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Abstract: Inclusive ψ(2S) production is measured in p-Pb collisions at the centre-of-

mass energy per nucleon-nucleon pair
√
sNN = 8.16 TeV, using the ALICE detector at the

CERN LHC. The production of ψ(2S) is studied at forward (2.03 < ycms < 3.53) and

backward (−4.46 < ycms < −2.96) centre-of-mass rapidity and for transverse momentum

pT < 12 GeV/c via the decay to muon pairs. In this paper, we report the integrated as

well as the ycms- and pT-differential inclusive production cross sections. Nuclear effects

on ψ(2S) production are studied via the determination of the nuclear modification factor

that shows a strong suppression at both forward and backward centre-of-mass rapidities.

Comparisons with corresponding results for inclusive J/ψ show a similar suppression for

the two states at forward rapidity (p-going direction), but a stronger suppression for ψ(2S)

at backward rapidity (Pb-going direction). As a function of pT, no clear dependence

of the nuclear modification factor is found. The relative size of nuclear effects on ψ(2S)

production compared to J/ψ is also studied via the double ratio of production cross sections

[σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp between p-Pb and pp collisions. The results are compared

with theoretical models that include various effects related to the initial and final state of

the collision system and also with previous measurements at
√
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1 Introduction

The study of charmonia, bound states of charm (c) and anticharm (c) quarks, is an im-

portant and interesting research domain. High-energy pp collisions provide a testground

to apply quantum chromodynamics (QCD) theory for understanding the charmonium pro-

duction mechanism. The production of heavy-quark pairs, cc in the present case, is an

inherently perturbative process since the momentum transfer is at least as large as the

heavy-quark pair mass. On the contrary, the formation of the bound state is achieved on

a longer time scale and thus has to be considered as a non-perturbative process. QCD-

based approaches such as Non-Relativistic QCD (NRQCD) [1] give a good description of

the main features of quarkonium production cross sections in pp collisions. When the

production of heavy quarkonium occurs inside a medium, as it happens in case of heavy-

ion collisions, it is influenced by the properties of the medium and various effects are

present. They are mainly categorised in two groups, hot matter effects and cold nuclear

matter (CNM) effects. Among the former, those related to the formation of a Quark-

Gluon Plasma (QGP), a high energy-density medium created in ultra-relativistic heavy-

ion collisions where quarks and gluons are deconfined, are currently scrutinised at collider

experiments at RHIC (mainly Au-Au) [2], up to
√
sNN = 0.2 TeV and the LHC (mainly

Pb-Pb) [3–6], up to
√
sNN = 5.02 TeV. For the J/ψ (1S state with JPC = 1−−), a reduced

production with respect to pp collisions was reported, ascribed to dissociation in the QGP

as a result of color Debye screening [7]. However, LHC experiments reported a significantly

reduced suppression for J/ψ with respect to RHIC, now commonly ascribed to a recombi-

nation mechanism [8, 9] related to the much larger multiplicity of charm quarks observed

at the LHC [10]. When considering the weakly bound ψ(2S) state, Debye screening should

lead to a stronger suppression, which at the same time could be influenced by recombination

effects. Results currently available at LHC energies on the relative suppression of ψ(2S) and

J/ψ [11–13] generally show a stronger effect for the former, except for CMS data on Pb-Pb
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collisions at
√
sNN = 2.76 TeV in the kinematic window 3 < pT < 30 GeV/c, 1.6 < |y| < 2.4

where the opposite behaviour was found. Attempts to explain these observations were car-

ried out [14], and it is generally recognised that further precision measurements are needed

and might help reaching a final assessment [15].

In addition to more accurate data, a quantitative understanding of the results requires

the evaluation of the size of CNM effects, since those are also present in heavy-ion col-

lisions. Among these effects an important role is played by nuclear shadowing [16], the

modification of the partonic structure functions inside nuclei. It leads to a change in the

probability for a quark or gluon to carry a fraction x of the nucleon momentum and, as

a consequence, it affects the production cross section of the cc pair. At low x, this effect

could originate from the formation of a Color Glass Condensate (CGC) [17], which can

happen when, at high energy, the density of low-x quarks and gluons becomes very large,

leading to saturation effects. A further mechanism which can also modify the parton kine-

matics is coherent energy loss, an effect involving partons in the initial and final state [18].

Finally, hadronic/nuclear break-up of the final-state cc pair [19] can also occur, and leads

to suppression effects. The common way to investigate CNM effects is via proton-nucleus

collisions, where hot-matter effects are, in principle, negligible.

Various results on CNM effects on charmonium production are available at LHC ener-

gies for p-Pb collisions at
√
sNN = 5.02 TeV. For J/ψ, extensive studies were performed at

forward/backward centre-of-mass rapidity ycms by ALICE [20–23] and LHCb [24], as well

as at midrapidity by ALICE [22], ATLAS [25] and CMS [26]. A general feature of the re-

sults is the observation of a significant J/ψ suppression at forward ycms (p-going direction),

which becomes weaker and finally disappears moving towards backward rapidity (Pb-going

direction). Theory models which include shadowing effects based on various parameteri-

zations of the nuclear modifications of parton distribution functions are able to reproduce

the results [27, 28]. At the same time, also models based on a CGC approach [29], or

including coherent energy loss as a main CNM mechanism [30], are in good agreement

with data. Such an agreement with the models described above also implies that the pres-

ence of significant break-up effects of the cc pair, which are not included in these models,

is disfavoured.

For ψ(2S), results at
√
sNN = 5.02 TeV [31–35] clearly showed a larger suppression

with respect to J/ψ, in particular at backward rapidity. The CNM effects mentioned in

the previous paragraph in conjunction with J/ψ results are initial-state effects or anyway

directly related to the hard production of the heavy-quark pair, and are expected to affect

similarly both charmonium final states. The additional suppression exhibited by the ψ(2S)

was therefore attributed to a break-up of this more loosely bound state via collisions with

the dense system of interacting particles produced in p-Pb collision [14, 36, 37]. It has

to be noted that a similar effect was observed, although with larger uncertainties, by the

PHENIX experiment in p-Al and p-Au collisions at
√
sNN = 0.2 TeV [38].

More recently, with the start of LHC Run 2, p-Pb collisions at
√
sNN = 8.16 TeV

became available. First results on J/ψ, obtained by ALICE [39] and LHCb [40], were

compatible within uncertainties with those obtained at
√
sNN = 5.02 TeV. In this paper, we

show the first results on inclusive ψ(2S) production in p-Pb collision at
√
sNN = 8.16 TeV.
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Section 2 provides a short description of the apparatus and event selection criteria, while

the data analysis for ψ(2S) production is described in section 3. Section 4 contains the

results, with model comparisons and discussion, and finally a short summary is given in

section 5.

2 Experimental apparatus and event selection

Extensive descriptions of the ALICE apparatus and its performance can be found in

refs. [41, 42]. The analysis presented in this paper is based on muons detected at forward

rapidity with the muon spectrometer [43]. The spectrometer covers the pseudo-rapidity

range −4 < ηlab < −2.5 and includes five tracking stations (Cathode Pad Chambers), the

central one embedded inside a dipole magnet with a 3 T ·m field integral. Each tracking

station consists of two tracking chambers aimed at measuring muons in the bending (verti-

cal) and non-bending (horizontal) planes. Two trigger stations (Resistive Plate Chambers),

positioned downstream of the tracking system, provide a single muon as well as a dimuon

trigger, with a programmable muon pT threshold that was set to 0.5 GeV/c for this data

sample. An absorber, made of concrete, carbon and steel (with a thickness of 10 interaction

lengths) is positioned in front of the tracking system, to remove hadrons produced at the

interaction vertex. Hadrons which escape this front absorber are further filtered out by a

second absorber, placed between the tracking and the triggering system, which also removes

low-momentum muons originating from pion and kaon decays, thereby reducing the back-

ground. The position of the interaction vertex is determined by the two layers of the Silicon

Pixel Detector (SPD) [44], corresponding to the inner part of the ALICE Inner Tracking

System (ITS), which cover the pseudo-rapidity intervals |ηlab| < 2 and |ηlab| < 1.4. The V0

detector [45], composed of scintillators located at both sides of the interaction point, and

covering the pseudo-rapidity intervals −3.7 < ηlab < −1.7 and 2.8 < ηlab < 5.1, provides

the minimum bias trigger. In addition, the V0 is used for luminosity determination, which

is also independently estimated by means of the two T0 Cherenkov detectors [46], which

cover the pseudo-rapidity intervals −3.3 < ηlab < −3.0 and 4.6 < ηlab < 4.9.

The data samples were collected with two different beam configurations, which corre-

spond to the acceptance regions 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96 for dimuons.

These configurations were obtained by reversing the direction of the two beams, and are re-

spectively named p-Pb (forward) and Pb-p (backward) in the following. Positive rapidities

correspond to the situation where the proton beam travels towards the muon spectrometer.

The integrated luminosities collected for the two configurations are Lint = 8.4 ± 0.2 nb−1

for p-Pb and Lint = 12.8± 0.3 nb−1 for Pb-p collisions [47].

Events selected for this analysis were collected by requiring a coincidence between the

minimum bias and the dimuon trigger conditions. In order to reject tracks at the edge of

the spectrometer acceptance, the pseudo-rapidity selection −4 < ηµ,lab < −2.5 is performed

while, to remove tracks crossing the denser regions of the absorber, their radial transverse

position (Rabs) at the end of the absorber must be in the range 17.6 < Rabs < 89.5 cm.

Finally, the matching based on a χ2 minimization algorithm between a track in the tracking

chambers and a track reconstructed in the trigger system is required.
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3 Data analysis

The analysis procedure reported here is similar to the one discussed in refs. [31, 39]. The

cross section for inclusive ψ(2S) production times the branching ratio B.R.ψ(2S)→µ+µ− =

(0.80± 0.06)% [48] is given by

B.R.ψ(2S)→µ+µ− ·
d2σ

ψ(2S)
pPb

dpTdy
=
N corr
ψ(2S)(y, pT)

Lint ·∆y∆pT
(3.1)

where N corr
ψ(2S)(y, pT) is the number of ψ(2S) in the corresponding y and pT interval, cor-

rected by the product of acceptance times reconstruction efficiency A · ε(y, pT), Lint is the

integrated luminosity and ∆y, ∆pT are the width of the rapidity and transverse momen-

tum intervals. The choice of not correcting for the decay branching ratio is due to the

non-negligible systematic uncertainty it would introduce (∼8% [48]).

The number of reconstructed J/ψ and ψ(2S) resonances are extracted via fits to the

invariant mass spectrum of opposite-sign muon pairs. More in detail, an extended Crystal

Ball function (CB2) [49] is used to describe the shape of the invariant mass signal of the

J/ψ and ψ(2S). Alternatively, a pseudo-Gaussian function with a mass-dependent width

is also adopted [49]. The background continuum is empirically parameterised either with a

Gaussian function with a mass dependent width (VWG) or with a fourth order polynomial

times an exponential function, keeping the parameters free in the fit procedure. For J/ψ,

the mass and width are also kept as free parameters in the fit, while the other parameters,

related to the non-Gaussian tails of the mass shape, are fixed to the values obtained from

Monte Carlo (MC) simulations. As a remark, the position of the mass pole of the J/ψ

extracted from the fit is in excellent agreement with the PDG value [48] (in most cases

within 1 MeV/c2). As additional tests, the J/ψ tail parameters were either kept free in the

fitting procedure, or fixed to those extracted from spectra corresponding to pp collisions at√
s = 8 TeV [50]. For the ψ(2S), the mass and width are fixed to those of the J/ψ, since the

relatively low signal to background ratio does not allow the same approach. The relations

that are used are mψ(2S) = mJ/ψ+mPDG
ψ(2S)−m

PDG
J/ψ (where mPDG

i is the mass value from [48])

and σψ(2S) = σJ/ψ · σMC
ψ(2S)/σ

MC
J/ψ, with the latter giving a 5% increase between the J/ψ and

ψ(2S) widths. This value is validated using results from a large data sample of pp collisions

at
√
s = 13 TeV [51], where the ψ(2S) mass and width are kept free in the fit procedure,

and the observed increase between σJ/ψ and σψ(2S) is also 5%. The non-Gaussian tails used

for the J/ψ are also adopted for the ψ(2S).

Various fits, combining the options described above were performed, also using two dif-

ferent fit ranges, in order to further test the background description (2 < mµµ < 5 GeV/c2

and 2.2 < mµµ < 4.5 GeV/c2). The raw ψ(2S) yields and their statistical uncertainties

are taken to be the average of the results of the various performed fits, while the standard

deviation of their distribution is assigned as a systematic uncertainty. An additional 5%

uncertainty, corresponding to the uncertainty on the ψ(2S) width in the large pp data

sample used to validate the assumption on the relative widths for J/ψ and ψ(2S) [51], is

quadratically added.
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Figure 1. Fit examples of the pT and y integrated mass spectrum for the forward (left) and

backward (right) rapidity data samples. The contribution of the resonances and of the background

are also shown separately. These fits are performed using the CB2 as signal function and the VWG

background shape.

For the two rapidity intervals under study, the values N
ψ(2S)
pPb = 3148± 253± 243 and

N
ψ(2S)
Pbp = 3595± 283± 368 were determined, with the first and second uncertainties being

statistical and systematic. The measurement is performed in the dimuon pair transverse

momentum range pT < 12 GeV/c. As an example, figure 1 shows fits to the invariant mass

spectra for the two ycms regions. The same procedure is adopted for the evaluation of the

differential yields in ycms (2 sub-ranges each for p-Pb and Pb-p) and pT (5 intervals, up to

pT = 12 GeV/c). In the interval with largest pT (8 < pT < 12 GeV/c) the raw ψ(2S) yields

are N
ψ(2S)
pPb = 150± 39± 30 and N

ψ(2S)
Pbp = 131± 40± 33.

The product of acceptance and reconstruction efficiency (A · ε) for ψ(2S) is evaluated

via MC simulations, performed individually for each run, in order to correctly reproduce

the evolution of the detector conditions during data taking. The pT and ycms input shapes

used for the simulation of ψ(2S) are tuned directly on data, by performing a differential

analysis in narrower intervals and using an iterative method [39]. The procedure is found

to converge after only two iterations. The decay products of the ψ(2S) are then propagated

through a realistic description of the ALICE set-up, based on GEANT3.21 [52]. The A · ε
values, averaged over the data taking periods and integrated over ycms and pT, amount

to 0.272 for p-Pb and 0.258 for Pb-p collisions, with a negligible statistical uncertainty.

The systematic uncertainties on the acceptance are evaluated by performing an alternative

simulation based on the corresponding input shapes for the J/ψ [31]. A 3% and 1.5% effect

is found for p-Pb and Pb-p, respectively. When considering differential values as a function

of ycms and pT, the uncertainties vary between 0.4–4.0% (0.1–4.4%) for p-Pb (Pb-p). The

reconstruction efficiency is the product of trigger, tracking and matching efficiency terms.

The latter term refers to the procedure used to pair tracks reconstructed in the tracking
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system with the corresponding track segments in the trigger detector. The systematic

uncertainties on the three efficiencies mentioned above are evaluated in the same way, and

have the same values as those reported for the J/ψ analysis [39]. The largest contribution

is that from the trigger which amounts to 2.6% (3.1%) for the integrated p-Pb (Pb-p)

data sample.

The integrated luminosities for the two data samples, as detailed in ref. [39], are

obtained from Lint = NMB/σMB, where NMB is the number of MB events and σMB the

cross section corresponding to the MB trigger condition, obtained through a van der Meer

scan [47]. The NMB quantity was estimated as the number of analysed dimuon triggers

times the inverse of the probability of having a triggered dimuon in a MB event. These

values are quoted in ref. [39].

The suppression of ψ(2S) with respect to the corresponding pp yield is quantified by

the nuclear modification factor R
ψ(2S)
pPb . Its evaluation is performed through the following

expression:

R
ψ(2S)
pPb (pT, ycms) =

d2σ
ψ(2S)
pPb /dpTdycms

APb · d2σ
ψ(2S)
pp /dpTdycms

(3.2)

where APb = 208 is the mass number of the lead nucleus and the production cross sec-

tions in p-Pb and pp are evaluated at the same collision energy and in the same kinematic

domain. For this analysis, the ψ(2S) production cross section in pp collisions, integrated

over pT and for each of the two rapidity ranges is evaluated from the average of the J/ψ

cross sections measured by ALICE [50] and LHCb [53] at
√
s = 8 TeV, multiplied by the

ratio of cross sections [σψ(2S)/σJ/ψ]pp, obtained via an interpolation of ALICE results at√
s = 5, 7, 8 and 13 TeV [51] assuming no energy dependence. The interpolation is in very

good agreement with the pp results, and allows the uncertainties on this quantity to be

significantly reduced. To account for the slight difference in collision energy between pp

and p-Pb data (8 TeV vs 8.16 TeV) a 1.5% correction factor on the J/ψ cross section at√
s = 8 TeV is introduced, obtained from an interpolation of J/ψ production cross sections

measured at various
√
s [51]. Finally, both the J/ψ cross section and the [σψ(2S)/σJ/ψ]pp ra-

tio must be evaluated in the rapidity domain covered by the p-Pb and Pb-p configurations.

For the J/ψ cross section, the procedure detailed in ref. [39] and based on a polynomial

or Gaussian interpolation of the ycms-dependence is adopted. For the ratio [σψ(2S)/σJ/ψ]pp
a small correction factor, related to the slightly different rapidity distributions for J/ψ

and ψ(2S), as discussed in ref. [31], and amounting to ∼ 1%, is assigned as a system-

atic uncertainty. Other systematic uncertainties related to [σψ(2S)/σJ/ψ]pp include a term

(6.0%) corresponding to the uncertainty on the interpolation procedure and a further 1%

obtained by assuming, rather than a flat
√
s dependence of the ratio, the one calculated

by NRQCD+CGC models [54, 55] as quoted in ref. [51]. Finally, there is a contribution

from the uncertainty on the J/ψ cross section in pp collisions at
√
s = 8 TeV (7.3% for

both p-Pb and Pb-p, see table 1 of [39]).

The evaluation of the reference cross section in the rapidity sub-intervals and as a

function of pT is performed with the same procedure summarised above. More in detail,

for each ycms and pT interval, pp results at various
√
s are again interpolated with a

– 6 –
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source p-Pb (%) Pb-p (%)

signal extraction 7.7 (8.0–20.0) 10.2 (9.1–24.9)

trigger efficiency 2.6 (1.0–5.0) 3.1 (1.0–6.0)

tracking efficiency 1.0 2.0

matching efficiency 1.0 1.0

MC input 3 (0.4–4.0) 1.5 (0.1–4.4)

LpPb
int (corr.) 0.5 0.7

LpPb
int (uncorr.) 2.1 2.2

pp reference (corr.) 7.1 7.1

pp reference (uncorr.) 6.3 (7.0–11.8) 6.5 (7.2–11.9)

Table 1. Systematic uncertainties on the determination of the ψ(2S) cross sections times branching

ratio and nuclear modification factors, shown separately for the p-Pb and Pb-p configurations.

When a single value is quoted, it refers to quantities that have no pT or ycms dependence. In

the other cases, the number outside parentheses is for integrated quantities, while the ranges in

parentheses indicate the variation of the systematic uncertainties in the pT and ycms intervals.

constant function, which is found to well reproduce the data. For this differential study,

the relatively small data sample for pp collisions at
√
s = 5.02 TeV [51] is not used in

the interpolation.

A summary of the systematic uncertainties on the determination of the ψ(2S) cross

sections and of the nuclear modification factor is given in table 1. The contribution from

the signal extraction procedure is the largest, and is uncorrelated among the various pT and

ycms intervals. The uncertainties on the MC input shapes and on the various efficiencies are

also considered as uncorrelated as a function of pT and ycms. The uncertainties on the p-Pb

luminosity values correspond to those quoted in ref. [39]. Concerning the pp reference, the

uncertainties corresponding to the luminosity measurement affecting the J/ψ cross sections

in pp are correlated [39], while the remaining contributions are uncorrelated over ycms and

pT. The various uncorrelated and correlated uncertainties are added in quadrature and

separately quoted in the numerical results and in the figures of the next section.

4 Results

The measured inclusive ψ(2S) production cross sections for p-Pb collisions at
√
sNN =

8.16 TeV, multiplied by the branching ratio to muon pairs and integrated over pT <

12 GeV/c are:

B.R.ψ(2S)→µ+µ− · σ
ψ(2S)
pPb (2.03 < ycms < 3.53) = 1.337± 0.108± 0.121± 0.007µb

B.R.ψ(2S)→µ+µ− · σ
ψ(2S)
Pbp (−4.46 < ycms < −2.96) = 1.124± 0.089± 0.126± 0.008µb

where the first uncertainty is statistical, the second and third are uncorrelated and cor-

related systematic, respectively. The differential ψ(2S) cross sections are determined as a

– 7 –
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Figure 2. The differential cross section times branching ratio B.R.ψ(2S)→µ+µ−dσψ(2S)/dy for pT <

12 GeV/c. The error bars represent the statistical uncertainties, while the boxes correspond to total

systematic uncertainties. The latter are uncorrelated among the points, except for a very small

correlated uncertainty (0.5% and 0.7% for the forward and backward ycms samples, respectively).

The grey bands correspond to the reference pp cross section scaled by APb.

function of ycms (splitting the forward and backward intervals in two sub-intervals) and pT
(5 intervals). The results are shown in figures 2 and 3. The reported values include, in

addition to the prompt component, a contribution from the decays of b-hadrons, which was

shown by LHCb in p-Pb collisions at
√
sNN = 5.02 TeV [33] to amount to ∼20–30% of the

inclusive cross section. Furthermore, figures 2 and 3 also show, as a band, the reference pp

cross section obtained with the interpolation procedure described in the previous section,

scaled by APb.

The ratio of the ψ(2S) and J/ψ cross sections is an interesting quantity for the com-

parison of the production of the two resonances across different systems, because the terms

related to the luminosity and efficiencies and the corresponding uncertainties cancel. It has

been computed in this analysis as the ratio of the acceptance-corrected number of ψ(2S)

and J/ψ. In figure 4 the pT-integrated cross section ratio is shown for the two rapidity

intervals. In the same figure, this quantity is compared with the corresponding pp result

at the same collision energy, obtained through the interpolation procedure described in

the previous section. At backward rapidity, the ratio is significantly lower (2.9σ effect)

than in pp, while at forward rapidity the values are compatible. In the same figure, the

results are compared with those obtained in p-Pb collisions at
√
sNN = 5.02 TeV [31]. No

√
sNN-dependence can be observed within uncertainties.

In figure 5 the pT-dependence of the ratio of the ψ(2S) and J/ψ cross section is shown.

It is compared with the corresponding pp ratio obtained through the interpolation proce-

dure described in the previous section. Also here a stronger relative suppression of ψ(2S)

with respect to J/ψ is visible at backward rapidity.

The suppression of ψ(2S) can be more directly quantified by considering the nuclear

modification factors, estimated following the procedure described in the previous section.
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Figure 3. The differential cross sections B.R.ψ(2S)→µ+µ−d2σψ(2S)/dydpT for p-Pb collisions at√
sNN = 8.16 TeV, shown separately for the forward and backward ycms samples. The error bars

represent the statistical uncertainties, while the boxes correspond to total systematic uncertainties.

The latter are uncorrelated among the points, except for a very small correlated uncertainty (0.5%

and 0.7% for the forward and backward ycms samples, respectively). The grey bands correspond to

the reference pp cross section scaled by APb.
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√
sNN = 8.16 TeV, compared with the corresponding pp quantity, shown as a grey

band and obtained via an interpolation of results at
√
s = 5, 7, 8 and 13 TeV [51]. The error

bars represent the statistical uncertainties, while the boxes correspond to uncorrelated systematic

uncertainties. The published p-Pb results at
√
sNN = 5.02 TeV [31] are also shown.
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Figure 5. The ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ as a function of pT, for p-Pb col-

lisions at
√
sNN = 8.16 TeV, compared with the corresponding pp quantity, shown as a grey band

and obtained via an interpolation of results at
√
s = 7, 8 and 13 TeV [51]. The error bars represent

the statistical uncertainties, while the boxes correspond to uncorrelated systematic uncertainties.

The numerical values, integrated over the interval pT < 12 GeV/c, are:

R
ψ(2S)
pPb (2.03 < ycms < 3.53) = 0.628± 0.050 (stat.)± 0.069 (syst.uncorr.)

± 0.045 (syst.corr.)

R
ψ(2S)
Pbp (−4.46 < ycms < −2.96) = 0.684± 0.054 (stat.)± 0.088 (syst.uncorr.)

± 0.049 (syst.corr.)

The reported values refer to inclusive production. It was shown by LHCb, when study-

ing p-Pb collisions at
√
sNN = 5.02 TeV, that inclusive and prompt nuclear modification

factors are compatible within uncertainties [33]. In figure 6, R
ψ(2S)
pPb is shown splitting the

forward and backward rapidity samples in two intervals. The results are compared with

those for R
J/ψ
pPb [39]. For ψ(2S), the suppression reaches up to 30–40% and is compati-

ble, within uncertainties, at forward and backward ycms. Relatively to J/ψ, a stronger

suppression is visible at backward rapidity, whereas the results are compatible at forward

rapidity. The data are also compared (left panel) with theoretical calculations based on

initial-state effects or coherent energy loss, whose output is largely independent on the

specific charmonium resonance, and can therefore be compared with both J/ψ and ψ(2S)

results. Calculations based on the CGC approach [56, 57], on nuclear shadowing [57, 58],

implemented according to different parameterizations (EPS09NLO [59], nCTEQ15 [60]) or

finally on coherent energy loss [57, 61], show good agreement with the J/ψ results but fail

to describe the ψ(2S) RpPb at backward rapidity.

The possible influence of final-state interactions, leading to a break-up of the char-

monium resonances, is taken into account in theory calculations where these effects are

due to either soft color exchanges in the hadronizing cc pair [36], or final-state interac-

tions with the comoving medium [37]. The former calculation describes the initial state

in terms of a CGC state, and results are available only at forward rapidity, corresponding

to low Bjorken-x values in the Pb nucleus, where the system may be described using this
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Figure 6. The ycms-dependence of RpPb for ψ(2S) and J/ψ [39] in p-Pb collisions at
√
sNN =

8.16 TeV. The error bars represent the statistical uncertainties, while the boxes correspond to un-

correlated systematic uncertainties and the box at RpPb = 1 to correlated systematic uncertainties.

The results are compared with models including initial-state effects [56–58] and coherent energy

loss [57, 61] (left panel), and to models which also implement final-state effects [36, 37] (right panel).
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Figure 7. The pT-dependence of RpPb for ψ(2S) and J/ψ at forward (left) and backward (right)

rapidity in p-Pb collisions, at
√
sNN = 8.16 TeV. The error bars represent the statistical uncertain-

ties, while the boxes correspond to uncorrelated systematic uncertainties and the box at RpPb = 1

to correlated systematic uncertainties. The comparison with the results of a CGC-based model [36],

which implements final-state effects, is also shown.

approach. The two models reach a fair agreement with data for both ψ(2S) and J/ψ, as

shown in the right panel of figure 6.

The present data sample allows a pT-differential study of R
ψ(2S)
pPb up to pT = 12 GeV/c.

The results are plotted in figure 7, separately for forward and backward rapidity, and

compared with published results for J/ψ [39]. At forward rapidity the ψ(2S) suppression

is compatible with that of J/ψ, while at backward rapidity the ψ(2S) suppression, which is

independent of pT within uncertainties, is significantly stronger. The CGC-based model [36]

results are found to fairly match the experimental findings. No theory comparison is yet

available for backward rapidity.
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Figure 8. Comparison of the rapidity dependence of RpPb for ψ(2S) in p-Pb collisions at√
sNN = 8.16 and 5.02 TeV [31]. The error bars represent the statistical uncertainties, while the

boxes correspond to uncorrelated systematic uncertainties and the boxes at RpPb = 1 to correlated

systematic uncertainties, separately shown for the two energies. The results are also compared with

theoretical models that include final-state effects [36, 37].

In figure 8, a comparison of the rapidity dependence of ψ(2S) suppression at
√
sNN =

8.16 TeV and 5.02 TeV [39] is presented, together with the corresponding results from the-

oretical models which implement final-state effects [36, 37]. Both models fairly describe

the ψ(2S) nuclear modification factor at both energies. The data at the two energies are in

agreement within uncertainties. In ref. [31], the reference for the ψ(2S) RpPb evaluation at
√
sNN = 5.02 TeV was based only on the

√
s = 7 TeV pp data available at that time [62].

If the procedure described in this paper would be adopted for the
√
sNN = 5.02 TeV re-

sult, the reference pp cross section would be lower by 12% (corresponding to 0.9σ on that

quantity) and the RpPb values would therefore be higher by the same amount. In any case,

the slightly stronger suppression predicted at
√
sNN = 8.16 TeV and backward rapidity in

refs. [37, 57], related to the larger density of produced particles at higher energy, is beyond

the sensitivity of the current measurement.

In figure 9, the results on the pT-dependence of R
ψ(2S)
pPb at the two energies studied by

ALICE are presented. Within uncertainties, there is a fair agreement between the results,

without a clear indication of a pT-dependence, except possibly for the backward-rapidity

results at
√
sNN = 5.02 TeV which show a tendency to an increase at high pT.

Finally, also to ease comparisons with future results from other experiments, we present

in figure 10, as a function of ycms and figure 11, as a function of pT, the values of the

double ratio of the ψ(2S) and J/ψ cross sections between p-Pb and pp. Clearly, these

results confirm the features observed when comparing the nuclear modification factors for

the two resonances, i.e., the ycms-dependence shows a relative suppression of the ψ(2S)

with respect to the J/ψ at backward rapidity, while the pT-dependence does not indicate

a clear trend.
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Figure 9. Comparison of the transverse-momentum dependence of RpPb for ψ(2S) in p-Pb collisions

at
√
sNN = 8.16 and 5.02 TeV [31]. The error bars represent the statistical uncertainties, while the

boxes correspond to uncorrelated systematic uncertainties and the boxes at RpPb = 1 to correlated

systematic uncertainties, separately shown for the two energies.

5− 4− 3− 2− 1− 0 1 2 3 4 5

cms
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p
p

]
ψ

J
/

σ/
(2

S
)

ψ
σ

 /
 [

p
P

b
]

ψ
J
/

σ/
(2

S
)

ψ
σ[

 

c < 12 GeV/
T

p = 8.16 TeV, NNsp-Pb 

c < 8 GeV/
T

p = 5.02 TeV, NNsp-Pb 

−µ
+

µ →(2S) ψ, ψALICE, Inclusive J/

Figure 10. Double ratio of ψ(2S) and J/ψ cross sections in p-Pb and pp collisions as a function of

rapidity, at
√
sNN = 8.16 TeV, compared with the corresponding results at

√
sNN = 5.02 TeV [31].

The error bars represent the statistical uncertainties, while the boxes correspond to uncorrelated

systematic uncertainties.

5 Conclusions

The results of studies on the inclusive ψ(2S) production in p-Pb collisions at
√
sNN =

8.16 TeV, performed by ALICE, were shown. The data sample is about two times larger

than the one at
√
sNN = 5.02 TeV, which was the object of a previous analysis [39].

The values of the nuclear modification factor indicate a 30–40% ψ(2S) suppression at

both forward and backward rapidity, with no significant transverse momentum dependence.

When compared with the corresponding values for J/ψ, a similar suppression is found at

forward rapidity, likely dominated by initial-state effects such as nuclear shadowing. At
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Figure 11. Double ratio of ψ(2S) and J/ψ cross sections in p-Pb and pp collisions as a function

of transverse momentum, at forward (left) and backward (right) rapidity at
√
sNN = 8.16 TeV,

compared with the corresponding results at
√
sNN = 5.02 TeV [31]. The error bars represent the

statistical uncertainties, while the boxes correspond to uncorrelated systematic uncertainties.

backward rapidity, the ψ(2S) suppression is significantly stronger than that of J/ψ. This

effect is well reproduced by theoretical models that complement initial-state with final-

state break-up effects, which should be more important for the loosely bound ψ(2S) state.

These results also confirm, with a better accuracy and extending the pT reach, the previous

observations carried out by ALICE in p-Pb collisions at
√
sNN = 5.02 TeV.
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S. Aziz78, M.D. Azmi16, A. Badalà56, Y.W. Baek41, S. Bagnasco59, X. Bai107, R. Bailhache68,

R. Bala101, A. Balbino30, A. Baldisseri137, M. Ball43, S. Balouza105, D. Banerjee3, R. Barbera27,
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M.L. Knichel34, A.G. Knospe125, C. Kobdaj116, M.K. Köhler104, T. Kollegger107,
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29 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
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