples that
didn’t met the criteria described on Section 4.1; (ii) samples that could generate a bias in the analy-
sis due to treatment, tissue origin or platform mix; (iii) file corruption and errors; and (iv) samples
excluded due to low quality. NA = Not Applicable.

4.3 One-vs-All classification

Another consideration about the creation of the datasets to be used by the method

described in the next chapter is that it uses One-vs-All classification for multiclass classi-

fication problems. This means that if a dataset has more than two classes, as for example

the dataset GSE45827 described in Table 4.1, each class is classified separately against

all the other classes combined. While most ANNs can handle multiclass data without

problems, including the proposed method, the One-vs-All approach was chosen due to

four assumptions:

• Most of the selected microarray datasets are binary (Table 4.1 - Classes).

• One-vs-All allows the use of only one output neuron in each ANN, simplifying

their structures and the evolutionary search.

• It makes easier to interpret the FS results since for each subset of selected features

only one class was considered against the remainder, so these features are respon-

sible from the classification of that particular class.

• The major drawback of One-vs-All classification is the creation of size imbalance

among classes, but for many microarray experiments the data is already imbalanced
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and, in fact, some times becomes more balanced with the splits created with One-

vs-All.

Taking this in consideration, the datasets GSE45827, GSE10797, and GSE9476

from Table 4.1 are transformed in six, three, and five datasets, respectively, as shown in

Table 4.2.

Table 4.2: List of classes division for each dataset employed in this work,
considering One-vs-All classification.

Class A Class B
Datasets Type Samples Type Samples
GSE42568 Tumoral 101 Normal 15

Basal 41 Remainder 110
HER 30 Remainder 121
Cell Line 14 Remainder 137

GSE45827 Luminal A 29 Remainder 122
Luminal B 30 Remainder 121
Normal 7 Remainder 144
Cancer Epithelial 28 Remainder 38

GSE10797 Cancer Stroma 28 Remainder 38
Normal 10 Remainder 56

GSE44076 Adenocarcinoma 97 Normal 97
GSE44861 Tumoral 52 Normal 53
GSE8671 Adenoma 31 Normal 32
GSE21510 Tumoral 18 Normal 25
GSE32323 Tumoral 16 Normal 17
GSE41328 Tumoral 8 Normal 10

AML 26 Remainder 38
Bone Marrow 10 Remainder 54

GSE9476 Bone Marrow CD34 8 Remainder 56
PB 10 Remainder 54
PBSC CD34 10 Remainder 54

GSE14317 ATL 18 Normal 7
GSE63270 AML 60 Normal 41
GSE71935 JMLL 37 Normal 9
Golub et al. (1999) AML 47 ALL 25

Class A = Class being discriminated if the original dataset has more than two classes;
Remainder = union of samples of all classes except the discriminated class if the original
dataset has more than two classes; Normal = control group; CRC = Colorectal Cancer;
AML = Acute Myeloid Leukemia; ALL = Acute lymphoblastic leukemia; ATL = Adult T-
Cell Leukemia/Lymphoma; JMML = Juvenile myelomonocytic Leukemia; HER = Breast
Cancer - HER Status; PB = Peripheral blood; PBSC = Peripheral Blood Stem Cell; CD34
= Cluster of Differentiation 34.
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4.4 Chapter conclusion

This chapter described the criteria for choosing the data presented in this work,

as well as the steps it goes through before it can be analyzed. The resultant expression

matrices are then used as inputs for the proposed computational method (Fig. 4.1 - Genes

Expression), as explained in the next chapter.
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5 PROPOSED METHOD

After the steps listed in the last chapter, the data is ready for the main analysis. In

this chapter, the main computational method is described with the aim of tackling the tasks

described in Chapter 1. It is a hybrid approach to gene selection (Section 3.4), combin-

ing filtering and embedded algorithms, based in the Kruskal-Wallis H Test (Section 2.1)

and FS-NEAT (Section 2.5.2), and capable of autonomously performing the tasks of mi-

croarray classification (Fig. 4.1 - Microarray Classification) and gene selection (Fig. 4.1

- Gene Selection), without the need for specifying how many genes should be selected at

the end.

5.1 Filtering and preprocessing

Due to the presence of thousands of genes in each microarray dataset (the smallest

one in our list has 7129 genes), before starting the evolutive process, the data is filtered

using the Kruskal-Wallis H Test (Section 2.1). This is achieved by comparing the expres-

sion of each gene among the two classes (One vs. All classification - Section 4.3) and

removing all genes that presented no difference between the two classes (p-value ≥ 0.01)

(Fig. 4.1 - Statistical Filtering). The Kruskal-Wallis H Test is nonparametric and does

not assume a normal distribution, what is in agreement with the normality analysis result

described in Section 4.2. The Kruskal-Wallis H Test has already been used in the study

microarray data (LAN; VUCETIC, 2011), and the use of statistical methods as a prepro-

cessing filtering step is standard practice in the literature (LEUNG; CAVALIERI, 2003;

LUQUE-BAENA et al., 2013).

After the application of the Kruskal-Wallis H Test, around 13% of the total amount

of genes is kept for the next steps. The final preprocessing step is to normalize the expres-

sion of the genes, using the mean normalization as described in Equation 5.1, with x being

a feature, and µ, xmax, and xmin being the mean, maximum value and minimum value of

that feature over all the samples, respectively. Each feature is normalized independently.

xnew =
x− µ

xmax − xmin

(5.1)
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5.2 Training

The next step is the Neuroevolution itself (Fig.4.1 - Neuroevolution). The output

of the networks is a value between 0 and 1 that predicts to which class a sample belongs,

and the inputs are the normalized values of the expression of the genes. The population

of the first generation is created by connecting one random input to the output for each

individual, and the initial weights and biases are randomly determined from a normal dis-

tribution with mean equal to zero and standard deviation equal to one. Since the algorithm

deals with higher dimensions than usually used with FS-NEAT, it was modified to better

explore the input space with the inclusion of three new operators (N3O):

Additive crossover operator: it works similarly to the NEAT crossover operator (Fig. 2.4),

but if the parent with lower fitness has an input that the parent with better fitness

does not possess, and this input is connected to a node present in the parent with

better fitness, there is a 50% chance of the offspring inheriting that input (Fig. 5.1).

Swap input mutation: a new structural mutation operator that randomly swaps one of

the network inputs by another input not present in the ANN (Fig. 5.2 - Swap input).

Guided add input mutation: the p-values from the Kruskal-Wallis H Test described in

Section 5.1 are transformed by the formula − log10(p) and scaled by the softmax

function (Equation 5.2, with Z being a vector of probabilities z). The outputs are

probabilities that are larger for smaller p-values. They are used as the probability

of an input being selected by the "add input mutation", meaning that the genes that

showed the largest difference between classes are more likely to be selected by the

mutation (Fig. 5.2 - Guided add input).

softmax(Z) = ez ÷
∑

z′∈Z
ez

′
,∀z ∈ Z (5.2)

The additive crossover operator (Fig. 5.1) substitutes the original crossover oper-

ator used by NEAT and FS-NEAT (Fig. 2.4). This change allows the combination and

integration of the features selected by two ANNs, what is not permitted by the origi-

nal crossover, since the offspring will always have the same FS as the parent with better

fitness. The original NEAT does not suffer from this because all the inputs are always

connected to the outputs. In the case of a FS algorithm dealing with high dimensional

data, however, it should be beneficial to combine possible good selections.
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Figure 5.1: The proposed crossover operator. Given two parents, red (better fitness)
and blue (lower fitness), the offspring ANN will be a combination of the two, inheriting
the structures from both randomly when both have it, and from red otherwise. The major
difference from FS-NEAT is that if there is an input in blue that is not connected to red,
and this input in blue is connected to a node that is in red, the offspring has fifty percent
of chance of inheriting it as well, here represented by input "D".
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Figure 5.2: The two new possible structural mutations for the proposed method.
Rectangles represent inputs, blue circles indicates outputs, white circles represent hidden
nodes, and arrows are the connections between nodes. The new structures are marked in
gold. The histogram above the network that had an added input represents the probabili-
ties of each new input being selected by this operator.
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Also motivated by the goal of better exploring the input search space, the swap

input mutation (Fig. 5.2 - Swap input) was added. This mutation allows the algorithm to

explore the use of new possible features without increasing the ANNs complexity or the

number of features selected, while also exploiting the already existing network structure.
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Finally, it was considered the high cost associated with randomly searching all the

input space to find new better features when dealing with thousands of inputs. Thus, the

mutation from FS-NEAT that simply added an input to a network (Fig. 2.6) was modified

to take advantage of the already computed ranking of genes created when the Kruskal-

Wallis H Test was applied. The results from the test are a p-value for each gene indicating

which genes have expressions less likely to differ between the classes only by chance

(LAZAR et al., 2012). This value can be used to guide the add input mutation (Fig. 5.2

- Guided add input), making more likely to select the genes with lowest p-values. This

probability of being selected is determined by using the softmax function, which receives

as input a vector of values and outputs a vector of the same length, whose sum is equal

to one and has only positive values proportional to their inputs. The input of the softmax

function, in this case, is the vector of − log10 of the p-values, so that smaller p-values

become larger probabilities, but the distribution is smoother to not bias the selection too

much towards the genes with smallest p-values, still allowing further exploration. The

transformation of the p-values is illustrated in Fig. 5.3.

The fitness function that guides the evolutive process is the cross-entropy, also

known as the log loss (GOODFELLOW et al., 2016; BOER et al., 2005), in its binary form

(for two classes classification). This is a popular cost function for supervised learning but

does not account for data imbalance, which is common in microarray data. Thus, it was

altered so that it is computed individually for each class q and then averaged, as shown in

Equation 5.3a, in which nq is the number of samples in the class q, yi is the true label of

the ith sample, and ai is the ANN output for the ith sample. This way, all classes have the

same importance independently of their sizes.

The second term of the fitness function, given by Equation 5.3b, stands for the

L2 regularization described in Section 2.4. The L2 regularization penalizes networks

with large absolute weights and biases values, under the assumption that simpler models

are better in generalizing. As can be observed, however, Equation 5.3b differs from the

original expression in Equation 2.5. Since the number of inputs of a neuron can change

during the evolution, the term 1
c

was added, so that the regularization would not have

a negative impact in the addition of new connections and nodes. The c is the number

of connections and biases, n is the number of samples, wk is the weight or bias of the

connection or node k, and λ is the regularization parameter. Due to the minimalist start of

FS-NEAT, this method does not require a component to minimize the number of features

selected, as used in Luque-Baena et al. (2013) for instance, making for easier fitness
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Figure 5.3: The p-values − log10 transformation. The p-values obtained from the
Kruskal-Wallis H Test are transformed by this operation, in order to be used in the soft-
max function (Equation 5.2). All the p-values are between 0 and 0.01, since this step is
after the statistical filtering.
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function design. The fitness also does not account for the redundancy of the selected

features, under the assumption that two genes with highly correlated expressions that are

deemed relevant by the network should both be returned as the solution.

fitness =
1

|Q|
∑

q∈Q

{
− 1

nq

nq∑

i=1

[yi ln ai + (1− yi) ln(1− ai)]
}

(5.3a)

+
λ

2n

1

c

c∑

k=1

w2
k (5.3b)

The fitness is a numerical value that measures the error between the network output

and the true sample label, proportionally penalized by large network weights and biases

absolute values. The output of Equation 5.3 will always be positive, so the optimization

should be a minimization problem (lowest fitness is the best). Because GA usually deals
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with maximization problems, it is also possible to maximize the expression fitness′ =

−fitness (largest fitness′ is the best). Either way, the best theoretical fitness value

would be zero, but it would require an ANN with all weights and biases also equal to

zero, thus making achieving this threshold impossible.

The structure of the neurons in this method also differs from a traditional artificial

neuron as showed in Equation 2.4. The modified neuron is described by Equation 5.4,

in which ah is the output, mh is the number of inputs, bh is the bias, whj is the weight

of the jth input, and xhj is the jth input of the neuron h, respectively. The aggregation

is the mean of the inputs instead of the summation because the number of inputs can

vary during the evolution, thus the term 1
mh

. The Φ stands for the activation function of

the neuron, that for the output neuron is the modified Gaussian function (Equation 2.8),

and for all the hidden nodes is the modified tanh (Equation 2.7). These two functions

combined have shown the best performance in the context of FS-NEAT in comparative

studies (PAPAVASILEIOU; JANSEN, 2017a), as discussed in Section 2.5.2.

ah = Φ

(
1

mh

mh∑

j=1

whjxhj + bh

)
(5.4)

The GA that evolves the neural networks uses the new operators presented before

(Fig. 5.2 and Fig. 5.1), in addition to the listed modifications in the fitness function and

neurons structure. The selection for crossover uses tournament, and elitism is adopted to

preserve the best individuals from each generation (Section 2.3). The used hyperparam-

eters are listed in Table 5.1 and were chosen based on experimental results and literature

revision (PAPAVASILEIOU; JANSEN, 2017a). The selected genes are the subset of fea-

tures (inputs) directly or indirectly connected to the output node in the neural network

with the best fitness at the end of the algorithm.

5.3 Chapter conclusion

In this chapter the neuroevolutive method proposed in this work is presented and

explained. First, the data is filtered with the Kruskal-Wallis H Test, then normalized, and

finally used in the creation of an ANN with a modified FS-NEAT algorithm that has three

new structural operators for better exploring the feature space. The fitness function and

artificial neuron were also designed taking in consideration the particularities of the tasks

of gene selection and microarray classification. Experiments with this method and their
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Table 5.1: List of used hyperparameters.
Hyperparameter Value
Population size 1000
Number of generations 100
Aggregation function1 mean
Activation function1 tanh, Gaussian
L2 regularization λ2 0.5
Probability of mutation adding input3 0.05
Probability of mutation swapping input3 0.05
Probability of mutation adding connection4 0.05
Probability of mutation adding node4 0.03
Probability of mutation changing weight 0.04
Elitism proportion 0.1
k tournament selection 2
Coefficient 15 1.0
Coefficient 25 1.0
Coefficient 35 0.4
Compatibility threshold5 3.0
1 Equation 5.4, 2 Equation 5.3b, 3 Fig. 5.2, 4 Fig. 2.3b, 5 Equation 2.6

results are described in the next chapter.
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6 EXPERIMENTS AND RESULTS

This chapter aim is to test and discuss the results of applying the aforementioned

method to the data from Chapter 4. It starts by briefly introducing some necessary con-

cepts for better understating the experiments, and then illustrates the evolution of a single

population of ANNs. In further experiments, the accuracy and FS of the method are ana-

lyzed, and the results are compared with other strategies. Finally, the set of selected genes

is biologically reviewed.

6.1 Introduction

This section introduces some concepts and tools used for the experiments.

6.1.1 A proof of concept

In a previous work, developed during the time of this research, we already tested

the use of FS-NEAT in the tasks of microarray classification and gene selection. While

this early work did not use most of the improvements related in Chapters 4 and 5, nor was

tested in the same datasets, its results were the starting point for the creation of this new

approach, and can be read, in conference paper format, in Appendix B.

6.1.2 Cross-validation

To validate the accuracy of classification and number of features selected by the

algorithms, k-fold cross-validation was used. Cross-validation is an efficient and unbiased

error estimator, and the most common validation method for microarray datasets (ANG

et al., 2016), as a way to check the generalizability of the model. For our experiments,

stratified 3-fold cross-validation was adopted (illustrated in Fig. 6.1), so each dataset was

split into three random folds (or partitions) of equal size, and each fold preserves the same

sample per class ratio of the whole dataset. At each iteration of the cross-validation, one

of the folds is used as a testing set, and the remaining folds are used for the training of

the algorithm. At the end of the iteration, the algorithm the accuracy of the algorithm in

the samples of the testing fold (that it has never seen) is computed. The final accuracy
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is the weighted average accuracy of the testing folds. The choice of stratified 3-fold

cross-validation was made based on the minimum number of samples in each class of the

datasets in Table 4.1, the high imbalance in class size, and computational time.

Figure 6.1: Stratified 3-fold cross-validation. This example has a dataset with two
classes, "A" and "B", of equal sizes, and twelve samples, represented in green. During the
cross-validation, this dataset is split in three folds of the same size and each containing
the same number of samples from each class. At each iteration, the algorithm being eval-
uated is trained with the two training folds (in blue) and then tested with the testing fold
(in red). This process is repeated for each fold, so at the end, the algorithm was trained
and tested three times. The reported performance is the combination of the accuracies at
each testing fold.
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It is important to note that for each iteration of the cross-validation, it is necessary

to repeat all the training steps needed by the algorithm using only the samples from the

training folds, including the filtering and normalization of the data. This is fundamental

to avoid the introduction of bias from the testing samples into the training, what would

impact the results validity.

6.1.3 Computing the baseline

When dealing with classification problems, it is important to know beforehand the

baseline accuracy of the datasets, defined here as the expected accuracy from a classifier

that always naively predicts that a new sample belongs to the larger class, sometimes

also referred as ZeroR1. In a binary classification problem with well-balanced classes, the

baseline accuracy will be 50%, but this can drastically change for ill-balanced datasets.

Equation 6.1 defines the formula used for computing the baseline accuracy for a dataset

D with two classes, A and B, |DA| being the number of samples from D belonging to

1<http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/ZeroR.html>

http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/ZeroR.html
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class A.

baseline(D) = max(
|DA|
|D| ,

|DB|
|D| ) (6.1)

If the model accuracy is no better than the baseline, some problems may exist

within the algorithm design, implementation, or training. It may be, for instance, just

randomly guessing or suffering from overfitting (Section 2.4).

It is also needed to define a baseline of sorts for the FS. In this case, the criteria of

comparison is the probability of a gene being randomly selected by the final neural net-

work considering uniform distribution, meaning how likely it is for a gene to be chosen

without the need of any optimization. Of course, since each gene can only be selected

exactly one time per network, the probability of gene g being selected at random is 1
G

, G

being the total number of genes in the dataset. However, we should account for the fact

that a single neural network can select more than one gene, and that for multiple exper-

iments of k-fold cross-validation (with the same dataset) several "final" neural networks

will be created, one for each run. The total number A of ANNs resulting from an experi-

ment of r runs with k folds each is A = r×k. Each of these A ANNs can have a different

number of selected genes, so we average the number of inputs in each ANNs, equal to m.

Thus, considering a gene g that was selected s times, i.e., that g appeared as input in s

of A ANNs, it is possible to approximate the probability of g being randomly selected at

least s times as the binomial distribution in Equation 6.2.

p =
m

G
(6.2a)

(
A

s

)
=

A!

s!(A− s)! (6.2b)

Pg[X = s] =

(
A

s

)
ps(1− p)A−s (6.2c)

Pg[X ≥ s] = 1− (Pg[X = 0] + Pg[X = 1] + ...+ Pg[X = s− 1]) (6.2d)
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6.1.4 Functional enrichment analysis

The final FS obtained by using the proposed method does not deal with the genes

separately, like some of the ranking filtering algorithms described in Section 3.4, but as a

set of inputs all needed for the correct performance of its corresponding neural network.

Thus, an analysis of the classes of found genes needs to focus on the whole set, and not on

individual genes. Functional enrichment analysis also referred to as Gene Set Enrichment

Analysis (GSEA), is an analytical technique devised for this purpose. It defines the sets

of genes based on previously published biological knowledge and determines whether the

genes in the set are correlated to specific phenotypic class distinctions (SUBRAMANIAN

et al., 2005).

The Database for Annotation, Visualization and Integrated Discovery (DAVID)

v 6.82 (HUANG; SHERMAN; LEMPICKI, 2009b; HUANG; SHERMAN; LEMPICKI,

2009a) was used to discover the most relevant bioprocesses and to trace the nature of the

selected genes from the employed datasets (Fig. 4.1 - Validation and Functional Enrich-

ment). The entire list of selected genes was used as input in DAVID, using the Benjamini

FDR correction (BENJAMINI; HOCHBERG, 1995) with a significance score of 0.05.

The bioprocesses came from Gene Ontology (GO), that provides a unified and structured

vocabulary and annotation for genes and gene products (CONSORTIUM, 2007).

6.1.5 Computational resources

All experiments reported in this work ran in an Intel Xeon E5-2650V4 30 MB,

4 CPUs, 2.2Ghz, 48 cores/threads, 128GB, 4TB. The main code was written in the

Python 2.7 programming language, with the use of some methods from Scikit-learn (PE-

DREGOSA et al., 2011) and NEAT-Python3 libraries. Some of the analyses were made

with the R programming language, including the creation of gene expression heatmaps

with the heatmap.2 method using the correlation as distance function. All analyses of

statistical significance were performed with the Kruskal-Wallis posthoc test after Dunn

with Bonferroni-type adjustment of p-values from the PMCMR4 R package.

2<https://david.ncifcrf.gov/>
3<http://neat-python.readthedocs.io/en/latest/>
4<https://www.rdocumentation.org/packages/PMCMR/versions/4.3>

https://david.ncifcrf.gov/
http://neat-python.readthedocs.io/en/latest/
https://www.rdocumentation.org/packages/PMCMR/versions/4.3
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6.2 Visualizing the Neuroevolution

The first experiment is an introduction to better illustrate the working of the pro-

posed method, from now on referred as N3O due to the three new operators already dis-

cussed, but also considering all the steps and details described in Chapter 5. When not

stated otherwise, the hyperparameters values are the ones from the Table 5.1. The dataset

GSE32323 of colorectal cancer was chosen as an example for this experiment, and its

details can be found at Tables 4.1 and 4.2.

One single run of the method was performed for dataset GSE32323, using 60%

of the samples for the training set and 40% for the testing set. This specific run reported

100% accuracy on both sets (meaning it correctly classified all samples in the training

and testing sets) and all images in this section refer to this specific experiment. Fig. 6.2

brings neural networks in four distinct stages in the neuroevolutive process, as a way to

better show the growth and complexification of the solutions. These four stages were

chosen to show the evolution in a roughly equal time distribution over 100 generations,

but also taking into consideration the structural difference between them. As described

in Section 2.5.2, all networks in the population are created as Fig. 6.2a, with one random

input connected to the output, and from there they grow. These four networks do not

necessarily belong to a single line of hereditary, because they can have distinct ancestors.

They all were, however, the individual with the best fitness in the population at their

respective generations.

From the different examples of network topologies in Fig. 6.2 and other neural net-

works figures from the next sections, an observation that can be made is that N3O found

ANN architectures distinct from traditional MLP models, unlikely to be designed by pro-

grammers. Many inputs are directly connected to the output, and the algorithm makes use

of gates akin to Highway Networks, usually employed to improve the learning of very

deep neural networks allowing information to flow between layers unrestricted (SRIVAS-

TAVA; GREFF; SCHMIDHUBER, 2015).

There are other aspects of the evolution of ANNs with N3O that are worth check-

ing. Fig. 6.3a shows the convergence of the fitness of the best individual in the population,

as it approaches the theoretical limit of zero. Since the algorithm employs elitism it is im-

possible for the fitness curve to regress. Note that in this chart, the fitness is represented

as a negative value being maximized, as discussed in Section 5.2. Fig. 6.3b portrays the

behavior of the population in regard of speciation, discussed in Section 2.5.1. In this case,
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Figure 6.2: Stages in the evolution of neural networks. The neural networks with best
fitness in the population at generations (a) 1, (b) 19, (c) 66, and (d) 98 for a run of the
proposed method with the dataset GSE32323 colorectal cancer. The best networks grad-
ually grow in size, including in number of selected features (genes). Grey rectangles are
input nodes, white circles are hidden nodes, and blue circles are output nodes. The num-
ber inside the hidden nodes inform the order in which they were created. Arrows are
green if they are connections with positive weight, or they are red otherwise. Their thick-
ness is proportional to the absolute values of their weights. Dotted arrows are disabled
connections.
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the individuals diversified into four distinct species (defined by Equation 2.6) around the

20o generation, whose sizes (number of individuals) stayed stable to the end. As the evo-

lution progresses it becomes harder for a solution to become so distant from the others that

it creates a new species, but at the same time the existence of distinct species maintains

diversity in the population.

Regarding the gene selection, Fig. 6.3c shows the spread of the genes in the popu-

lation. As would be expected, at the beginning of the evolution the total number of genes

present in at least one individual (the corresponding input is connected to the output) is

roughly the size of the population, since one random input is assigned to each individ-
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ual. Through crossover and mutation, however, the genes selected by the individuals with

best fitness spread in the population. It is also possible to see how the preference for

certain genes shift during the evolution, how some appear late in the process, and how

some become extinct. Considering the high dimensionality of the data, this flow in the

genes presence is important as a way to keep the algorithm exploring new solutions and

avoiding an early stagnation.

The chart in Fig. 6.4 offers another view of the changes in gene selection over

the generations. Looking at the bottom part of the chart, it is possible to see that at the

beginning the gene selection was more widespread over the population, with all genes

having approximately the same distribution (randomly chosen inputs). Towards the end

of the evolution, however, the density has shifted to the left. This is an illustration of the

effect of the guided input mutation, which increases the chances of genes with smaller

p-values (in the left side of the chart) being selected.

The orange triangles mark which genes were selected by the individual with the

best fitness at each generation. During the first generations, only one gene was selected,

corresponding to the ANN from Fig. 6.2a. The row of the 100o generation has six marked

genes, corresponding to the six inputs in the ANN from Fig. 6.2d. Once again, it is possi-

ble to see that the configuration of the best individual shifts from time to time, most likely

due to changes in its weights and biases values, the addition of new nodes or connections,

and the interaction between the inputs. From this it is also visible that the selection per-

formed by N3O is not equivalent as just selecting the top-ranked features after filtering

with the Kruskal-Wallis H Test, otherwise, at the final generation only the left-most genes

would have been selected. The horizontal spread of genes belonging to the best individ-

ual suggests that statistical measurements and attributes detectable by filtering methods

are not the only factors that should be considered, what is in agreement with the litera-

ture (ANG et al., 2016).

Like Fig. 6.3c, this chart also allows the visualization of the selection flow. Track-

ing the colors of the dots one can see when certain genes started to increase their presence

among individuals, or when they vanished from the population. Interestingly, the stochas-

tic nature of the selection allows some genes that have been extinct in the population to

come back at a later time, and combined with other genes they can increase their presence.

Finally, Fig. 6.5 overlaps the regularized error (the minimization version of max-

imizing the fitness) with the number of genes in the population. Both values seem to

converge roughly together, around the 50o generation, but this did not stop the method



58

Figure 6.3: Different aspects of the evolution. For the same experiment shown in
Fig. 6.2 with the dataset GSE32323 (colorectal cancer). (a) Convergence of the fitness
as the maximization problem described in Section 5.2. (b) Speciation in population, as
described in Section 2.5.1. Each color strip corresponds to one species in the population,
the height being the number of individuals belonging to it. (c) The presence of genes
(features) in the population over the generations. A gene is considered present in the pop-
ulation in a given generation if it is selected by at least one neural network. Each strip
corresponds to one gene (colors may be repeated), the height being the number of neural
networks selecting the gene.
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from exploring new solutions, as the total number of genes selected by at least one indi-

vidual at some point in the evolution kept growing. Despite that, the quantity of genes

existing simultaneously in the population dropped sharply during the first generations,
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Figure 6.4: Selection history of candidate genes in the entire population. For the same
experiment in Fig. 6.2 with the dataset GSE32323 (colorectal cancer). This chart brings
all the genes allowed to be selected during the evolution (after filtering with Kruskal-
Wallis H Test and p < 0.01), ordered in the x axis from the smallest p-value (left) to the
highest p-value (right), and the generations in the y axis, from the beginning (bottom) to
the end (top). If a gene was present in the population (selected by at least one individual)
at a given generation, it will be marked with a circle in the respective position. The darker
the point, the larger the number of individuals selecting this gene at the same generation.
If a point is marked with an orange triangle, that gene, at that generation, was present in
the individual with best fitness.
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balanced.
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Figure 6.5: Genes selection and error convergence during evolution. For the same
experiment in Fig. 6.2 with the dataset GSE32323 (colorectal cancer). Chart showing
the convergence of both the best regularized error (−fitness) in the dashed line, and the
selection of genes in the population in green bars. Each green bar represents the number
of genes present in at least one individual of the population at a given generation. The
darker bar is the number of genes that were already present in the previous generation,
and the lighter bar the number of genes new to the population when compared with the
previous generation. The blue curve represents the total exploration of genes, counting the
number of genes that were present in at least one individual during at least one generation.
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6.3 Departing from FS-NEAT

The kind of visualization from the last section can help in understanding the im-

pact of the new structural operators of N3O compared with regular FS-NEAT. Taking as

example the dataset GSE71935 (leukemia), it was performed an experiment with N3O



61

and regular FS-NEAT, using the same preprocessing steps, filtering, fitness function, arti-

ficial neuron structure, and hyperparameters for both algorithms. The difference was that

N3O had the addition of the new crossover operator and the swap input and guided add

input mutations. The probability of the add input mutation in regular FS-NEAT happen-

ing was doubled, to compensate for the lack of the swap input mutation. Both algorithms

used the exact same training (60%) and testing (40%) sets. The reported accuracies for

the testing set were 100.0% for N3O and 75.0% for FS-NEAT, selecting 6 and 11 genes,

respectively. Fig. 6.6 shows the two best ANNs created with both algorithms.

Figure 6.6: ANNs created with N3O and FS-NEAT for the same data. Two neural
networks with best fitness in the population at the final generation for a run of N3O and
regular FS-NEAT with dataset GSE71935 (leukemia). Details of the ANNs representation
as in Fig. 6.2

.
(a) N3O
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As can be observed, FS-NEAT required a larger neural network structure than

N3O. This is also visible in Fig. 6.7 from the same experiment. Both algorithms showed

roughly the same regularized error convergence and total number of genes visited during

the evolution, as well as a similar amount of new genes being explored at each generation.

FS-NEAT, however, keeps a larger number of genes in the population at each generation,

making for larger networks.

The difference between the genes selection of N3O and FS-NEAT is even more

visible in Figs. 6.8 and 6.9. Despite visiting the same total amount of genes considering

all generations, N3O required less features at each generation, and showed a better spread

of genes among the individuals in the population.
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Figure 6.7: Genes selection and error convergence for N3O and FS-NEAT for a run
with dataset GSE71935 (leukemia). Details of the image representation as in Fig. 6.5

.
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(b) FS-NEAT

0

1000

2000

0.00

0.25

0.50

0.75

0 25 50 75 100

Generations

N
um

be
r 

of
 g

en
es

 in
 th

e 
po

pu
la

tio
n

R
egularized error

Regularized error

Total of visited genes

New genes in generation

Old genes in generation

Genes selection vs. Regularized error covergence

Figure 6.8: Presence of genes in the population over the generations for a run with
dataset GSE71935 (leukemia). Details of the image representation as in Fig. 6.3c

.
(a) N3O (b) FS-NEAT

In order to expand those results, 31 independent runs of stratified 3-fold cross-

validation of N3O and FS-NEAT were performed under the same conditions for some of

the datasets at Table 4.2, using random folds partitions for each run (the same for both

algorithms). The accuracy and number of selected features are compared in Table 6.1.

N3O consistently achieved better accuracies than regular FS-NEAT, but for most of the

cases there was no statistical difference between the algorithms. Considering the num-

ber of selected genes, however, N3O performed better than FS-NEAT and was able to

provide smaller solutions with at least the same predictive power. N3O also showed less

variance in the number of selected genes than FS-NEAT for all studied cases. It may be
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Figure 6.9: Selection history of candidate genes for N3O and FS-NEAT for a run with
dataset GSE71935 (leukemia). Details of the image representation as in Fig. 6.4

.
(a) N3O
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the case that the guided input mutation makes N3O spend fewer resources searching for

less favorable areas of the input space, while the swap input mutation promotes diversity

in the subset of selected features without increasing it. On the new crossover operator, by

allowing the inheritance of inputs from both parents (regular FS-NEAT only allows the

inheritance from the parent with the best fitness), it may produce larger neural networks

locally. Globally, however, the combination of the inputs from both parents allows the

offspring to achieve better fitness without the need of exaggerated growth.

Table 6.1: Accuracy and FS comparison of N3O with FS-NEAT.
Accuracy FS

Datasets Class N3O FS-NEAT N3O FS-NEAT
Cancer Epithelial 0.736 ± .058 0.725 ± .043 13.65 ± 2.36 32.33 ± 10.77

GSE10797 Cancer Stroma 0.744 ± .035 0.734 ± .044 13.85 ± 2.76 37.12 ± 12.53
Normal 0.930 ± .024 0.921 ± .024 12.92 ± 4.19 20.09 ± 9.13

GSE8671 0.984 ± .018 0.980 ± .020 15.16 ± 3.99 17.53 ± 7.98
GSE32323 0.939 ± .040 0.934 ± .043 15.74 ± 4.02 20.29 ± 8.97
GSE41328 0.968 ± .045 0.955 ± .071 18.67 ± 6.35 18.60 ± 9.24
GSE14317 0.964 ± .040 0.960 ± .044 14.80 ± 4.76 20.77 ± 9.44
GSE71935 0.902 ± .046 0.860 ± .047 14.60 ± 3.42 26.13 ± 11.54
Golub et al. (1999) 0.900 ± .032 0.901 ± .038 12.51 ± 2.43 28.58 ± 11.97

Average 0.896 ± .093 0.886 ± .095 14.65 ± 1.83 24.60 ± 6.84

Reported values from 31 runs of the stratified 3-fold cross-validation. N3O = average accuracy and FS of the
proposed method. FS-NEAT = average accuracy and FS of regular FS-NEAT (same fitness function and neuron
structure as N3O). In bold are the best average accuracy and smallest average FS of each dataset. Best results with
statistical significance (p < 0.01) are marked in blue.

In a final experiment, the genes selected in the runs of Table 6.1 by N3O and
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regular FS-NEAT were used to train SVMs, considered the state-of-the-art for microarray

classification, as discussed in Section 3.3. The aim was to compare the generalizability of

the solutions from both algorithms. As before, 31 runs of stratified 3-fold cross-validation

were performed, with the same random partitions from the last experiment. The SVMs

used RBF kernel and the hyperparameters were tuned with grid search. The results in

Table 6.2 showed no statistically significant difference between the algorithms for most

of the datasets.

Table 6.2: Accuracy comparison of N3O and FS-NEAT gene selection
applied to SVM.
Datasets Class N3O FS-NEAT

Cancer Epithelial 0.850 ± .053 0.807 ± .060
GSE10797 Cancer Stroma 0.825 ± .062 0.789 ± .051

Normal 0.965 ± .018 0.957 ± .023
GSE8671 0.667 ± .000 0.671 ± .029
GSE32323 0.686 ± .050 0.696 ± .056
GSE41328 0.722 ± .000 0.724 ± .023
GSE14317 0.996 ± .012 0.982 ± .037
GSE71935 0.966 ± .030 0.953 ± .042
Golub et al. (1999) 0.943 ± .028 0.940 ± .039

Average 0.847 ± .129 0.835 ± .124

The accuracy is the result from 31 runs of the stratified 3-fold cross-validation.
All SVM versions used the RBF kernel and had their hyperparameters tuned by
grid search. N3O = average accuracy of SVM using only the genes selected
by the proposed method; FS-NEAT = average accuracy of SVM using only the
genes selected by FS-NEAT. In bold is the best average accuracy of each dataset.
Best results with statistical significance (p < 0.01) are marked in blue.

6.4 Microarray classification and gene selection

The aim of the next experiments was to characterize the classification and gene

selection of N3O. For this, 31 independent runs of stratified 3-fold cross-validation were

performed under the same conditions (totaling 93 complete executions of the method) for

all datasets at Table 4.2, but with random folds partitions for each run.

The chosen metric for evaluating the classification was the accuracy, defined as the

total number of true positives plus true negatives, divided by the total number of samples.

Accuracy is the most used metric in gene selection studies (ANG et al., 2016). Due to the

high imbalance in class sizes, the baseline for all datasets is also present for comparison.

The results are reported in Table 6.3. As can be seen, the average accuracy always beat
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the baseline. The mean and median values are also close, suggesting the accuracies are

well distributed around the mean. All datasets have coefficient of variation (the ratio

between the standard deviation and the mean) lower than 0.1, what can be interpreted as

low variance (GOMES, 2000). Similar results were obtained for the number of selected

features, reported in Table 6.4.

Table 6.3: Stratified 3-fold cross-validation statistical report of accuracy for N3O.
Datasets Class Baseline Mean±std Median Min-Max
GSE42568 0.87 0.978 ± .011 0.983 0.95 - 0.99

Basal 0.73 0.934 ± .016 0.934 0.89 - 0.97
HER 0.80 0.946 ± .019 0.947 0.89 - 0.97

GSE45827 Cell Line 0.91 0.994 ± .006 0.993 0.98 - 1.00
Luminal A 0.81 0.934 ± .019 0.940 0.90 - 0.97
Luminal B 0.80 0.890 ± .026 0.894 0.84 - 0.95
Normal 0.95 0.988 ± .009 0.993 0.97 - 1.00
Cancer Epithelial 0.57 0.736 ± .058 0.727 0.58 - 0.83

GSE10797 Cancer Stroma 0.57 0.744 ± .035 0.742 0.68 - 0.83
Normal 0.85 0.930 ± .024 0.924 0.88 - 0.97

GSE44076 0.50 0.982 ± .009 0.985 0.97 - 1.00
GSE44861 0.50 0.823 ± .031 0.829 0.74 - 0.87
GSE8671 0.51 0.984 ± .018 0.984 0.94 - 1.00
GSE21510 0.58 0.956 ± .032 0.953 0.88 - 1.00
GSE32323 0.51 0.939 ± .040 0.939 0.85 - 1.00
GSE41328 0.55 0.968 ± .045 1.000 0.83 - 1.00

AML 0.59 0.901 ± .035 0.891 0.83 - 0.97
Bone Marrow 0.84 0.989 ± .017 1.000 0.94 - 1.00

GSE9476 Bone Marrow CD34 0.87 0.963 ± .023 0.969 0.92 - 1.00
PB 0.84 0.994 ± .009 1.000 0.97 - 1.00
PBSC CD34 0.84 0.976 ± .022 0.984 0.94 - 1.00

GSE14317 0.72 0.964 ± .040 0.960 0.84 - 1.00
GSE63270 0.59 0.969 ± .022 0.970 0.89 - 1.00
GSE71935 0.80 0.902 ± .046 0.891 0.83 - 0.98
Golub et al. (1999) 0.65 0.900 ± .032 0.903 0.83 - 0.97

Reported values from 31 runs of the stratified 3-fold cross-validation. Baseline computed as in Sec-
tion 6.1.3. Std = Standard deviation; Min = Minimum value reported in all runs; Max = Maximum value
reported in all runs.

An important aspect of FS is whether or not the same features are being selected in

different runs. To analyze this, Table 6.5 reports the most selected genes for each dataset,

considering the experiments in Table 6.4. It shows which genes appeared as selected

the most in the final solutions, how many times this happened, and how many genes

appeared in at least 5% of the solutions. The gene ERBB2 (HER2), for instance, was

the most selected gene for the dataset GSE45827 - HER (breast cancer), being selected

by 90.6% of the neural networks, while the gene SCNN1B was the most selected gene

for the dataset GSE8671 (colorectal cancer), but appeared only in 3.1% of the networks.
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Table 6.4: Stratified 3-fold cross-validation statistical report of FS for N3O.
Datasets Class Accuracy Mean±std Median Min-Max
GSE42568 0.978 11.44 ± 3.12 10.67 6.33 - 19.00

Basal 0.934 11.76 ± 2.61 12.00 7.33 - 19.67
HER 0.946 10.57 ± 2.63 10.33 5.33 - 17.00

GSE45827 Cell Line 0.994 10.34 ± 3.97 09.67 4.33 - 21.00
Luminal A 0.934 11.41 ± 2.02 11.33 6.00 - 16.00
Luminal B 0.890 14.11 ± 2.38 14.00 10.0 - 18.33
Normal 0.988 13.05 ± 4.51 12.00 7.33 - 26.00
Cancer Epithelial 0.736 13.65 ± 2.36 13.33 9.33 - 18.00

GSE10797 Cancer Stroma 0.744 13.85 ± 2.76 13.33 7.67 - 20.00
Normal 0.930 12.92 ± 4.19 13.00 6.67 - 20.33

GSE44076 0.982 09.65 ± 2.66 10.00 4.00 - 15.00
GSE44861 0.823 11.37 ± 2.55 10.67 6.67 - 16.33
GSE8671 0.984 15.16 ± 3.99 15.00 4.00 - 21.67
GSE21510 0.956 13.10 ± 4.47 13.00 3.00 - 22.00
GSE32323 0.939 15.74 ± 4.02 16.00 4.67 - 23.00
GSE41328 0.968 18.67 ± 6.35 18.67 3.00 - 29.33

AML 0.901 13.57 ± 2.80 13.00 8.00 - 19.00
Bone Marrow 0.989 13.63 ± 3.61 13.67 5.67 - 20.33

GSE9476 Bone Marrow CD34 0.963 12.52 ± 3.40 12.67 4.00 - 20.67
PB 0.994 14.41 ± 4.77 13.67 5.00 - 26.33
PBSC CD34 0.976 12.87 ± 3.62 13.33 7.00 - 19.00

GSE14317 0.964 14.80 ± 4.76 14.00 3.00 - 22.33
GSE63270 0.969 12.03 ± 3.11 12.33 5.33 - 18.00
GSE71935 0.902 14.60 ± 3.42 14.67 7.33 - 22.00
Golub et al. (1999) 0.900 12.51 ± 2.43 12.33 8.00 - 17.00

Reported values from 31 runs of the stratified 3-fold cross-validation. Average accuracy as reported from
Table 6.3. Std = Standard deviation; Min = Minimum value reported in all runs; Max = Maximum value
reported in all runs.

Even those genes with a small number of repetitions are significant, however, when the

probability of it happening at random is considered, what, as shown in the last column of

Table 6.5 and discussed in Section 6.1.3, is highly unlikely.

To further validate this selection, Table 6.6 brings a literature review of the most

selected genes from Table 6.5, considering the PubMed5 repository. On total, 44% of

those genes were already described in the literature as being relevant for the specific can-

cer type of their corresponding dataset, 20% were described as relevant for other cancer

types, 20% were not described as relevant for any cancer type, and 16% were not yet

described in the literature. Interestingly, the aforementioned gene ERBB2 (HER2) was

the most selected gene in its dataset among all experiments, while also being described

as one of the most relevant genes in breast cancer in general (BORGES et al., 2018;

NATTESTAD et al., 2018; AL., 2018; SOARES et al., 2018).

5<https://www.ncbi.nlm.nih.gov/pubmed/>

https://www.ncbi.nlm.nih.gov/pubmed/
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6.4.1 Comparison with SVM

As mentioned earlier, the literature points to SVM as being the best classifier of

microarray data, making a comparison between N3O and SVM relevant. The accuracy

of N3O and SVMs with RBF kernel and hyperparameters tuned by grid search were

compared in three configurations: (i) over the original dataset (Table 6.7, column 4); (ii)

after filtering the genes with Kruskal-Wallis H Test (Table 6.7, column 5); (iii) using

only the genes selected by N3O (Table 6.7, column 6). 31 runs of stratified 3-fold cross-

validation with random partitions were performed for each configuration, keeping the

same partitions over different algorithms. The results are in Table 6.7. N3O showed some

competitive results against SVM, especially for the datasets GSE8671, GSE32323, and

GSE41328, all of them of colorectal cancer. For most of the datasets, however, SVM

remains as the classifier with more predictive power.

From the discussion in Section 3.4, it is known that gene selection performed with

a classifier is only specific to that given algorithm, meaning that there is no guarantee

that the selected features will have a good performance with other methods (ANG et al.,

2016). Furthermore, SVMs are usually insensitive to a large number of irrelevant genes,

and FS often biases down their accuracy (STATNIKOV; WANG; ALIFERIS, 2008). Even

so, when the genes selected by the N3O were applied to SVM (Table 6.7, column 6), its

performance was not hurt, and for most of the datasets, it actually had a slight improve-

ment. This result suggests that the selected genes are not methodological artifacts, and

could be generalized and further explored even by different algorithms.

6.4.2 Comparison with another Neuroevolution method

A final experiment was made to compare the results of N3O with the recent

Neuroevolution method for microarray classification described in Garro, Rodríguez and

Vazquez (2017) and discussed in Section 3.5. This approach used the ABC optimization

algorithm to select genes and chose the top three ranked genes to be the inputs of ANNs

evolved by DE.

The structure of this experiment is different from the one described in the last

sections to be coherent with the methodology described in Garro, Rodríguez and Vazquez

(2017). Thus, instead of 31 runs of stratified 3-fold cross-validation, we report the average

test accuracy and FS of N3O over 30 independent runs with random partitions (80%
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Table 6.7: Accuracy comparison of N3O and SVM.
Datasets Class N3O SVM KW&SVM N3O&SVM
GSE42568 0.978 ± .011 0.985 ± .007 0.985 ± .006 0.990 ± .006

Basal 0.934 ± .016 0.972 ± .003 0.971 ± .004 0.968 ± .012
HER 0.946 ± .019 0.962 ± .010 0.950 ± .011 0.973 ± .026

GSE45827 Cell Line 0.994 ± .006 1.000 ± .000 1.000 ± .000 0.999 ± .003
Luminal A 0.934 ± .019 0.968 ± .014 0.979 ± .007 0.965 ± .017
Luminal B 0.890 ± .026 0.931 ± .013 0.928 ± .016 0.923 ± .024
Normal 0.988 ± .009 0.995 ± .003 0.993 ± .000 0.994 ± .005
Cancer Epithelial 0.736 ± .058 0.857 ± .028 0.857 ± .028 0.850 ± .053

GSE10797 Cancer Stroma 0.744 ± .035 0.761 ± .036 0.761 ± .036 0.825 ± .062
Normal 0.930 ± .024 0.924 ± .019 0.924 ± .019 0.965 ± .018

GSE44076 0.982 ± .009 0.983 ± .003 0.984 ± .003 0.987 ± .008
GSE44861 0.823 ± .031 0.829 ± .045 0.829 ± .045 0.829 ± .059
GSE8671 0.984 ± .018 0.698 ± .065 0.698 ± .065 0.667 ± .000
GSE21510 0.956 ± .032 0.986 ± .021 0.986 ± .021 0.986 ± .039
GSE32323 0.939 ± .040 0.692 ± .066 0.692 ± .066 0.686 ± .050
GSE41328 0.968 ± .045 0.695 ± .061 0.697 ± .040 0.722 ± .000

AML 0.901 ± .035 0.947 ± .016 0.920 ± .019 0.954 ± .039
Bone Marrow 0.989 ± .017 0.984 ± .000 0.998 ± .005 0.997 ± .007

GSE9476 Bone Marrow CD34 0.963 ± .023 0.997 ± .007 0.980 ± .019 0.984 ± .018
PB 0.994 ± .009 0.985 ± .013 1.000 ± .000 0.999 ± .004
PBSC CD34 0.976 ± .022 0.984 ± .010 0.997 ± .006 0.995 ± .012

GSE14317 0.964 ± .040 0.957 ± .044 0.991 ± .025 0.996 ± .012
GSE63270 0.969 ± .022 0.999 ± .003 0.998 ± .004 0.991 ± .011
GSE71935 0.902 ± .046 0.896 ± .034 0.923 ± .034 0.966 ± .030
Golub et al. (1999) 0.900 ± .032 0.961 ± .022 0.978 ± .012 0.943 ± .028

Average 0.931 ± .070 0.918 ± .102 0.921 ± .103 0.926 ± .102

The accuracy is the result of 31 runs of the stratified 3-fold cross-validation. All SVM versions used the RBF kernel
and had their hyperparameters tuned by grid search. N3O = average accuracy of the proposed method; SVM = av-
erage accuracy of SVM; KW&SVM = average accuracy of SVM after filtering the data with Kruskal-Wallis H Test;
N3O&SVM = average accuracy of SVM using only the genes selected by the proposed method. In bold is the best
average accuracy of each dataset. Best results with statistical significance (p < 0.01) are marked in blue.

training, 20% training). The number of generations of N3O was also halved to match the

number of fitness evaluations in Garro, Rodríguez and Vazquez (2017). The comparison is

showed in Table 6.8. While N3O accuracy was slightly best, the results are inconclusive.

Nevertheless, it shows that N3O can match recent results in the literature.

Table 6.8: Comparison of N3O with another Neuroevolution
method.
Method Dataset Accuracy FS
N3O Golub et al. (1999) 0.917 ± .095 6.27 ± 2.38
ABC&DE Golub et al. (1999) 0.912 ± .067 3

N3O = average accuracy and number of selected features of our method
for the testing set (20%) with random partition over 30 repetitions;
ABC&DE = accuracy reported by the method from Garro, Rodríguez
and Vazquez (2017) for the testing set (20%) with random partition over
30 repetitions; FS = number of selected features.
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6.5 Expression Patterns and Gene Selection

After computing the accuracy and FS of N3O over all datasets with several runs of

stratified 3-fold cross-validation, a final experiment was performed, consisting of a single

run of N3O considering all available samples (no testing set), with the objective of ana-

lyzing the gene selection and expression patterns found by the method with all the infor-

mation available and considering all selected genes together, since an ANN will always

use them combined. The set of genes representing an expression pattern was extracted

from each GSE based on the best neural network for each run. Figs. 6.10 to 6.26 show

these results by representing (a) the best neural network, whose inputs are the selected

genes; (b) a 2D vision of the whole dataset considering the selected genes expression by

applying PCA to the original data; (c) the heatmap of genes expression, with rows (se-

lected genes expression) and columns (samples) ordered by hierarchical clustering. The

class labels in these images are always the original sample labels in the datasets. For the

GSEs with more than two classes, only the gene expression patterns that are exclusive to

the tumoral classes are discussed.

Table 6.9 lists: (i) the number of genes that were selected for each GSE, per class.

In this sense, the algorithm selects the set of genes that differ in a given condition from

the other; (ii) the number of genes that were already associated to the GSE’s cancer type

in the literature; (iii) the quantity of long non-coding RNA (lncRNAs); (iv) the amount of

genes that were not found to be related to any type of cancer in the literature, or that don’t

have a clear described function, such as predicted genes; and (v) the number of genes that

were not observed to be related to the GSE’s cancer type in the literature, but found in

others. The complete list of selected genes with their associated cancer type can be found

in Table 6.5. In summary, among the 177 selected genes, 82 were already associated to

their given cancer type (lncRNA apply here), 5 were lncRNAs, 44 were not yet related to

the GSE’s cancer type, but were observed to be altered in other cancer types, and a total

of 50 genes didn’t return any hits from the scientific literature search, either because they

don’t possess a clear described function, or were just not related to any tumoral condition

(lncRNA apply here). Interestingly, each expression pattern was unique, and only the

REC8 Meiotic Recombination Protein (REC8) was common between a set of Leukemia

and one of Colorectal cancer (CRC).
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Figure 6.10: Detailment of gene selection for GSE42568 - Breast Cancer. (a) The best
neural network considering all available samples. The blue circle is the output node, the
white circles are hidden nodes, and grey squares are input nodes. Arrows are connections,
whose thickness is proportional to the absolute values of their weights. Arrows are red if
the weight is negative, or green otherwise. The number inside the hidden nodes inform the
order of emergence. (b) Principal component analysis of the expression of genes present
in the network. (c) Heatmap of raw gene expression of the selected genes (rows). The red
and blue bar at the top is the true label of the samples (columns). The order of samples
and genes was determined by hierarchical clustering represented by the dendrograms.

(a) Neural network
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Figure 6.11: Detailment of gene selection for GSE45827 - Breast Basal. (a) The best
neural network. (b) Principal component analysis of the genes expression. (c) Heatmap
of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.12: Detailment of gene selection for GSE45827 - Breast Luminal A. (a)
The best neural network. (b) Principal component analysis of the genes expression. (c)
Heatmap of raw gene expression of the selected genes. All details as in Fig. 6.10.

(a) Neural network

244035_at

308

228554_at

211110_s_at
204092_s_at

luminal_A

203930_s_at201262_s_at

1593

1011

(b) PCA

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Component 1 (0.609)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
o
m

p
o
n
e
n
t 

2
 (

0
.1

4
4
)

others luminal_A

(c) Heatmap

X1
71

X2
22

X2
35

X2
32

X2
12

X1
83

X2
18

X2
28

X1
87

X2
06

X1
85

X2
25

X2
23

X2
10

X1
89

X1
77

X1
72

X2
03

X1
80

X1
78

X1
75

X2
15

X2
19

X2
17

X2
09

X2
08

X1
95

X1
91

X1
90

X2
20

X2
04

X1
94

X1
84

X1
99

X1
74

X2
34

X2
31

X2
13

X2
21

X1
73

X2
24

X2
05

X2
16

X1
81

X2
00

X1
26 X9
8

X2
30

X1
34

X2
36

X1
09

X1
33

X1
53

X1
30 X8
8

X1
58

X1
08

X1
16

X1
56

X1
17 X9
6

X2
14

X1
14

X1
21

X2
11

X1
88

X1
51

X1
23 X8
9

X1
93

X2
29

X2
37 X8
6

X2
27

X1
97 X9
7

X1
92 X9
5

X1
27

X1
52

X2
38

X1
00

X1
32

X1
29

X1
82

X2
02

X2
26

X1
04

X1
05

X1
96

X1
07

X1
22

X1
54

X1
37 X9
9

X1
15

X1
36

X1
86

X2
33

X1
03

X2
07

X2
01

X1
98

X1
48

X1
39

X1
50

X1
60

X1
11

X1
62

X1
64

X1
65

X1
43

X1
12

X1
38

X1
68

X1
13

X1
31

X1
57

X1
67

X1
59

X1
55

X1
19

X1
02

X1
40

X1
28

X1
66

X1
35 X9
1

X1
63

X1
49

X1
61

X1
45

X1
41

X1
18

X1
24

X1
46

X1
06

X1
10

X1
01

X1
42

X1
47 X9
0

X9
4

X8
4

X1
44

X1
25 X9
3

X1
20 X8
7

X8
5

X9
2

204092_s_at

211110_s_at

201262_s_at

244035_at

203930_s_at

228554_at

−3 −1 1 2 3
Row Z−Score

Color Key

luminal_A
others



75

Figure 6.13: Detailment of gene selection for GSE45827 - Breast Luminal B. (a)
The best neural network. (b) Principal component analysis of the genes expression. (c)
Heatmap of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.14: Detailment of gene selection for GSE45827 - Breast HER. (a) The best
neural network. (b) Principal component analysis of the genes expression. (c) Heatmap
of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.15: Detailment of gene selection for GSE10797 - Breast Epithelium. (a)
The best neural network. (b) Principal component analysis of the genes expression. (c)
Heatmap of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.16: Detailment of gene selection for GSE10797 - Breast Stromal. (a) The best
neural network. (b) Principal component analysis of the genes expression. (c) Heatmap
of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.17: Detailment of gene selection for GSE44076 - CRC Adenocarcinoma. (a)
The best neural network. (b) Principal component analysis of the genes expression. (c)
Heatmap of raw gene expression of the selected genes. All details as in Fig. 6.10.

(a) Neural network

11762923_x_at

24

11758083_s_at
normal

11757530_a_at

11744691_x_at
11744487_x_at

11740441_a_at

308

11740105_x_at
11733707_x_at

11733581_a_at

373

11724871_a_at
11722527_s_at

11719018_at

1831

501

611

946

(b) PCA

(c) Heatmap

X7
37

X7
32

X6
54

X6
81

X6
84

X7
20

X7
33

X6
74

X6
98

X6
71

X7
15

X7
38

X7
01

X7
18

X7
41

X6
49

X7
11

X6
83

X7
39

X7
28

X6
97

X6
50

X7
19

X7
43

X6
99

X6
87

X7
23

X7
05

X7
07

X7
42

X6
78

X7
13

X6
85

X6
89

X7
02

X6
59

X7
22

X7
16

X7
25

X6
56

X6
61

X6
69

X6
75

X7
40

X7
03

X7
35

X7
27

X6
63

X6
58

X6
91

X6
95

X6
52

X6
55

X6
96

X6
57

X6
76

X6
67

X6
68

X7
34

X6
79

X6
88

X6
48

X6
64

X7
04

X7
24

X6
82

X7
45

X6
62

X6
72

X7
21

X6
90

X7
31

X6
86

X6
66

X7
14

X6
60

X6
77

X7
00

X7
44

X6
51

X7
09

X6
73

X6
93

X7
30

X7
10

X6
80

X7
29

X6
92

X7
06

X7
08

X6
53

X7
26

X7
17

X6
70

X7
12

X6
94

X6
65

X7
67

X8
08

X7
90

X8
33

X7
64

X8
25

X8
18

X7
69

X8
42

X8
27

X7
48

X7
87

X8
22

X7
76

X7
52

X7
55

X8
03

X7
74

X7
61

X7
53

X7
47

X7
65

X7
75

X8
19

X7
72

X7
86

X7
57

X7
91

X7
85

X8
09

X8
32

X7
60

X8
23

X7
84

X8
16

X8
14

X7
66

X8
24

X8
06

X8
43

X8
02

X7
79

X7
50

X7
97

X8
00

X8
41

X7
82

X8
04

X7
46

X7
89

X7
63

X8
26

X8
34

X7
54

X7
59

X7
58

X7
88

X7
51

X8
28

X7
96

X7
62

X8
07

X8
39

X8
10

X7
78

X8
38

X7
49

X8
35

X8
01

X7
56

X7
80

X8
05

X8
36

X8
13

X7
98

X8
17

X8
30

X7
73

X7
92

X7
81

X7
94

X7
77

X8
40

X8
37

X8
20

X7
71

X7
83

X8
11

X8
31

X8
29

X7
99

X8
12

X7
68

X7
95

X8
21

X7
70

X8
15

11740441_a_at

11762923_x_at

11722527_s_at

11733581_a_at

11758083_s_at

11740105_x_at

11744487_x_at

11724871_a_at

11733707_x_at

11757530_a_at

11719018_at

11744691_x_at

−4 0 2 4
Row Z−Score

Color Key

normal
adenocarcinoma



80

Figure 6.18: Detailment of gene selection for GSE44861 - CRC. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.19: Detailment of gene selection for GSE8671 - CRC Adenoma. (a) The best
neural network. (b) Principal component analysis of the genes expression. (c) Heatmap
of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.20: Detailment of gene selection for GSE21510 - CRC. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.21: Detailment of gene selection for GSE32323 - CRC. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.22: Detailment of gene selection for GSE41328 - CRC Adenocarcinoma. (a)
The best neural network. (b) Principal component analysis of the genes expression. (c)
Heatmap of raw gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.23: Detailment of gene selection for GSE9476 - AML. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.10.
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Figure 6.24: Detailment of gene selection for GSE14317 - ATL. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.24.
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Figure 6.25: Detailment of gene selection for GSE63270 - AML. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.24.
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Figure 6.26: Detailment of gene selection for GSE71935 - JMML. (a) The best neural
network. (b) Principal component analysis of the genes expression. (c) Heatmap of raw
gene expression of the selected genes. All details as in Fig. 6.24.
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Table 6.9: Number of associated genes obtained from each GSE.
GSEs-Cancer Genes Hits lncRNA NHF Other
GSE42568 - Breast Cancer 8 4 1 2 1
GSE45827 - Breast Basal 9 5 NA 2 2
GSE45827 - Breast LuminalA 6 5 1 1 NA
GSE45827 - Breast LuminalB 7 2 NA 5 NA
GSE45827 - Breast HER 6 3 NA 3 NA
GSE10797 - Breast Epithelium 8 5 1 1 2
GSE10797 - Breast Stromal 12 6 NA 3 3
GSE44076 - CRC Adenocarcinoma 12 7 NA 2 3
GSE44861 - CRC 8 5 NA 2 1
GSE8671 - CRC Adenoma 23 10 1 7 6
GSE21510 - CRC 9 1 NA 3 5
GSE32323 - CRC 6 2 NA 1 3
GSE41328 - CRC Adenocarcinoma 24 10 NA 7 7
GSE9476 - AML 18 8 NA 6 4
GSE14317 - ATL 4 1 NA 2 1
GSE63270 - AML 6 3 1 2 1
GSE71935 - JMML 11 5 NA 1 5

Hits = Genes that were already observed to be expressed in the GSE’s cancer type; lncRNA
= Long non-coding RNA; NHF = No Hits Found. Number of genes that were either not
found to be related to any type of cancer in the scientific literature, or that don’t have
a clear described function so far; Other = Number of genes not observed in the GSE’s
cancer type, but already found to be expressed in other types of cancer; NA = Not Appli-
cable; CRC = Colorectal Cancer; AML = Acute Myeloid Leukemia; ATL = Adult T-Cell
Leukemia/Lymphoma; JMML = Juvenile myelomonocytic Leukemia; HER = Breast Can-
cer - HER Status. Table made in collaboration with Dr. Bruno César Feltes - SBCB Lab,
INF-UFRGS.
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As mentioned in Section 6.1.4, DAVID was employed to search for the significant

GO and cellular localization of the 177 selected genes, providing a better understanding of

the nature of the obtained expression patterns illustrated in Figs. 6.10 to 6.26. Concerning

the cellular component, the majority of the genes were related to extracellular exosomes,

cell surface, plasma membrane, endoplasmatic reticulum and the cytosol (Fig. 6.27). As

for GO, the main bioprocesses were extracellular matrix organization, response to hy-

poxia, signal transduction, and positive regulation of cell proliferation (Table 6.11).

Figure 6.27: The number of genes related to the major cellular components. The
five most significant and abundant categories to which the selected genes were classified
are related to the extracellular exosomes, cell surface, plasma membrane, endoplasmatic
reticulum, and the cytosol. Image made in collaboration with Dr. Bruno César Feltes -
SBCB Lab, INF-UFRGS

Table 6.11: Major GO derived from all selected genes.
Bioprocesses Corrected p-value
Extracellular Matrix Organization 1.9× 10−1

Response to Hypoxia 7.7× 10−1

Signal Transduction 8.6× 10−1

Positive Regulation of Cell proliferation 8.0× 10−1

Table made in collaboration with Dr. Bruno César Feltes - SBCB Lab,
INF-UFRGS.
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6.6 Biological role of selected genes

From the 177 selected genes, 50 genes were either not related to any type of can-

cer or didn’t possess a clear functional description, leaving a total of 127 genes already

described in the literature as expressed in some type of cancer. Selecting genes with no

described function yet is normal to any expression analysis: there are still many known

DNA segments in the human genome with no described function that can impact on cancer

biology (TUTAR et al., 2016; EMADI-BAYGI et al., 2017; POLISENO; MARRANCI;

PANDOLFI, 2015; SHI et al., 2018; WEDGE et al., 2018), and studies like these have the

potential to provide a first glimpse of functional role for such genes. Moreover, among

those 127 genes, 82 (64.5%) were related to their specific cancer types, and 44 were ob-

served to be altered in some way in other types, becoming potential targets to be explored

in future works. All genes are described in Table 6.5, with their associated cancer types

and corresponding references.

Most of the selected genes act in the plasma membrane and extracellular exo-

somes (Fig. 6.27), known as fundamental aspects of cancer biology (SAITOH, 2018;

GKRETSI; STYLIANOPOULOS, 2018; COUTO et al., 2018; MAIA et al., 2018; LIU

et al., 2015; FILIPPINI; SICA; D’ALESSIO, 2018; STUELTEN; PARENT; MONTELL,

2018). Another interesting fact is that N3O selected five lncRNAs (Table 6.11). In con-

trast to mRNAs, lncRNAs do not encode to proteins but are critical transcriptional reg-

ulators that modulate gene expression through multiple molecular mechanisms (HU et

al., 2018; CHAN; TAY, 2018). Among the five lncRNAs selected by N3O was PVT1

(GSE10797 - Breast cancer), that has already been associated with triple-negative breast

cancer (TANG et al., 2018).

6.7 Chapter conclusion

This chapter described several experiments in order to validate N3O, the proposed

method. The evolutionary process was illustrated by plots that reveal different aspects

of the algorithm. The accuracy and FS of N3O was compared with regular FS-NEAT,

SVM, and another neuroevolution method, showing positive results. The generalizability

of the genes selected by N3O was also tested by successfully applying them to SVM

classification. Finally, the biological role and relevance of the selected genes was assured

by a literature review. The next chapter brings a conclusion to this work.
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7 CONCLUSION

In this work, a pipeline for microarray classification and gene selection was de-

veloped by employing Neuroevolution as a method capable of efficiently performing both

tasks autonomously. The preprocessing of microarray datasets prior to the machine learn-

ing application to assure better biological results applied in this work was also a highlight.

This evolutive method builds upon the FS-NEAT algorithm, adding new operators for bet-

ter exploration of the search space, and designs neural networks for solving those tasks.

Tested with microarray datasets of three different types of cancer and varying num-

ber of samples, features, and classes, it successfully overcame the classification baselines

and showed good performance against other algorithms. In the case of SVMs, the use of

the features selected by this method did not disturb the classification and, for some cases,

even improved it, a result not expected according to the literature and that may show the

quality of the selection. The results also pointed to 177 genes involved in specific gene ex-

pression patterns that are closely associated to the extracellular matrix, plasma membrane

and exosomes, proposing new targets to be explored to uncover the molecular mecha-

nisms underlying colorectal cancer, leukemia and breast cancer. A total of 127 of those

genes were already described in the literature as relevant for cancer, 82 of them related

to the specific cancer type being analyzed. The successful validation of these targets in

the literature also reinforces the efficacy of this approach to correctly classify expression

patterns in different types of cancer.

The computational analysis of microarray data remains a challenging task, with

several opportunities for further improvements. The problems of overfitting and class

imbalance are still hard to overcome, and new strategies, such as the joint analysis of two

or more datasets, could help. It is also critical to increase the focus in revealing biological

information from the selected genes and to characterize their expressions signature in

order to truly provide aid in the biological research or creation of better treatments based

on the specific conditions of patients. This work may be improved in the future by the

addition of even more structural operators, hyperparameter tuning, and the incorporation

of biological information in the fitness function.
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Evolutionary Developmental Biology (Evo-Devo) is an ever-expanding field that aims to under-
stand how development was modulated by the evolutionary process. In this sense, "omic" studies
emerged as a powerful ally to unravel the molecular mechanisms underlying development. In this
scenario, bioinformatics tools become necessary to analyze the growing amount of information.
Among computational approaches, machine learning stands out as a promising field to generate
knowledge and trace new research perspectives for bioinformatics. In this review we aim to ex-
pose the current advances of machine learning applied to evolution and development. We draw
clear perspectives and argue how evolution impacted machine learning techniques.

Introduction
Evolutionary Developmental Biology (Evo-Devo) is a broad field
that seeks to understand the developmental relationship among
species, as well as how distinct phenotypes emerged from the evo-
lutionary process1,2 (Fig. 1). Hence, Evo-Devo encompasses dif-
ferent research approaches to elucidate the physiological, molec-
ular, phylogenetic, and phenotypic aspects of development1,3,4.
The molecular branching of Evo-Devo officially arose through a
budding interest in the experimentation with mutants derived
from different model organisms, and kept expanding ever since -
from the classical genetic and molecular experiments to phyloge-
netic and "omic" studies, such as metagenomics, large-scale tran-
scriptomics studies, and next-generation sequencing approaches,
the so called "Big-data"1,5–9. Due to the inherent complexity of
the developmental process together with the wide scope of Evo-
Devo research interests, and the fact that such techniques often
need the aid of computational methods to preprocess and analyze
the massive amount of information, bioinformatics tools become
crucial to accelerate and create new knowledge about the devel-
opmental aspects of evolution10.

In the last few years, numerous bioinformatics methods have
been developed and applied to molecular biology to cope with the
continuous advance of DNA, RNA, and protein data11–13. Amidst
the bioinformatics "toolkit" to analyze molecular and large-scale
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data, lies machine learning (ML) techniques. In short, ML is a
field of Computer Science that covers several algorithms capable
of performing tasks without being explicitly programmed. Being
derived from studies of artificial intelligence, pattern recognition,
statistics, and optimization, ML techniques "learn" how to make
predictions or decisions from data alone. Classification of ML by
the tasks or problems it tackles usually divides it in three cate-
gories: (i) supervised learning, that uses methods presented with
data inputs and the known desired outputs, and learn to map one
to another; (ii) unsupervised learning, that promotes informa-
tion discovery and feature learning from data without any previ-
ous labeling, and (iii) reinforcement learning, used for computer
agents that act in dynamic environments trying to maximize their
rewards in order to find a policy14 (Fig. 2).

ML has been successfully employed to analyze a broad range of
biological data, such as microarray15–18, RNA-seq19–21, protein
sequence and structural information22–24, epigenetics25, and ge-
nomic data26–28. The major difference of using ML techniques
to analyze Big-data, over other computational approaches, is its
capacity to extract information from large amounts of raw data
and build structural descriptions that can be used for predictions
and the creation of new understanding of a given problem29. As
a matter of fact, biology and computer science are long-term part-
ners, not only in an analytic point of view, but also through the
use of metalanguage. For example, the employment of terms such
as "hubs" for Systems Biology, which roughly translates to "nodes
within a network with above average number of connections"30,
or how we refer to multiple centralities parameters in a biologi-
cal network, has a strong computational background31. In many
ways, how we think about a biological problem could be associ-
ated to a programming language32–34.
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Fig. 1 A simplified illustration of the study of Evo-Devo, representing the integration of developmental processes and the evolutionary origin of phe-
notypic changes between organisms. The study of development is intrinsically related to the evolutionary process, and evolution-related events,
reproduction, and DNA mutations, deeply impact on how an organism develops and what features will create a higher adaptability on the next gener-
ation. Hence, Evo-Devo studies encompass a wide variety of research topics and interests that aim to outline how development and evolution shaped
the phenotypic variance we witness to this day.

Although ML is already widely explored to analyze Big-data,
its applications not only on Evo-Devo, but in developmental and
evolutionary studies that employ Big-data, are still scarce, the
vast majority we found being from the last three years. Never-
theless, due to the challenges that these studies face when ana-
lyzing different types of biological data they could be aided by
ML techniques. Thus, the aim of this article is to review the cur-
rent applications of different ML techniques to developmental and
evolutionary studies. We extensively searched the scientific liter-
ature for works employing evolutionary and developmental data,
or their combination (Evo-Devo). There are extremely few exam-
ples of true Evo-Devo studies using ML, thus some studies that
would not be considered an Evo-Devo topic, but could be applied
to Evo-Devo, are discussed, as well as how evolution shaped ML
techniques. We outline new perspectives, discuss the application
of ML on different "omic" data, and propose new directions based
on current knowledge.

We highlight that the present review has the ultimate goal to
guide bioinformatics software developers in the task of enhancing
or creating new ML tools to face the technical limitations when
working with biological data. We also hope to stimulate biol-
ogists to use different bioinformatics approaches when working
with evolutionary and developmental "omic" data.

A Glance on Evo-Devo Thinking in the Last
Decades

In the early 1980s, Evo-Devo emerged as a new research field,
effectively connecting evolution and developmental biology35.
Hence, Evo-Devo investigates the processes driving organism de-
velopment and how they are modulated during evolution to cre-
ate phenotypic diversity36. This thought arises from the method-
ological advances, such as gene cloning and sequencing, that al-
lowed the identification of the conservation of regulatory genes
shared by different species during embryogenesis35. It was ob-
served that these genes had conserved roles throughout devel-
opment, indicating developmental body structure homologies of
animals with distinct body plans35.

This knowledge originated one of the most important con-
cepts in Evo-Devo: that the organism possesses a basic collec-
tion of genes responsible to control development, called genetic
toolkit37. Many genes included in this toolkit encode transcrip-
tion factors responsible for body structures formation37. The
most known example is Hox genes, which act as important de-
terminants of body patterning and tissue differentiation36. They
were discovered in the fruit fly, Drosophila melanogaster, and pos-
teriorly in evolutionary distant species, such as beetles, earth-
worms, and humans, providing the first insight of direct links
between evolution and development36.

Phenotype is controlled by distinct regulation levels of the ge-
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Fig. 2 A summary of ML workflow with a schematic of a generic method and its algorithms. The raw data is obtained from measurements and
experiments and is preprocessed to be applied in the ML pipeline. This step can involve cleaning, outlier removal, normalization, standardization,
frequency balancing, and conversion. Additionally, features for dimensionality reduction or pattern recognition can be extracted from the data. The
features are used as input to a giving training model, and its results are evaluated. The Venn-Diagram depicts a list of ML algorithms from the three
major categories: supervised, unsupervised and reinforcement learning.

netic material, and this genotype-phenotype relationship is con-
ditioned by evolutionary pressure38. In this sense, the majority
of heritable phenotypic changes are a consequence of DNA mod-
ifications38. Mutations observed in Hox genes showed aberrant
transformations of the body (termed homeosis), such as the de-
velopment of the a leg pair in the fly antennae36. Despite this
abnormal morphology, during development, restrictions of the
possible phenotypic variability that may evolve occurs, and this
concept is called developmental constraints39. Different models
were proposed to describe the morphological evolution through-
out development, where the most known are: (i) the hourglass
model, which postulates that embryos are more variable in early
development, later converging to a similar morphology during
mid-development (a "phylotypic stage") and then progressively
diverge; and (ii) the early conservation model, that supports the
idea that at the beginning of embryogenesis is more conservative
among species39–41. At molecular level, Piasecka et al. demon-
strated that during the mid-development stage, regulatory ele-
ments are most conserved for transcription factors, consistent
with the hourglass model. However, it was shown that the early
stages of embryogenesis are less capable of tolerating gene muta-
tions, duplication and gene introduction39,41.

Although the field of Evo-Devo has greatly advanced our un-

derstanding of development, the question of how the morpho-
logic changes occur at molecular level during evolution is a diffi-
cult challenge. Currently, much data about developing phenotype
and genotype are available in the different databases, but the link
between this information is poorly understood. The integration
of information regarding genomic, transcriptomic and proteomic
data of developmental and evolutionary studies by bioinformat-
ics tools, specially by approaches that could process large volumes
of information with less computational cost, could greatly propel
Evo-Devo knowledge.

Brief Overview of Machine Learning Tech-
niques

In this section we briefly explain some of the major ML ap-
proaches presented in the works reviewed in the subsequent sec-
tions. The aim of this section is not to be an exhaustive review of
ML, or to review challenges, perspectives and limitations of such
techniques. Its purpose is merely to elucidate some key concepts
behind the most used algorithms found in Evo-Devo studies and
encourage researchers to further explore this field.
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Neural Networks

Artificial Neural Networks (ANN) are classical ML algorithms in-
spired by biological neural networks. This family of methods can
theoretically approximate any continuous function and is used
for supervised, unsupervised, and reinforcement learning under
different architectures. The building block of any ANN is the ar-
tificial neuron, presented in the detail of Fig. 3a. This computing
unit receives inputs multiplied by their respective weights, sums
them plus a bias, and apply this to a nonlinear activation func-
tion. The choice of activation function will depend on the task at
hand, but some of the most popular are the sigmoid, the hyper-
bolic tangent (tanh), and the rectified linear unit (ReLU). An ANN
is built by grouping neurons in layers connected to each other, as
illustrated in Fig. 3a. The input layer only corresponds to the data
values, and the hidden and output layers perform the computa-
tion. A neural network with one or more hidden layers is often
called a Multilayer Perceptron (MLP). The learning of these algo-
rithms occurs by finding the best set of weights and biases that
produces the desired output.

Recently, with the great advances in Big Data, parallel and dis-
tributed computing, and new optimization algorithms, we wit-
nessed the rise of deep learning (essentially ANNs with many
hidden layers), a branch of ML that became popular after being
responsible for major advances in fields such as speech recogni-
tion, image recognition, robots control, and bioinformatics. The
way it learns is usually by computing an error cost that informs
how far the ANN is from the desired answer, and then backprop-
agates this error through the network42. The weights are then
updated, often with some variation of the stochastic gradient de-
scent (SGD)43 algorithm. Different architectures of deep learn-
ing have been proposed for different tasks. Fig. 3b and Fig. 3c
show two of the most popular: Convolutional Neural Networks
(CNN)44 and Recurrent Neural Network (RNN)45.

CNNs are successful at analyzing spatial data, being widely
used in image recognition due to their local connectivity, invari-
ance to location and to local transition. They are formed by con-
volution layers, pooling layers, and fully connected layers. RNNs
are designed for use with sequential information, such as text,
hence the cyclic connections. Nowadays the most popular type of
RNN is the long short-term memory (LSTM)46. ANNs are pow-
erful algorithms, that were able to improve results in many areas
that other approaches struggled for years. However, one needs to
be cautious when implementing these models due to their com-
plexity and high number of hyperparameters. Large ANNs are
usually computationally expensive to train, rely in large amounts
of data, and are prone to overfitting (i.e., they learn how to clas-
sify well the training data, but have poor generalization power) if
regularization methods are not correctly used. Complete reviews
on the topic of deep learning and biological data are found in the
works of Angermueller et al.47 and Min et al.48.

Decision Trees

Decision trees49 are very common classification algorithms,
mostly due to their simplicity. In a nutshell, they consist of a
hierarchical flowchart that, at each level, has decision blocks that

ask something about the data and split it for the next level, or ter-
minal blocks that, when reached, classify the input into the cor-
respondent class. This can be visualized in the dummy example
in Fig. 4a, that illustrates how a decision tree would classify some
input with two features into four different classes. The learning in
this algorithm is the construction of the trees themselves. In this
sense, it is needed to find the feature from the data capable of
better splitting the dataset, and repeat this process with the splits
until all elements in a split belong to the same class. Usually the
way to define what is the best split is through information gain,
computing the entropy of the split. A high entropy means a more
mixed data50.

Decision trees have many advantages: they are computation-
ally cheap and provide a decision structure that is easy for users
to understand. They can also deal with numeric or nominal val-
ues. Unfortunately, they are very prone to overfitting50. The
Random Forest (RF) algorithm, presented in Fig. 4b, was created
to deal with this drawback. RF is an ensemble of many differ-
ent decision trees that promotes a voting between them to select
the final class. This greatly increases the accuracy performance of
the method, at the expense of making the decision process more
opaque to the user51. Reviews on decision trees and RF applied
to bioinformatics can be found in the works of Chen et al.52 and
Qi53, respectively.

Support Vector Machines

Support Vector Machines (SVM)54 are classifiers that work by
finding the line (in 2D), plane (in 3D), or hyperplane (in larger
dimensions) capable of splitting data into distinct classes. This
"divider" is called a separating hyperplane and works as a deci-
sion boundary, as illustrated in Fig. 5a. The task of the learning
algorithm in this case is to find the separating hyperplane that
maximizes the margins (the distance between the separating hy-
perplane and the closest points from each class to it), known as
support vectors. For data that is not linearly separable, as shown
in Fig. 5b, kernels are used. They transform the data, mapping
it to higher dimensions, where the separating hyperplane can be
determined50.

SVM are successful stock classifiers, meaning they perform well
on new datasets without the need of being modified. They are
usually not computationally costly, have low generalization errors
and, for a small number of dimensions, the obtained results are
easily interpretative. They have the drawback, however, of being
sensitive to kernel choice and tuning parameters, what may de-
mand higher knowledge and tests from the researcher. Besides
that, in their basic implementation, SVM are only capable of per-
forming binary classification and more complex tasks require al-
gorithm extensions50. A review on bioinformatics applications
using SVM is presented in the work of Byvatov and Schneider55.

Genetic Algorithms

Genetic Algorithms (GA) are a collection of metaheuristics
(stochastic methods, that makes use of randomness to find op-
timal or near optimal solutions for hard problems) that can be
applied to several different types of optimization problems56 -
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(a) Artificial Neural Network and neuron

(b) Convolutional Neural Network
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Fig. 3 (a) Example of an ANN. The input layer receives the numerical values, usually normalized or standardized. The hidden layers and output
layer perform the computation. The number of layers, number of neurons per layer, and number of connections must be set by the user. In detail, the
schematic of a single artificial neuron, with inputs, weights, bias, summation, and activation function. (b) Model of a generic CNN. The convolution
layers build feature maps (groups of local weighted sums), and the pooling layers get the maximum or average sample of regions in the feature maps.
(c) Detail of a simple RNN showing its cyclical connections, that allow it to perform analyzes on sequential data.

some being of the most popular options since 197056. They
differ from other metaheuristics in being populational methods,
meaning they track a set of possible solutions that are gradually
changed in order to converge to a local solution56, and in incor-
porating concepts from genetics and evolution.

In GA, the candidate solutions are called "individuals" in a "pop-
ulation", and are represented by a "genome" that codifies their
attributes. There are several genome representations, two of the
most common being binary or real values vectors57. All solu-
tions are given a "fitness" value, that is a measurement of their
quality, dependent of the specific problem. The GA operate it-
eratively over the solutions, by selecting which ones will remain
in the population, which will be transformed, and which will be
discarded (Fig.6). There are several different strategies on how
to represent a genome, or how to select individuals. The two
major operators in GA, responsible for the modification of exist-
ing genomes, are crossover and mutation, and once again there
are several distinct options. Crossover combines two individuals,
called "parents", thus creating a new individual with character-
istics from both parents, the "offspring", that possibly has better
fitness58. The mutation randomly changes a genome, thus adding
diversity and exploration in the algorithm. The core idea is to se-
lect the best individuals at each iteration (or "generation"), and
combine them to create a new population, with a small chance
of random mutations happening, thus converging to better solu-
tions.

Machine Learning Applied to Development
and Evolution

Although "omic" studies are broadly employed in developmental
and evolutionary research, ML is still a young partner in the pur-
suit to generate and prospect new knowledge from Big-data in
Evo-Devo. Few works mentioned in the next section have an evo-
lutionary or developmental approach - the minority truly combine
both aspects in an Evo-Devo topic. This reality is reflected on the
fact that Evo-Devo is a broad topic that requires the integration
of multiple kinds of biological data, a challenge we still have to
overcome. Thus, all studies applied to evolution or development,
with a Big-data background, that could be used for Evo-Devo are
regarded, as well as other studies outside of these topics. All stud-
ies reviewed in this work can be found on Table1. In addition, the
major types of data recurrently mentioned in the cited studies and
the algorithms that displayed the best performance, or could be
considered the best choice to work with such data for newcomers,
can be found in Table2. This, however, should be followed just as
an initial guidance for newcomers, as many tasks are domain spe-
cific and the expected results from some ML algorithms can vary
even with the smallest modifications.

Machine Learning, Evo-Devo and Genomics

After the Human Genome Project, the way we see cellular func-
tion, evolution and disease completely changed59. The massive
amount of genetic data accelerated the development of new stud-
ies and technologies, opening the way to the "Big-data era", gen-
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Fig. 5 (a) Example of a SVM classifying data (represented by dots and squares) in 2D. In this case, the separating hyperplane is the line that best
splits the data in two classes. The dots to the left belong to one class, whereas the squares on the right belongs to the other. The closest points to the
separating hyperplane are the support vectors. (b) In this case, the data is not linearly separable, so a kernel transformation is applied, mapping it to a
higher dimension, where a separating hyperplane exists.

erating large-scale information stored in several databases. Since
then, genomic and transcriptomic data continuously expanded,
providing a landscape of essential knowledge on DNA and RNA
architecture and functionality. Genomic and transcriptomic data
are some of the most essential aspects of molecular evolution and
are often regarded as basic knowledge to any Evo-Devo study60,
and the availability of whole genome sequences of different or-
ganisms offers a robust tool to study evolutionary alterations61,62.
An exceptional review by Necsulea and Kaessmann explains how
the vertebrate transcriptome evolved between different species,
organs, and chromosomes, as well as how transcriptomic changes
impact on phenotype63. The topic of comparative transcriptomics
across species is also discussed by Roux et al. in64.

An evolutionary study using transcriptomic data compared de-
velopmental stages of distant species (e.g. human, worm, and
fly) and revealed conserved cross-species modules enriched in
functions such as morphogenesis and chromatin remodeling65. It
was possible to identify common stage-associated genes between

worm and fly for every developmental stage65. Interestingly, a
transcriptomic meta-analysis study observed the clustering of ho-
mologous tissues belonging to distinct species, which is consistent
with the concept of developmental conservation of the gene pro-
gram across species66.

One of the most crucial biological process that controls embry-
onic development is the epigenetic program. In this sense, DNA
methylation is the best studied epigenetic modification that gov-
erns vertebrate development. Methylation patterns are respon-
sible for transcriptional repression, chromatin architecture and
cell identity across the vertebrate line, making it a pivotal sub-
ject in Evo-Devo67–69. An exceptional work by Yan et al. used
RF to study the relationship between DNA methylation and his-
tone modification in distinct genomic regions in human embry-
onic stem cells (hESC), fetal fibroblasts (IMR90), and H1-derived
neuronal progenitor cultured stem cells (NPC) to understand the
mechanisms underlying methylation dynamics on the mentioned
cell types70 (Table 1). WEKA71 implementation of RF was chosen
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Fig. 6 Schematic of a simple GA pipeline. A population of random individuals is generated, each of them representing a candidate solution. These
individuals are evaluated by some domain specific metric and, based on that, selected. The selected individuals can be subjugated to crossover or
mutation operators, that create new individuals. A new population is thus created, and the process repeats until the stop criteria is met.

after it obtained the best results on a comparison of the 10-fold
cross validation for 10 sampled datasets against other four algo-
rithms: SVM with Radial Basis Function (RBF)72 as kernel, deci-
sion tree J48 (also known as C4.5)73, naive Bayes14, and logistic
regression29. The authors satisfyingly predicted methylation pat-
terns, pointing histone modifications related to specific cell types
and genomic regions. During development, chromatin regions
display a dynamic and complex regulation that affects the tran-
scriptional expression of patterning genes, especially HOX, shap-
ing and modulating tissue and limb development74. Predicting
methylation patterning shows a promising application for ML in
epigenetics, by aiding to unravel chromatin dynamics.

Sheehan and Song described the first use of deep learning in
population genetic models by introducing a novel likelihood-free
inference framework applied for the problem of jointly inferring
natural selection and demographic history75 (Table 1) with a
regular deep neural network model that took advantage of un-
supervised pretraining using autoencoders for weights initializa-
tion76. The model was trained with 345 statistics from simulated
data of different demographics for an African population of D.
melanogaster under distinct selection parameters for each demo-
graphic history. The method was used to infer the overall de-
mography and genomic regions under selection for 197 African
D. melanogaster genomes from Zambia77, learning about the his-
tory of their effective population size and selective landscape. In-
terestingly, the authors discovered that multiple alleles are more
frequently sustained in the genetic pool (balanced selection) near
centromeric regions of each chromosome, and that soft sweeps,
where a neutral mutation present in a given population can be-
come beneficial for an organism, also occur more frequently in
this region.

Still in the topic of natural population genetic studies, Pybus
et al. proposed the use of ML for the detection of positive se-
lection in genomic regions78 (Table 1). In this sense, the au-
thors used boosting79, a supervised classifier capable of maxi-

mizing the difference between two groups by estimating linear
regressions of input variables. They adopted a framework with
sequential consideration of four different boosting functions, cre-
ating a hierarchical decision tree, allowing it to discover different
polymorphism features expected under the hard sweep model to
control the demography as population specific. The algorithm
was applied to three human populations from The 1000 Genome
Project∗, that created a genome-wide classification map of hard
selective sweeps. The method achieved a rate of 5.37% sweeps
misclassified as complete or incomplete. The complete sweeps
were easier to classify: 89.58% were correctly classified, while
only 43.41% of incomplete sweeps were correctly classified. Fi-
nally, 47.95% of the incomplete sweeps were left unclassified.
The authors attribute these results to the fact that the positive
selection tests detect beneficial mutations that already reached
fixation.

The search for regulatory regions within a genome was always
a topic of important discussion in Evo-Devo, since their evolution-
ary conservation usually implies critical gene expression patterns
that must be fine tuned, especially during development, such is
the case of Hox genes74. Following this line of thought, Congdon
et al. created GAMI, a program that employed GA to unravel reg-
ulatory motifs in non-coding regions in a given genome80. GAMI
represents the candidate solutions as sequences of nucleotides,
that are evaluated with "match count", a measurement of the
best consecutive match for the desired motif within the candidate
solution sequence, considering forward and reverse-complement
matches. The employed GA makes use of elitism and a new mu-
tation operator that truncates one end of a motif and then adds a
new base randomly at the other end.

∗http://www.internationalgenome.org
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Machine Learning, Evo-Devo and Protein Data

The understanding of protein molecular behavior, function, and
structural changes along the evolutionary process are key con-
cepts in Evo-Devo in different organisms. For example, in plant
development it was established that LFY, a key inducer of floral
meristemal genes in angiosperm, has a DNA-binding domain that
is evolutionary conserved, but retains a nonconserved N-terminal
that is likely necessary to allow the interaction of LFY with dif-
ferent protein complexes and promote the expression of differ-
ent transcription factors81. Another study showed that CD24,
an important regulator of cell differentiation of multiples tissues
in mammals, birds, and reptiles, has an intrinsically disordered
state, except in glycosylation regions of protein-ligand interac-
tion, in which it shows evolutionary conservation, indicating that
protein function and structure are critical in an evolutionary sce-
nario82. Moreover, an excellent review by Londraville et al. dis-
cussed in detail the evolutionary roles and structural conservation
of leptin, a peptide that regulates appetite and metabolic rates
in several species, as well as leptin receptors83. In this sense,
they argue how leptin has several conserved protein-protein in-
teraction (PPI) regions, post-translational modification sites and
regions necessary to protein folding83. Other concepts and cases
of the importance of structural conservation and relation were
already discussed in84 and85.

Nonetheless, biological phenomena are derived from the inter-
action of hundreds of pathways, biomolecules and chemical reac-
tions, thus it is plausible to assume that it is virtually impossible
to describe the function of a cell through the use of mathemat-
ics. However, in molecular biology, the study of protein structure
and how a protein behaves is perhaps the most mathematically
applicable field in Biology, since it is grounded on thermodynam-
ics, quantum physics, and classical mechanics, and has dozens of
techniques developed to study proteins conformational behavior
based on their nature86–88.

In a ML context, several studies using different approaches
were applied to protein structural information. In this sense, a
recent study by Farhoodi et al. implemented Support Vector Re-
gression (SVR)89, a variation of the SVM adapted to regression
problems, using physico-chemical aspects and evolutionary con-
servation of binding regions, totaling 16 different features to rank
PPI regions90,91 (Table 1). The SVR model was trained using the
RBF as kernel, with a training dataset with 6400 complexes and
a testing set with 1000 complexes. The SVR approach had bet-
ter performance than pyDock92 and ClusPro93 in identifying top-
10 complexes, and achieved lower average ranking error. When
compared with RosettaDock94 the proposed method had worse
ranking error by a small difference but was able to identify more
top-10 complexes in six out of fifteen test cases, while Rosetta-
Dock identified more top-10 complexes in four cases. This ap-
proach clearly indicates the usefulness of ML approaches together
with evolutionary data, although it doesn’t have a developmental
background.

Moreover, McSkimming et al.95 recently described a method
for protein kinase classification using protein tridimensional data
from the eukaryotic lineage (Table 1). The authors created two

sets of kinase amino acid chains profiles from the Protein Data
Bank96, one of labeled chains and other of unlabeled chains, with
3,365 and 1,766 elements, respectively. Each chain was defined
as an unique vector with the φ , ψ, and χ1 angles at each aligned
residue, plus the pseudo-dihedral angle through the alpha carbon
of adjacent quads of residues, totalling 961 features per chain. A
few feature selection algorithms, such as OneR, chi-squared, Reli-
efF, Gain-Ratio, and correlation-based feature selection were used
together in a training set with 1,000 chains and 10-fold cross val-
idation to select the features that better divided the data in active
and inactive structures. These features were used by a RF classi-
fier, that was reported as most accurate in comparison with naive
Bayes, ANN, and SVM. All these tested algorithms achieved classi-
fication accuracies greater than 97% and could make predictions
with missing atoms or residues.

Phylogenetic studies are focused in the comparison of genomic
or proteomic data to draw new information about the evolution-
ary relationship between genes and proteins, and how this associ-
ation could be related to new functions and accurate classification
of gene and protein families. Phylogenetics are not a Big-data is-
sue per se, but using phylogenetic concepts is proven to be useful
together with structural and ML. For example, Liu successfully ap-
plied RNNs in the classification of protein function directly from
amino acid sequence without sequence alignment, heuristic scor-
ing, or feature engineering97 (Table 1). The RNN used common
LSTM and was trained on datasets from UniProt, being used in
the tasks of predicting different protein functions and out-of-class
predictions of phylogenetically distinct protein families that have
similar functions, allowing the prediction of remote homologies,
that have been highly useful for Evo-Devo studies, especially to
trace homologies of development-related proteins. The inputs
were the amino acids residues represented by an one-hot vec-
tor and were scanned by the forward layer of the RNN from the
N- towards the C-terminus and reversed for the backward layer.
This architecture allows the use of context from both sides of each
position. The method was able to satisfactorily predict four func-
tional classes: iron sequestering proteins, cytochrome P450 pro-
teins, serine and cysteine proteases, and G-protein coupled re-
ceptors97. The author further tested his functional predictions by
testing the iron levels in Escherichia coli for the iron sequestering
proteins. The results showed a significant decrease in iron levels
in all predicted proteins.

Khater and Mohanty took advantage of Hidden-Markov Models
(HMM)98 to identify and classify AMPylation domains in differ-
ent species99 (Table 1). HMMs, which are statistical models used
for capturing consensus information from a given set, have been
used for classification and identification of various protein do-
mains100–102, and, in this work, remarkably outperformed the
results from both standalone SVM with a single feature being
used to encode the sequence information, and hybrid SVM us-
ing a combination of features, besides being better to overcome
insertions and selections than SVMs. The authors argue that a
possible explanation for this difference in performance between
their method and others is the presence of extra helices and large
insertions in members of the Fido family. HMMs models for each
family were build using positive datasets and multiple sequence
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alignment of non redundant set of proteins. The data generated
by the authors helped elucidate how protein sequence and func-
tion co-evolved and how ML can be applied to both protein and
phylogenetic data.

Wan et al. combined protein sequence and gene ontology data
with RNA-seq expression profile to train a SVM model to enhance
protein function identification in D. melanogaster development103

(Table 1). The work makes use of the FFPred server, that inputs a
query amino acid sequence to create a set of GO term predictions.
After being converted into feature descriptors, this information is
screened against a library of SVM. A binary decision indicating
if the amino acid sequence should obtain the annotation term is
output for each classifier. The GO classes are represented by five
SVM classifiers trained with RBF kernels104. The classification
system proposed by Wan et al. could benefit Evo-Devo studies in
great length due to the integration of multiple molecular infor-
mation, an approach more closely related to a developmental re-
ality. Although the authors successfully identified new functions
for unannotated proteins and were able to associate them with
developmental stages, it should be noted that this was possible
due to the high quantity of biological data for D. melanogaster.

Not related to Evo-Devo, but with a high potential as a new tool
for such studies, Nauman et al. proposed DeepSeq, a CNN built to
predict protein function105 (Table 1). The authors used as input
protein sequences from 72,945 proteins in H. sapiens, with max-
imum length of 2,000 amino acids, that were classified into five
frequent GO classes, namely: (i) ATP binding; (ii) Metal ion bind-
ing; (iii) DNA biding; (iv) Zinc ion binding; and (v) Nucleic acid
binding. DeepSeq outperformed BLAST, the most common algo-
rithm used for function prediction, mostly because it showed less
false positives for proteins with multiple functions, since BLAST
transfers the complete annotation in case of high sequence simi-
larity, despite the heterogeneous nature of similar proteins. The
model was also reported as being able to localize the residue po-
sitions in the amino acid sequence that are involved in particu-
lar molecular activities. DeepSeq is a good example of how ML
techniques can be efficient as new tools in evolutionary studies
using protein sequence. However, it could be interesting to test
the authors approach using a more diverse list of GOs, or data
from organisms with less protein descriptions and available GOs.
A similar CNN application was made for DNA sequences106.

Finally, another study that used evolutionary information to
predict phosphorylation sites was made by Biswas et al.107 (Ta-
ble 1). The authors created the Phosphorylation PREDictor
(PPRED), a SVM classifier with RBF kernel that used sequence in-
formation of the PSSM profile employed by PSI-BLAST108, in ad-
dition to phosphorylation information of serine (Ser), threonine
(Thr) and tyrosine (Tyr) residues in Phospho.ELM109. Since the
training data of 5724 phosphorylated proteins was unbalanced
in regard of positive and negative sites annotated, the authors
performed a change in the ratio of the samples in order to avoid
bias in the model. Evaluating an independent benchmark, the
proposed method correctly predicted 152, 57, and 74 phosphory-
lated Ser, Thr, and Tyr sites out of 211, 85, and 97 annotated Ser,
Thr, and Tyr sites, respectively. Out of existing prediction systems,
PPRED had better performance in terms of Q3 score (accuracy on

the classification of the secondary structure in helix, strand, and
coil) than five other predictors. The interesting aspect of this work
was to predict post-translational modification sites in this partic-
ular case: phosphorylation. Nonetheless, other post-translational
modifications impact on embryonic development. For example,
sumoylation is related to a broad range of cellular function dur-
ing the embryonic phase, but majorly in the brain110,111. Like-
wise, methylation and acetylation are also tightly associated to
brain development112,113. Phosphorylation itself is of great im-
portance for multiple aspects of development, as was seen in
D. melanogaster114. Due to their importance, predicting regions
of post-translational modifications, particularly for least-known
modifications, such as sumoylation, could greatly benefit devel-
opmental studies, especially if combined to function prediction
and phylogenetic studies.

New grounds to explore: Morphometric data has joined the
party

In 1917, D’Arcy Wentworth Thompson published his book termed
"On Growth and Form", where he discusses how biological trans-
formations are composed by geometric shapes and governed by
"laws of growth"115. In his book, it was founded the concept that
the morphological shapes of all organisms can be described by
physical and mathematical principles115. The morphological as-
pects of an organism and its tissues are the results of generative
forces that acted on them, which means that the morphological
growth of an organism can be generalized in all individuals within
a species or related species115. In this sense, body shape is not ex-
plained only by a random variation that gives rise to a functional
feature115,116. In fact, it is accepted that the "laws of growth" are
responsible to create, mold and transform the morphology of bio-
logical structures, and these structures undergo natural selection,
as both basis and subject of evolution115. Thus, it is no surprise
that this new ideas of how to study the morphological aspects of
an organism falls within Evo-Devo interests. A great review by
Wanninger comprehensively discusses the new paradigms of the
integration of morphological data in Evo-Devo research, called
MorphoEvoDevo117.

Morphogenesis is molded by mechanical forces that stimulate
the movement and deformation of an element, according to its
resistance118. These mechanical forces can be promoted by dif-
ferent sources, such as biophysical alterations in the local environ-
ment. Different mechanical forces are involved in development,
such as osmotic pressure, shear stress, tensional forces, surface
tension and spring forces119. Furthermore, the environment of-
fers a great source of variability, and in an ecological context, the
major influences, like the developmental temperature, chemical
environment, and egg or embryo size, can affect embryonic mor-
phogenesis118. These forces drive embryo shape, triggering the
deformation of cells and tissues that give rise to the form and phe-
notype of the organism120. Cells are able to sense and respond to
external forces and transduce these signals to the molecular ma-
chinery, expressing genes that regulate the cell fate120. Moreover,
the cells that compose an organism are driven by a bioelectric sig-
naling network, and thus are able to regulate pattern formation
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and direct the growth and form of different tissues121. These
external influences may be converted into signals and translated
to a stimulus that influences morphogenesis in different scales of
time and space. The interesting aspect of this new side of mor-
phological studies is its mathematical background, making it a
perfect target for ML.

Nowadays, morphological studies are focused on exploring the
evolutionary origins, transitions during development, biomechan-
ical functions and understanding the causes and consequences of
normal and abnormal variations, but studies focused on develop-
ment are also being discussed115,122. However, the comprehen-
sion of morphological patterning and discovering how the biome-
chanical forces may affect the phenotype may be an important
step to bioengineering and to decipher several questions regard-
ing evolution, birth defects and regenerative medicine - and it is
in aiding this comprehension that ML can be applied.

Although not Evo-Devo, a work by Masaeli et al.123 shows the
potential application of studying morphology to uncover differ-
ences in cell types. In this work, the authors use single cells ex-
tracts from pluripotent human Embryonic Stem Cells (hESC) and
differentiated hESC and evaluate their physical properties using a
microfluidic stretching flow field via high-speed microscopy and
latter employs SVM to classify the differences in hESC morpholo-
gies. The results showed that pluripotent hESC becomes 15%
larger, and 20% less deformable morphology after two weeks dif-
ferentiation. The employed SVM used linear kernel and 5-fold
cross validation, and also performed selection over features cre-
ated with clustering algorithms by hierarchically eliminating fea-
tures to maximize the classification at each iteration. The authors
were also able to observe chromatin modifications, which were
considered major players in cell morphology. Although the goal
of the study was to discriminate pluripotent cells in mixed cul-
tures, this intention does not fall back of a developmental per-
spective. In a nutshell, an embryo is a mixed pool of different
cell types that only becomes more variate as times goes by. Be-
ing able to access and accurately discriminate the morphological
changes that each tissue goes by during development, in a time-
scale-dependent manner, could be an interesting perspective for
Evo-Devo studies, specially by comparing these differences in dis-
tinct species.

In a truly interesting evolutionary view, Cai and Ge124 cre-
ated a pipeline to improve the discriminative classification of phy-
toliths at lower taxonomic levels using ML approaches. In this
sense, the authors collected 1063 samples from 23 different taxa
of the grass family. They measured the major parameters of phy-
toliths shapes using elliptic Fourier descriptors (EFDs) and ap-
plied four different ML algorithms: SVM, Decision Trees (DT),
k-nearest neighbors (KNN), and multiple-layer perceptron neu-
ral networks (MLP). Although the algorithms are not clearly de-
scribe, probably indicating that, in this work, ML was just applied,
not developed, their results indicated that SVM had the best accu-
racy at genus level and the lowest false-positive rates. The authors
discuss that their study can be successfully employed to evaluate
morphological measures and discriminate between different phy-
toliths taxa. Although it can be discussed whether one can apply
this to non-plant data, the core idea behind this logical thinking

has, for sure, a potential positive impact on Evo-Devo studies fo-
cused on plants.

The employment of morphometric data on ML studies, and on
Evo-Devo works in general, are relatively new, with most works
being published in the last 10 years. Taking advantage that these
"morphometrics" are mathematical approximations and measures
of distinct phenotypes, the application of ML approaches, using
this kind of data is an appealing new ground to be explored.

Time, Morphology and in silico Predictions: New Paradigms
of ML Applications in Evo-Devo

It is a fact that ML can be applied to a vast amount of different
types of data, and this versatility could benefit Evo-Devo studies
at great length. The following studies employ different types of
data, such as images and synthetic predictions, instead of large-
scale data as the ones mentioned before (Table 1).

In this sense, Namin et al. took advantage of CNN and
LSTM algorithms to propose a framework for Arabdopsis thaliana
from time-lapse videos in order to understand their growing pat-
terns125 (Table 1). The CNN was used for extracting deep fea-
tures from the pictures, while the LSTM encoded the growth be-
havior of the plants over time. The results report that the use
of CNN for classification of A. thaliana in four different cate-
gories (SF-2, CVI, Landsberg, and Columbia) improved the accu-
racy from 68% when hand-crafted features were used to 76.8%
when CNN was used, and the addition of temporal information
with the LSTM further improved the accuracy to 93%. This fine-
tuning of video data of growing patterns could be applied to other
species of plants in response to environmental conditions to sim-
ulate ecological disturbances during plant development, allowing
an Eco-Evo-Devo approach to ML.

Another system used image segmentation to detect phenotypic
differences throughout Caenorhabditis elegans embryo develop-
ment126 (Table 1). In this case, the system used Differential Inter-
ference Contrast (DIC) microscopy images to visualize important
cellular functions during development, such as cytokinesis and
cell-cell contacts. Therefore, quantitative measurements includ-
ing the number of cells and time concerning cell division were
easily achieved. Most importantly, this system allowed the analy-
sis of specific target gene and how this gene contributes to embryo
development. This task was performed by knocking down a gene,
or gene set, together with the time-lapse movie record register-
ing the effect of the selected genes knock down in the embryo
development. To obtain a more reliable image segmentation, the
system was divided in three main modules: (i) a CNN, which
classified each pixel into five categories: cell wall, cytoplasm, nu-
cleus membrane, nucleus and extracellular environment; (ii) an
Energy-Based Model (EBM), which consist in keeping the label
images produced by CNN that are associated to the correct cate-
gory; and (iii) A set of elastic templates of the embryo develop-
ment at different stages that are matched to the label images. The
CNN was trained with series of overlapping 40 by 40 pixels from
the images in the time-lapses, during six epochs, using the tanh
function and the mean squared error. The training and testing
frames were manually labeled and the pixel-wise error rate was
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29.0% on the 30 test frames. However, the elements of embryos
were clearly detected, and the nuclei were identified before, dur-
ing, and after the fusion of the pro-nuclei. The cell wall is also
correctly labeled, but the new cell walls created during mitosis
were harder to detect126. This work is a formidable example
of ML applied to developmental studies, and future studies us-
ing the same idea, but applied to different organisms, might be a
compelling subject.

Although not evolution-related, another interesting study em-
ployed a ML model to reverse-engineer a stochastic dynamic
model of regulation of melanocyte conversion in Xenopus laevis
in order to predict the pharmacological perturbations necessary
to create a given phenotype127 (Table 1). For this, it was used
a model based on Hill-kinetics with 14 stochastic ordinary differ-
ential equations that describe interactions of signaling molecules,
pharmacological compounds, and level of melanocyte conversion.
This dynamic signaling model of X. laevis conversion was intro-
duced in the work of Lobikin et al.128 and uses a genetic algo-
rithm described in129. The system was used to identify treat-
ments for wanted outcomes in complex situations, and was vali-
dated in vivo, confirming the computational discovery of the novel
phenotype. The combined use of the three reagents found by this
method led to the first predicted partial converted phenotype-
animals, with some melanocytes and melanocyte-free regions be-
ing normal, and others converted and colonizing ectopic sites.
The idea of predicting phenotype by inserting perturbations in
regulatory networks could be an ambitious thought for Evo-Devo,
by simulating changes in gene regulatory networks and creating
"synthetic phenotypes".

In the same line of thinking, focusing on issues permeating
the understanding of the developmental process, Spirov and Hol-
loway130, Aguilar-Hidalgo et al.131 and François132 provided a
comprehensive review on the application of Evolutionary Com-
putation (EC) in the prediction and modeling of Gene Regulatory
Networks (GRN), providing intricate details of both methodologi-
cal and biological backgrounds, as well for implementation strate-
gies. Understanding all aspects of an organism body/structure
development, from plants to mammals, is intrinsically related to
the study of GRN, since those processes are an orchestra of gene
expression patterns that require a delicate regulation133–135. It is
a fact that more studies that could provide accurate recreations
of GRN, taking into consideration spatio-temporal variables, or
perturbations, could immensely aid Evo-Devo studies.

One of the most intriguing aspects of development is the spatio-
temporal coordination of embryonic development, and under-
standing this process, which is a result of millions of biological
interactions, is one of the major challenges of Evo-Devo. In this
sense, a work from Fernández et al., employed an evolutionary
algorithm to create a self-regulated model that mimics a develop-
ing embryo based on tensegrity graphs, but without genetic regu-
lation136. The algorithm only selects individuals and occasionally
causes perturbations in theirs "genes", promoting changes in their
structure. The evaluation of the individuals is measured based on
the system energy. The results showed that, with minimal genetic
control, the proposed method was able to create a diversity of
morphologies.

Finally, an exciting work by Kriegman et al. employed EC to
study the morphological changes of soft-robots that evolve in a
simulated 3D environment137. In this sense, the authors created
two different models: (i) the control (i.e. as if "non-treated"),
named "Evo", which lacks the developmental variable and is in-
tended to maintain a fixed morphology over its lifespan, and (ii)
the experimental model, named "Evo-Devo", in which a devel-
opmental program was implemented - thus, it does not sustain
a fixed phenotype. The robots "body" was implemented in the
open-source soft-body physics simulator Voxelyze138, their con-
troller was a neural network, and the robots were evolved using
the Age-Fitness-Pareto Optimization139 (AFPO) algorithm, with
the fitness being the average velocity of locomotion. For develop-
ment, the authors implemented "ballistic development" and "de-
velopmental windows" by embedding in the robots genome inter-
vals of values that some of their components could assume, and
making them linearly transit the range of values during their lifes-
pan. This amazing simulation of an "evolvable" organism opens
new door on Evo-Devo computational studies. For example, if
expression data could be added as an extra variable, modulating
new phenotypes, it would greatly benefits the biological back-
ground of such studies and amplify their significance.

The idea of more experiments focusing on how to improve the
application of ML to more refined models of image analysis, as
well as predicting possible phenotypes is, perhaps, the most ex-
citing future application of ML in Evo-Devo because there are few
studies of this field applied to the topic, making it an easy tar-
get for newer and enhanced algorithms that could detect more
accurate morphological transitions and possibly related changes
to other variables, such as environmental conditions and gene
mutations. The same goes for in silico prediction of evolutionary
changes. For example, by employing algorithms that can create
computational models of evolutionary phenotypical modifications
over time, it could be possible to create scenarios where perturba-
tions can be inserted, simulating environmental or genetic events
that potentially alters an organism development.

It is dangerous to go alone, take this: Where
you can find the data to further your research
One of the major challenges in applying ML to Evo-Devo is finding
the data to begin with. Several works create their own data, thus,
sometimes they become private, or can simply be found as sup-
plementary information in the journal website. However, most
works use public information to benchmark their own data, or
simply use as a mean to test their new approaches. In this sense,
there are a wide variety of databases where researchers can find
different types of data - some extremely popular, other still to
be discovered by a broader audience. In this brief section, we
provide a list of databases where various types of data can be
found, focusing on morphometric and image data, since DNA,
RNA and protein sequence information can be obtained in a wide
variety of websites. It must be noted that extremely well known
databases, such as Gene Expression Omnibus †, which contains

†www.ncbi.nlm.nih.gov/gds/
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Table 1 Summary of the ML studies reviewed in this article, contemplating authors, studied organisms, biological background, the type of data used
and the applied algorithm.

Reference Organism Biological background Data Algorithm
Yan et al., 2017 70 H. sapiens Epigenetics DNA methylation and Histone modfifications RF

Sheehan and Song, 2016 75 D. melanogaster Chromossomic Regions Genomic Regions/Demographic Distribution ANN
Pybus et al., 2015 78 H. sapiens Polymorphism Genomic Boosting

Farhoodi et al., 2017 91 H. sapiens Protein Biding Regions Protein-Protein Interaction/Sequence Conservation SVR
Liu, 2017 97 H. sapiens Protein Function Amino acid Sequence RNN

Khater and Mohanty, 2015 99 H. sapiens Protein Domain Amino acid Sequence/Post-Translational Mod. HMM
Wan et al., 2017 103 D. melanogaster Protein Function Amino acid Sequence/Gene Ontology SVM

Nauman et al., 2017 105 H. sapiens Protein Function Amino acid Sequence CNN
McSkimming et al., 2017 95 Multiple Protein Kinase Conformation Protein 3D Structure RF

Biswas et al., 2010 107 H. sapiens Post-Translational Modifications Amino acid Sequence/Post-Translational Mod. SVM
Namin et al., 2017 125 A. thaliana Plant Growth Time-lapse Images CNN
Ning et al., 2005 126 C. elegans Embryonic Development Differential Interference Contrast microscopy Images CNN
Lobo et al., 2017 127 X. laevis Cellular Phenotype Hill-kinetics GA

Congdon et al., 2008 80 H. sapiens Identification of Regulatory Regions Genomic GA
Masaeli et al., 2016 123 H. sapiens Cellular Morphology Morphometric parameters SVM
Cai and Ge, 2017 124 Multiple Paleobotany Morphometric parameters SVM

Spirov and Holloway, 2013 130 Not Applicable Embryonic Development Not Applicable GA
Kriegman et al., 2018 137 Not Applicable Phenotype Prediction Not Applicable ANN, AFPO

Table 2 Summary of the types of data recurrently mentioned in Evo-Devo studies and the respective algorithms that are the possible options for
newcomers to work with, according to the cited studies.

Evo-Devo Background Type of Data Problem Algorithms

Genomic/Transcriptomic DNA Sequence Pattern Identification RF, GA
RNA Expression Patterns Classification SVM

Proteomic Amino Acid Sequence
Proitein Structure

Structural Conservation Identification CNN
Protein Function Prediction RNN, CNN

Phenotype Identification Images Visual Patterns Identification CNN
Morphometric Phenotype Analysis SVM

thousands of large-scale "omic" data from all sorts of studies, the
Protein Database‡, which is the major source of structural data,
as well as sites with the same renown were not listed. Due to the
massive amount of databases available nowadays and the broad
spectrum of data they provide, we focused on less known web-
sites that are more focused on developmental and evolutionary
studies (Table 3). Nevertheless, we also listed some sites useful
for benchmarking, and other less known repositories. Given the
new importance of in silico studies, we also mention a physics
simulator that can be used for experiments with soft-robots.

The Other Way Around: How Evolution and
Development Impact on ML Techniques?
It is clear that ML techniques could be useful tools to analyze
a wide variety of data in Evo-Devo studies. However, it is cru-
cial to explain that evolution has its shares of impact on inspir-
ing artificial intelligence algorithms and computational learning
approaches. In a nutshell, natural selection is a process that se-
lects features over time, selecting adaptable characteristics that
will more likely increase organism survival. This scheme of pos-
itive feedback for the organization of a system is analogous to
the learning process, and can be applied to ML studies, and the
algorithms that employ the use of natural selection concepts are
called Evolutionary Algorithms (EAs)141–143.

‡www.rcsb.org

There are different approaches in the EAs category: GA144,
that were already described in the section about ML techniques,
and Differential Evolution (DE)145 being two of the most popu-
lar. These population-based metaheuristics (algorithms indepen-
dent of specific problems, capable of creating heuristics that can
find solutions in optimization) are often used to solve a range of
optimization problems and are loosely inspired by ideas of mu-
tation, crossover, recombination, and selection. In this class of
algorithms, a potential solution to a given problem is encoded as
a "genome" in a "population", and is combined and altered over
generations in order to improve its fitness (or score) value146.

Moving to ML techniques, Neuroevolution147 is a family of
training methods for neural networks that can be used to ob-
tain theirs weights, biases, and overall topology. Examples of
such methods are the NeuroEvolution of Augmenting Topolo-
gies (NEAT)148, the Evolutionary Deep Learning (EDL)149, and
the Evolutionary Deep Networks for Efficient Machine Learning
(EDEN)150, that incorporate GA into training. A review on the
subject of Neuroevolution can be seen in the work of Ding151.
Interestingly, the POET152 method for optimization of weights of
large ANNs is directly inspired by developmental biology. It em-
ployed an evolutionary indirect encoding and a novel parameter
of search technique using an algorithm called Epigenetic Tracking
(ET)153.

Moreover, inspired by NEAT, Cussat-Blanc et al. created a new
algorithm for the training of artificial gene regulatory networks
(AGRNs), dynamical systems used in the control of agents, called
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Table 3 List of databases containing morphometric, image and genomic data that could be used to explore, benchmark or to be analyzed in ML studies
focused on evolutionary and developmental biology, as well as simulators for in silico studies.

Name Website Type of Data
Reich Lab reich.hms.harvard.edu/ Provide a list of various genomic datasets focused on evolution

SB Morphometrics life.bio.sunysb.edu/morph/index.html Morphometric data from different species
PRImate Morphometrics Online (PRIMO) primo.nycep.org/ Morphometric studies of primates and evolution

Goldman Osteometric Dataset web.utk.edu/~auerbach/GOLD.html Osteometrics from human skeletons dating from the Holocene
Peter Brown’s Australian and Asian Paleoanthropology www.peterbrown-palaeoanthropology.net/index.html Skeletal and dental metrics from human and primates

Human Origins Database www.humanoriginsdatabase.org/ Fossil skeletal measurements of hominin and hominoid specimens
Paleo-Org www.paleo-org.com/&Morphometric Data of skeletal and dental records from modern and ancient humans

Australopithecus australopithecus.org/index.html Morphometric data on human evolution
Image Data Resource (IDR)140 idr.openmicroscopy.org/about/ Contains a wide variety of biological image studies

Broad Bioimage Benchmark Collection data.broadinstitute.org/bbbc/image_sets.html Useful for benchmarking image studies
Voxelyze138 https://github.com/jonhiller/Voxelyze Voxel simulation library for static and dynamic analysis

GRNEAT154. This approach allowed the design of better AGRNs
than regular GA and evolutionary programming strategies for the
used benchmarks. Lones has a complete review on the use of
AGRNs in computational problems155.

Compositional pattern-producing networks (CPPNs)156,157 are
another architecture of Neuroevolution that differentiate them-
selves by adopting aspects of development, since they have the
ability to bias evolutionary search to obtain solutions with reg-
ular internal structure158. Building upon this, Beaulieu et al.
created a method called developmental compression158 that ex-
plores concepts from Evo-Devo such as developmental mutations
to address the problem of catastrophic forgetting, one of the ma-
jor challenges in training neural networks159,160.

Cellular Automata161 is also an area that could benefit from
Evo-Devo. The work of Nichele describes an evolutionary and
developmental system with incremental evolutionary growth of
genomes without any a priori knowledge on the necessary geno-
type size. This incremental growth of genome size could help ar-
tificial systems, making them able to avoid the need of knowing a
genotype size and providing scalability162.

A review by Xu163 explores how the combined ideas from evo-
lutionary developmental psychology, Evo-Devo, and evolutionary
cognitive neurosciences are impacting the field known as Evolu-
tionary Development Robotics (Evo-Devo-Robo). Evo-Devo-Robo
is the combination of two active research topics in robotics: Evo-
lutionary Robotics (ER), that uses evolutionary computation to
create autonomous controllers, and Developmental Robotics (De-
vRob), with focus on the application of cognitive behaviors, such
as language, emotion, and self-motivation163. Finally, Kenyon
discusses phylogenetic and ontogenetic development as a way
to implement artificial intelligence and the relationship between
iterative biological development and iterative software develop-
ment164.

Perspectives: Where do We Stand, and What
Could Benefit ML in Evo-Devo
The number of works applying ML to evolutionary biological data
prospered in the last 5 years, with more algorithms adapted and
employed to overcome challenging knowledge and technological
gaps. Comprehensive reviews by Libbrecht and Noble, and Mck-
inney et al., discussed the application of ML in genomic data, ex-
emplifying how powerful and flexible ML techniques can be for
this kind of data165,166. For bioinformaticians that wish to apply
ML techniques in a given "omic" data, in terms of microarray data

classification, SVM and RF approaches are gaining the upper hand
and displaying favorable results15,16. Previous research showed
that the distributions in microarray classification data are well
represented by linear decision functions167,168, and Statnikov et
al. argues that SVM could be less sensitive to choice of parame-
ters for those functions17. Similarly, deep learning is commonly
used to work with image and temporal data, as seen previously
in multiple reviews, thanks to its capacity of performing well with
spatial (in the case of CNN) and sequential (in the case of RNN)
data. Thus, such techniques could be an initial focus for those
who are starting to apply ML techniques in biological data.

It is essential to explain that working with Evo-Devo is not an
easy task for ML approaches. Most works, as presented in Table 1,
are focused in either evolutionary data to answer a given subject,
or with developmental data. Combining both fields in a single
study requires the knowledge and manipulation of a large set of
variables, including spatial-temporal and morphological informa-
tion, in addition to transcriptomic data. Arbitrarily applying ML
in such a complex background as Evo-Devo won’t generate use-
ful data. The use of time-lapse image analysis could be an in-
genious way to integrate morphological changes, if integrated to
the time-equivalent associated transcriptomic profile. Integrating
spatial-temporal data would also be an interesting challenge to
overcome. However, spatial-temporal analysis would require pe-
riodic sample collection that would greatly increase experimental
costs. Integrating different "omic" variables, and possibly spatial-
temporal data, in the same way Evo-Devo integrates several bio-
logical contexts, would be the greatest challenge in this field of
research.

In addition, most works in this review used ML to perform
supervised learning for classification tasks, and many challenges
arise from the use of Evo-Devo data or biological data in general
with this goal. One of the major concerns is the "Curse of Di-
mensionality", when the data has a large number of dimensions,
as can be seen in microarray data or collections of pictures and
videos. High dimensional data is often associated with overfitting
in ML algorithms, higher processing costs and run time, increase
in memory consumption, and difficulty in visualization. One way
to avoid overfitting is to expand the dataset by performing new
experiments, but this can be expensive and time consuming. The
addition of artificially generated data should be considered only
after great consideration, since it could add arbitrary values that
should otherwise represent real-world phenomena. Another op-
tion, commonly used with ANNs is the incorporation of some type
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of regularization in the construction of the method. The works of
Gonçalves et al. may also provide some guidance in regard of
overfitting in evolutionary algorithms169,170.

There is also the "Large p, Small n" problem for datasets with
many dimensions but a small number of samples. Many ML meth-
ods, especially in supervised learning like deep learning, thrive
when the samples from which they can "learn" are abundant. Suc-
cessful deep learning applications usually rely in sets of thousands
or even millions of examples, but for many evolutionary or devel-
opmental applications all that is available are a few dozens.

These kind of concerns should bring to light methods capable
of reducing dimensionality. Among them, feature extraction is the
major group of techniques capable of transforming the original
feature (dimension) space of the data into a different space with
a new set of axes171. In this case, the transformed feature space
does not need to have physical or biological meaning, what can
compromise interpretation172 while providing a better discrimi-
natory ability. Popular examples of methods are Principle Compo-
nent Analysis (PCA)173, Singular Value Decomposition (SVD)174,
Factor Analysis (FA)175, and t-Distributed Stochastic Neighbor
Embedding (t-SNE)176. Also relevant are autoencoders, which
are ANN models used for unsupervised feature learning76. Fea-
ture selection is a subgroup of feature extraction that instead of
transforming the original space, aims to choose a subset of rel-
evant features by the exclusion of the irrelevant, redundant or
noisy ones177. In many biological applications this approach is
better suited since it leads to better model interpretability. An ex-
ample of such method would be Minimum Redundancy Maximum
Relevance (MRMR)178. A review of the area and its applications
to genomic data can be found in the work of Ang et al.179.

Researchers should also bear in mind the other major areas
of ML, namely unsupervised and reinforcement learning, which
were less employed in the cited reviews. The use of reinforce-
ment learning has been growing in the past years due to its abil-
ity to "learn" without the need of sample data and the satisfactory
results achieved in a wide range of applications, such as automa-
tion of vehicle and robot control180, video games181, and even
beating humans in the game of Go182. This kind of algorithm
shows great promise in 3D manipulation of biomolecules, and
could impact Evo-Devo studies. For a complete description of re-
inforcement learning, refer to183.

In general, to make life easier for both biologist and biology
software developers, the application of ML in biological informa-
tion can also greatly expand with the generation of more high-
throughput data and greater efforts for sharing and standardizing
datasets. A review by Li et al. discussed in depth the character-
istics and application of ML in different types of datasets184. In
fact, each platform has its unique nomenclature and data orga-
nization, which enormously difficult the integration of multiple
techniques and datasets for bioinformatics in general. Specifi-
cally, one of the main challenges of a researcher that wishes to
use ML methods in Evo-Devo is the lack of large, ready-to-use,
well-defined sets. Despite the existing difficulties, however, ML
and Evo-Devo have already shown to be powerful allies.

Conclusions
Overall, the application of ML in Evo-Devo is still young and, as
discussed before, there is a wide research ground to be discov-
ered and challenges to be overcome. The use of well defined
omic datasets would greatly improve the life of both biologists
and software developers, greatly boosting the application of ML
in Evo-Devo. In a subject as broad as evolution and development,
the application of different computational tools can propel the
knowledge of the evolutionary process and open new pathways
to be explored.

Key Points
• A brief explanation of the major thinking behind Evo-Devo

and machine learning techniques is provided.

• We review the current works concerning the application of
machine learning on evolutionary and developmental data.
All types of works that could impact on Evo-Devo were taken
into consideration after an extensive review of the literature.

• The selected works are comprehensively reviewed concern-
ing the employed algorithms, biological backgrounds and
major results.

• Other works, not necessarily related to Evo-Devo, that could
provide new insights on the field and ML applications are
also reviewed.

• New perspectives are drawn based on the gathered data for
the application of machine learning on Evo-Devo.
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Abstract—The analysis of microarrays has the potential to
identify and predict diseases predisposition, such as cancer,
opening a new path to better diagnosis and improved treatments.
Additionally, microarrays can help to find genetic biomarkers,
which are genes whose expressions are related to a specific disease
stage or condition. But due to the huge number of genes present
in microarray experiments, and the small number of available
samples, computational methods that deal with such techniques
need to overcome difficulties in both classification and feature
selection tasks. This paper presents adaptations for the use of
FS-NEAT, an evolutionary algorithm that creates and optimizes
neural networks through genetic algorithms, as a tool that can
satisfactorily perform both tasks simultaneously and automati-
cally. The method is tested with a Leukemia dataset containing
six imbalanced classes, compared with other classifiers, and the
selected genes are biologically validated.

I. INTRODUCTION

Microarrays are arrays experiments designed for nucleic-
acid hybridization [1]. Each microarray experiment requires a
special chip, with thousands of probes, where each of these
probes contains a nucleic acid sequence. Usually, microarrays
function as a tool to identify expression of genes present
in a given biological sample, derived from RNA extrac-
tion of a target tissue or cell culture. In this sense, target
RNAs are codified to complementary DNA (cDNA) using the
Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR)
technique, which will then hybridize with the nucleic acid
sequence of the probe and emit a signal that can be translated
as a wavelength, indicating if the target gene is present in a
given sample or not [1], [2]. Microarrays have been used to
analyze a wide variety of diseases, such as cancer [3], [4], [5],
[6]. However, despite their enormous potential, microarrays
require the use of Bioinformatics tools to analyze and give
sense to the large amount of biological data [7], [8], [9].

A common application of microarray data in Bioinformat-
ics is its use for the creation of classifiers in the hopes
of future use in medical diagnosis. Using gene expression
profiles of predefined sample groups, for example, a control
group and a disease group, it is possible to train supervised
learning methods to assign to a new sample its correct label.
This approach has great potential in clinical diagnostics and
has been successfully tested with different algorithms in the
last decades [10]. Different studies have already tested the
efficacy of several machine learning techniques in the task
of microarray classification with different datasets, exploring
methods such as artificial neural networks (ANN), support

vector machines (SVM), k-nearest neighbors (k-NN), and
random forest (RF) [11], [12], [13], [14].

Another important aspect of working with microarray data
is dimensionality reduction. Known as the ”curse of dimen-
sionality”, this major concern refers to when the data has
a large number of dimensions, which is associated with
overfitting [15], increased computational run time and memory
consumption, and interpretability impairment. Datasets with
many dimensions but a small number of samples are also
affected by the ”large p, small n” problem, that is often the
case with microarray data. Machine learning algorithms, deep
learning especially, rely in sets with thousands or even millions
of samples, what can be considered a rarity with this kind of
data.

Since the number of samples from microarray datasets is
lower than the available number of genes (features), dimen-
sionality reduction is a fundamental step of the process [16].
While popular methods of feature extraction, like principal
component analysis (PCA), could be used, it is desirable that
the selected features are not a combination of the dimen-
sions of the data, but the dimensions themselves (e.g., the
expressions of single genes). Thus, it is possible to reduce the
number of features while also retrieving the information of
which genes have a greater impact in the classification, finding
genes that could have a high probability of being associated
to a given disease.

The group of algorithms capable of performing this dimen-
sionality reduction by selecting subgroups of features from the
whole data is known as feature selection (FS) and comprises
several methods that remove irrelevant, redundant or noisy
features. FS has the advantage of providing a more satisfactory
interpretation of the results [17], and decreasing computational
cost, besides improving the accuracy of different classification
methods [18].

Many FS models were proposed for microarray data, that is
often noisy and contain irrelevant and redundant expressions.
One example is the Minimal Redundancy and Maximum
Relevancy (mRMR), a method based on Mutual Information
(MI) as a measure of relevancy and redundancy, where the
redundancy of a feature subset is the aggregate MI measure
between all pairs of features in the subset, and the relevancy
is the aggregate MI measure between all features and one
specific class [19]. This algorithm has already been applied
to genomic data [20], [21]. A complete review on the topic
of FS and microarray can be found in the work of Ang et
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al. [22]. Nevertheless, this remains an open problem, with a
large variety of new algorithms arising [23], [24], [16].

Besides the computational benefits, FS has the potential to
aid biomarkers identification research by finding the subset
of genes that best represents the whole data and increases the
classification accuracy. In a nutshell, biomarkers are biological
signatures found in tissues or body fluids, that can be used
to identify a particular pathological or physiological process.
There are several types of biomarkers, derived from a broad
range of biomolecules, such as DNA, RNA, proteins, miRNA,
among others. These molecules can be used for cancer de-
tection, diagnosis, prognosis, treatment choice, or identify
tumours stage [25]. The gene expression data derived from
microarray experiments can aid in the identification of genes
electable as possible biomarkers since microarray technology
made possible the analysis of large datasets derived from
various biological experiments [26].

Among the promising methods of Artificial Intelligence
and Machine Learning that can be applied in the tasks of
classification and FS, stands Evolutionary Computation (EC).
EC borrows key concepts from evolutionary biology, such as
inheritance, random variation, and selection, and adapts them
to solve computational problems. EC has been used for a wide
range of applications, Bioinformatics among them, and has
many important benefits over popular deep learning methods.
It does not require a large amount of data to solve a problem, is
easily parallelized, and can give solutions based on any fitness
function [27]. EC can also work well in hybrid frameworks
with other machine learning algorithms [27]. For instance,
Neuroevolution is a family of training methods for neural
networks to obtain theirs weights, bias, and overall topology
by using EC [28]. One example is the NeuroEvolution of Aug-
menting Topologies (NEAT) [29] that incorporates Genetic
Algorithms (GA) into training.

This kind of evolutionary or constructive ANN has already
been tested for the classification of microarray data. Garro et
al. made a study combining Artificial Bee Colony (ABC) for
FS and ANNs designed by Differential Evolution (DE) for
classification. The ABC algorithm was used to select a more
useful set of genes to discriminate a disease subtype, and this
was used as input in neural networks created with DE that
were free to choose their topology and activation functions.
The method was tested in a Leukemia DNA microarray dataset
with two classes (AML and ALL), 38 bone marrow samples,
and 6817 human genes [30]. Another study by Luque-Baena et
al. uses a genetic algorithm and C-Mantec (Competitive
Majority Network Trained by Error Correction), a neural
network constructive algorithm, to select a predictor profile.
The approach was tested in six cancer databases [31]. Both
methods, however, depend on other algorithms to perform
the gene selection before the classification, and on human
knowledge to define the number and criteria of selected genes.

In this sense, the NEAT algorithm is an interesting option
to be explored due to its automaticity and extensibility. Using
GA to create ANNs from minimalist topologies, it grows the
network structure adding hidden nodes and connections. More

important is that NEAT can be expanded to perform FS while
evolving its networks for the classification problem. Feature
Selective NEAT (FS-NEAT) is a good example because it
starts with networks without any connection and lets the evo-
lutionary algorithm choose which inputs should be connected
to the other nodes [32]. This kind of technique can be applied
to microarray classification problems - at the same time that it
learns how to classify new samples, it selects the fundamental
genes for the task that can be then submitted to a biological
validation.

The main contribution of this paper is the design of a
method capable of automatically performing microarray classi-
fication and gene selection at once, with the aim of identifying
new biomarkers for diseases, and new ways to use FS-NEAT
for the task of classifying imbalanced class datasets. This
approach was evaluated with a multiclass Leukemia dataset
and compared with other popular classifiers: MLP, SVM, and
decision tree. We also present a biological validation of the
selected genes obtained through our method, to check if the
results match the biological studies. In summary, this paper is
organized as follows: Section II reviews the technologies and
algorithms used in the proposed method; Section III details the
new algorithm for classification and gene selection; Section
IV presents the experiments and analysis of the results; and
Section V discusses the work and future improvements.

II. MATERIALS AND METHODS

A. NEAT

Usually, when working with ANNs, a fixed topology (e.g.,
number of nodes, layers, and connections) is chosen, and
the weights and biases of the network are determined by an
algorithm such as backpropagation [33]. One of the issues
that arise from this approach is how to find the best topology
for a given problem since this structure can have a great
impact on the learning performance of the network and its
final accuracy. This can be a challenge in Bioinformatics since
many of the concepts underlying biological process are only
partially known [34].

NeuroEvolution of Augmenting Topologies (NEAT) is an
algorithm that addresses this problem by creating and evolving
ANNs using GA [29]. It is not only capable of automatically
finding values for weights and biases, but also the overall
topology of a network. It starts by setting a population in
which individuals are ANNs sharing the same minimal topol-
ogy, i.e., input and output neurons fully-connected without
hidden nodes and with random weights. The minimalist start
is employed to assure that only additions to the topology of a
network that were beneficial to its results will be kept, barring
useless complexity.

New populations are created iteratively from this first pop-
ulation with traditional GA operators. The crossover operation
selects two individuals from the current population, generating
a new individual that is a combination of both. The mutation
operation can change the values of the network weights, or add
new hidden nodes or a new connection between existing nodes.
It can also flip a ”disable” bit that activates or deactivates a
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connection. These operators are how the topology of the ANNs
grows and complexifies over the generations of the GA [29].

The main challenge of implementing this method is that
the crossover operation can create defective ANNs when
combining two random individuals, since their topologies
may not allow a direct exchange of connections and nodes.
To solve this problem, NEAT uses a historical marking - a
numerical value assigned to new pieces of structure, like a
new connection, found through the modifications. This value
is determined linearly by when in the evolutionary process
the new structure first appeared and is passed as it is to new
individuals during the crossover. Hence, NEAT is capable
of perfectly matching the same structures in two different
topologies by aligning the ones with equal historical markings,
creating a new functional ANN that has the same building
blocks of its predecessors. Fig. 1 illustrates how the genome
codification of NEAT translates to a functional ANN.

Fig. 1: Genome representation for an individual in the NEAT
population. The bold number in the top line of each gene is
the historical marker used to identify new structural transfor-
mations. The second line informs the link between two nodes.
The third line is the disable bit (DIS) that when active means
that the corresponding connection is ignored. Adapted from
Stanley and Miikkulainen [29].

Adding new structure to an ANN without optimizing its
weights and biases is usually disadvantageous to its results,
making it difficult for an evolutionary algorithm to select
individuals with new topologies. In contrast, to give individ-
uals the time to adapt instead of just discarding them when
they first show up, NEAT adopts speciation (or niche), and
the individuals compete only within groups of similar ANNs.
The individuals are divided into niches using the historical
markings. For a complete description of NEAT, please refer
to Stanley and Miikkulainen [29].

B. FS-NEAT

The evolutionary and constructive model of NEAT has been
explored for the task of FS by several studies [35], [36],

[37]. In this sense, one of the principal algorithms is FS-
NEAT [32], that although simple has shown to have good
performance in FS [38], [39], [40]. Being an extension of
NEAT, FS-NEAT takes advantage of all the innovations of
that method but changes the original population initialization.
The minimalist start of NEAT is not as minimalist as it could
be and assumes that all available inputs are useful by starting
with fully connected networks.

For many datasets, however, this is not the case, and some
of the inputs do not contribute to the desired behavior of the
ANN. FS-NEAT addresses this problem by connecting, in each
individual, one random input to one random output, instead of
creating a fully connected topology, as can be seen in Fig. 2.
The algorithm then behaves like regular NEAT. These minimal
ANNs will most certainly lack the needed structure to have
good performance, but the evolutionary algorithm will guide
the complexification towards ANNs with the best set of inputs,
topology, and weights. Finally, in the end, inputs not connected
to an output are discarded. This way, FS-NEAT is capable
of simultaneous and automatically performing FS and evolve
neural networks, without requiring meta-learning, labeled data,
or human expertise. By using only a subset of all the inputs,
FS-NEAT is also often less costly than regular NEAT.

(a) NEAT

(b) FS-NEAT

Fig. 2: Examples of initial network topologies for (a) NEAT
and (b) FS-NEAT. In regular NEAT, the initial networks have
input and output layers fully connected, while in FS-NEAT,
the initial population has networks with one link connecting
a randomly selected input and a randomly selected output.
Adapted from Whiteson et. al [32].

III. PROPOSED METHODOLOGY

We use the concept of FS-NEAT to develop a method to
simultaneously solve the problems of microarray classification
and gene selection and to create new network topologies that
can be inspected for more insights about the data. Further-
more, FS-NEAT has the promising feature of selecting genes
automatically, without the need for human set thresholds on
how many genes to choose or for a filter method before the
main algorithm. We start with a preprocessing step in which
the microarray data is standardized according to Equation 1,
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where x is a feature, and µ and σ are the mean and the standard
deviation of that feature over all the samples, respectively. The
labels of each sample are one-hot encoded, so for a problem
with Q different classes, each class is encoded as an array
of Q elements set as zero, except the element with an index
corresponding to that class, that is set as one.

xnew =
x − µ

σ
(1)

As already discussed, FS-NEAT uses GA to evolve ANNs
from minimalist topologies. The initial population is created
without hidden nodes and connecting random input neurons to
random output neurons. In this case, the input neurons are the
genes expressions (after the standardization), and the output
neurons are the classes. The first set of weights and biases
is randomly determined from a distribution with mean equals
zero, and standard deviation equals one. The outputs from the
neural networks also pass through a softmax layer, described
by Equation 2, that scales an array Z with length p and returns
the array φ(Z) with positive elements and sum equal to one,
in which e stands for the Euler’s number. At the end of the
evolutionary process, given a set of genes expressions, this
pattern is classified as the class corresponding to the output
neuron that produces the larger value. A gene is considered
”selected” by the neural network when its input node has a
direct or indirect (through hidden nodes) connection to one or
more output nodes.

φ(Z) =
eZi

�p
i=1 eZi

(2)

As in most evolutionary algorithms, a cost function (or
fitness) is needed to evaluate the models and guide the
optimization process. A popular cost function for supervised
classification tasks, the cross entropy, was chosen. Cross-
entropy compares the softmax outputs from a neural network
with the one-hot encoded classes that would represent the
correct answer to a given set of input and averages the
differences. This is the expression between curly brackets
in Equation 3a, in which n is the number of samples, p
is the number of outputs, y are the desired outputs, and a
are the outputs from the model. Note that this expression
is nonnegative. Since many microarray datasets have many
imbalanced classes, there is a large risk for the model to not
learn correctly how to classify the classes with fewer samples,
giving more importance the larger classes. To work around
this problem, we added the rest of the Equation 3a, where q
is a class, nq is the number of samples of the class q, yji is
the jth element of the ith sample of the desired output from
class q, and aji is the jth element of the ith output from the
network from class q, so the cross entropy cost is computed
for each class individually and is then summed, so all classes
have the same contribution to the final cost, regardless of the
number of samples.

Another major concern is overfitting, which happens when
the model performs well on the training data, but fails to gen-
eralize and has poor performance when faced with new data.

One way to avoid this problem is to expand the dataset, which
regarding microarrays would mean to make new experiments,
what is expensive and not always possible. A variation of
this, popular with image datasets, is the addition of artificially
generated data, that are often real samples slightly modified.
This approach, however, is not advised when dealing with
experimental data, since it would add arbitrary changes to
values that should represent a real-world phenomena.

L2 regularization, also known as weight decay, is another
commonly used technique to mitigate the problem of over-
fitting [41]. Its effect is to make the optimization prefer
networks with smaller weights, what make simpler models,
usually capable of better generalization. This is the term in
Equation 3b, with n being the number of samples, c the
number of connections, wk the weight of connection k, and
λ the regularization parameter, that must be a positive value
set by the programmer. The term 1

c did not come from the
canonical L2 regularization but was added since we are dealing
with FS-NEAT and the number of connections is not fixed, and
without it, the regularization would have an undesirable impact
in the addition of new links. The cost function to be minimized
by the evolutionary process is the sum of the cross-entropy
cost and the L2 regularization, defined by Equation 3. Also
relevant is the fact that, due to its minimalist start, FS-NEAT
does not demand a component in the cost function dealing
with the minimization of the number of features selected, like
the one present in [31].

�

q



− 1

nq

nq�

i=1

p�

j=1

[yji ln aji + (1 − yji) ln(1 − aji)]



 (3a)

+
λ

2n

1

c

c�

k=1

w2
k (3b)

Finally, it is needed to address the structure of the individual
neurons of the neural networks. All hidden and output neu-
rons added by the evolutionary algorithm follow the formula
presented in Equation 4. It is a standard model for artificial
neurons, where yh is the output, mh is the number of inputs
of the neuron, whj is the weight of the input j, xj is the input
j, and bh is the bias of the neuron h, respectively.

yh = max(0,
1

mh

mh�

j=1

whjxj + bh) (4)

There are two main considerations to be made about Equa-
tion 4. The first one is that the neurons in our method use the
rectified linear unit (ReLU) [42] as activation function, which
has been found useful in many deep learning applications. The
second is that the aggregation function is not the summation,
as it is commonly used in neural networks, but the mean,
hence the 1

mh
component in the formula. This choice was

made to provide more stability during the learning process
since, unlike a MLP or deep learning model, the number of
inputs of a neuron in FS-NEAT can change over time. The
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use of the mean instead of the summation causes less abrupt
modifications in the output of the neuron when a connection is
added, smoothing the initial impact of these transformations.

Regarding the GA that evolves the neural networks, it
uses the crossover and mutation operators. The mutation can
add a new node, add a new connection between nodes, and
change the network weights, besides flipping the disable bit.
The diversity control is obtained through speciation. Because
the topology of the network is also created by the GA, FS-
NEAT provides a way to inspect the existing connections
between artificial neurons, allowing more direct inspection of
the influence of the inputs on the outputs. In the experimental
results, for instance, it is reported how certain genes had a
clear preference for connections to specific classes.

IV. EXPERIMENTS AND RESULTS

The algorithm described in this work was coded in Python
and ran in an Intel Xeon E5-2650V4 30 MB, 4 CPUs, 2.2Ghz,
48 cores/threads, 128G, 4TB. In order to test our method,
we used the data described by Yeoh et al. [43]. This dataset
represents a microarray study of 327 bone marrow samples of
pediatric patients with acute lymphoblastic leukemia (ALL).
By employing an unsupervised two-dimensional hierarchical
clustering algorithm the authors identified six known leukemia
subtypes: (i) T-cell acute lymphoblastic leukemia (T-ALL); (ii)
hyperdiploid (Hyperdip); (iii) BCR-ABL, which is a fusion of
two genes, BCR and ABL, in chronic myelogenous leukemia
(BCR); (iv) E2A-PBX1, which is also a fusion between two
genes, normally related to adult ALL (E2A); (v) TEL-AML1,
that, similarly to the previous two types, is a gene fusion,
frequently found in childhood acute lymphoblastic leukemia
(TEL); and (vi) Mixed-lineage leukemia (MLL). The details
of the dataset are presented in Table I. This data can be found
at the Cancer Program Legacy from the Broad Institute1.

TABLE I: Detailed description of the Leukemia microarray
dataset used.

Dataset St. Jude Leukemia
Source [43], [44]

Chip type U95
# Features 985
# Samples 248
# Classes 6

Class Name # Samples
BCR 15
E2A 27

Hyperdip 64
MLL 20

T-ALL 43
TEL 79

Since the data is composed of six different classes, this
is a considerably harder problem than binary classification,
as it is the case of datasets divided into samples with a
condition or without it. The difference in the size of each
class also motivates the formulas chosen in the last Section.
Following our method, the data was standardized and classified

1http://portals.broadinstitute.org/cgi-bin/cancer/publications/view/87

by FS-NEAT with the parameters listed in Table II. To get
the accuracy of the model we used stratified 10-fold cross-
validation, in which the data was divided into ten folds that
preserve the total distribution of samples by class. For each
iteration of the cross-validation, nine folds were used as
training set, and the remaining one was used as testing set. The
main advantage of cross-validation is an effectively unbiased
error estimate [22]. For each iteration of the cross-validation
the whole FS-NEAT evolutionary process was performed.

TABLE II: List of parameters used for the FS-NEAT evolu-
tionary process in this experiment.

Parameter Value
Population size 2000

Number of generations 200
Aggregation function mean
Activation function ReLU

λ 1.0
Probability of mutation adding connection 0.8

Probability of mutation adding node 0.15
Probability of mutation changing weight 0.05

Probability of mutation flipping disable bit 0.05

We used stratified 10-fold cross-validation to compare FS-
NEAT with other three widely used classifiers for microarray
data: (i) MLP with one hidden layer with five nodes, (ii)
SVM with RBF kernel, and (iii) CART decision tree [45]. The
accuracy of each classifier is reported in Table III, with the av-
erage and standard deviation number of features selected when
applicable. FS-NEAT was close to the dedicated classifiers,
SVM and MLP, and showed a better predictive power than
decision tree, another algorithm capable of selecting features.
All the methods had a far better result than the baseline, that
would be to predict the label of the largest class (TEL) to
all samples. The average number of genes selected by the
neural networks created with FS-NEAT represents a reduction
of more than 98% of the feature space, so the algorithm is
fulfilling its function of dimensionality reduction as well.

TABLE III: Accuracy over the combination of all test sets
and average number of selected features (when applicable)
with standard deviation for different algorithms with stratified
10-fold cross validation.

Method Accuracy Selected features
Baseline 0.32 -

MLP 0.97 -
SVM 0.99 -

Decision Tree 0.83 11.30 ± 1.16
FS-NEAT 0.96 15.50 ± 2.07

The accuracy of FS-NEAT is further detailed in Table IV,
a confusion matrix that discriminates the errors by class using
the results from the sum of the results from each test set in
the stratified 10-fold cross-validation. The diagonal shows the
number of correctly classified samples for each class. As can
be seen, despite the great imbalance between classes, none of
them was poorly classified.

After the predictive power of the algorithm was validated,
we evolved 235 artificial neural networks with FS-NEAT using
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TABLE IV: Confusion matrix expanding the accuracy results
of FS-NEAT from Table III. Each row corresponds to the true
label of the leukemia classes, and each column corresponds
to the predicted labels by the evolved neural networks. The
numbers in the diagonal indicate how many samples were
correctly predicted by the neural networks.

True\Prediction BCR E2A Hyperdip MLL T-ALL TEL
BCR 12 0 2 1 0 0
E2A 0 27 0 0 0 0

Hyperdip 2 0 61 0 0 1
MLL 0 0 2 18 0 0

T-ALL 0 0 0 0 43 0
TEL 1 0 0 0 0 78

the same set of parameters as before, but this time with all
available samples, to analyze the genes being selected. The
need for this battery of tests is due to the stochastic nature
of FS-NEAT, that may present variable results because of
the randomness built into the system. An example of neural
network created through this method is shown in Fig. 3.
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Fig. 3: Example of an ANN created with FS-NEAT using the
data from the leukemia dataset. Rectangles are input nodes
associated to a specific gene, white nodes are hidden nodes,
and colored nodes are output nodes associated to a specific
subtype of leukemia. The arrows are connections, with their
thickness proportional to the absolute value of their weights.

The list of most frequently selected genes by these networks
is presented in Table V. For these genes, their connection with
the leukemia subtypes in the generated networks (the presence
of direct or indirect connections between the corresponding
inputs and outputs) was fairly strong. The most frequent genes
always appeared linked to the same subtypes, reinforcing the
idea that the networks are indeed encoding possible relations
between gene and disease. The apparent low frequency of
the genes, for instance 67 for GLUT5 in 235 networks,

may be justified by the presence of redundancy and repeated
genes under different alias since there are more than one
probe for some genes. The sixth most selected gene, with 40
occurrences, was c-ABL, a different alias for the gene ABL.
The same happens with the ninth most selected gene, with 37
occurrences, PBX1a, an alias of PBX1. The networks were
able to deal with this by not selecting repeated genes, leading
to this ”fragmented” frequencies. Even then, the results with
the alias are coherent, as both are appearing in the top ten,
and ABL and c-ABL were always connected to the subtype
BCR in the networks, while PBX1 and PBX1a were always
connected to the subtype E2A. It is also worth noting that the
probability of a gene being randomly selected by a network is
1
n , n being the number of genes, so in this dataset, it would
correspond to 1

985 ≈ 0.001. Since the average number of genes
by network is 15.5 as detailed in Table III, if the networks were
being randomly assembled, for our test with 235 networks we
would expect a frequency of 4 occurrences per gene, since
0.001 × 15.5 × 235 ≈ 4, far less than the frequencies listed
in Table V. This indicates that the genes are indeed being
selected due their capacity to better discriminate the data.

TABLE V: The top five most frequently selected genes for the
leukemia dataset, with indication of which subtype they were
linked to in the networks.

Frequency Accession number Gene Most linked subtype
67 34362 at GLUT5 BCR
64 33355 at PBX1 E2A
60 40763 at MEIS1 MLL
55 1636 g at ABL BCR
47 37600 at ECM1 BCR

The biological validation shows that the top five genes
with the highest frequency among the different studied classes
of leukemia were consistent with biological data. The most
frequent gene linked to the BCR subtype was the Glucose
Transporter-Like Protein 5 (GLUT5). Interestingly, GLUT5
was seen to be overexpressed in acute myeloid leukemia
(AML) [46]. AML mice showed increased GLUT5 expression
in the bone marrow, and in vitro AML-derived human cells
also displayed higher expression of GLUT5 [46]. Moreover,
consistent with biological data, the Pre-B-Cell Leukemia Tran-
scription Factor 1 (PBX1) was the most frequently linked gene
to the E2A type. The E2A-PBX1 gene fusion is frequently
seen in patients with ALL, ALL of the central nervous system,
and recently was also seen in gastric carcinoma [47], [48],
[49]. Furthermore, the Meis Homeobox 1 (MEIS1) is the most
frequently associated gene with the MLL class. In agreement
with this finding, MEIS1 is commonly upregulated in MLL
patients and is directly related to leukemia establishment in
both human and mice, in addition to being related to acute
leukemia [50], [51]. Also consistent with biological logic, the
Proto-Oncogene Tyrosine-Protein Kinase ABL1 (ABL) was
also present as the second most associated gene with the
BCR class. ABL overexpression and its subsequent fusion with
BCR is deeply related to B-cell acute lymphoblastic leukemia
(B-ALL), and chronic myelogenous leukemia (CML) [52]
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and its direct and indirect inhibition are linked to leukemia
treatment [53], [54]. Recently, this protein expression was also
related to Parkinson Disease [55]. The Extracellular Matrix
Protein 1 (ECM1) was the third more frequently associated
gene with the BCR class. Nevertheless, although this gene was
not yet related to leukemia, its overexpression was observed in
patients with papillary thyroid cancer [56], being a promising
candidate for CML or B-ALL studies.

Other genes that appeared among the top ten were also
consistent with biological data and showed promising results,
such as the Killer Cell Lectin-Like Receptor K1 (NKG2D),
which was the second most frequently linked gene with the
MLL class. NKG2D overexpression and signaling are already
related to MLL [57] and ALL by promoting immune system
escape [58]. Finally, in agreement with the scientific literature,
Endogolin (CD105), the fifth most frequently connected gene
to the BCR class, is already related to both AML and CML,
where its overexpression is related to AML progression [59]
and CLL poor prognosis [60].

V. CONCLUSION

This paper described a method for classifying DNA mi-
croarrays and selecting genes from their datasets to achieve
dimensionality reduction and find possible candidates for
biomarkers of diseases. The method explores the FS-NEAT,
an evolutionary approach that uses GA to automatically design
ANNs capable of gene selection without the need for any
human intervention or a priori knowledge. We showed how
FS-NEAT could be adapted for the task of classification of
multiple imbalanced classes, especially by defining the fitness
function and artificial neuron structure.

This method was tested with a leukemia microarray dataset
containing six subtypes of leukemia with a different number
of samples. It achieved 96% accuracy in the stratified 10-
fold cross validation, a result close to traditional classifiers
known to have good performance with microarray data, and
without compromising the classification of any individual
class. Moreover, on average, the feature space was reduced
by 98% without the need to predetermine the desired number
of final genes or to apply other FS algorithms as a first step.

The ANNs created with FS-NEAT are interesting results
by themselves since their automatically designed topology
has the advantage of showing which gene was linked to
which leukemia subtype. The review of the most frequently
selected genes revealed consistency between these results and
the biological data.

This study can be further developed by testing the method
with more datasets and by biologically testing the selected
genes as possible biomarkers. Experiments with larger pop-
ulation and number of iterations of FS-NEAT are also a
possibility. As it is often the case with population-based
optimization heuristics, there is a high computational cost
involved, but FS-NEAT has the advantage of being easily
parallelized, greatly reducing run time. The exploration of
other FS algorithms and filter techniques as a preprocessing
step, while not required, could also be considered in the future.
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