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devotions; who spends himself in a worthy cause; who at the best knows in the

end the triumph of high achievement, and who at the worst, if he fails, at least fails
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ABSTRACT

Ascertaining that a network will forward spoofed traffic usually requires an active probing

vantage point in that network, effectively preventing a comprehensive view of this global

Internet vulnerability. We argue that broader visibility into the spoofing problem may lie

in the capability to infer lack of Source Address Validation (SAV) compliance from large,

heavily aggregated Internet traffic data, such as traffic observable at Internet Exchange

Points (IXPs). The key idea is to use IXPs as observatories to detect spoofed packets, by

leveraging Autonomous System (AS) topology knowledge extracted from Border Gateway

Protocol (BGP) data to infer which source addresses should legitimately appear across

parts of the IXP switch fabric. In this thesis, we demonstrate that the existing literature

does not capture several fundamental challenges to this approach, including noise in BGP

data sources, heuristic AS relationship inference, and idiosyncrasies in IXP interconnec-

tivity fabrics. We propose Spoofer-IX, a novel methodology to navigate these challenges,

leveraging Customer Cone semantics of AS relationships to guide precise classification

of inter-domain traffic as In-cone, Out-of-cone (spoofed), Unverifiable, Bogon, and Unas-

signed. We apply our methodology on extensive data analysis using real traffic data from

two distinct IXPs in Brazil, a mid-size and a large-size infrastructure. In the mid-size IXP

with more than 200 members, we find an upper bound volume of Out-of-cone traffic to be

more than an order of magnitude less than the previous method inferred on the same data,

revealing the practical importance of Customer Cone semantics in such analysis. We also

found no significant improvement in deployment of SAV in networks using the mid-size

IXP between 2017 and 2019. In hopes that our methods and tools generalize to use by

other IXPs who want to avoid use of their infrastructure for launching spoofed-source

DoS attacks, we explore the feasibility of scaling the system to larger and more diverse

IXP infrastructures. To promote this goal, and broad replicability of our results, we make

the source code of Spoofer-IX publicly available. This thesis illustrates the subtleties of

scientific assessments of operational Internet infrastructure, and the need for a community

focus on reproducing and repeating previous methods.

Keywords: Stability. spoofing. security. customer cone. inter-domain routing.



Aprimorando a Precisão da Inferência de Tráfego Spoofing na Troca de Tráfego

Inter-domínio

RESUMO

A constatação de que uma rede encaminhará tráfego falsificado geralmente requer um

ponto de vantagem ativo de medição nessa rede, impedindo efetivamente uma visão

abrangente dessa vulnerabilidade global da Internet. Isto posto, argumentamos que uma

visibilidade mais ampla do problema de spoofing pode estar na capacidade de inferir a

falta de conformidade com as práticas de Source Address Validation (SAV) a partir de

dados de tráfego da Internet altamente agregados, como o tráfego observável nos Internet

Exchange Points (IXPs). A ideia chave é usar IXPs como observatórios para detectar

pacotes falsificados, aproveitando o conhecimento da topologia de sistemas autônomos

extraído dos dados do protocolo BGP para inferir quais endereços de origem devem

aparecer legitimamente nas comunicações através da infra-estrutura de um IXP. Nesta

tese, demonstramos que a literatura existente não captura diversos desafios fundamentais

para essa abordagem, incluindo ruído em fontes de dados BGP, inferência heurística de

relacionamento de sistemas autônomos e características específicas de interconectividade

nas infraestruturas de IXPs. Propomos o Spoofer-IX, uma nova metodologia para superar

esses desafios, utilizando a semântica do Customer Cone de relacionamento de sistemas

autônomos para guiar com precisão a classificação de tráfego inter-domínio como In-cone,

Out-of-cone (spoofed), Unverifiable, Bogon, e Unassigned. Aplicamos nossa metodologia

em análises extensivas sobre dados reais de tráfego de dois IXPs distintos no Brasil, uma

infraestrutura de médio porte e outra de grande porte. No IXP de tamanho médio, com mais

de 200 membros, encontramos um limite superior do volume de tráfego Out-of-cone uma

ordem de magnitude menor que o método anterior inferiu sob os mesmos dados, revelando

a importância prática da semântica do Customer Cone em tal análise. Além disso, não

encontramos melhorias significativas na implantação do Source Address Validation (SAV)

em redes usando o IXP de tamanho médio entre 2017 e 2019. Na esperança de que nossos

métodos e ferramentas sejam aplicáveis para uso por outros IXPs que desejam evitar o

uso de sua infraestrutura para iniciar ataques de negação de serviço através de pacotes

de origem falsificada, exploramos a viabilidade de escalar o sistema para infraestruturas

IXP maiores e mais diversas. Para promover esse objetivo e a ampla replicabilidade de

nossos resultados, disponibilizamos publicamente o código fonte do Spoofer-IX. Esta tese



ilustra as sutilezas das avaliações científicas da infraestrutura operacional da Internet e a

necessidade de um foco da comunidade na reprodução e repetição de métodos anteriores.

Palavras-chave: Segurança, spoofing, Customer Cone, estabilidade, roteamento, inter-

domínio.
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1 INTRODUCTION

We organize this chapter into five parts. First, we explain the design goals and

deficiencies of two of the most fundamental elements of the Internet: Internet Protocol (IP)

and Border Gateway Protocol (BGP) (§1.1). Then, we link the previous discussion to

introduce the problem definition and scope (§1.2) that lead us to study and tackle spoofed

traffic on the Internet, the main topic of this thesis. Following, we describe our objectives

(§1.3), and we give an overview of the contributions (§1.4) achieved with this work to the

current state-of-the-art. Finally, we detail how the remainder of the thesis is organized

(§1.5).

1.1 Thirty Years in the Evolution of the Internet Ecosystem

Nowadays, the Internet is composed by close to 70k independent networks (APNIC,

2020; NRO, 2020), also known as Autonomous Systems (ASes). An AS can be an Internet

Service Provider (ISP), a Transit Provider (TP), a Content Provider (CP), or a smaller

organization such a university or a corporation that autonomously administers a domain of

connected IP prefixes. Packets within an AS are routed according to a set of metrics and

Interior Gateway Protocols (IGPs) that are determined by each AS operator separately and

can differ significantly between ASes (HAWKINSON; BATES, 1996). Each AS owns only

a subset of the IP address space and typically covers a limited geographical area, which

means that end-to-end traffic often needs to traverse multiple AS domains (often Transit

Providers) before reaching its destination.

In inter-domain routing, BGP is used as the de-facto protocol for the exchange

of reachability information at the boundary of ASes (MAUCH; SNIJDERS; HANKINS,

2017). Before starting to exchange traffic, two ASes need first to establish a physical

connection and agree to a contractual relationship that determines the economic and

technical aspects of their connectivity (MARCOS et al., 2018). Business relationships

between ASes can be broadly classified into two types: Customer-to-Provider (c2p) (or

transit) and Peer-to-Peer (p2p) (GAO, 2001; DHAMDHERE; DOVROLIS, 2010; LUCKIE

et al., 2013). In a c2p relationship, the customer pays the provider for traffic sent between

the two ASes. In return, the customer gains access to all ASes reached by the provider,

including those which the provider reaches through its own providers. In a p2p relationship,

the peering ASes gain access to each other’s customers, typically without either AS paying
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the other. Peering ASes have a financial incentive to engage in a settlement-free peering

relationship, instead of relaying in a paid provider to carry their traffic. In this context,

neither ASes have a customer role.

BGP provides flexibility via policy-based routing, that is, the ability to express

routing policies on how reachability information is propagated, allowing AS operators to

enforce their contractual agreements and implement complex traffic engineering techniques

for load and cost balancing (ANWAR et al., 2015). As a result of policy-based routing,

inter-domain traffic does not necessarily follow the shortest path between two ASes.

Policy-based routing has been one of the initial design aspects of BGP aiming to enable AS

operators to chose which routes will be accepted, which will be preferred and which will

be propagated to their neighbors (FLACH et al., 2016). Internet inter-domain routing is a

collaborative effort between ASes. ASes negotiate contractual agreements to define their

business relations and impose technical restrictions on traffic exchange. On the Internet,

connectivity does not imply traffic reachability, which is fundamentally determined by the

business relationships between ASes (KATZ-BASSETT et al., 2008; FAYAZ et al., 2016).

The Internet Protocol (IP) provides a simple abstraction for communication over

the Internet, identifying hosts by, in theory, globally uniquely addresses. This allows data

to cross heterogeneous networks and reach the intended destination. Despite the simplicity

of IP and BGP, both were designed with an implicit premise of mutual trust between the

users (POSTEL, 1981; REKHTER; LI, 1994). Because the major development of these

protocols took place in the late 1980s and early 1990s, virtually no security mechanism

were foreseen in these protocols because this was considered unnecessary (TIMBERG,

2015). It would have added a non-negligible overhead on systems that had low comput-

ing power. As a result, the IP and BGP protocols are simple and reliable, but mostly

unsecured (BELLOVIN, 2004).

Although the successful operation of all the elements just described and the over-

whelming success of the Internet there has been an explosion of security threats. Arguably

the greatest architectural vulnerability in the TCP/IP protocol suite as designed is the fact

that it provides no explicit mechanism to prevent packets with forged headers from travers-

ing the network (BELLOVIN, 1989). Due to the destination based packet forwarding

scheme of the current Internet, routers deliver IP packets without checking the validity of

the packets’ source addresses, enabling malicious parties to leverage such ability, known

as IP spoofing, forging or ”spoofing” the source address of IP packets. Networks that

forward spoofed source IP addresses in packets are a cybersecurity risk on the global
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Internet, because they enable attacks such as spoofed Denial of Service (DoS) that are

operationally infeasible to trace back to the actual source.

Recognizing that lack of Source Address Validation (SAV) is fundamentally an ar-

chitectural limitation (MORRIS, 1985; BELLOVIN, 1989), the Internet Engineering Task

Force (IETF) introduced Best Current Practices (BCPs) recommending that networks block

the forwarding of packets with spoofed source addresses (FERGUSON; SENIE, 2000;

BAKER; SAVOLA, 2004). Compliance with this practice faces misaligned incentives i.e.,

protects the rest of the Internet from attacks being sourced from the network that must

pay a non-trivial cost for deploying and accurately maintaining the filters. Thus, despite

many attempts to improve SAV deployment, some of the most damaging DoS attacks in

the Internet continues to use IP spoofing as a primary attack vector for large-scale DoS

attacks (SCHEID, 2016; MORALES, 2018; KLABA, 2018; NETSCOUT, 2019), and these

attacks continue to increase in prevalence and intensity (JONKER et al., 2017; KOTTLER,

2018; SHANI, 2019).

Identifying networks that do not filter spoofed packets is critical to global network

infrastructure protection, because it provides a focus for remediation and policy interven-

tions (LUCKIE et al., 2019; ISOC, 2019). However, identification of these networks is

challenging at Internet scale. The definitive method requires an active probing vantage

point in each network being tested, to see if a spoofed packet successfully traverses the

network (BEVERLY et al., 2009; CAIDA, 2018c). Since there are approximately 790K

independently routed prefixes from almost 70K ASes on the Internet in 2019 (APNIC,

2020; NRO, 2020), this method has limited feasibility for a comprehensive assessment of

Internet spoofing.

1.2 Problem Definition and Scope

In this thesis, we approach the issue of inter-domain networks which lack com-

pliance of SAV best practices. More specifically, we devise a methodology to obtain a

broader visibility into the spoofing problem, which we argue may lie in the capability to

infer lack of SAV compliance from large, heavily aggregated Internet traffic data, such

as traffic observable at Internet Exchange Points (IXPs). Most ASes connect to an IXP

to exchange traffic between their customers, i.e., via peering relationships where neither

AS pays the other for transit. For these ASes, legitimate source addresses in packets will

belong to direct or indirect customers of the AS sending the packets across the IXP fabric
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to their peers.

However, inferring SAV deployment at an IXP is remarkably challenging, far

more so than has been captured in the literature, due to a combination of operational

complexities that characterize today’s interconnection ecosystem. First, determining which

source addresses are valid in packets arriving at a given port of an IXP switch fabric is

challenging, because there is no registry of which addresses networks should forward; in

practice, we must heuristically infer valid source addresses. Second, while the original

role of IXPs was to promote peering between ASes, networks now also use IXPs to obtain

IP transit services from a provider (AGER et al., 2012), and we have found evidence

of organizations joining their sibling network ASes across an IXP. For ASes offering

transit across the IXP, and for sibling networks, it is infeasible to infer invalid source

addresses from IXP traffic data – the set of valid addresses is potentially the entire address

space. Third, while IXPs may be thought of as a single switching fabric, in practice IXPs

and resellers offer complex services, including remote peering, layer-2 transport, and

virtualized segmenting of traffic into multiple Virtual Local Area Networks (VLANs).

These interconnection practices occur below and are thus not visible to the IP layer or in

the BGP protocol. Accurately inferring SAV deployment at an IXP requires navigating all

of these aspects. In this thesis, we describe a methodology that does so, with focus on IPv4

traffic exclusively, as it accounts for more than 95% of the traffic observed at the vantage

points of interest (IX.br, 2020; AMS-IX, 2020a; DE-CIX, 2020).

1.3 Objectives

Our main objective is to propose a methodology for the analysis and accurate classi-

fication of spoofed traffic in the inter-domain level using heavily aggregated Internet traffic

data, obtaining a broader visibility into the spoofing problem. We base our methodology on

the hypothesis that “one can tell the presumably legitimate packets from those potentially

spoofed by observing their IP source address, as well as the direction of those packets”.

Based on the hypothesis above, we need to deal with the Internet topology in-

completeness due to the lack of readily available connectivity data. The key idea is to

map the inter-domain topology to be able to construct and maintain lists of valid source

addresses, per AS, which varies through time according to their established relationships

and traffic engineering policies. These lists specify exactly which source addresses should

legitimately appear in packets at the observation point in a given time window, as well as
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the direction of those packets guiding the precise classification of inter-domain traffic into

distinct traffic categories. Given the hypothesis stated, the following questions guide this

thesis:

• Can one devise a methodology to augment our capacity to observe and remediate

security properties of the Internet, more specifically the lack of traffic filtering (SAV),

helping to improve the global cybersecurity? And, if so, how?

• When performing the deployment of the methodology, what will be the vantage

points used, and the restrictions imposed by them on the application of the method-

ology?

• Considering the definition of the valid source address space for each AS, and the

continually changing nature of the routing policies accordingly with the network

conditions, how to deal with the dynamics of the inter-domain routing?

• Given the organization diversity of networks, as well as their business practices,

to what extent the network infrastructure complexities will affect the inter-domain

traffic analysis?

In order to answer the research questions posed and assess the effectiveness of our

design, we partnered with real network infrastructures and evaluated our methodology

by means of measurements using real data. In the various stages of this research, our

methodology was analyzed using data obtained from two distinct IXPs from the IX.br

ecosystem (IX.br, 2020), spanning traces from three distinct years (2017, 2018, and 2019) 1.

Even though some epistemological challenges remain, the results obtained show that it

is possible to obtain a more comprehensive view of this global Internet vulnerability.

The results also show that the existing literature does not capture several fundamental

challenges to this approach, including noise in BGP data sources, heuristic AS relationship

inference, and idiosyncrasies in IXP interconnectivity fabrics. Lastly, we are aware of

the importance of being able to replicate scientific results, so all the work reported in this

thesis was conducted with replicability in mind.

1The first preliminary data analyses were performed in 2016 with a mid-size IXP, focused on under-
standing the problem, as well as a presentation (MULLER et al., 2016) during the IX Forum 10, part of the
Internet Infrastructure Week in Brazil organized by NIC.br and CGI.br.
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1.4 Contributions

Our methodology provides new data that improves the understanding of spoofed

traffic and, if used by ASes connected to IXPs, can aid increase the Internet infrastructure

resilience to attacks. We believe that ultimately our methodology will be integrated into

expert system capabilities rather than be amenable to complete layer-3 automation due to

networks specific knowledge requirements. More specifically, in designing Spoofer-IX

and performing an extensive data analysis, we make the following contributions:

1. We provide a detailed analysis of the methodological challenges and their impli-

cations on building IP spoofing detection at IXPs, extended with a comprehensive

analysis of previous work.

2. We design and developed Spoofer-IX, a novel methodology for the purposes of

accurately inferring spoofed traffic and the absence of SAV in AS members of IXPs,

which allows network operators to measure, fix, and support filtering.

3. We apply our tool to extensively study the situation at a medium-sized IXP in Brazil

across more than 200 ASes, considering two periods, two years apart, showing the

opportunities to fix and improve the deployments of SAV. Interactions with network

operators support our findings, together with our analysis.

4. We assess the deployment of Spoofer-IX to more complex IXP architectures and to

distinct networks. We partnered with a larger IXP with over one thousand members

to assess the scalability of our methodology and implementation. We explored

practical application and generalizability of our Spoofer-IX methodology and how

networks could independently adopt Spoofer-IX to detect and eliminate spoofed

traffic.

5. We describe and publish our code to promote further work. Commercial and privacy

sensitivities prevent sharing of traffic data that would enable directly reproducibility

of much work in the field of Internet security. But in the interest of replicability,

we publicly release our code (MULLER et al., 2019b) so that other researchers and

IXPs can use it to improve our collective ability to measure and expand deployment

of SAV filtering.
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1.5 Overview and Structure

The rest of this thesis is organized as follows.

• Chapter 2 presents all the fundamentals of this thesis. The reader who is familiar with

the concepts may choose to skip this chapter entirely, or use it as a quick reference.

• Chapter 3 discusses the state-of-the-art in dealing with the Spoofing Problem and

the algorithms for the inference of AS relationships and Customer Cones.

• Chapter 4 analyzes the methodological challenges and their implications for applying

BGP-based SAV inference methods to modern IXP connectivity fabrics.

• Chapter 5 introduces a novel methodology for the inference of spoofed traffic in

inter-domain traffic crossing IXPs. First, we provide an overview of the Spoofer-IX.

Then we discuss in detail its two fundamental stages, the related algorithms, and the

methodology implementation.

• Chapter 6 describes the datasets employed in our extensive analyses and how they

were collected. The analyses are based on data from the third-largest IXP in Brazil,

with more than 200 member ASes connected at the IXP switching fabric. We discuss

the traffic classification results, including a comparison against the state-of-the-

art. We report our validation efforts regarding the inferences made and the results

obtained.

• Chapter 7 discusses how to scale the traffic analysis to more complex network

infrastructures, even beyond IXPs. We present results obtained in collaboration with

three Colocation Facility (CF) that constitute part of a second large IXP, also in

Brazil.

• Chapter 8 summarizes the contributions and our key findings, and we present prospec-

tive directions for future research.

• The Appendix A includes a list of publications that show the results achieved in the

development of this thesis. This list also contains the main collaborations carried

out in papers that focus on related subjects, as well as public presentations, research

projects, research grants, and (co-)supervised final BSc student papers.
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2 BACKGROUND

In this chapter, we present the background context of this thesis in five sections. The

first section (§2.1) describes the Spoofing Problem, the attacks it enables, and the common

strategies employed to execute these attacks. The second section (§2.2) explains how the IP

address space is organized and allocated to organizations. The third section (§2.3) reflects

on the IP address space organization, explaining the distinct IP addresses categories. The

fourth section (§2.4) presents the definition of the distinct business relationship classes

between Autonomous Systems (ASes), how they directly impact in the definition of valid

traffic in the Internet and also introduces the definition of the Customer Cone model. Lastly,

the fifth section (§2.5) illustrates what makes IXPs a great vantage point to explore Internet

security proprieties.

2.1 Framing the Spoofing Problem

The Internet architecture provides no explicit mechanism to prevent packets with

forged headers from traversing the network. Due to the destination based packet forwarding

scheme of the current Internet, routers deliver IP packets without checking the validity

of the packets’ source addresses. Figure 2.1 illustrates this vulnerability that exists in the

IP Protocol v4/v6 and allows end users (e.g., user D) to send IP packets with fake source

addresses (e.g., to an application server B), i.e., the addresses that are not assigned to them,

which is known as IP spoofing.

Figure 2.1: IP Spoofing Problem Overview. Internet Protocol (IP) does not include built-in
source address validation. As a consequence, end-hosts in Autonomous Systems (ASes)
can forge IP packet header information.

Spoofed packet accepted

B

src: AD
dst: B

D
to be A

A

D

pretends

Source: by author (2019).

Malicious parties can leverage the ability to forge or ”spoof” the source address

of IP packets to mount various attacks. With the increasing size of the Internet (CAIDA,
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2019b), we have seen a growing number of attacks that take advantage of the network’s

large scale. Below we discuss four general types of such attacks (RYBA et al., 2015;

ZARGAR; JOSHI; TIPPER, 2013):

• Distributed Denial of Service (DDoS), in which collections of hundreds or thousands

of compromised machines are coordinated to simultaneously send floods of bogus

traffic toward a target, completely overwhelming the target’s resources, or the

resources of the target’s network;

• Self-propagating Malicious Code, or Worms, which compromises hundreds of thou-

sands of Internet hosts in a matter of a small timeframe (usually in the scale of hours)

allowing mass control to further coordinated network attacks (US-CERT, 2018);

• Attacks on Internet Essential Services refer to those which attempt to subvert the

key components of the Internet’s underlying infrastructure (e.g., Domain Name

System (DNS), BGP routing);

• Attacks on Large-scale Services take advantage of publicly accessible Internet

services, e.g., web servers, Content Distribution Network (CDN), online game

servers. Attackers make use of their large deployment scale to open a new front of

highly automated attacks exploiting the lack of network security configurations and

outdated software versions.

Figure 2.2: IP v4 and v6 headers. An attacker illicitly impersonates another machine by
manipulating IP packets. IP Spoofing involves modifying the packet header with a forged
(spoofed) source IP address, a checksum, and the order value.

Adapted from: (CISCO, 2006).

These kind of large-scale Internet attacks are usually challenging to counter because

of the difficulties in tracing them back (in some cases even impossible) or deploying

widespread defensive measures. The diversity of exploits attests both to the continued

threat of spoofing-based attacks as well as the ability to spoof on the Internet.
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Following, we illuminate two attack strategies based on the method employed to

set the IP source address of the packets (depicted in Figure 2.2) on such attacks: random

and selective source addresses.

Random Spoofing. The strategy behind the attacks carried out using this pattern

employ a wide range of source IP addresses leveraging the whole IP Address Space.

This results in flood attacks in which a large number of packets of a given protocol or

a combination of protocols (e.g., User Datagram Protocol (UDP), Hypertext Transfer

Protocol (HTTP), or Internet Control Message Protocol (ICMP)), are sent to a target with

the aim of overwhelming that device’s (or targeted network) ability to process and respond,

depleting all its resources. Figure 2.3 shows a type of Distributed Denial of Service (DDoS)

attack using such a pattern. An attacker (or a botnet) will spoof the source IP address of

the UDP packets, impeding the attacker’s true location from being exposed and potentially

saturated with the response packets from the targeted server. As a result of the target server

utilizing resources to check and then respond to each received UDP packet, the target’s

resources can become quickly exhausted when a large flood of UDP packets are received,

resulting in denial-of-service to normal traffic (blue in Figure 2.3).

Figure 2.3: UDP flood attack – Random spoofing. Employs a wide and random range of
source IP addresses during attack operation.
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Source: by author (2019).

Selective Spoofing. This pattern is normally employed when there is a specific

target to attack, for example, it can be a device, a network service, or an entire facil-

ity/infrastructure. Differently from random spoofing, it has a set of specific requirements.

First, it requires a protocol vulnerable to reflection/amplification. Second, a list of reflectors

– i.e., servers that support the vulnerable protocol. Third and last, the victim IP address or

prefix. The attacks using this pattern then require selective spoofing of source IP addresses
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of victims. Figure 2.4 illustrates how it works. The attacker sends fake UDP requests,

which contains spoofed source IP address; however, the attacker set the victim’s IP address

in the source IP address field. The spoofed packets traverse the Internet and eventually are

delivered to the reflector servers. The reflector server receives the fake packet and sends

the response in good faith. The response, though, is directed to the victim. The victim will

end up receiving a large volume of response packets it had never requested. The responses

delivered to victim might be larger than the spoofed requests (hence amplification).

Figure 2.4: Reflection attacks (often called "amplification attacks") – Selective spoofing.
Relies on reflectors, servers or Internet services that present vulnerable protocols.
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Source: by author (2019).

Moreover, worth to say that the multi-vector pattern, i.e., the combination of both

strategies, is also common nowadays (MAJKOWSKI, 2018b; VERISIGN, 2018).

2.2 Source Address Validation (SAV)

The first initiative to tackle the spoofing problem came from the IETF community

in the early 90s. At that time the IETF introduced the Best Common Practices (BCPs) 38

and 84 (FERGUSON; SENIE, 2000; BAKER; SAVOLA, 2004) – to protect against source

spoofing, frequently referred to as Source Address Validation (SAV). In these documents,

Ferguson et al. (2000) and Baker et al. (2004) described how to prevent inter-domain

spoofing by using Ingress filtering. Ingress filtering is a technique that verifies which prefix

of an IP source address routes to the network from which the packet was received. Network

operators implement SAV by using ingress filters in routers, as illustrated in Figure 2.5,

dropping packets with source addresses outside the locally valid address space before they
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enter the global Internet. The key insight in ingress filtering is simplicity: the decision

of whether to accept or to reject an IP source address can be made solely based on the

information available from routing protocols. In practice, this is achieved by deploying

Access Control Lists (ACLs) that only allow traffic with source IP addresses covered by

specific prefixes to enter the network. The router maintains a continuously updated list of

all prefixes for which it is allowed to accept traffic on a certain interface, from a specific

peer. Traffic with IP addresses that are not covered by these prefixes will be dropped

before entering the network. In Figure 2.5, the optimized ACL strategy would be to place

an explicit permit filter on the customer interface. Explicit permit filters permit specific

address ranges and then deny all else. For example, if the operator’s customer (AS64520)

is allocated 192.0.2.0/24, the BCP 38 ACL applied at the edge router of AS64500 would

permit all source addresses from 192.0.2.0/24 and then deny all packets whose source

address is not 192.0.2.0/24.

Figure 2.5: Networks should implement anti-spoofing techniques know as SAV on the
customer interface of provider edge routes. Allow only packets with source IP addresses
from the customer’s networks (2001:db8:1001::/48, 2001:db8:2002::/48, 192.0.2.0/24,
198.51.100.0/24)

BCP38 �lter (ingress �lters) ACLs 
con�gured on the customer 
interface of provider edge routers

AS64500
MANRS

Participant
network

AS64520 AS65530

Internet

Single-homed
stub customer

Single-homed
stub customer

2001:db8:1001::/48
192.0.2.0/24

2001:db8:2002::/48
198.51.100.0/24

ip access-list extended customer1-in-ipv4 
      permit ip 192.0.2.0 0.0.0.255 any
    !
    ipv6 access-list customer1-in-ipv6
      permit ipv6 2001:db8:1001::/48 any 
    !
    interface x
      ip access-group customer1-in-ipv4 in ipv6 
      traffic-filter customer1-in-ipv6 in

(Cisco syntax)

Adapted from Mutually Agreed Norms for Routing Security (MARNS) (ISOC, 2020a).

Unfortunately, operators responsible by the network’s management do not cooper-

ate, and many ASes till to this day do not implement the cited BCPs. They claim that the

action of installing filters costs money and that their personnel is not capable of installing

those filters (MCCONACHIE, 2014). Therefore it makes economic sense for these network

operators not to install filters – “no one is attacking my network, that is someone else’s

problem!” (MCCONACHIE, 2014). The profile of the situation fits in the classic Tragedy
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of the Commons problem (HARDIN, 1968) when we have a shared-resource system where

individual users acting independently according to their self-interest behave contrary to the

common good of all users by depleting or spoiling that resource through their collective

action.

Even though other distinct initiatives appeared along the decades proposing new

ways to tackle the Spoofing problem (see more in Chapter 3), the SAV filtering (BCPs

38 and 84 (FERGUSON; SENIE, 2000; BAKER; SAVOLA, 2004)) continues to be the

best viable solution (ISOC, 2020b). However, not all networks care of implementing and

keeping such configurations in place. Given the situation of lack of compliance with SAV,

a joint community effort led by Internet Society (ISOC) with MANRS project (ISOC,

2020b; ISOC, 2018) and also endorsed by the Cybersecurity Tech Accord (Tech Accord,

2018) is tackling the problem in distinct ways. They are educating operators worldwide

of the importance of SAV, helping the operators to identify networks lacking SAV, and

working to establish policies to incentivize operators to adopt such practices.

2.3 Address Space Fundamentals

The IP address space is divided into multiple blocks by distinct institutions before

being assigned to end users (e.g., ISPs, corporations, or academic institutions). The

assignation hierarchy works as follows. The Internet Assigned Numbers Authority (IANA)

is in charge of distributing /8 prefixes to Regional Internet Registry (RIR). There are five

RIRs (AFRINIC, APNIC, ARIN, LACNIC, RIPE NCC), each responsible for a different

geographical area. In turn, RIRs allocate IP address space to Local Internet Registry (LIR),

such as ISPs, large companies, etc. LIRs distribute IP address blocks at the local level, i.e.,

to end users. That said, Figure 2.6 illustrates how the IP address space is exploited in the

Spoofing Problem.

The global BGP routing table now contains over 790k distinct IPv4 prefixes (AP-

NIC, 2020). These include invalid prefixes that should not be globally announced, such

as the bogons (IETF reserved or Martians) and unassigned IP space. While bogon pre-

fixes (MOSKOWITZ et al., 1996; WEIL et al., 2013; COTTON et al., 2013) can be used

in specific cases, such as private networks, loopback interfaces, some are reserved for

future use. The unassigned prefixes have been allocated to an RIR, but not assigned

by that RIR to an end-user (e.g., an ISP). IANA keeps a list of allocated, and reserved

prefixes (IANA, 2018b; IANA, 2018c) and each RIR has its own list of prefixes assigned
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Figure 2.6: IP Address Space organization, reflecting on the usage for inter-domain traffic
exchange. Highlighted in red are the categories which enable the occurrence of spoofed
traffic in the wild, and in green is the only set of valid IP addresses that should be used.
Percentages relative to the total IPv4 Address Space in April, 2019 (IANA, 2018b).
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Source: by author (2019).

to end-users (NRO, 2020). In the routable address space, we have the dynamic prefixes one

AS should expect when exchanging traffic. However, different from the previous cases

(i.e., bogon and unassigned), there is no global registry of routable prefixes per AS; in

practice, we must heuristically infer these addresses (using the concept of cones - details

in §2.4). Therefore, from the perspective of an AS, these prefixes can be invalid or valid.

Invalid when packets are sent without respecting interconnection business agreements, i.e.,

using prefixes that do not belong to the networks (or the ASes involved do not have agreed

to use in) exchanging the traffic, or Valid when the packets exchanged by the networks are

in accordance with its established neighboring network relationships. Next, we discuss

concepts that help in the definition of the set of prefixes that are link-dependent (§2.4).

2.4 AS Relationships and Customer Cones

Internet inter-domain routing is a collaborative effort between ASes. ASes negotiate

contractual agreements to define their business relations and impose technical restrictions

on traffic exchange (MARCOS et al., 2018). On the Internet, connectivity does not

imply traffic reachability, which is fundamentally determined by the business relationships

between ASes (KATZ-BASSETT et al., 2008; FAYAZ et al., 2016). The AS business

relationships are coarsely divided into three primary classes – customer-provider (c2p,

p2c), peering (p2p) and sibling (s2s) (LUCKIE et al., 2013). Figure 2.7 illustrates them

and their subtleties.
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1. Transit relationship, which includes Customer-to-Provider (c2p) and Provider-

to-Customer (p2c). It is established when an AS (customer) pays a better-connected

AS (provider) to transit traffic with the Internet. The providers act as a gateway to

the rest of the Internet. An AS can have multiple providers for purposes of resilience

and load balancing. Such ASes are called multihomed.

2. Peering relationship (p2p). Peer-to-Peer (p2p) relationships allow two ASes to

freely exchange traffic between themselves and their customers as a means to

avoid the cost of sending traffic through a provider. These interconnections can be

settlement-free or paid, depending on who benefits the most from the agreement,

e.g., traffic imbalance or route diversity from larger ISP.

3. Sibling relationship (s2s). Sibling-to-Sibling (s2s) relationships represent the case

where a single organization may own and operate multiple ASes, and may transit

packets received from any source. This case enables the establishment of s2s

relationships, in which the links connect two or more ASes that belong to the same

administrative entity (CAIDA, 2018b) without any cost or routing limitations.

The dynamics of the AS ecosystem are determined both by external factors (e.g.,

the state of the global economy or the popularity of new Internet applications) and by

complex incentives and objectives of each AS. Specifically, ASes attempt to either optimize

their utility or financial gains by dynamically changing, directly or indirectly, the ASes they

interact with (DHAMDHERE; DOVROLIS, 2011a). Consider the following examples.

For a transit provider, the objective may be to maximize its profit, and it may approach this

goal through competitive pricing and selective peering. On the other hand, if we consider a

Content Provider, the objective may be to have highly reliable Internet access and minimal

transit expenses, and to achieve that, it may pursue through aggressive multihoming and

open peering policy.

Aligned with such dynamics, a fundamental model to explore the Internet intercon-

nection ecosystem is the Customer Cone. This model results from the AS relationship

graph 1 allowing the comparison across ASes, as well as the definition of the expected

source addresses one should look forward to see in valid traffic. The Customer Cone

constraints which source IP addresses one should see in valid inter-domain traffic transiting

from a Customer to its provider, or between peers. Figure 2.7 illustrates the subtleties: an

AS in a c2p or p2p relationship with another AS should only send packets with a source

address from within its customer cone – respectively, (a) and (b) in Figure 2.7. In contrast,

1When discussing the State-Of-The-Art in Chapter 3 - §3.2, we provide more formal details.
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Figure 2.7: The Customer Cone constrains the set of source addresses expected in valid
inter-domain traffic transiting an AS behaving rationally in a c2p or p2p relationship. In the
c2p relationship shown in (a), B transits traffic from its customers to A, but not its peers and
providers. Similarly, in the p2p relationship shown in (b), C only transits traffic from its
customers to D (likewise, from D to C). However, as shown in (c), the p2c relationship does
not constrain the source addresses transited by E to F, and neither does the s2s relationship
between G and H in (d).
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a link between a provider to its customer or between two siblings may forward packets

with any routed source address – (c) and (d) in Figure 2.7.

More precisely, a Customer Cone is defined as the set of ASes that a given AS can

reach using its customer (p2c) links. This includes the direct (customers directly connected

to the AS) and indirect customers (customers of direct customers, semi-recursively).

Looking specifically at the AS-level Customer Cone, we define an AS A’s AS-level

Customer Cone as the AS A itself plus all the ASes that can be reached from A following

only p2c links in BGP paths observed. In other words, A’s Customer Cone contains

A, plus A’s customers, plus its customers’ customers, and so on (LUCKIE et al., 2013;

DIMITROPOULOS et al., 2007).

Figure 2.8 illustrates the concept (CAIDA, 2018a). With an input set of three BGP

AS paths 2, extracted from publicly available sources (RIPE, 2018; ROUTEVIEWS, 2018),

have been inferred the relationship between ASes and the Customer Cone for each AS.

The size of the Customer Cone of an AS reflects the number of other elements (ASes, IPv4

prefixes, or IPv4 addresses) found in its set. An AS in the Customer Cone is assumed to

2 A BGP AS path is the sequence of autonomous systems that network packets traverse to get to a
specified router. AS numbers are assembled in a sequence that is read from right to left. For example, for a
packet to reach a destination using a route with an AS path 5 4 3 2 1, the packet first traverses AS 1 and so
on until it reaches AS 5. In this case, AS 5 is the last AS before the packet destination.
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Figure 2.8: Customer Cone Organization. An AS Customer Cone contains the set of ASes
we observe the AS announce to its peers or providers. In practice, this is the set of ASes it
can reach through its customers.
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pay, directly or indirectly, for transit, and provides a coarse metric of the size or influence

of an AS in the routing system. The example depicts several AS Customer Cones: ASes D,

E, and F all sit at the bottom of the hierarchy, and so, only have a single AS in their cone.

Both C and B tie with 3 ASes. Note that B and C both have E in their respective cones. A

is ranked at the top of the hierarchy with 5 ASes in its Customer Cone (note that D is not

included in A’s cone given the input BGP AS paths observed).

The size of the AS Customer Cone can also reveal its importance in the Internet’s

capital and governance structure (LUCKIE et al., 2013; LODHI et al., 2015). According

to the number and type of links, an AS can be categorized as Tier-1, Tier-2, Content

Provider (CP), Internet Service Provider (ISP), and stubs. At the top of this hierarchy

are the Tier-1 networks, which do not pay for transit to upstream providers at all; instead

they peer with each other to provide connectivity to all destinations in the Internet. Tier-2

networks are also large ASes, mainly providing IP transit to other ASes, but not for free.

The Content Providers (CP) are the global networks that focus primarily in transit traffic

between content generators and end-users. To achieve low cost and low end-to-end delay

they seek to establish p2p relationships, but they also have providers for redundancy and

fail-over purposes. ISPs can have both customers and providers, and usually, their coverage

is at the national or regional level. The ISPs provide Internet connectivity to stub ASes or

to end-hosts. The ISPs that exclusively operate as access providers for end-hosts are called

eyeballs (MA et al., 2008). At the bottom of the hierarchy are stub3 ASes which do not

have their own customers and pay providers to reach all destinations in the Internet (e.g.,

universities, research networks).

3A stub Autonomous System is an AS that is connected to only one other AS.
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2.5 IXPs as Observatories

Internet Exchange Points (IXPs) and their co-located facilities act as key enablers

for inter-domain connectivity worldwide. In fact, they have an increasingly central role

on the Internet dynamics as a whole (AGER et al., 2012; CHATZIS et al., 2013). IXP

infrastructures carry traffic in the range of Terabits per second (IX.br, 2020; DE-CIX, 2018;

AMS-IX, 2018), their membership is constantly growing (KLöTI et al., 2016; LODHI

et al., 2014), and support hundreds of thousands of peerings (WOODCOCK; FRIGINO,

2016).

The combination of the aforementioned properties with the dense connectivity,

and increasing AS presence at IXPs worldwide (AGER et al., 2012; BRITO et al., 2016)

make them strategic vantage points to investigate and deploy new methodologies aiming

to increase the overall Internet infrastructure security worldwide. Following, we explain

IXPs’ organization and highlight characteristics of these network infrastructures.

IXPs are attractive vantage points to observe signals of SAV deployment, as hun-

dreds of ASes may be present at a single logical location. The IXP operator assigns each

member a unique IP address from a prefix controlled by the operator. The member assigns

the address to its router interface connected to the IXP, which is used to establish BGP

routing with other members. When a member AS’s router transmits a packet across the

Ethernet switching fabric, the source and destination MAC addresses in the Ethernet frame

uniquely identify the AS pair exchanging the packet, and its direction.

Figure 2.9 illustrates the architecture of many modern IXPs (Euro-IX, 2019b;

IX.br, 2020; DE-CIX, 2020; AMS-IX, 2020b; LINX, 2020; IX.br Forum 12, 2019).

The figure contains two separate IXPs and their switching fabrics #X and #Y, with a

core switch for each IXP. While some IXPs may consist of a single core switch where

participants interconnect, operators achieve the scale of modern large IXPs by placing

switches at distinct physical colocation facilities, any of which can serve as an IXP

attachment point. The figure shows that the switches are adjacent, but in practice colocation

facilities are usually in different buildings (GIOTSAS et al., 2015b; MOTAMEDI et al.,

2019). IXP operators often use sFlow (P. Phaal, S. Panchen, and N. McKee, 2001) or

NetFlow (CLAISE, 2004) to collect traffic flow statistics. A comprehensive view of all

traffic from all services at the IXP would require flow data captured from all switches in

the switching fabric, as traffic between participants at a single colocation facility will not

travel to the core switch.
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Figure 2.9: Illustration of the architecture of modern IXPs. They typically construct a
switching fabric using a core switch that interconnects other switches located in remote
Colocation Facilities. ASes typically connect to a switch located in a Colocation Facility,
and can form bilateral peering relationships with neighbors. These ASes may request a
VLAN to isolate their traffic from other members at the IXP. Resellers can provide services
such as remote peering and layer-2 transport.
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Participants can exchange traffic directly across the switching fabric in a bilateral

session. In Figure 2.9, ASes A and B exchange traffic directly. However, modern IXPs

often use VLANs to provide logical isolation between different types of interconnec-

tion (CHATZIS; SMARAGDAKIS; FELDMANN, 2013; Euro-IX, 2019a). For example,

an IXP may provide a route server, but only offer that route server on a specific VLAN.

Similarly, traffic between two participants may be sufficiently sensitive or high volume

that members request a VLAN from the IXP to isolate their communications (DE-CIX,

2019; AMS-IX, 2019b; LINX, 2019b). In Figure 2.9, ASes C and D exchange traffic in

their own isolated VLAN.

To foster IXP growth and enable more networks to interconnect, IXPs have sup-

ported resellers, which provide value-added services at an IXP, such as remote peering

and layer-2 transport (CASTRO et al., 2014; NOMIKOS et al., 2018; MEGAPORT, 2019;

IX Reach, 2019). A reseller provides remote peering services so that an AS which is not

physically present at a colocation facility can still reach other members at the IXP, without

the AS incurring colocation facility fees or port charges from the IXP operator. These

resellers require some cooperation with the IXP, e.g., (LINX, 2019a; AMS-IX, 2019a). The

IXP assigns the remote peers any VLAN tags they require to participate at the exchange as

local members do.
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An IXP may use different technical approaches to support remote peering providers

(CASTRO et al., 2014; NOMIKOS et al., 2018; IX.br Forum 12, 2019). A reseller can

bridge Ethernet networks so that the MAC address of the customer router’s interface will

uniquely identify the origin of traffic in the peering fabric. A second approach is for a

reseller to push a tag (reseller-tag) to uniquely identify their specific customer AS to the

IXP, so that the MAC address of the Ethernet frame corresponds to the reseller’s router.

Figure 2.9 illustrates this second approach, where reseller J allows customer ASes F and

G to reach other members. When the reseller transmits these packets into the IXP, the

reseller also pushes a tag (reseller-tag) to uniquely identify their specific customer AS to

the IXP. The IXP bridges traffic into the IXP switching fabric by removing the outer-most

reseller-tag while keeping the IXP-tag. In Figure 2.9, the sFlow tap sees the IXP-tag and

the MAC address of the reseller, which uniquely identifies the specific AS who sent the

packet.

A reseller can also provide remote peering to members colocated at one IXP who

want to reach members in a different IXP, reaching the reseller across the peering fabric.

Figure 2.9 shows a more complicated example, where AS E bridges its network between

metropolitan regions using the services of a reseller (K) present at both IXPs.

Overview of the IX.br Ecosystem

In this work, we apply our method and analyses taking into consideration the largest

IXP ecosystem in Latin America – the Brazilian IX.br Ecosystem (IX.br, 2020).

Figure 2.10: Brazilian IX.br Ecosystem Overview.

(a) A total of 31 IXPs distributed in the Brazilian national
territory. Blue square-box markers shows the existing
IXPs.
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The IX.br ecosystem comprehends a total of 31 independent IXPs and 110 colo-
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cation facilities (colos), with current peak traffic in the scale of more than 8 Tbps in

aggregate (IX.br, 2020). These IXPs are located at strategic cities along the country as seen

in Figure 2.10(a). Back in 2016, they were a total of 26 different locations and 102 colos,

a significant increase in an already large ecosystem. The presence and location of such

infrastructures were driven essentially by the size of the population in each city (as can be

seen in Figure 2.10(b), economic growth, local companies interest, and the development

of landing points from international submarine cables (TELEGEOGRAPHY, 2019; ITU,

2019).

According to the latest data available (as of December 2019), there are 7401 ASes

registered in Brazil (Registro.br, 2020; Sirota, J., 2019; Sirota, J., 2018), representing

∼73% of total ASNs assignments (10171 ASNs) from LACNIC region (NRO, 2019).

Data from the IX.br coordinator team (IX.br, 2020) show that around 2.5k unique ASes

(∼34% of the total Brazilian ASes) are already connected to, at least, one of the IXPs in

the Brazilian Ecosystem.
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3 RELATED WORK

In this chapter, we first discuss the most recent advances in measuring deployment

of SAV (§3.1). Afterward, we revisit the most prominent approaches regarding both, the

AS relationships inference algorithms and the cone construction inference methods (§3.2).

These algorithms will be used to define the set of IP addresses a given AS should expect

to receive traffic from and can generate traffic to (we present the methodology details in

Chapters 4 and 5). We complete the chapter highlighting the goal of our proposal (§3.3).

3.1 Measuring Deployment of SAV

Many academic research efforts have described techniques, and even alternative

architectures, to promote deployment of SAV (Chapter 2 - §2.2) (DUAN; YUAN; CHAN-

DRASHEKAR, 2006; YAAR; PERRIG; SONG, 2006; LIU et al., 2008; LIU; BI; VASI-

LAKOS, 2014). Other studies suggest improvements to protocols to mitigate the impact

of spoofed packets. Rossow identified and studied protocols prone to amplification at-

tacks (ROSSOW, 2014). Kührer et al. suggest approaches that help to reduce the number

NTP servers vulnerable to amplification by 92% (KüHRER et al., 2014). Zhu et al. (ZHU

et al., 2015) suggest connection-oriented DNS to prevent the exploitation of open DNS

resolvers, e.g., for amplification attacks (KüHRER et al., 2015).

Fewer efforts have tried to empirically measure SAV compliance for networks

attached to the global Internet. In 2005, Beverly, et al. developed a client-server technique

to allow users to test networks to which they are currently attached (BEVERLY; BAUER,

2005), and operationalized a platform to track trends over time (BEVERLY et al., 2009;

CAIDA, 2018c). However, this active measurement method relies on users downloading

and running client software, inducing a sparse data collection, which may not adequately

capture or represent the full dimensionality of the problem. To overcome this requirement

for a vantage point in every network, over the last few years researchers have investigated

opportunistic creative techniques to infer lack of SAV in other macroscopic Internet

datasets.

In 2013, Dainotti et al. described a technique to identify spoofed traffic in unso-

licited Internet Background Radiation (IBR) traffic (DAINOTTI et al., 2013; DAINOTTI

et al., 2016), based on the assumption that unrouted address should not appear as source

addresses in legitimate packets. It attempts to remove spoofed traffic preventing it from
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corrupting the signal otherwise extracted from IBR traffic. This method cannot identify

networks sending the spoofed traffic, and thus failing to help deploy SAV.

In 2017, Lone et al. reported a technique to infer evidence of spoofed traffic in

massive traceroute archives, based on the knowledge that an edge network should not

appear to provide transit in a traceroute path (LONE et al., 2017). This method is also

limited by whatever appears in the traceroute archives, as well as by the inconsistent

addressing conventions used in traceroute implementations (MARDER et al., 2018). In

2018, Lone et al. experimented to boost CAIDA’s Spoofer project deployment with the help

of crowdsourcing marketplaces (Lone et al., 2018), which worked well while recruiting

and remunerating workers.

Most closely related to our study, in 2017 Lichtblau et al. used a large Euro-

pean IXP as a vantage point for inferring which networks at the IXP had not deployed

SAV (LICHTBLAU et al., 2017). For each member at the IXP, their method infers a set

of IP prefixes containing addresses that may legitimately appear in the source field of IP

packets crossing an IXP. They infer that a member AS that sends a packet into the IXP

switching fabric with a source address outside of those prefixes has not deployed SAV.

They argued against using AS relationships and AS Customer Cones which they claimed

did not address asymmetric routing. However, their method did not consider ASes forming

Customer-Provider or Sibling relationships at the IXP, where all routed addresses may be

legitimate source addresses in IP packets crossing an IXP – (c) and (d) in §2.4, Figure 2.7.

In these cases, there is no way to infer SAV deployment across these links at the IXP.

3.2 AS Relationships and Customer Cones Inferences

Internet studies demand knowledge on the relationships between ASes. More

specifically, in our method, knowledge of the business relationships between ASes is

essential to define the set of IP addresses a given AS should expect to receive traffic from

and can generate traffic to in a given link. However, most ASes try to hide their business

relations. Service providers consider the policy details of their business relationships as

proprietary information and do not generally make them public (LUCKIE et al., 2013;

OLIVEIRA et al., 2010; GAO, 2001). Therefore, Internet researchers have to rely on

indirect AS relationship inference algorithms in order to build a picture of Internet business

structure. In the last years, researchers have introduced a number of algorithms to infer the

AS relationships and a few cone construction inference methods. Following, we review
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some of the most prominent research on the field. We start the section by discussing

efforts aimed to infer AS relationships. Then, we review studies which proposed cone

construction methods. In this section, we follow a chronological order of publications.

AS Relationships Inferences. Gao’s seminal work (GAO, 2001) inspired many

researchers to seek approaches to inferring ISP business relationships using information

from publicly BGP routing tables. Gao used the concept of valid paths as the basis for

her inference heuristic and identified the top provider in a given path based on AS degree

(the number of ASes connected to a given AS). Her solution relies on the assumption that

BGP paths are hierarchical, or valley-free, i.e., a customer route can be exported to any

neighbor, but a route from a peer or a provider can only be exported to customers. The

valley-free rule describes a typical AS path, i.e., aims to prevent an AS from providing free

transit either to their providers or peers. Most reachable paths which are valid for traffic

routing are valley-free, as they serve the business interest of ASes – to minimize operation

cost and maximize revenue.

After Gao’s work, several studies have been developed to infer AS relationships,

therefore, in the following, we will highlight the ones widely cited in the Internet research

community. Subramanian et al. (SUBRAMANIAN et al., 2002) relaxed the problem by

not inferring sibling links and provided a mathematical formulation based on the concept

of valid paths. They formalized Gao’s heuristic into the Type of Relationship (ToR), a

combinatorial optimization problem. Assuming maximization of the number of valid

paths as a natural objective, they formulated the AS relationship inference problem as:

given an undirected graph G derived from a set of BGP paths P, assign the edge type (c2p

or p2p) to every edge in G such that the total number of valid paths in P is maximized.

They conjectured that the ToR problem is NP-complete and developed a heuristic-based

solution. Following, Di Battista et al. (BATTISTA; PATRIGNANI; PIZZONIA, 2003)

proved that the ToR is indeed NP-complete. More importantly for practical purposes,

they demonstrated that p2p links cannot be inferred in the ToR problem formulation

and developed mathematically rigorous approximate solutions to the ToR problem but

inferred only c2p and p2c links. Still in line with previous approaches, Dimitropoulos et

al. (DIMITROPOULOS et al., 2007) proposed a solution by reducing the multi-objective

optimization problem to the MAX2SAT problem (a boolean algebra problem). However,

MAX2SAT is NP-hard and their implementation does not scale for recent AS graphs.

At that time, Xia and Gao (XIA; GAO, 2004) first introduced techniques to evaluate

the accuracy of the existing algorithms. They showed that neither (SUBRAMANIAN et al.,
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2002) nor (GAO, 2001) technique offers a solution to the problem of reliable identification

of p2p links due to their low accuracy. Given the results, Zhang et al. (ZHANG et al., 2005)

propose a way to incorporate other sources than BGP tables, including Route Servers,

Looking Glasses, and Internet Routing Registries (IRR) to compile a topology. Their

algorithm starts with a set of ASes inferred to be in the Tier-1 clique, then infers links

seen by these ASes to be p2c; all other links are p2p. Despite significant progress, much

remains unknown in terms of the quality of the inferred AS connectivity due to the lack of

ground-truth data for validation of the results obtained.

Researchers then performed analysis to quantify the incompleteness of the observed

AS-level connectivity as seen by the commonly-used vantage points/datasets (COHEN;

RAZ, 2006; OLIVEIRA et al., 2010). Their findings showed that none of the available

topology discovery methodologies are able to capture the complete inter-domain topology.

The incompleteness of the resulted topologies is mainly a result of policy-based routing

that restricts the propagation of certain link types (e.g., peering and backup relationships).

Given its importance to the field of Internet research, Luckie el al. (LUCKIE et al., 2013)

revisited the science of AS relationship inference and gave particular attention to validation.

They presented and validated to an unprecedented level a new algorithm for inferring AS

relationship using publicly available BGP data (RIPE, 2018; ROUTEVIEWS, 2018). The

authors assembled the largest source of validation data for AS relationship inferences to

date, validating 34.6% of their relationship inferences, finding the c2p and p2p inferences

to be 99.6% and 98.7% accurate, respectively.

Cone Construction Inferences. As introduced previously in §2.4, to explore the

Internet interconnection ecosystem, its dynamics, as well as to support distinct Internet

analysis, the concept of Customer Cones was proposed (DIMITROPOULOS et al., 2007).

However, only in 2013 the concept gained more strength, when Luckie el al. (LUCKIE et

al., 2013) used their new AS relationship inferences results (discussed above) to propose

distinct methods to build the Customer Cone of each AS. The reason of multiple methods to

infer the customer cone of a given AS is due to ambiguities inherent in BGP data analysis.

The authors of that paper used the customer cone as a metric of influence to study top

selected ASes and the Internet topology flattening effect. Nowadays, they release periodic

results to the community through an online system (and an API) called AS-Rank (CAIDA,

2018a).

The results achieved with the Customer Cone model have been proven stable, being

applied to the study of the Internet, from Internet topology mapping (LUCKIE et al.,
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2014; MARDER et al., 2018; GIOTSAS et al., 2015b), inter-domain routing policies (AN-

WAR et al., 2015) to Internet topology evolution (DHAMDHERE; DOVROLIS, 2010;

DHAMDHERE; DOVROLIS, 2011b). But most recently, Lichtblau et al. (LICHTBLAU

et al., 2017) (recall §3.1) proposed the Full Cone algorithm to build new cones. They

argued against using AS relationships and AS Customer Cones which they claimed did

not address asymmetric routing. The authors then proposed an algorithm to build cones

without considering the AS relationships classes (Chapter 2 - §2.4) and they use their

resulting cones to spoofing traffic detection. Following, in the next chapter, we discuss in

details both cone constructions, i.e., Full Cone and Customer Cone, and their application

to spoofed traffic classification.

3.3 Summary

Information presented thus far, on Sections 3.1 and 3.2, are summarized in Ta-

bles 3.1 and 3.2 considering only the most related approaches to ours. As one can observe

from the state-of-the-art, few efforts (BEVERLY; BAUER, 2005; LICHTBLAU et al.,

2017) have tried to empirically measure SAV compliance for networks attached to the

global Internet (Table 3.1). For years the Spoofer Project (BEVERLY; BAUER, 2005;

LUCKIE et al., 2019) was the only methodology proposed and developed to help identify

precisely networks lacking SAV compliance. Even though, the project kept growing,

adding support to IPv6 checking and handling some NAT scenarios (CAIDA, 2018c), it

still suffers from sparse visibility on the global Internet due to the huge challenge that is to

obtain the collaboration from networks to install and run their spoofer client periodically.

Most closely related to our study is (LICHTBLAU et al., 2017), as discussed

previously. Despite their potentialities, their proposal does not tackle the problem properly.

They aim to minimize false spoofing detections instead of dealing with the network

complexities that exist in shared peering infrastructures (Chapter 4 - §4.2). To this end,

they proposed and used the Full Cone inference method. The purpose of it is to infer

the valid address space per AS, assuming as valid all BGP announcements and updates,

besides the decision to argue against and ignore the distinct types of AS relationships

(Chapter 4 - §4.1). As a result, their decisions lead to drastically impact the precision of

the resulting classification inferences (Chapter 6 - §6.3 and §6.6). In addition, there is no

validation of their results. The authors did not released an official publicly shared codebase

to enable research reproducibility.
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In this thesis, we argue that broader visibility into the Spoofing problem lies in the

capability to infer lack of SAV compliance from strategic vantage points, such as at Internet

Exchange Points. Our proposal emphasizes the importance of the details underlying the

cone construction method to detect not only spoofed traffic at an IXP, but the member of the

IXP network sending it. We advocate that using public BGP information and aggregated

traffic flow data to infer lack of SAV requires:

1. deep understanding of idiosyncrasies in IXP interconnectivity fabrics;

2. filtering of unverifiable traffic flows;

3. sanitizing input (BGP) data to filter erroneous or unverifiable paths;

4. identifying and using AS relationships to infer Customer Cones, and

5. tracking the legitimate source address space of each sending-receiving pair of ASes

using the IXP, including accounting for routing dynamics, e.g., traffic engineering,

policy changes, or asymmetric routing.

We show that these measures are key to accurately inferring spoofed traffic cross-

ing the switching fabric of an IXP. Our approach classifies traffic traces (e.g., Net-

Flow (CLAISE, 2004), Sflow (P. Phaal, S. Panchen, and N. McKee, 2001)) leveraging

information of the IXP peering fabric infrastructure and our constructed filters to reliably

isolate spoofed traffic, and metrics to detect atypical traffic behaviors. Additionally, we

make our proposal reproducible by enabling other researchers or network operators to

obtain the same results under different conditions using our developed artifacts.
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Authors Method Objective Target IP Version Base
Technique

Address Space
Definitions Deployment Results

Visibility
Traffic

Sanitization

Handle
Network

Complexity
Reproducibility

CAIDA Spoofer Project
(BEVERLY; BAUER, 2005)
(CAIDA, 2018c)

Active Accuracy
Any network
connected
to the Internet

v4 and v6
Craft spoofed
test packets

CAIDA reserved
prefixes

On each AS
being checked Sparse

Not designed
to perform
traffic flow
analyses

Handle
NAT client
scenarios

No

Full Cone and Spoofing
Classification
(LICHTBLAU et al., 2017)

Passive

Minimize
false
spoofing
detections

Members
connected
to IXPs

v4 Inferences
Bogon prefixes,
Full Cone inference
algorithm

At an IXP Localized
Does not filter
unverifiable traffic No No

Spoofer-IX (this work,
composed by the Prefix-Level
Customer Cone and a Spoofing
Classification Pipeline)

Passive Accuracy

Members connected
to IXPs, also enables
Colocation Facilities
(and more broadly
all networks at the
inter-domain)

v4 Inferences

Bogon prefixes,
Full Bogons list,
Prefix-Level
Customer Cone
inference algorithm

It offers different
choices: per IXP, or
Colocation Facility,
or per individual
switch at the peering
infrastructure under
analysis

Localized
Defines and filter
a set of
unverifiable flows

Yes, distinct cases
(e.g.,
Remote Peering,
VLANs, p2c,
Transport Provider,
siblings).

Yes

Source: by author (2019).

Table 3.2: Summary of related approaches to the IP Address Space inferences per AS.
Authors Objective AS-Path

Sanitization
AS Relationship
Inference

Maintaining
Address Spaces

Asymmetric
Routing

Traffic
Engineering

CAIDA Customer Cone / ASRank
(LUCKIE et al., 2013),
(CAIDA, 2018a)

Metric of influence to study top
selected ASes and the Internet
topology flattening effect

Filters erroneous information

Correctly infers relationships –
Provider-to-Customer,
Customer-to-Provider, and
Peer-to-Peer relationships.

Generate on a monthly basis,
consuming, one RIB daily for
the first-5-days. Produces
inferred relationships between
AS pairs and provider/peer
observed AS cones.

yes no

Full Cone
(LICHTBLAU et al., 2017)

Inference of valid address
space per AS in the Internet

Assumes all announcements
and updates are valid

Assumes all relationships are
equal, and bidirectional, i.e.,
all ASes share all prefixes
they can reach with all,
peers, customers or providers

Update information on a
weekly basis, consuming
9-days of all available RIBs,
and update files from
public BGP collectors

no no

Prefix-Level Customer Cone
(this work, part of Spoofer-IX)

Inference of valid address
space per AS in the Internet Filters erroneous information

Leverages the AS inference algorithm
and the Provider/Peer Observed
Customer Cone from (LUCKIE et al., 2013)
to build a novel Prefix-level Customer Cone.

Update information on a
weekly basis – 7-days,
consuming one RIB only
a day from public BGP
collectors

yes yes

Source: by author (2019).
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4 TACKLING METHODOLOGICAL CHALLENGES

In the previous chapter, we discussed the most prominent solutions to the spoofing

problem, as well as the AS Relationships and Cone Construction Inferences algorithms

used to build the set of valid IP address per AS. In this chapter, we describe the core of our

methodology in the context of two complex groups of challenges to inferring spoofed traffic

in IXP traffic data. The first one (§4.1) is determining which addresses are valid source

addresses in traffic transiting a given neighbor AS, i.e., packets with a source address that

are In-cone (potentially valid) for that AS. An incomplete set of valid addresses could

yield false inferences of failure to deploy SAV, for that should a valid address appear in

the observed packets but not be in the In-cone set, i.e., it will be Out-of-cone (potentially

spoofed) for that AS. The second group of challenges (§4.2) is related to the analytical

implications of modern IXP interconnection practices that can prevent the visibility of both

topology and traffic. These practices complicate the analysis of which ASes exchanged

traffic and their routing relationship. Once addressed these challenges, we describe in the

next chapter how these different results fit together in our methodology that deals with IXP

specifics.

4.1 Subtleties in Cone Construction

Inferring the set of valid source addresses for packets traveling from a specific AS

to a specific adjacent AS at an IXP requires investigating a multidimensional parameter

space. Precision in this process is crucial. Mistakenly excluding valid addresses allows

certain valid packets to be classified as spoofing, therefore incorrectly inferring a given

AS as not SAV compliant (which we call a false positive). Conversely, including invalid

source addresses in the cone definitions allows spoofed packets to be misclassified as valid,

therefore failing to detect lack of SAV compliance (false negatives).

As mentioned in Chapter 1, there is no global registry that contains ground truth

on which addresses are valid source addresses for packets transited by an AS; instead,

we must infer them from the best available public BGP routing data sources (RIPE,

2018; ROUTEVIEWS, 2018; PCH, 2020), even though these sources may contain spurious

announcements (LUCKIE, 2014). We explore the two approaches for inferring valid source

addresses reported in the literature (Chapter 3 - §3.2): the Full Cone (FC) (LICHTBLAU

et al., 2017) and the Customer Cone (CC) (LUCKIE et al., 2013).
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4.1.1 Full Cone

The Full Cone, used in (LICHTBLAU et al., 2017), is the more permissive of

the two construction methods (Chapter 3 - §3.3, Table 3.2). Aiming to minimize false

positives, Lichtblau et al. (2017) chose to “not distinguish between peering/sibling,

customer-provider and provider-customer links. Rather, whenever [the algorithm sees]

two neighboring ASes on an AS path, [the algorithm] presumes a directed link between

the two, where the left AS is considered upstream of the right AS.” The resulting cone

for an AS includes every prefix that contains that AS in the BGP route’s AS path, for all

routes observed by public route collectors in snapshots (RIBs) and updates during the

measurement period.

Figure 4.1: Comparison of construction of Full Cone and Customer Cone given identical
set of three BGP AS paths at top. The red line indicates how a BGP AS Path is read (the
last AS, the “origin” AS, “owns” the prefix).

Origin

(a) Example Full Cones (§4.1.1) for six ASes given
these BGP paths. The Full Cone for an AS includes
every prefix that contains that AS in the path for all
routes observed by public route collectors, regard-
less of the underlying relationships.

Origin

(b) Example Customer Cones (§4.1.2) for six ASes
using the same BGP paths from Figure 4.1(a). In
Customer Cone construction, we annotate each AS
link with a c2p, p2c, or p2p relationship before infer-
ring the Prefix-level Customer Cone. With this spe-
cific set of paths AS B is filtered out of the process
(the PPCC cone construction uses routes observed
from its providers and peers), and AS A has no cus-
tomers or peers considering only these BGP paths.

Source: by author (2019).

Lichtblau et al. (2017) acknowledge that this method intentionally sacrifice speci-

ficity, i.e., inflating the address space considered legitimate for each AS pair, in the interest

of avoiding false positives, i.e., avoiding mistakenly attributing a failure to deploy SAV.

Using this method, a stub AS that provides a public BGP view containing all prefixes it
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received from its peers and providers will have all of these prefixes included in its Full

Cone, i.e, the entire routed address space will be deemed valid.

Figure 4.1 illustrates the complexities of building the cones. We compare both

methods, FC and CC, using the same set of three BGP AS paths extracted from BGP route

announcements. In Figure 4.1(a) we show the results of the Full Cones for six ASes (A

to F); assuming A is a stub AS and a customer of B, all three prefixes would be included

in A’s Full Cone even though no system in A should originate packets with those source

addresses. Next, we discuss how the Customer Cone construction work.

4.1.2 Customer Cone

The Customer Cone is the more restrictive of the two construction methods. It

takes into account the semantics of AS relationships. As described in Chapter 2 - §2.4, the

AS-level Customer Cone defines the set of ASes reachable using customer links from the

AS, including the AS itself (LUCKIE et al., 2013). We use the Provider/Peer-Observed

Customer Cone (PPCC) algorithm defined in (LUCKIE et al., 2013) to build an AS-level

Customer Cone. Using the paths in Figure 4.1(b), the PPCC method constructs the cone of

AS C using routes observed from its providers and peers. The PPCC method accommodates

hybrid relationships, where an AS may not propagate all of its customer routes to all of

its peers and providers. Customer Cone inference critically relies on accurate routing

relationship inferences; a customer link incorrectly inferred to be a peer link will result in

address space that the provider AS transits being incorrectly excluded from its customer

cone. Figure 4.1(b) illustrates the AS-level Customer Cones for the same ASes and paths

as Figure 4.1(a), with link annotations to identify the inferred routing relationships between

ASes. However, an AS-level Customer Cone is not sufficient to define the set of valid

source addresses in traffic transiting a given neighbor AS.

Once we have the AS-level Customer Cone for C, we transform it into its corre-

sponding Prefix-Level Cone by including all prefixes originated by ASes in the AS-level

Customer Cone for C during the same observation window. This novel Prefix-Level Cone

Construction accommodates traffic engineering practices, where an AS may announce

different prefixes through different providers (e.g., segmenting the address space in smaller

prefixes and announcing them separately), but forward traffic from within these prefixes

according to the best route to the destination. To illustrate, in Figure 4.1(b), we include

203.0.113.0/24 in C’s Prefix-Level Customer Cone, even though that prefix is not observed
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in any BGP paths involving C, because F is in C’s customer cone. Importantly, we do not

include these three prefixes in A’s customer cone, because A has no customers. Although

this is not depicted in the figure, we also combine the Prefix-Level Customer Cones of

siblings, because a sibling C may transit packets from the customer cone of any of C’s

siblings to C’s peers or providers.

4.1.3 Filtering and Sanitizing AS Paths

As we mentioned before, precision in the process of constructing the cones is crucial.

The BGP-based collection infrastructure used to obtain AS-level topology data (ROUTE-

VIEWS, 2018; RIPE, 2018) suffers from artifacts induced by misconfigurations (i.e.,

reserved or unallocated ASes), poisoned paths (i.e., AS loops or non-adjacent Tier-1 ASes),

and prepended IXP route server ASes all of which hinder the AS-relationship inference

results. Figure 4.2 exemplifies some cases of BGP AS paths containing these artifacts and

indicates the type of processing made on each case, i.e., reject or edit the AS path. We use

the method from (LUCKIE et al., 2013) to incorporate steps to remove such artifacts.

Figure 4.2: Examples of BGP AS paths containing artifacts. An Invalid path implies a link
(and thus relationship) between two ASes, where in reality neither may exist.

10 → 3935 – 11845 ← 65610
unallocated

5984 → 2905 – 4230 ← 65610
poisoned

33891 → 6695 → 5964 ← 6561
 IX

10 → 6305 – 4845 ← 65610 ← 4845
loop

add → link between 
33891 and 5964

rejected paths

edited paths

X → Y X is a Customer of Y
X is a Provider of Y
X is a Peer of YX – Y

X ← Y

Notation Description

Source: by author (2019).

Table 4.1 shows, as an example of a cone construction, the results of the path

sanitization process we used to construct our cones. These results reflect the data san-

itization across all BGP monitors used to compute a dataset within a five days sample

(1-5 April 2017), i.e., the results are a sum of the number of records discarded or cleaned

across monitors. This process removed approximately 24K AS paths and 342K /24 pre-

fixes, due to poisoned AS Paths and/or the existence of reserved/unallocated ASes which

makes the AS Path invalid. Moreover, we edited 259K AS Paths, removing IXP ASes
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inadvertently or deliberately prepended. To better understand the case of IXP ASes it is

worth to remember that ASes often establish p2p relationships over the shared switching

fabric provided by IXPs. To facilitate dense peering connectivity, IXPs provide BGP

Route Servers (RICHTER et al., 2014) over which ASes establish many-to-many (mul-

tilateral) interconnections. Route Servers typically have their own ASN, but according

to best practices it should be filtered-out from the AS path since the Route Server does

not participate in the routing decision process (JASINSKA et al., 2016). However, for

debugging reasons, some IXP members append the Route Server ASN in the BGP path.

We sanitize BGP paths to remove Route Server ASNs since essentially the peering links

are between the IXP members, and not between the IXP and ASes. Note that the removal

of Route Server ASNs does not discard the prefixes, although affects inferred relationships,

and consequently, observed prefixes by the ASes when we build the cones. The Full

Cone method (LICHTBLAU et al., 2017) did not filter any paths, thus it would classify as

In-Cone (valid) any traffic using addresses in any invalid paths.

Table 4.1: Filters applied to AS paths, and number of paths and /24 address blocks
(contained in /24 or shorter prefixes) filtered, while building Customer Cone (RIPE RIS
and RV data, 1-5 April 2017).

Filtering and Sanitizing Operations over AS Paths AS Paths Prefixes (/24)
Poisoning: paths with AS loops or non-adjacent Tier-1 ASes 11,089 13,253
Reserved/Unallocated: paths with reserved or unallocated ASes 12,517 329,223
Prepended IXP ASes: edit paths to remove Route Server ASNs/IXP ASNs 258,335 —

Source: by author (2019).

4.1.4 Impact of the Cone Construction Method

Figure 4.3 shows how the choice of cone construction method impacts the inference

of valid address space per AS. Figures 4.3(a) and (b) present the results for all ASes in the

Internet, the X-axis shows the absolute number of /8 equivalent prefixes and the Y-axis

show the percentage of ASes. In addition, Figures 4.3(c) and (d) include specific analysis

of members from two IXPs, a large European IXP used in (LICHTBLAU et al., 2017)

and the mid-size IXP-BR in our study; the X-axis shows the relative cone size between

our cone (Customer Cone) and the Full Cone and in the Y-axis the percentage of ASes.

These plots were computed using traffic and BGP data from April 2017 and May 2019

(see Chapter 6 - §6.1 for further detail on the datasets we used).

For example, in Figure 4.3(a) we show that 5.5% of all ASes in the Internet had
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Figure 4.3: The cone construction approach significantly impacts the source addresses
each method will consider valid. The results in (a) and (b) refer to all ASes in the Internet,
while (c) and (d) include specific analysis of members from two IXPs (EU and BR).
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Source: by author (2019).

the equivalent of all routed IPv4 address space (175 /8 equivalents) in their Full Cone in

April 2017. In Figure 4.3(c) we show that for 90.5% of ASes, the Full Cone and Customer

Cone were congruent (included the same addresses), but 58% of IXP-EU member ASes

had Full Cones covering more addresses than the Customer Cone, with 42% having a list

100 times larger in the Full Cone than the Customer Cone. Note that we also looked two

years later using data from May 2019, and the differences increased with the pace of the

IPv4 allocation space depletion, as can be seen in Figures 4.3(b) and 4.3(d).

The disparity of the results of cone sizes for all ASes compared to those at the IXP

is because while over 80% of the Internet’s ASes are stubs (ROUGHAN et al., 2011), i.e.,

do not provide transit, these are less likely to peer at an IXP (AGER et al., 2012). Further,

IXPs are popular places to operate public route collectors because the collector can obtain

BGP routing views from multiple ASes at a single place. Therefore, those ASes at an IXP

that provide a routing view will have all of the prefixes they announce in routes to the

collector, including those from their peers and providers, in their Full Cone.
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Figure 4.4 show how the cone construction methods are affected by the choice of

BGP observation window (COMARELA; GüRSUN; CROVELLA, 2013) on the inference

of Out-of-cone traffic at our mid-size IXP in Brazil in two complete distinct periods, April

2017 (Figure 4.4(a)) and May 2019 (Figure 4.4(b)) contrasting the Full Cone and the

Prefix-Level Customer Cone. This effect is because of the FC’s permissive nature, which

exposes the cone inference to announcements across the whole Internet. Note that the

spike that appears in Figure 4.4(b)(i) is valid traffic incorrectly classified by FC as spoofed.

This portion of the traffic is unverifiable and can not be classified by any method 1. Next in

§4.2, we follow this discussion explaining the traffic visibility challenges.

Figure 4.4: The inferred Out-of-cone traffic volume for the Full Cone (FC) is sensitive to
changing BGP observation window sizes in the construction of the cone, while Prefix-level
Customer Cone (PLCC) is not. In Figure 4.4(a)(i) and Figure 4.4(b)(i) while the 7 and
9 day lines are almost identical (overlap), the 5-day line contains an order of magnitude
more traffic because the set of valid addresses for each AS is smaller. This contrasts with
the PLCC – Figure 4.4(a)(ii) and Figure 4.4(b)(ii), where Out-of-cone traffic is robust to
changes in the BGP table input window.
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Source: by author (2019).

4.2 Topology and Traffic Visibility

While the original role of IXPs was to promote peering between ASes physically

present and connected to a switching fabric, in practice IXP services have become more

complex. For example, many networks now obtain transit services from a provider at the

IXP (AGER et al., 2012), or an organization can connect its sibling networks using the IXP

switching fabric. IXPs may also offer services such as remote peering and layer-2 transport,
1Further, we explain more details in Chapter 5 and present analyses in Chapter 6 - §6.3 regarding the

unverifiable traffic. The spike identified by FC is composed of 84% Transport Provider traffic and 16%
Provider-to-Customer traffic.



58

as well as virtualized segmenting of traffic into multiple virtual LANs (VLANs). These

services present three challenges to accurate inference of SAV deployment. Following, we

discuss three main hurdles.

First, the semantics of the AS relationship between two IXP members impacts

whether the customer cone can serve to constrain inference of valid source address space.

That is, when inferring whether the source IP address of a packet is spoofed when crossing

an IXP, we need to consider the AS relationship between the two IXP members exchang-

ing traffic. As discussed in Chapter §2 - §2.4, a provider may forward packets with a

source address from any routed prefix in the Internet to their customer, and a sibling may

forward packets from the provider of one sibling to the customer of another sibling. In

these cases, we cannot apply a cone of valid addresses to infer the SAV policy of the

transmitting member. We can only make this inference when that member has a peering or

transit relationship with (i.e., receives transit service from) another member. The authors

of (LICHTBLAU et al., 2017) did not consider the routing relationship between a pair

of ASes when evaluating the source address of a packet sent by a member at the IXP. In

contrast to prior work, we consider the routing relationship between the two IXP member

ASes exchanging traffic when evaluating the source address of a packet crossing the IXP.

Second, there is a set of three traffic visibility impediments. First, as discussed in

Chapter §2 - §2.5, traffic between members connected to the same switch will stay within

the switch. In a distributed switching fabric, observing all member traffic requires traffic

capture from all switches. Second, ASes that establish private interconnections with other

ASes at the same Colocation Facility; their traffic exchange does not use the core IXP

switching fabric. Third, to infer SAV policy of an IXP member, we require hosts in the

cone of the IXP member to attempt to send spoofed packets to hosts they would reach

across the IXP. Because most ASes in the Internet peer at an IXP, only destinations in the

customer cone of the receiving AS could receive that packet, i.e., the victim or the amplifier

must be reached via the IXP. Because most customer cones are small (Figure 4.3, where

only 5% of ASes have more than 0.006% of the routed address space in their customer

cone) the chance of a victim or amplifier also being reached via a peering relationship at

the IXP is small; a victim or amplifier is more likely to be reached via a transit relationship

at the IXP.

Lastly, shared use of IXP ports creates attribution challenges. While the IXP can

supply the AS number for a given port, with the associated Ethernet MAC address, that

port does not necessarily uniquely identify the sending AS when a reseller uses the port to
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provide layer-2 transport, in cases of remote peering and port resale (§2.5), or when the

port connects to another exchange. Prior work has illustrated measurement challenges of

inferring remote peering (CASTRO et al., 2014; NOMIKOS et al., 2018). In this thesis,

the IXP provided us the reseller and IXP tags they used to bridge remote peers. This

IXP-specific knowledge exemplifies why we believe a Customer-Cone-based approach to

SAV inference will ultimately be integrated into expert system capabilities rather than be

amenable to complete layer-3 automation.
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5 SPOOFER-IX METHODOLOGY

The Customer Cone construction method and the approaches to tackle traffic

visibility impediments, both described in Chapter 4, underpin our traffic classification

method – how we infer invalid source addresses (presumably spoofed) in packets crossing

an IXP, and the ASes responsible for transmitting them.

In this chapter, we describe how these pieces fit together in our methodology imple-

mentation, which relies on IXP passive traffic measurements and topological information,

i.e., BGP data and IXP switching fabric forwarding databases. Our methodology, illustrated

in Figure 5.1, has two key stages. Section 5.1 describes the first stage with the strategy

responsible for building an accurate Prefix-Level Customer Cone from BGP public data.

The second stage, in Section 5.2, focuses on the explanation of our Traffic Classification

Pipeline over IXP traffic. In Section 5.3, we explain the set of tools developed as part of

Spoofer-IX. Finally, in Section 5.4 we close the chapter with some considerations.

5.1 Stage 1: Build the Customer Cone

This section presents the methodology to build the Prefix-Level Customer Cone

(PLCC), in which the goal is to infer the valid IPv4 address space per AS aiming to detect

spoofed traffic. PLCC leverages the methodology proposed by Luckie et al. (LUCKIE et

al., 2013) (Chapter 3 - §3.2) to infer AS relationships and the AS-Level Customer Cone.

First, for our purposes we set the AS Relationship Inference Algorithm to receive and

process more days of public BGP data as input, which is fundamental to capture a stable

view of the inter-domain routing system (recall Chapter 4 - §4.1). Second, we propose

PLCC, a new cone construction method to take into account the routing dynamics, i.e.,

traffic engineering and policy changes. For completeness, we introduce in this chapter

the different sources of publicly available topology data we use in the process of building

the cones and their differences. Moreover, we present how the algorithms work while we

explain our approach.
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Figure 5.1: Spoofer-IX Inference Methodology Overview divided into two stages. The
first (blue) builds an accurate Prefix-Level Customer Cone from public BGP data, while
the second (green) is responsible for the Traffic Classification Pipeline over IXP traffic.
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5.1.1 Data Sources

The AS Relationship inference and cone construction algorithms rely on one main

data source: public BGP data (RIPE, 2018; ROUTEVIEWS, 2018) being actively collected

all over the globe. It also takes as input the list of IANA allocated ASNs to RIRs and

organizations, as well as a list identifying IXP ASNs worldwide. Moreover, other sources

of routing information, like the Route Servers (RICHTER et al., 2014) and Looking Glass

Servers (GIOTSAS; DHAMDHERE; CLAFFY, 2016), were used as part of our inference

results validation processes. The Internet Routing Registry (IRR) could not be used as a

source because, at the time of writing, the corresponding infrastructure in Brazil was still

not fully operational (IX.br, 2018; NLNETLABS, 2018).
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Public BGP Data. BGP tables can provide information on AS-level connectivity.

Access to BGP routing tables can be obtained mainly through BGP Looking Glass Servers,

Route Servers (usually available at IXPs), or projects with distributed BGP monitors (RIPE,

2018; ROUTEVIEWS, 2018). Worth to note that Looking Glass Servers, in most cases,

offer access to a limited number of routers so one cannot extract the full routing table 1

of an AS, while the Route Servers provide full route tables. BGP monitors offer the most

complete BGP data by peering with backbone ASes and by collecting full BGP tables, and

also, update messages (ORSINI et al., 2016).

We leverage the BGP monitors from RouteViews project (RV) (ROUTEVIEWS,

2018) and RIPE Routing Information Service (RIPE RIS) (RIPE, 2018) to process the

BGP paths derived from routing table snapshots. Both RouteViews and RIPE RIS have

deployed 24 monitors each (at the time of writing) around the world that continuously

collect BGP tables and BGP update messages from hundreds of different backbone routers.

The motivation for ASes to offer access to their backbone routers is to understand how

the global routing system views their prefixes. The projects differ in the ways they collect

data 2; it is necessary to take them into account when processing data.

IANA Allocated ASNs. In order to identify valid AS numbers assigned to orga-

nizations and RIRs, we used IANA’s list of AS assignments (IANA, 2018a). This list

indicates which ASNs are assigned, as well as the ranges of ASNs not assigned and the

reserved ones by IETF.

IXP ASes list. We collect a list of ASNs used by IXPs offering Route Server

services in order to sanitize BGP paths. We remove Route Server ASNs from AS-Paths

since essentially the peering links are between the IXP members, and not between the IXP

and ASes. To extract such list, we query PeeringDB (PeeringDB, 2019) for networks of

type “Route Server” and extract the ASN.

1A full routing table is a table which contain all the routes the BGP neighbor is aware of (advertise more
than 400,000 prefixes (ORSINI et al., 2016)), while a partial table is a table filtered so that only some specific
routes are exchanged.

2RIPE RIS: offers RIB snapshots every 8h, 3 RIBs per day, UPDATE snapshots every 5min, 288 files per
day; RouteViews: offers RIB snapshots every 2h, 12 RIBs per day, UPDATE snapshots every 15min, 96 files
per day. PCH: offer 1 RIB snapshot per day in CISCO txt dump format, UPDATE snapshots every 1 min,
1440 files per day with ≈1h delay to publish the data.
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5.1.2 Prefix-Level Customer Cone Inference Method

This stage has four main steps, as depicted in Figure 5.2. The first step is to filter

and sanitize the AS Paths extracted from the public BGP data. With the data sanitized,

the second step is to run the AS Relationship Inference algorithm. Next, with the inferred

ASes relationships, we build the AS-Level Customer Cones. We then use the results as

input to the fourth and last step, construct our Prefix-Level Customer Cone through the

Provider/Peer-Observed Customer Cone (PPCC) algorithm. Following, we discuss more

details on each one of these steps.

Figure 5.2: Methodology overview to build the Prefix-Level Customer Cone.
public BGP

routing data

Filter and Sanitize
AS Paths

Infer 
AS Relationships

1. Build
AS-Level

Customer Cone
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ASNs records
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phase 1 phase 2
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Pre�x-Level
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Source: by author (2019).

Phase 1: Filter and Sanitize AS Paths. To avoid incorrectly identifying non-existent

links, we discard paths with artifacts. We use the method from (LUCKIE et al., 2013)

(recall Chapter 4 - §4.1.3). We filter out paths with AS loops, i.e., where an ASN appears

more than once and is separated by at least one other ASN. Such paths are an indication

of poisoning. We also discard paths with non-adjacent Tier-1 ASes, i.e., after inferred

the clique, we remove paths where any two ASes in the clique are separated by an AS

that is not in the clique. Moreover, we filter out paths containing reserved/unassigned

ASes (IANA, 2018a) and discard paths to prefixes longer than /24 or shorter than /8, as

there is a consensus to not propagate them in the inter-domain routing system.

Phase 2: Infer AS Relationships. We use the AS Paths from Phase 1 to derive AS

relationships on a weekly basis. We use as input to the algorithm 7-days of public BGP

data, being one RIB file per day, instead of the 5-days practice from Luckie et al. (LUCKIE

et al., 2013). We have defined this number after having performed a series of evaluations

with public BGP data and our traffic flow traces (as discussed in Chapter 4 - §4.1). We were

seeking to balance the number of files being processed and the update frequency of the data

input that could lead us to the best inference results, taking into consideration the current

periodic changes (COMARELA; GüRSUN; CROVELLA, 2013) seen in inter-domain

routing system (e.g., due to traffic engineering or routing policy updates).

For completeness and ease of reference, Algorithm 5.1 shows each high-level step
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Algorithm 5.1: AS Relationship Inference Algorithm, adapted from (LUCKIE
et al., 2013).

Input: AS paths, Allocated ASNs, IXP ASes list
Discard or sanitize paths with artifacts;1

Sort ASes in decreasing order of computed transit degree, then node degree;2

Infer a transit-free clique (i.e., Tier-1) ASes at top of AS hierarchy and label the links3

between every pair of ASes in the clique as p2p links;
Discard poisoned paths;4

Visit ASes in order of the ranking in (2), and label a link as c2p if its previous link in a5

BGP path is composed of two clique members, or if its previous link in a BGP path is
already labeled as c2p;
Infer c2p relationships from VPs inferred not to be announcing provider routes;6

Infer c2p relationships for ASes where the customer has a larger transit degree;7

Infer customers for ASes with no providers;8

Infer c2p relationships between stub ASes and clique ASes;9

Infer c2p relationships where adjacent links have no relationship inferred;10

Infer remaining links left as p2p relationships;11

in the AS Relationship Inference technique. This algorithm uses AS node3 and transit

degrees4 as metrics of AS-level connectivity and applies heuristics to annotate each link

with either a transit (c2p, p2c) or peering (p2p) relationship (lines 5 – 11). In the former

case, a customer buys access to routes that reach the global Internet. In the latter, two ASes

share route to their networks (including their customers’ networks), sometimes without

either AS paying the other (§2.4). For a detailed description of the algorithm, as well as

the validation of its results we recommend checking (LUCKIE et al., 2013).

The state-of-the-art AS relationship inference algorithm makes three generally

accepted assumptions: 1) there is a clique of large transit providers at the top of the

hierarchy, 2) most customers purchase transit in order to be globally reachable, and 3)

there are no cycles of p2c links. It uses Algorithm 5.2 to infer the transit-free clique of the

Internet, i.e., the clique of Tier-1 ASes at the top of the Internet AS hierarchy. To extract

the Internet clique, it leverages as input the same public BGP AS Paths and applies upon

them a set heuristics based on AS transit degree and AS Path triples (adjacent pairs of

links). The set of ASes resulting from this technique has routes to all other networks on

the Internet through customer or peering links without the need to pay for transit.

Phase 3: Construct the Prefix-Level Customer Cone. An AS’s Prefix-Level Cus-

tomer Cone (PLCC) is the set of prefixes that the AS can reach through its customer links.

Conceptually, constructing this cone is the most complicated part of the methodology, and

where mistakes can impact its accuracy. We construct a Prefix-Level Customer Cone using

3AS node: number of neighbors an AS has.
4AS transit degree: number of unique neighbors that appear on either side of an AS in adjacent links.
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Algorithm 5.2: Internet Clique ASes Inference Algorithm, adapted
from (LUCKIE et al., 2013).

Input: AS paths
Find the top 10 ASes by transit degree;1

If there are three consecutive members (X-Y-Z) in the top 10 ASes showing up in2

paths, and there are more than 5 ASes downstream from X Y Z (to make sure that the
paths containing three consecutive members are not poisoned), disconnect the edge
between X and Z even though X and Z are connected in some paths;
Find the largest clique in terms of transit degree sum among the top 10 ASes, denoted3

as C;
Visit the rest ASes top to down by transit degree, add an AS Z to C if Z has links with4

all members in C;
Similar to Step 2: If there are three consecutive members (X-Y-Z) in C showing up in5

paths, and there are more than 5 ASes downstream from X Y Z, disconnect the edge
between X and Z;
Find the largest clique in C in terms of transit degree sum as the final inferred clique;6

the method we described in Chapter 4 - §4.1.2. We divide this phase into two parts, as

illustrated in Figure 5.2. First, we use the Provider/Peer-Observed Customer Cone (PPCC)

algorithm defined in (LUCKIE et al., 2013) to build an AS-level Customer Cone. Take

Figure 4.1(b) as an example. The PPCC method constructs the cone of AS C using routes

observed from providers and peers of C. This accommodates hybrid relationships, where

an AS may not send all of its customer routes to all of its peers and providers. Second,

once we have the AS-level Customer Cone for C, we transform it into its corresponding

Prefix-level cone by including all prefixes originated in public BGP data by ASes in the

AS-level Customer Cone for C during the same BGP observation window. This process

accommodates traffic engineering, where an AS may announce different prefixes through

different providers, but forward traffic from within these prefixes according to the best route

to the destination. Figure 4.1(b) shows that we include 203.0.113.0/24 in C’s Prefix-Level

Customer Cone, even though that prefix is not observed in any BGP paths involving C,

because F is in C’s Customer Cone. Note these are the same paths we used to illustrate

the Full Cone construction (Figure 4.1(a)), except we have annotated links to identify

the inferred routing relationships between ASes. Importantly, we do not include these

three prefixes in A’s Customer Cone, because A has no customers. We also combine the

Prefix-Level Customer Cones of siblings, because a sibling C may transit packets from the

Customer Cone of any of C’s siblings to C’s peers or providers.
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Figure 5.3: Flowchart showing our traffic classification pipeline (Stage 2 of methodology).
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5.2 Stage 2: Classify IXP Traffic

The first stage of the methodology was about constructing the correct Customer

Cone for each AS. The second, described in this section, is related to traffic classification

between In-Cone or Out-of-Cone. In Figure 5.1, it is featured in green at the bottom.

This stage has three phases, illustrated in Figure 5.3: (i) filtering out traffic with source

IP addresses that match a static list of bogon or dynamic unassigned addresses; (ii)

filtering unverifiable packets; and (iii) filtering based on the inferred Prefix-Level Customer

Cone. The first phase is independent of any routing semantics, so we call it the Context-

Independent Classification (CIC). The second and third phases take into account the ingress

and egress ASes for the monitored link, the routing relationship between them, and the

Prefix-Level Customer Cone of the ingress AS. We call them the Context-Dependent

Classification (CDC).

Our traffic classification method tags each flow, based on its source IP address,
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into one of five categories: Bogon, Unassigned, Unverifiable, Out-of-Cone, and In-Cone.

The existence of any invalid traffic (Unassigned in the first step or Out-of-Cone in the

second step), illustrated in red in Figure 5.3, is evidence that the ingress AS has failed to

deploy SAV. At the same time, Bogon is in orange because it requires analysis of the traffic

properties since we have identified cases where the ASes have been using these prefixes

together with layer-4 tunneling protocols (e.g., IPIP, GRE) within the IXP switching fabric

infrastructure.

Phase 1: Filter Bogon and Unassigned Addresses.

We first classify traffic with Bogon and Unassigned source IP addresses, according

to Team Cymru (Team CYMRU, 2018b) (see dataset details in Chapter 6 - §6.1). Networks

sending packets with unassigned source IP addresses are unlikely to have implemented

SAV correctly since the most obvious implementation blocks traffic from such addresses

because they are not routed, therefore they have no feasible return path. This phase is

independent of any routing semantics, unlike the subsequent two phases, which consider

the sending and receiving ASes for the monitored link, the routing relationship between

them, and the Prefix-Level Customer Cone of the sending AS.

Phase 2: Filter Unverifiable Packets.

This phase classifies traffic flows as suitable to inference of spoofing (recall discus-

sions from Chapter 4) using the Customer Cone, marking unsuitable traffic as Unverifiable.

Verifiable traffic must satisfy all of the following:

1. It must have a valid MAC-to-ASN mapping for both the sending and receiving MAC

addresses.

2. It must not have a known router IP address in the source IP address of the packet.

Such a source IP address could be from any interface on the router, which might be

assigned by an AS whose address space is not in the customer cone of the router’s

owner.

3. It must not have a known IP address of the IXP LAN prefix. These prefixes are

assigned to the IXP ASN and should not be publicly announced, but sometimes

member ASes mistakenly announce them.

4. It must not have a source MAC address from a remote peer or layer-2 transport

provider.

5. It must not have a source MAC address from a known provider or sibling of the

receiving AS.
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Phase 3: Classify Packets with Customer Cone.

The remaining traffic has a valid MAC-to-ASN mapping, and is either transmitted

by a customer of a transit provider at the IXP, or by a peer of another AS at the IXP. If a

relationship was not visible in BGP, then we assume the traffic between these members

was p2p and use the cones to classify the traffic exchanged. For these transmitting ASes,

we classify traffic as In-Cone or Out-of-Cone using the Prefix-Level Customer Cone

(henceforth Customer Cone or CC) created in the previous stage. A packet whose source

IP belongs to the sending AS’s Customer Cone address space is classified as In-Cone.

Otherwise, the packet is classified as Out-of-Cone.

5.3 Using Spoofer-IX Implementation

We developed Spoofer-IX as a set of tools to enable the use of our inference

methodology by other researchers and network infrastructures, fostering replicability of

experimental results. Figure 5.4 depicts the implementation of Spoofer-IX in five steps.

Each step contains its tools and interfaces with the subsequent operations. A full-run

of Spoofer-IX is comprised of all five steps, which can be employed to distinct network

infrastructures (see details in Chapter 7). However, as discussed in Chapter 4, precise

knowledge about the network topology and interconnections is required to obtain robust

inferences from Spoofer-IX. In the following, we present the implementation details of

each step.

Figure 5.4: Overview of the global steps comprising the analysis methodology.
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Step 1. Check and prepare required datasets (Chapter 6 - §6.1). To obtain

accurate results, it is important to align the time windows of the datasets. We provide

helper scripts to download, prepare, and optimize datasets. We make available helper

scripts (using the Python Scrapy library (SCRAPINGHUB, 2019)) that download and

process the BGP routing data files from public BGP route collectors (ROUTEVIEWS,

2018; RIPE, 2018) to build the cones. In addition, we also provide helper scripts to auto-

mate topology information extraction from various switch manufacturers using Python’s
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Figure 5.5: Topology data extraction from switches to create the MAC-to-ASN mapping
(Chapter 6 - §6.1).
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Netmiko (BYERS, 2019) and Google’s TextFSM (GOOGLE, 2019) libraries. As illus-

trated in Figure 5.5, the process of extracting topology data from switches has three key

phases. The first phase is the definition of the specific set of local commands that should

be executed in each device (varies by manufacturers and device model). The next phase

requires the establishment of a connection with each device to send the commands. We

provide two alternative methods to send the commands, one via interactive calls with a

given switch or in batch for a pre-defined list of switches, each running a pre-defined

set of commands from input files. The third and last phase involves the application of

post-processing operations over each device output answers to generate the required output

mapping files.

Step 2. Execute cone construction in three phases (stage 1, §5.1). The codebase

of this stage is written in Perl. This step starts with the filtering and sanitization of AS

Paths from the previously downloaded BGP data files. Then, proceeds with the execution

of the AS Relationships inference algorithm. Lastly, the construction of the Prefix-Level

Customer Cone.

Step 3. Execute traffic classification pipeline (stage 2, §5.2). The core imple-

mentation of the pipeline and the next steps (4 and 5) were developed in Python, and some

additional Bash helper scripts are used to automate parameterized execution. This step

saves classification results to disk in Apache Avro (APACHE, 2019) format for use in the
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next step.

Step 4. Correlate, transform, and annotate results. Using the classification

results and correlation datasets (e.g., MAC-to-AS mapping, prefix-to-ASN mapping), we

proceed to create new intermediate files with data enriched with additional information,

useful to compute distinct metrics. The results are then forwarded to a set of transfor-

mation processes that will group the traffic data in distinct ways (e.g., time, IP address,

prefix), compute unique records across a given time range, and verify differences between

parametrized time bins (e.g., 5-min, 15-min, 1-hour, etc).

Step 5. Compute metrics. Use data created in the previous step to look for

atypical network events, which could hint to network attacks. We implement two distinct

metrics to assess the IPv4 address activity and behavior over time: Activity and Churn, and

Spatio-Temporal Properties in active IP addresses (RICHTER et al., 2016; DAINOTTI et

al., 2013). The former allows measuring the volatility of address activity over time, while

the latter captures aggregated properties of active IPs seen in each time-window.

We provide two modes to setup the environment: automatic and personalized setups.

The automatic setup is based on a Bash helper script to install and configure most of the

dependencies of the project (e.g., NFDUMP (HAAG, 2019), Apache Avro (APACHE,

2019), RIPE NCC BGPdump (RIPE NCC, 2019)), enabling its use out-of-the-box, e.g.,

on a fresh Linux Ubuntu server. All the steps were developed and made available with

multiprocessing support. The source code and the documentation are available online

at (MULLER et al., 2019b).

5.4 Considerations

This chapter presented a new methodology using IXPs as observatories to infer

spoofed packets and networks that leak them in the Internet. We dealt with operational

complexities that characterize today’s interconnection ecosystem, the noise inherent in

public BGP data sources, and heuristic AS relationship inferences.

The next chapter presents the results we got when we applied our methodology to

traces from two distinct years – 2017 and 2019 – from a mid-size IXP with ≈200 members

and a peak traffic volume of 200Gbps. The accurate inferences shed new light on the deep

subtleties of scientific assessments of operational Internet infrastructure, revealing the need

for a community focus on reproducing and repeating previous methods.
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6 INFERRING SPOOFED TRAFFIC AT IXPS

In the two previous chapters, we provided details of methodological challenges, in-

cluding comparing our Prefix-Level Customer Cone (PLCC) with the Full Cone (FC) (LICHT-

BLAU et al., 2017). Moreover, we presented our Spoofer-IX methodology design to

accurately detect the transmission of spoofed traffic by AS members of IXPs.

This chapter focuses exclusively on the results obtained from the Spoofer-IX

methodology applied to traffic and topology data from the third largest IXP in Brazil, with

more than 200 member ASes connected at the IXP switching fabric. We review the traffic

classification results, including a temporal analysis of traffic flow snapshots two years

apart.

The remainder of this chapter is structured as follows. In line with the datasets

presented in Section 6.1, from Section 6.2 to 6.8, we show the results of a series of

extensive analyses we did using Spoofer-IX methodology, including a comparison against

the state-of-the-art. Last, in Section 6.9, we discuss our validation efforts regarding the

inferences made and the results obtained.

6.1 Datasets

We now introduce our datasets and their collection methodologies. Table 6.1 sum-

marizes the datasets we use. It contains three sets of datasets, i. Vantage Points, ii. Base

Filtering, and iii. Correlation datasets. They are grouped by their source/application in the

proposed methodology itself.

i. Vantage Points Datasets.

IXP-BR: traffic. We used SFlow (P. Phaal, S. Panchen, and N. McKee, 2001)

traffic data from an IXP that belongs to the Brazilian IXP Ecosystem (IX.br) (IX.br, 2020).

This IXP transports up to 200 Gbps of traffic among 200+ members. The IXP operators

configured a sample rate of 1:4096 packets. We used two datasets, one from April 1 to

June 5 2017 (10 weeks), and the other from May 1 to June 5 2019 (5 weeks), to evaluate

our method.

Topology data over connectivity fabric. To identify the pair of adjacent ASes

sending and receiving each flow across the IXP fabric, we used layer-2 information (i.e.,
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Table 6.1: Datasets summary.
Dataset Source type Data format

Vantage Points
Datasets

IXP-BR Passive Traffic Flow Sflow (RFC3176, 2001), sampling 1:4096
MAC-to-ASN Device configuration files Raw dump snapshots, monthly
Looking Glass Servers BGP announcements Raw dump snapshots, daily
Route Server BGP announcements Raw dump snapshots, monthly

Base Filtering
Datasets

Bogons Prefixes list Prefixes ranges, stable set (Team CYMRU, 2018b)

Unassigned Prefixes feed
Prefixes ranges, updated
every 4h (Team CYMRU, 2018a)

Routers IPs ITDK data IP ranges (CAIDA, 2017)

Public BGP data BGP announcements
RIBs and Updates files
(RIPE, 2018; ROUTEVIEWS, 2018)

AS Siblings (AS-to-Org) Organizations and ASes Hash of organization & ASes
IXP ASes / LAN prefixes PeeringDB data ASNs, prefixes ranges (PeeringDB, 2019)

Correlation
Datasets

Available Blocks IANA/RIRs IP Ranges (IANA, 2018b)
NetAcuity Edge IP Geolocation Historical IP Ranges (NETACUITY, 2019)
Prefix-to-ASN BGP announcements Prefix to ASN (LUCKIE et al., 2013)

Source: by author (2019).

MAC addresses) since the source and destination IP addresses in the IP headers of the

observed packets contain the communication endpoints. To map MAC addresses to sending

and receiving ASes of each flow (the MAC-to-ASN mapping), we relied on information

from the forwarding database of each switch that is part of the IXP switching fabric (recall

Chapter 5 - §5.3).

BGP routing data. We enriched our BGP datasets with vantage point-specific

BGP routing data from both the Looking Glass servers (GIOTSAS; DHAMDHERE;

CLAFFY, 2016) and snapshots from the Route Server (RICHTER et al., 2014) for the

same time window of our IXP traffic data collection.

ii. Base Filtering Datasets.

Bogons and Unassigned addresses. We used Team Cymru’s Fullbogons feed (Team

CYMRU, 2018a; Team CYMRU, 2018b) to filter out traffic with source IP addresses that

are bogons (e.g., private, special use, reserved) (MOSKOWITZ et al., 1996; WEIL et al.,

2013; COTTON et al., 2013) or unassigned. Unassigned prefixes are allocated by IANA to

an RIR (IANA, 2018b; IANA, 2018c), but not currently assigned by the RIR to an end-user

(e.g., an ISP) (NRO, 2020). We used the lists compiled by Team Cymru (which uses lists

of prefixes maintained by each RIR (NRO, 2020) to update their feed) in each 4h interval

per day for the same time windows as our IXP traffic data collection.

Router IP addresses. For comparability with previous work (LICHTBLAU et al.,

2017), we used CAIDA’s Internet Topology Data Kit (ITDK) to identify router interface

IP addresses. We used the ITDK snapshot closest in time to the IXP traffic capture

window (CAIDA, 2017; CAIDA, 2019b). We consider traffic from ITDK-inferred router

interfaces to be unverifiable (recall Chapter 5 - §5.2) because the source IP address could
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be from any of the interfaces of the router, which might be assigned by an AS whose

address space is not in the customer cone of the router’s owner.

Public BGP Data. Our traffic filters relied on customer cones inferred from

public BGP routing table snapshots collected by Route Views (RV) and RIPE’s Routing

Information Service (RIS) (RIPE, 2018; ROUTEVIEWS, 2018). In Spoofer-IX, we

downloaded one BGP RIB table per day from all available (18 and 16 in 2017, 19, and

18 in 2019 from RIS and RV, respectively) collectors for the same time windows as our

traffic data. We extracted all AS paths in these tables that announced reachability to IPv4

prefixes, repeating this process for each week.

AS Siblings. We used CAIDA’s AS to Organization classification of ASes into sets

that likely belong to the same organizations (HUFFAKER et al., 2019). CAIDA’s method

parses the Regional Internet Registries’ WHOIS dumps and delegation files to create a

unified mapping between ASes and organization names, then uses hints in the name strings,

delegation files, identifiers, and email addresses to infer AS sets with common ownership.

For each measurement period, we used the AS-to-Organization mapping that CAIDA

constructed closest to the traffic capture window.

IXP ASNs (BGP Route Servers) and LAN Prefixes. We collected a list of AS

Numbers used by IXP Route Servers, querying PeeringDB (PeeringDB, 2019) for networks

of type “Route Server” and extracted the ASN and also the IPv4 and IPv6 LAN prefixes

used by the members to establish their inter-domain BGP sessions.

iii. Correlation Datasets.

Available Blocks. In order to identify the valid prefixes and its allocation status,

e.g., if they are assigned to organizations and RIRs, we used IANA’s and RIR’s lists of

blocks assignments (IANA, 2018a). These lists indicate assigned prefixes, as well as

prefixes not yet assigned and the reserved ones by IETF.

Geolocation. We draw on two geolocation providers: NetAcuity Edge (NETACU-

ITY, 2019) (henceforth referred to as NetAcuity) for all results presented in this thesis

and MaxMind GeoLite2 (MAXMIND, 2019) (GeoLite) given it is a popular free offline

geodatabase. NetAcuity’s commercial database has an alleged accuracy of 99.9% on a

country level, and 97% on a city level. GeoLite, in contrast, is free – it is a less accurate

version of the commercial GeoIP2 database that is maintained by the same company.

Prefix-to-ASN mappings data (prefix2AS). We use IP prefix to AS mappings,

i.e., denoted as IP prefix −→ AS to associate IP addresses to ASes. These mapping files
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are produced in the Stage 1 Build the Customer Cone (Chapter 5 - §5.1) based on public

BGP data from RIPE RIS (RIPE, 2018) and RouteViews (ROUTEVIEWS, 2018).

6.2 Longitudinal Traffic Classification Based on Spoofer-IX

In order to apply the traffic classification processing to flow data, we first prepared

all the necessary datasets (§6.1). In particular, regarding the first stage (Chapter 5 - §5.1),

i.e., build the cones, Table 6.2 summarizes the key parameter values used for the rest of

the analyses. For the Prefix-Level Customer Cone (PLCC), we used seven days of public

BGP data as input, corresponding to each week of traffic data we classify following our

methodology. Later, in §6.6, we present the parameters for Full Cone (FC) when we

compare the results of both methods.

Table 6.2: Parameters for Spoofer-IX cone inference algorithm.
Parameters Prefix-Level Customer Cone (PLCC)

(1) BGP input time window 7-days

(2) Number of monitors

RIPE Routing Information Service (RIPE RIS) &
RouteViews project (RV)

(18 and 16 in 2017,
19 and 18 in 2019

RIPE RIS and RV, respectively)

(3) Files per monitor one file per day

(4) Use of RIBs / Updates files RIBs only

Source: by author (2019).

Figure 6.1 shows the volumes of traffic we classified into multiple subplots with

custom scales, one for each of the five categories defined in our methodology (i.e., In-

cone, Out-of-cone, Unverifiable, Bogon, Unassigned) organized in descending order of

traffic volume for two different years in 2017 and 2019. There are five curves in each

category, each curve representing one week of the traffic classified. Additionally, the

green-highlighted area in the figures set the weekend boundaries. We present these three

distinct five-week periods to show our results are consistent, at least for these periods.
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Figure 6.1: Longitudinal analyses, two-years – 2017 (April to Jun, ten weeks) and 2019 (May to Jun, five weeks of traffic) classified with Spoofer-IX.
For all fifteen weeks, we inferred almost no Out-of-Cone traffic – in 2019 a maximum of 40Mbps for an IXP with a peak of 200Gbps.
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Although not directly shown in the individual plots in Figure 6.1, the peak combined

rate across the core switch during the period was 120Gbps in 2017, and 200Gbps in 2019.

Our first observation regards the volume of traffic classified as In-cone and Out-of-cone,

i.e., first (i) and third (iii) subplots in each plot of Figure 6.1. As expected the majority of

the traffic across the exchange is classified as In-cone – average of 70.04% in 2017 and

84.66% in 2019 over the total volume of traffic, because it comes predominantly from

large content providers (Carisimo et al., 2018).

During 2017, the peak Out-of-Cone traffic we inferred was less than 5Mbps (see

inset zoom-in in Figure 6.1(b)), and in 2019, 40Mbps (Figure 6.1(c)), that is in average

less than 0.01% of the total volume of traffic from each of the periods analyzed. We

believe these values are upper-bounds of Out-of-Cone traffic at the IXP core switch, and

we reached these volumes after investigating the underlying properties of traffic between

pairs of members, in rank order of contribution to the Out-of-cone traffic volume at the

IXP. We manually investigated the relationship between ASes exchanging packets unlikely

to be spoofed, such as TCP packets carrying data or directed towards a known transport

provider. In addition, we found 27 sibling ASes in 12 distinct organizations that were

exchanging traffic across the IXP, but missing from CAIDA’s public AS-to-Org dataset

(see §6.1). To determine which ASes were siblings, we consulted the official website of

those ASes to find information on their ownership, contacted the ASes directly to inquire,

or contacted the IXP operators to understand the relationship between two ASes at the

IXP. Further, through the IXP operators, using different communication strategies (email,

phone, personally), we approached 36 members of the IXP and obtained clarifications

from 34 of them.

Although the number of members was similar between 2017 and 2019 (208 and

203, respectively), 28 new members were present in the 2019 analysis. We found that

the increase in Out-of-cone traffic between 2017 and 2019 was due to additional complex

relationships and traffic transport agreements between members in the 2019 data that

are not visible to the IP layer or in the BGP protocol (more details in §6.7). Table 6.3

summarizes the number of unique AS pairs we observed to exchange traffic for the five-

week periods beginning 1 April 2017 and 1 May 2019. While we inferred more than 98%

of the AS pairs had a p2p relationship, approximately 1.4% of AS pairs had a different

class of relationship that impacts our ability to infer SAV policy of the transmitting AS.
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Table 6.3: Unique AS pairs observed exchanging traffic at the IXP in each 5-week period.

Approximately 1.4% of AS pairs had a non-p2p relationship. (This IXP was rearchitected

in 2019, which may explain the drop in observed peers.)

Relationship April 2017 May 2019

p2p 19,161 (98.7%) 12,057 (98.4%)

p2c 222 (1.1%) 183 (1.5%)

s2s 21 (0.1%) 10 (0.1%)

total 19,404 12,250
Source: by author (2019).

Next, we investigate Bogon and Unassigned volume of traffic, which also should

not be routed on the Internet (as discussed previously in Chapter 2 - §2.3). Even though

it represents 0.00543% of all traffic exchanged in 2019, we examined its properties

to understand the motivation of network operators behind the usage of these prefixes.

For example, in Figure 6.1 the peak volume of traffic with Bogon source addresses

was approximately 100Mbps across the exchange for Wednesday at the end of Week-

3 (Figure 6.1(c)). We found these networks make deliberate use of private addresses

(defined by RFC1918 (MOSKOWITZ et al., 1996)) as sources when using tunneling

protocols, e.g., Generic Routing Encapsulation (GRE) and IP over IP encapsulation (IPIP).

It consisted in 61.14% of the traffic at that moment. According to the members involved,

these communications were associated with IP Transport service over bilateral agreements

through the shared switching fabric infrastructure of the IXP. This type of traffic was

introduced in place of stacked VLANs IEEE 802.1ad (JEFFREE T., 2019), informally

known as QinQ. This type of traffic is not allowed in many IXPs; according to (IX.br, 2019),

it is enabled only in very special cases. Network operators therefore rely on alternative

tunneling solutions, as our results show. In Section 6.4, we analyze more details regarding

the protocols being used in the distinct traffic categories.

The Unassigned volume of traffic exhibits interesting behavior. In our longitudinal

analysis, we captured a change of behavior, i.e., the disappearance of this type of traffic at

the IXP. The peak rate was less than 0.1Mbps (or 100Kbps) on Week-2 in Figure 6.1(a) in

2017, and after a year, in 2019, it was not present. This might due to many factors, such as

the result of many efforts regarding Internet security worldwide, which greatly enhanced

and gained more traction from 2017 onwards (ISOC, 2018; Tech Accord, 2018; NIC.br,
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2019). Besides that, the IPv4 address space depletion probably had an impact, making rare

the unassigned space, year after year (NRO, 2020; NRO, 2019).

Finally, we analyze the Unverifiable traffic. The results are nearly the same when

comparing 2017 and 2019, i.e., we observe that the classification shows a consistent

time-of-day and day-of-week effects across all the fifteen weeks analyzed, which is also

consonant with the In-cone traffic behavior. So, even though we cannot safely attest to the

traffic nature, due to the restrictions already explained in Chapter 2 - §2.4, the fact that it

matches the overall behavior of the In-cone traffic, suggests that we have more valid traffic

than invalid. Following, we further analyze the composition of the Unverifiable traffic in

detail.

Table 6.4: Unverifiable traffic sub-categories definitions, and the average traffic fraction
breakdown. It shows the average traffic fraction of each sub-category over the Unverifiable
traffic across the exchange in the first week of May 2019.

Sub-category Traffic
Fraction Meaning

P2C-in-cone 32.44%

P2C out-of-cone 29.42%

We isolate traffic sent from a Provider to a Customer across the exchange. Because a provider can transit
packets from any source address in the Internet (§2.4), there are no invalid addresses that would allow the
detection of spoofed packets. We apply the Customer Cone approach (In-cone / Out-of-cone) to the P2C
traffic only as a matter of extra analysis.

Unknown Ingress MAC 0.94%

Unknown Egress MAC 20.47%

If the MAC-to-ASN mapping for either the source (ingress) or destination (egress) MAC addresses
is missing, we can not proceed with the validation of the packet. This situation happens simply because the
IXP lacks complete historical data for this mapping (§6.1).

Remote Peering 14.10%
If we can not determine the destination AS because the destination (egress) MAC address and
packet VLAN tag indicated the traffic was from a Remote Peering Provider.

Transport Provider 1.28%

When the participant is physically distant from the IXP or wants to interconnect in more than one IXP
location, they often need to rely on a contract with a Transport Provider. The Transport Provider acts in the
very same way as the Transit Provider, i.e., it can transport packets from any source address in the Internet,
there are no invalid addresses that would allow detection of spoofed packets. This is a two-step validation process.
First, we try to validate the traffic. Second, if it fails to be validated then, we check if the member is connected
to more than one IXP and check if the ASN involved in the exchange is a known Transport Provider in the market.

Sibling-to-Sibling 0.06%
Traffic sent from a Sibling to a Sibling organization across the exchange.
These organizations can transit packets from any source address they want (§2.4)
between them. There are no invalid addresses that would allow the detection of spoofed packets.

Bogon in VLAN 0.18%

Unassigned in VLAN 0.0%

IXP participants can request VLANs from the IXP to isolate their communications (§2.5).
When the prefixes of both categories (Bogon and Unassigned) exchange traffic in their isolated VLAN,
there are no invalid addresses that would allow the detection of spoofed packets.

Stray 1.11%
Traffic whose source IP is attributed to a router interface. It is not clear whether the router
is spoofing this address, or has transmitted the packet on an outbound interface different from the
one it used as the source address.

Source: by author (2019).

6.3 Unverifiable Traffic Breakdown

The definition of Unverifiable traffic sub-categories is not straightforward. We de-

fined a taxonomy based on multiple factors: (i) investigations on the relationships between

specific parties; (ii) discussions with the IXP operators on operational complexities; (iii)

how distinct peering agreements impact traffic flows; and (iv) analyses performed over

packets exchanged. As a result of this work, the Unverifiable traffic is composed of (i)

flows, which we can not validate due to lack of information to correlate and (ii) flows with
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properties that would not allow detection of spoofed packets by definition. In Table 6.4,

we present the complete list of Unverifiable traffic sub-categories, their meanings, as well

as the average fraction of traffic of each individual sub-category across the first week of

May 2019.

For both the 2017 and 2019 observation periods, there was a peak of ≈25Gbps of

Unverifiable traffic across the exchange, which represents ≈15.30% of the overall traffic

passing at the IXP at that time (Figures 6.1(a), 6.1(b)and, 6.1(c) – ii subplot). Figure 6.2

provides a classification of the traffic involved for the first week of May 2019, in absolute

(6.2(a)) and relative (6.2(b)) traffic volume values. 61.9% of the Unverifiable traffic was

sent from a provider to a customer across the exchange, where no cone of valid addresses

applies (Chapter 2 - §2.4).

Figure 6.2: Classification of Unverifiable traffic. 61.8% of the Unverifiable traffic was sent

by a provider to a customer across the exchange. Because a provider can transit packets

from any source address in the Internet, there are no invalid addresses which would allow

detection of spoofed packets. For completeness, we further classify traffic from each

provider as being in or out of their Customer Cone.
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Source: by author (2019).

If we had applied the Customer Cone approach to this p2c traffic, we would have

inferred 52% of it was from within the provider’s customer cone, with the remaining

48% of traffic being from outside of the provider’s customer cone. Because a provider

can transit packets from any source address in the Internet (Chapter 2 - §2.4), there are

no invalid addresses that would allow detection of spoofed packets. This potential for

erroneous inference is why we must classify all packets from a Transit Provider to a

Customer as Unverifiable. Another 21.41% of the Unverifiable traffic was because we did

not have an ASN mapping for either the source or destination MAC addresses (the IXP
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lacked historical data for this mapping), and for 14.10% of traffic we could not determine

the origin AS because the source MAC address and VLAN tag indicated the traffic was

from a remote peering provider. Finally, all of the other categories (i.e., Transport Provider,

Sibling-to-Sibling, Bogon in VLAN, Unassigned in VLAN, and Stray) summed to only

2.62% of the traffic. Although these last categories do not represent much relatively, they

prove to have significant impact on false positives/negatives on spoofing identification at

IXPs.

6.4 Distilling Protocol Diversity from Distinct Traffic Categories

In addition to analyses on the traffic perspective, we studied the quantitative and

qualitative characteristics of our distinct traffic categories. First, we explore the situation

of transport protocols being employed in the exchange of traffic with Bogon prefixes, as

previously discussed (§6.2). Following, we contrast characteristics of the traffic exchanged

at our IXP leveraging a set of known application protocols identified as potential attack

vectors in each of the distinct categories defined (US-CERT, 2019). For the application

traffic analysis, we are aware that, unfortunately, using traffic flows and port numbers

alone provide a severely limited mechanism for classifying applications (LABOVITZ et

al., 2010; ROUGHAN et al., 2004).

Figure 6.3: Transport protocols mix seen in the Bogon traffic at the IXP (Week-1, May
2019), bytes and packets. List of protocols ordered by bytes.

%bytes %packets
GRE 87.8955% 72.0084%
ICMP 5.8189% 11.7116%
TCP 5.6082% 15.0982%
UDP 0.6513% 1.1526%
None 0.0160% 0.0032%
VRRP 0.0060% 0.0166%
OSPF 0.0034% 0.0077%
IPv6 0.0003% 0.0006%
IGMP 0.0003% 0.0008%
ICMP6 0.0001% 0.0003%
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Source: by author (2019).

Transport protocols used to exchange Bogon traffic. In Figure 6.3, we can see

the complete transport protocols list we identified when looking to the entire Bogon
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traffic in the first week of May 2019. We observe that GRE clearly dominates the mix

with a share of more than 87% bytes and 72% packets, representing 1.56 TB of absolute

traffic contribution in that week alone. The other significant share of traffic is composed

of the ICMP and TCP protocols, accounting for some 11.43% of the exchanged bytes.

Other protocols such as TCP, VRRP, OSPF, etc. account for roughly 0.68% of the bytes

exchanged at the IXP. The “None” entry is an indication of mal-formed packets, i.e.,

packets that did not contain valid data in the packet header. These usually happen due to

some network equipment error during packet handling (e.g., processing overload, firmware

bug).

We also looked if the same traffic proprieties hold if we isolate the multilateral

Bogon traffic exchanged between members from the bilateral traffic. To enable this analysis,

we re-run the classification tagging the Bogon traffic exchanged in bilateral sessions to our

Unverifiable category. Figure 6.4 shows the results of the analysis. While we can see that

there are Bogon packets exchanged in the multilateral peering, we observe less diversity

on the transport protocols employed, being more pronounced ICMP and TCP suggesting

the lack of adoption of the bogon static filters from the Best Current Practice (BCP) by a

total of six members. Although GRE still appears, it is not the largest contributor to the

category, confirming what the network operators explained on the reasons to use private

addresses (see 6th paragraph on §6.2).

Figure 6.4: Transport protocols mix seen at the IXP (Week-1, May 2019) when applied
filter to see only traffic exchange in multilateral agreements, bytes and packets. List of
protocols ordered by bytes.

%bytes %packets

ICMP 50.8481% 43.8829%

TCP 42.3738% 52.1835%

GRE 4.3826% 2.1567%

UDP 2.3955% 1.7769%
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Source: by author (2019).

Application protocols mix. Figure 6.5 shows a port-based application classifica-

tion of packets considering four traffic categories, i.e., the ones which had traffic during
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the analysis at the IXP. The data processed to generate this graph was May 1st 2019,

but the overall behavior holds in a very similar way for other days. The overall traffic

behavior, without considering the protocol level information in our categories, is best seen

in Figure 6.1(c).

Figure 6.5: Traffic mix of application protocols seen at the IXP (May 1st 2019), fraction of
packets for (i) In-cone, (ii) Out-of-cone, (iii) Unverifiable and (iv) Bogon traffic. We do
not exhibit the Unassigned category because it has no traffic (as seen in Figure 6.1(c)). List
of protocols is ordered from less to a more expressive presence across categories. Note the
log scale in the shared Y axis.
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We split our port-based classification according to (i) direction, i.e., SRC and

DST port numbers, and (ii) the respective transport protocol, i.e., we focus on TCP vs.

UDP. To achieve that, first we break the traffic into all protocol numbers located by

analyzing the flow data in 5-min bins. Second, aiming to see if we locate attack traffic

signatures into the distinct traffic categories, we pre-selected a set of application protocols

identified as potential attack vectors based on the US-CERT alert list (US-CERT, 2019;

ROSSOW, 2014). Then, we aggregate the traffic flow data of the whole day into each

distinct application protocol located, and order by the amount of packets exchanged, select

the seven most popular protocols and aggregate all the remaining traffic/port numbers

into “others”. The list of protocols is ordered from less to a more expressive presence

across categories. We note that port numbers in others are mostly randomly distributed,

suggesting ephemeral port numbers. Note the log scale in this graph.

Before we discuss Figure 6.5 details, it is worth to mention that no network attack

signs were identified, neither any misbehaved application protocol. Now, to understand

how to read the figure, first concentrate on TCP traffic. Take the case of In-cone web traffic

HTTP (80) and HTTPS/QUIC (443), which we expect to see both directions. Packets from

clients to servers carry 80/443 in their packet DST field, and reply packets from servers

carry 80/443 in their packet SRC field and an ephemeral port number in the DST field.

Analyzing Figure 6.5 (i) In-cone TCP-SRC (HTTP+HTTPS correspond to 65.36% of the
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traffic) and TCP-DST (HTTP+HTTPS correspond to 32.9% of the traffic) bars we can

see that this interaction is well-reflected. The behavior just described needs to change if

this were spoofed traffic, then it is expected to see traffic flowing in higher rates in only

one direction (it can vary accordingly with the attack strategy and attack type employed,

e.g., flooding or amplification). Looking to (ii) Out-of-cone and (iv) Bogon categories

on TCP-DST packets with HTTP and HTTPS in the header we still can see both traffic

directions, i.e., client/server communications happening (besides, remember that the traffic

spike in that day was less than 30Mbps, as you can see in Week-1 Figure 6.1(c)). Otherwise,

if we instead had seen only TCP-DST traffic direction and expressive traffic rates it could

be a hint towards a flooding attack destined to HTTP/HTTPS servers, requiring further

analyses.

For the UDP traffic, we can observe the same expected behavior, i.e., we find

traffic flowing in both directions, requests to, and responses from key Internet service

applications (e.g., DNS, NTP, SNMP). Recall that the set of protocols we analyzed are

the most popular (US-CERT, 2019; ROSSOW, 2014) to be employed in DDoS attacks

(Chapter 2 - §2.1). Interestingly, Figure 6.5 shows that the behavior of such ports for

the In-cone, Out-of-cone, and Unverifiable, both SRC and DST, follow a very similar

pattern, with very low fraction of packets in all them, with the only difference between

these categories being which protocols appear in each one. Table 6.5 shows the percentage

in the format of SRC/DST for traffic found in these categories, for each protocol.

Table 6.5: Percentage of UDP traffic mix of application protocols, per analysis of Figure 6.5.
The percentages are shown in the format of SRC/DST traffic.

DNS NTP SNMP SSDP

(i) In-cone 0.42 / 0.69% 0.05 / 0.21% 0.01 / 0.05% 0.002 / 0.001%
(ii) Out-of-cone 0.004 / 0.12% – – –
(iii) Unverifiable 1.12 / 0.95% 0.12 / 0.07% 0.002 / 0.01% 0.008 / 0.02%

Source: by author (2019).

The more intriguing case goes back to Bogon traffic. 36.65% of all Bogon UDP

packets carry port number 53 as DST and, hence, are destined to DNS servers. However,

as shown in Figure 6.1(c) we found very low traffic volume and packet rates (precisely

144 packets/s on DNS DST packets) which does not show signs of an attack, although it

suggests bad configuration practices (DNS open resolvers (KüHRER et al., 2015)).

Next, we study how the results of our methodology, Spoofer-IX, cross-check with

the CAIDA Spoofer Project (CAIDA, 2018c). The Spoofer Project has been collecting

data on the deployment and character of IP source address validation on the Internet since
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2005 (BEVERLY; BAUER, 2005; BEVERLY et al., 2009). These measurements are

publicly available (CAIDA, 2018c; CAIDA, 2019a), allowing us to cross-check active

measurement inferences of spoofability with our findings.

6.5 Lack of SAV Compliance Cross-Check

In 2005, Beverly et al. (BEVERLY; BAUER, 2005) developed a client-server

technique to allow users to test networks to which they are currently attached and oper-

ationalized a platform to track trends from February 2005 to April 2009 (BEVERLY et

al., 2009). Since 2015, when UCSD/CAIDA took over development and support of the

spoofer infrastructure, the collected data accounts for 6845 autonomous systems (10%

of the total routed ASes) in 207 countries (CAIDA, 2018c; LUCKIE et al., 2019) as of

August 2019. This system required a user to download and execute the client software once

per measurement, limiting coverage. Data from the project comes from participants who

install the active probing client. The client automatically runs tests both periodically and

when it detects a new network attachment point. We analyze the rich dataset of Spoofer

tests for the same time windows as our traffic data.

Table 6.6: Congruity between CAIDA’s public Spoofer dataset and inferences using the
IXP. Of the 35 ASes that overlapped, CAIDA’s Spoofer Project dataset inferred 54% of
them had not deployed SAV, because CAIDA received a packet with a spoofed source
address. Of the overlap, only 4 of the 35 (11%) were observed to forward an Out-of-cone
packet into the IXP, and only 2 of these were also in CAIDA’s Spoofer Project dataset as
also not deploying SAV.

Spoofer-CAIDA Spoofer-IX Sum
In-cone Out-of-cone

Spoof-received 17 2 19 (54.3%)
Spoof-blocked 14 2 16 (45.7%)
Sum 31 (88.6%) 4 (11.4%) 35

Source: by author (2019).

There were 203 members in the IXP we analyzed with Spoofer-IX in May 2019.

We inferred spoofed traffic for 38 members (18.7%). A fraction of the 203 members,

17.2%, or 35 members, were also in CAIDA’s public Spoofer dataset (CAIDA, 2018c;

CAIDA, 2019a), which requires a volunteer to have been present in the network to run

an active measurement test (Chapter 3 - §3.1). Table 6.6 summarizes the (in)congruity

between the two datasets. We can see the results from the Spoofer project with these 35

ASes as ground truth. The Spoofer dataset indicated that 54% of the 35 members had
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not deployed SAV, while 46% did. Considering the same set, Spoofer-IX detected only 4

members (11%) as sending Out-of-cone spoofed packets into the IXP. The result indicates

that this specific IXP may not provide effective visibility into SAV deployment because

participants were not forwarding spoofed packets, at least during our five-week observation

window. It is not related to the accuracy of Spoofer-IX.

The quantitative differences in the measurements reflect both the different vantage

points and the fundamental difference between the ability to spoof and actual spoofing, as

carried out and visible in passive traffic flow traces. More generally, these results show the

importance of our measurements. We imagine its utility as part of an expert system suite

of cybersecurity services or compliance practices of modern IXPs.

6.6 Spoofer-IX vs State-of-the-art

This section compares the Spoofer-IX against the State-of-the-art in identifying

spoofed traffic at IXPs, i.e., Full Cone (LICHTBLAU et al., 2017). To compare our

approach with FC, we reproduce FC’s methodology and analyze how reliably the method

leads to the conclusions. We show that FC lacks the appropriate treatment of the fun-

damental challenges (Chapter 4), which can lead to incorrect identification of spoofed

traffic.

The analyses and results presented here aim to: i. show the differences in the

precision of the traffic classification results and ii. dive into the reasons for the differences

that arise between the two methods. First, we describe the comparison procedure along

with the summary of the algorithm’s parameters (§6.6.1). Following, we analyze the traffic

classification results, comparing both methods (§6.6.2). Last, we discuss the causes of

discrepancies seen in the results (§6.6.3).

6.6.1 State-of-the-art Comparison Procedure

Table 6.7 presents side-by-side the parameters used in both algorithms to build

the cones of each method before the traffic classification stage. For the Full Cone (FC)

we used the same values as the authors defined – nine days (LICHTBLAU et al., 2017)

of public BGP data as input; and for the Prefix-Level Customer Cone (PLCC) we used

seven days, corresponding to each specific week of traffic data we classify, following our
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methodology (Chapter 5). The analyses performed take as input the same traffic flow data

for both methods, as described in §6.1 (Vantage Points Datasets, IXP-BR: traffic).

Table 6.7: Parameters that define the input data for both cones inference algorithms –
Prefix-Level Customer Cone (PLCC) and Full Cone (FC).

Parameters Prefix-Level Customer Cone (PLCC) Full Cone (FC)
(1) BGP input time window 7-days 9-days

(2) Number of monitors

RIPE Routing Information Service (RIPE RIS) &
RouteViews project (RV)

(18 and 16 in 2017,
19 and 18 in 2019

RIPE RIS and RV, respectively)
(3) Files per monitor one file per day all available files
(4) Use of RIBs / Updates files RIBs only RIBs and Updates

Source: by author (2019).

Even though Lichtblau et al. (2017) did not originally release the source code of

the method, needed to reproduce it, we were able to obtain some portion of the code with

the authors. Additionally, we did interactions by email and a remote meeting with two of

the authors for clarifications. The portion of the code we obtained allowed us to reproduce

their Full Cone methodology (LICHTBLAU et al., 2017). We had to develop our own

version of their traffic classification scheme, and for that we followed the information

available in the publication 1. We did not obtain their datasets, which were protected by

NDA agreements, like ours, so we applied both methods, ours and theirs, to our dataset.

Metrics for atypical network events analysis. We study the traffic classification

results looking for atypical network events, which could hint to network attacks. We

investigate two common attack strategies, namely flooding and amplification/reflection

(recall Chapter 2 - §2.1). Recall that flooding attacks are often carried out using a wide

range of source IPs, while amplification attacks require selective spoofing of source IPs of

victims. To accomplish our goal, we use two distinct metrics to assess the IPv4 address

activity and behavior over time (RICHTER et al., 2016; BENSON et al., 2015).

1. Activity and Churn in active IPv4 addresses allow to measure the volatility of address

activity over time. To capture changes in the population of active addresses, we

define a gained event if an address is not seen in a given window of time, e.g., 5-min

or a day, but then is seen in the subsequent window. Conversely, a lost event occurs

if an address is seen in a given window of time, but not seen in a subsequent window.

1The authors said that they “have hardcoded information of the IXP itself, making it hard to share” their
traffic classification code.
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The entry called same event measures how many addresses are active in a given

window of time, and still active in a subsequent window.

2. Spatio-Temporal Properties in active IPv4 addresses captures aggregated properties

of active IPs seen within each time-window, e.g., each 5-min, 1-hour, a day. We

analyze the components of a given traffic category, through which we can glean

considerable information from flow-level data. We quantify the number of unique

ASNs, BGP prefixes, and countries. The number and diversity of sources facilitate

insight into the overall traffic behavior. These numbers help identify components that

enable opportunistic network inferences, characterize the frequency and granularity

of traffic sources.

Analysis execution steps. In order to perform the comparison, we proceed with

distinct full-runs of Spoofer-IX and Lichtblau et al. (2017) method. In Chapter 5 - §5.3,

Figure 5.4 depicts five steps that should be executed for both methods, i.e., Spoofer-

IX and Full Cone, to compute the metrics. In particular, the analysis requires first the

complete execution of each cone construction method. Following, we classify the traffic in

accordance with each proposal. Lastly, we proceed with the metrics computation. In other

words, we derive the traffic categories classification results of each method, which are then

used as input to the metrics computation, revealing the corresponding traffic behaviors.

6.6.2 Traffic Classification Comparison

Figure 6.6 (in page 89 for better visualization) shows the volume of Out-of-cone

traffic inferred by both the Spoofer-IX (6.6(a)) and Full Cone (6.6(b)) methods for traffic

data captured during the first week of May 2019. There are two additional subplots with

custom scales, one for each of the metrics defined in our analysis methodology (§6.6.1).

We compute each metric per 5-minute window of traffic data and use the same range on Y

axes between methods for ease of comparison.

The Spoofer-IX method infers a peak of (just) 40Mbps of Out-of-cone traffic (so

small that it is visible only in §6.2 - Figure 6.1(c)), whereas the Full Cone method infers

a peak of 2.5Gbps. The diurnal pattern of the inferred Out-of-cone traffic matches user-

demand for content, with no observable peaks suggesting a volumetric spoofed-source

attack launched from within member ASes of the IXP. The second row of Figure 6.6 shows

churn in source IP addresses seen in each five-minute window, results obtained by the
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Activity and Churn metric. For the Full Cone method, the absolute volume of source

addresses observed follows the traffic volume profile (Figure 6.6(b)(i)) as a whole. Note

that the gain and lost curves are superimpose, addresses are being replaced at the same

rate, with a stable amount of addresses being used. In addition, looking to the third row

we can see that the traffic is concentrated in 478 ASes and 69 countries per five minute

window on average, as computed by the Spatio-Temporal Properties metric. This is not

a typical pattern of attacks that utilize randomly-spoofed source addresses that would be

spread throughout the address space. Actually it is the opposite: the observed behavior

indicates normal traffic being delivered to members of the IXP by a variety of ASes spread

in distinct countries. Following, we analyze what is behind the different results between

the two methods.

(Note: intentionally left blank to provide in the next page the best visualization of Fig-

ure 6.6.)
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Figure 6.6: Comparison of metrics for Out-of-cone traffic inferred by the Spoofer-IX and Full Cone for the first week of May 2019. We compute each
metric per 5-minute window of traffic data, and use the same range on Y axes between methods to allow for comparison. For the IXP we studied,
the Full Cone method inferred an average of 1.5Gbps of spoofed traffic, whereas our methodology inferred a maximum of 40Mbps (best seen in
Figure 6.1(c))-iii.
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6.6.3 Analysis on discrepancy of classification results

The discrepancy in the amounts of Out-of-cone traffic found between the Spoofer-

IX and the state-of-the-art is because the latter classifies as Out-of-cone three types of

traffic: Provider-to-Customer, Transport Provider to Customer, and Sibling-to-Sibling. In

contrast, Spoofer-IX classifies these as Unverifiable. Figure 6.7 provides the classification

breakdown of the Full Cone Out-of-cone traffic, as seen before in Figure 6.6(b) (i), by the

lens of the Spoofer-IX method. The traffic breakdown is shown in absolute (6.7(a)) and

relative (6.7(b)) volume values and refers to the first week of May 2019.

Figure 6.7: Classification of Out-of-cone traffic for the Full Cone through the lens of the
Spoofer-IX. We infer that 92.6% of this traffic was from a provider to customer across the
IXP. However, because a provider can transit traffic from any source IP address to their
customer, it is incorrect to identify spoofed packets by their IP address crossing an IXP
from a provider to a customer.
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Source: by author (2019).

Figure 6.2 in §6.3 shows how Spoofer-IX classified Unverifiable traffic. That

includes 1 — 5 Gbps of traffic from Providers to Customers (represented in orange). When

we classified the Full Cone’s Out-of-cone traffic using the Spoofer-IX method, 92.6% of

the traffic was from a Provider to a Customer across the exchange, carrying 0.5 – 2 Gbps

of traffic (Figure 6.7(a)).

Finally, the traffic volume classified as In-cone by the Full Cone method is larger

than with Spoofer-IX. 85.5% of the traffic that the Full Cone method classified as In-

cone was also classified as In-cone by the Spoofer-IX method, with the remaining 14.5%

classified as Unverifiable by Spoofer-IX (which means that with the Full cone method

there could be up to 14.5% false negatives, i.e. undetected spoofing). We analyzed the

In-cone traffic results of Full Cone through the lens of the Spoofer-IX, as in Figure 6.8.

Like Figure 6.2, the traffic breakdown is shown in absolute Figure 6.8(a) and relative
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Figure 6.8(b) volume values referring to the first week of May 2019.

First, because the Full Cone includes all prefixes where an AS was observed in

the AS path of a BGP route in an AS’s Full Cone (recall Chapter 4 - §4.1.1), traffic from

providers and peers of that AS was inferred as In-cone for that AS, corresponding to an

average of 60% of their In-Cone Unverifiable traffic. Second, as they do not check for

traffic direction and types of AS relationships, the fact of having Unknown MAC addresses

(23.34% of traffic on average) does not interfere with their classification process since

they only care to check if the packets SRC address matches or not the Full Cone. Third,

they ignore the presence of Remote Peering agreements (16.02% of traffic on average) and

classify the traffic regardless of not having the correct information. Putting together the

results of both Figures 6.7 and 6.8 gives us the original values computed by the Spoofer-IX

methodology, as seen in Figure 6.2 in §6.3.

Figure 6.8: Classification of In-cone traffic for the Full Cone through the lens of the
Spoofer-IX. 60% of this traffic was from a provider to customer across the IXP. Because
the Full Cone includes all prefixes where an AS was observed in the AS path of a BGP
route in an AS’s Full Cone, traffic from providers and peers of that AS was inferred as
In-cone for that AS.
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Source: by author (2019).

Both, Spoofer-IX methodology and Full Cone, are subject to False Positives (traf-

fic labeled as spoofed when it is valid/In-cone) and False Negatives (traffic labeled as

valid when it is spoofed/Out-of-cone). As the results above demonstrated, the work of

Lichtblau et al. (2017) suffers from a considerable amount of False Positives and False

Negatives, while Spoofer-IX provides accurate traffic classifications (i.e., minimize both

False Positives and False Negatives). These results show that Spoofer-IX avoided wrong

classifications through the definition of precise filters to isolate the portion of the traffic

that is not feasible (e.g., Provider-to-Customer, Transport Provider-to-Customer, Sibling-

to-Sibling) or uncertain (e.g., Stray, Remote Peering, Bogon in VLAN) to identify spoofed
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packets, making them Unverifiable (check Table 6.4 in §6.3).

Even though we have inferred Out-of-cone traffic with Spoofer-IX at our IXP,

there are still edge cases we have not yet discussed, as some of the traffic appears to

have signatures of legitimate traffic (recall discussions in §6.4). Next, we look into the

Out-of-cone traffic nature and discuss its properties.

6.7 Looking at the Out-of-cone Traffic Nature

In this section, we look specifically at the Out-of-cone traffic tagged by the classi-

fication process. As discussed in §6.2, we believe that the amount of Out-of-cone traffic

crossing the IXP core switch is even lower. To confirm our intuition, we manually check if

there are any signs of attack traffic behavior, such as flooding and amplification. We also

investigate what are the potential factors/properties impacting on these results. We use

space-filling Hilbert Curves (HEIDEMANN et al., 2019; WESSELS; CLAFFY, 2019) to

generate a map of IPv4 address usage extracted from the Out-of-cone category and Sankey

diagrams, exploring the properties of members exchanging this traffic.

Figure 6.9 shows Hilbert heatmaps, one per day for the entire Week-1 of May 2019.

The heatmap presents the usage of the IPv4 address space in each day according to the

source IP addresses of Out-of-cone packets resulting from our classification processing.

The IPv4 address space is rendered in two dimensions using a space-filling continuous

fractal Hilbert curve (HEIDEMANN et al., 2019; WESSELS; CLAFFY, 2019) of order

16. Each square in the figure represents a /8 IP prefix block; the numbers in each square

indicate the number of the first IPv4 octet. Each colored dot represents how many IP

sources generated traffic within a given /16 from each block, with blue and red meaning

low (from 1) and high counts (above 255), respectively. The color black means no packets

with a source address in the /16 block. The green rectangular shapes denote reserved

address space blocks by IETF RFCs (IANA, 2018b).

We observe a clear pattern in terms of IP address space usage across hours and

days, suggesting that this Out-of-cone traffic is legitimate and not associated with attacks.

Further, the plots showed no indication of random exploration of the IP space (e.g.,

multicast IP ranges, reserved blocks, and military prefixes), which might indicate an

attack (MAJKOWSKI, 2018a).

Next, we examined the top five prefixes by usage of its IP space. We checked

the AS owners of such prefixes, as well as the ASes’ business type classification of the



93

corresponding AS. For packets with source address within these top prefixes, we examined

the respective ingress AS crossing the IXP infrastructure. In the list of ingress ASes, we

found regional ISPs present in more than one IXP and being also part of complex relation-

ships, i.e., group associations (variations also include partnerships/services exchange and

franchising) leveraging transport providers to reach their intended destinations.

(Note: intentionally left blank to provide in the next page the best visualization of Figure 6.9,

Hilbert heatmaps.)



94Figure 6.9: Hilbert heatmap visualization showing the utilization of the address space according to the Out-of-cone traffic that is left (Week-1, May
2019). The IPv4 address space is rendered in two dimensions using a space-filling continuous fractal Hilbert curve (HEIDEMANN et al., 2019;
WESSELS; CLAFFY, 2019) of order 16. Each square in the figure represents a /8 IP prefix block; the numbers in each square signs the number of
the first IPv4 octet. Each colored dot represents how many IP sources generated traffic within a given /16 from each block. The level of activity is
indicated by colors, from blue (low) to red (high), with green, yellow and orange as moderate levels, and black meaning no packets with a source
address in the /16 block. Green boxes denote reserved address space blocks by IETF RFCs.

(a) May 01 (b) May 02 (c) May 03 (d) May 04

(e) May 05 (f) May 06 (g) May 07

Source: by author (2019).
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Figure 6.10 shows a complementary view of the traffic properties, depicting the

traffic exchanged between members through a Sankey diagram. It shows the top 20 heavy-

hitter pairs of members by the total traffic volume exchanged in the Out-of-cone category

on May 03, 2019 (where the peak of 40 Mbps is present). The width of the connections

between AS pairs is proportional to the traffic volume exchanged. This view helps un-

derstand who are the members involved in the communications and how the traffic from

Figure 6.9 reaches the IXP. In summary, by analyzing the data, we found that the regional

ISPs mentioned before relied on Transport providers not previously known/mapped (A,

B, C, and J in the diagram) to reach the peering fabric and exchange traffic. So, three

traffic properties can contribute to false positives in the out-of-cone traffic, i.e., complex

AS relationships, AS presence in multiple locations, and unknown transport providers

carrying on the traffic via layer-2.

(Note: intentionally left blank to provide in the next page the best visualization of Fig-

ure 6.10, Sankey diagram.)
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Figure 6.10: Sankey diagram with the top 20 pairs of members by the total Out-of-cone

bytes exchanged in May 03, 2019. The width of the connections is proportional to the

volume of bytes exchanged. Note that the ASNs were replaced by a letter due to a

non-disclosure agreement.
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6.8 Perspectives on Filtering Consistency by IXP Members

In the previous sections, we examined the traffic properties, made inferences

about the lack of SAV and the incidence (or lack of) attacks exploiting spoofing in the

periods considered. We now investigate the problem using a higher-level perspective to

answer three questions. The first is how consistent is the overall application of filtering

policies among all AS members of the IXP? This information offers opportunities for IXPs

coordinators to help members improve compliance with missing practices or even to define

better regulatory practices when new members connect to the infrastructure (§6.8.1).

The second question regards changes, hopefully, improvements in the adoption of

SAV through time (§6.8.2). Even though our data is limited to two periods, 2017 and then

2019, it may be enough to determine a trend as long as a visible change in the adoption of

SAV is present. Can we see positive changes in the behavior of members regarding SAV

compliance? The results allow us to see members who (potentially) have never deployed

or are not following the BCPs correctly.

The third and last question relates to the switched fabric infrastructure itself, a

profile analysis of the traffic behavior correlated with the physical Colocation Facilities,

where members interconnect (§6.8.3). Is there any concentration of members failing to

protect their networks among the CFs? We aimed to understand this because we believe

that IXP coordinators should split with its CFs the burden of auditing traffic to confirm

that each network performs SAV, therefore serving as regulatory agents (more on that on

Chapter 7), as well as connectivity enablers.

6.8.1 Filtering Consistency Behavior

Figure 6.11 presents a Venn diagram with the percentage of members at the IXP

contributing with traffic to the distinct categories, as well as intersections in contributions.

The results in the plot refer to all packets exchanged in the traffic collected during the

five-week period in 2019. For each packet, we inspect the associated category (as defined in

Chapter 5, see classification diagram in Figure 5.3) and use MAC-to-ASN mapping (§6.1)

to identify the member AS emitting these packets. As in previous work (LICHTBLAU

et al., 2017), the percentages reflect lower bounds on which filtering strategy member

ASes apply, as an AS may not send flows with spoofed source IP addresses across the IXP

during our observation window. We argue that these lower bounds are usefully tight given
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the length of the observation period (15 weeks, spanning two years).

Figure 6.11: Four-Set Venn Diagram with the percentage of members contributing traffic
to the following categories: In-cone, Out-of-cone, Bogon and Unassigned. Analyses
performed for the five week period of 2019, May 01 to June 05 2019. Note that the area
sizes in the plot are not shown in proportion.

Source: by author (2019).

Interestingly, not all members appear as source of traffic. Out of 203 active members

in 2019 during the five weeks, 154 (75.86%) members appeared as source of traffic at the

IXP. From those 154 ASes, 15% did not send any traffic classified as either Out-of-Cone,

Bogon, or Unassigned, i.e., their traffic was clean. On the other end of the spectrum, one

AS (0.7%) contributed traffic to all four categories; it proves that there are indeed networks

without any kind of filtering deployed. Surprisingly, around 1.3% of participants contribute

with Bogon traffic only, the easiest to avoid due to its static nature. This indicates a

gross misconfiguration and potential vulnerability; we responsibly notified these networks

by means of their IXP. According to operators of the networks involved, the problem

was caused by an updating procedure in routers accidentally deleting the filter for bogon

ranges. A single AS member contributed packets in the Unassigned category. This same

member also sent Out-of-cone, Bogon, and In-cone packets. Not surprisingly, no member

contributed Out-of-cone traffic exclusively. Almost 23% (35 members) contributed with

In-cone, Out-of-cone, and Bogon packets, while 58.8% (90 members) contributing with

both In-cone and Bogon traffic. Lastly, 1.3% (2 members) contributed to In-cone and

Out-of-cone.

Considering all 200+ members at the IXP, few contributed with potentially spoofed
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traffic. Recall that for members to control the exchange of Bogon traffic requires relatively

static filters at their network devices that do not need frequent updating as topology and

customers change (Chapter 2 - §2.2). In contrast, SAV filtering (of Out-of-cone traffic)

requires updating filters as business dynamics change. It thus surprised us to see more

networks exchanging Bogon traffic than Out-of-cone traffic. We explained this mystery

with our previous discovery that AS members occasionally use Bogon source IPs to

exchange traffic via tunneling protocols (e.g., GRE, IP-in-IP) with another member at the

same switching fabric. Nevertheless, the presence of Out-of-cone traffic suggests that those

member ASes sending it do not strictly enforce SAV according to the BCPs (FERGUSON;

SENIE, 2000; BAKER; SAVOLA, 2004).

6.8.2 Trends of Filtering Over Time

This analysis investigates the trends of filtering configurations over time by the

members at the IXP. We show the number of participants present in each category for the

two years analyzed. Towards this end, Figure 6.12 shows a Swarm plot (i.e., a categorical

scatterplot) overlapped with a Box plot considering the values of all categories (In-cone,

Out-of-cone, Unverifiable, Bogon, Unassigned). Each circle in the swarm indicates the

total number of members per day over five weeks of 2017 (Figure 6.12(a)) and another five

weeks of 2019 (Figure 6.12(b)). Box plot values show the minimum, maximum, average

(square), median (line inside square), lower (25th), and higher (75th) quartiles for the

number of IXP members over time in each category.

As we can observe, even with a two-year difference between the traffic flow data

analyzed, the overall behavior remained mostly equal for all categories. This result is not

surprising, as typically operators minimize interventions to deployed operational devices

to avoid service disruptions (LUCKIE et al., 2019). These results are consistent with those

observed by active measurements (CAIDA, 2018c). In all of them, the box maximum

and minimum values of each category have little or no difference. The highest standard

deviation among categories is 3.38 members in Bogon category (Figure 6.12(b)), where

we observed the deliberate use of these prefixes with tunneling protocols (discussed in

§6.2 and §6.4). Moreover, there is no presence of outlier observations.

These results indicate that there has been no significant progress in terms of de-

ployment or remediation of SAV in the networks evaluated in the period 2017-2019. We

cannot state this behavior applies to the Internet as a whole or will persist, but based on the
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Figure 6.12: Swarm Box plot reflecting configured filtering practices over time. It shows
the scatterplot distribution per category of the total number of members per day over five
weeks of 2017 (6.12(a)) and another five weeks of 2019 (6.12(b)). The points represent
the results of each day being shifted horizontally (only along the categorical axis) to avoid
overlap, while in the y-axis they show the total number of members. The overlapping
Box plot presents the minimum, maximum, median (line inside square), lower (25th) and
higher (75th) quartiles values for the number of IXP members over time in each category
after the classification process.
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Source: by author (2019).

present evidence, we cannot be optimistic about networks increasing protection against IP

spoofing attacks.

6.8.3 Filtering Behavior of Members by Colocation Facilities

In our previous analyses regarding the filtering behavior, we focused on how

many members contribute to the distinct traffic categories independently of their points

of connection to reach the IXP core switching fabric (definitions and related challenges

are presented in Chapter 2 - §2.5 and Chapter 4 - §4.2). In this analysis, we separate the

members per Colocation Facilities based on ground-truth data (MAC-to-AS mapping -

§6.1) in order to observe the behaviors on filtering strategies. The leading question was: –

is there any CF with substantially more members failing to protect their networks?

Table 6.8 shows the behavior seen along the five weeks in 2019 (May 01 - Jun 05

2019). As explained before (Chapter 2 - §2.5, Figure 2.9), the architecture of modern

IXPs is composed of a switching fabric that interconnects other switches located in remote

physical Colocation Facilities. As the table shows, the IXP we studied (§6.1) had at the

period of this analysis ten distinct active CFs, with a varied amount of members, as seen
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in the 2nd column 2. Now, to answer our question, take into account the absolute number

of members connected in each CF (2nd column) and look to our set of distinct categories

(3rd to 7th columns). We can see that there is no concentration of cases among the CFs.

Table 6.8: Breakdown of IXP members presence per Colocation Facility and the traffic
categories over five weeks in 2019 (May 01 - Jun 05 2019). The table presents the absolute
total number of members which appeared in each category (nonexclusive, since a member
can contribute to more than one category over time) in the five-weeks analysis along with
the corresponding fraction over the total number of members connected to each CF. The
last row shows a sum over the period analyzed. We anonymized the Colocation Facilities
real names and sorted in descending order of members connected (2nd column).

Colocation
Facility

Members
Connected In-cone Out-of-cone Bogon Unassigned Unverifiable

CF-1 70 47 (67.14%) 15 (21.42%) 38 (54.28%) 1 (1.42%) 46 (65.71%)
CF-2 34 25 (73.52%) 6 (17.64%) 19 (55.88%) 0 (0%) 24 (70.58%)
CF-3 27 20 (74.07%) 5 (18.51%) 18 (66.66%) 0 (0%) 20 (74.07%)
CF-4 26 23 (88.46%) 6 (23.07%) 21 (80.76%) 0 (0%) 26 (100%)
CF-5 16 13 (81.25%) 1 (6.25%) 11 (68.75%) 0 (0%) 13 (81.25%)
CF-6 14 10 (71.42%) 3 (21.42%) 9 (64.28%) 0 (0%) 10 (71.42%)
CF-7 10 8 (80%) 2 (20%) 8 (80%) 0 (0%) 9 (90%)
CF-8 3 3 (100%) 0 (0%) 1 (33.4%) 0 (0%) 3 (100%)
CF-9 2 1 (50%) 0 (0%) 2 (100%) 0 (0%) 2 (100%)

CF-10 1 1 (100%) 0 (0%) 1 (100%) 0 (0%) 1 (100%)
Sum 203 151 (74.38%) 38 (18.71%) 128 (63.05%) 1 (0.49%) 154 (75.86%)

Source: by author (2019).

6.9 Discussion on Validation Efforts

The validation of results is a big challenge for the Spoofing problem, and the

complexity only grows in the context of IXPs as vantage points. There are two key reasons.

First, there is no global registry that contains ground truth on which addresses are valid

source addresses for packets transited by an AS. Second, the IXPs are composed by

dynamic infrastructures, interconnecting many networks which in turn are affected by

economic factors that shape the networks market dynamics with buy/sell/merge/partnership

operations, periodically changing the network organization landscape (Julio Wiziack, 2019;

Bnamericas, 2019; David Shepardson, 2017; Steve Evans, 2014). Even so, we made

distinct efforts to validate our results. Due to the complexity, we did the validation in a

2There are a lot of distinct factors that make one CF have more members connected than others. The
top five factors, according with discussions with IXP operators and IXP members are: i. for how long the
CF has been operational, ii. strategic physical location (in order to ease members’ reach the facility), iii.
additional services offered (e.g., strategic CDNs, transport providers, critical services co-location), iv. quality
of services and technical support, and v. financial costs.
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two independent phase process. First, the Spoofer-IX components based on inferences,

and second the results obtained with the use of our method.

Spoofer-IX components. Recall Chapter 5 - Figure 5.1, where we illustrate an

overview of the Spoofer-IX components. Note that we have two components that are built

based on algorithm inferences; these are, in order of importance, the Prefix-Level Customer

Cones and the Sibling ASes. To validate the results we obtained with our PLCC algorithm,

we used Route Servers and Looking Glass Servers data (§6.1). These datasets helped us to

check the resulting AS relationships and prefixes inferred aimed at the members of the IXP

under analysis, i.e., allowed to see if we have missed something or incorrectly established

an inference between ASes.

In practice, to check the cones results, we proceeded with three distinct validation

operations in different moments and forms. First, we developed a code to check for missing

prefix announcements in the resulting cones. We used the IXP BGP data (i.e., Route Server

data) as a baseline. Second, we manually analyzed the top ten individual prefixes with the

highest matching results after classifying traffic, double-checking if the prefix was valid

(we checked its announcement). Last, we correlated and annotated our traffic classification

using cones information, external mapping data (e.g., MAC-to-AS, prefix-to-ASN), and

the IXP BGP data doing individual cases analysis when necessary.

Regarding the Sibling ASes, we found some missing from CAIDA’s public AS-

to-Org dataset (HUFFAKER et al., 2019) while we were digging into the properties of

the Out-of-cone traffic category. So, we investigated which ASes were siblings in three

complementary ways: by consulting the official website of those ASes to find information

on their ownership, contacting the ASes directly to enquire, or the IXP operators to

understand the relationship between two ASes at the IXP.

Spoofer-IX Results. After the components validation, we use Spoofer-IX to

classify the traffic and assess its results. In this stage, we had limited ground truth to

validate our inferences of spoofed traffic events. The IXP did not have sufficiently granular

data on their traffic monitoring systems to use on detailed analysis for validation; neither

they had a security system that cared about spoofability. So we cross-validated our traffic

classification results, specifically the Out-of-cone traffic, with our two metrics Activity and

Churn in active IPv4 addresses and Spatio-Temporal Properties in active IPv4 addresses

(see details in §6.6). Moreover, we corroborate the observed behaviors with reports from

the IXP coordinators and its members, which the IXP operators helped contact.

Besides these efforts, a diverse set of other investigations were carried in individual
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members of the IXP. The members investigated were selected based on their potential

atypical behavior, e.g., high traffic volume exchanged, number of packets, diversity of

members that it communicates within a given time window. With the members selected,

we performed their traffic analyses. The list of traffic properties considered in the analyses

include the traffic exchange direction, protocols involved in the communications, both

transport and application layers, as well as their communications patterns. In combination

with those analyses, we also looked to the businesses conducted by the members, checking

if their traffic behavior matches, their peering agreements established and the presence in

multiple locations, and the potential usage of unconventional routing setups (e.g., use of

tunneling protocols, software for routing automation (NOCTION, 2019)).

Alternative strategies of validation. Although we executed extensive validation

efforts like the ones mentioned above to increase the confidence of the outcomes, three

other strategies could have been considered. The first alternative would be the use of

simulation. One could develop a simulator to generate synthetic traffic aiming to test the

logic behind the proposed method. This would be useful to perform unit tests for our

developed codebase. The second alternative would be to generate synthetic traffic and

inject it into the real dataset. This way, one could create scenarios of potential attacks not

captured in our traces and show that the method can accurately identify them. Finally, one

could hire a real attack (DDOS-BLACK, 2019; DDOS-STRESS, 2019; SECURITY-PROF,

2019). We did not consider that approach because we were working with production

networks, an IXP and its members on the Internet, and authorizations would be required

from each player, as well as satisfying many Ethical requirements (Lisa Vaas, 2019;

Thomas Brewster, 2018).
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7 TOWARDS SCALABLE INTER-DOMAIN SPOOFING MONITORING

In the previous chapters, we discussed the challenges, existing methods, and the

results of spoofed traffic inference at IXPs. For that we collected sFlow traffic data from

the core switch of the third largest Brazilian IXP, with up to 200 Gbps of traffic among

200+ members. However, while we chose an IXP due to its locality and the amount of

connected networks, our method is not limited to IXPs. In principle, every network on the

inter-domain Internet can opt to apply our method to detect spoofing. In this chapter, we

discuss the use of Colocation Facilities as alternative/complementary vantage points to

scale the execution and help bootstrap Spoofer-IX in large-scale peering fabrics.

The remaining of this chapter is organized as follows. In Section 7.1 we present

our study on the feasibility to use Spoofer-IX in larger infrastructures, and in Section 7.2

we discuss on our methodology generality and limitations. Finally, in Section 7.3 we close

the chapter with some considerations.

7.1 Scaling Spoofer-IX to More Complex IXP Architectures

In this section, we explored practical application and generalizability of our Spoofer-

IX method and implementation to larger and more complex IXP infrastructures. In

this context we believe the critical question lies in the feasibility of splitting the flow

data collection across switching peering fabrics. Our goal is to maximize the ability

for any networks on the Internet to detect spoofed traffic, including IXPs with diverse

interconnection practices and network topologies that hinder the deployment of IP-based

measurement methodologies. Note however that is out of scope here to dissect the second

IXP at the same level we did in Chapter 6 with the first mid-size IXP. First we explain the

datasets used in this study (§7.1.1). Following, we present our procedure to achieve our

goal (§7.1.2). Lastly, we show the results (§7.1.3).
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7.1.1 Datasets

To explore a case study, we partnered with a much larger Brazilian IXP (IX.br,

2020) 1. This second IXP, has over 1,600 members and transports up to 6 Tbps, allowing

an evaluation at scale, focused on feasibility. We followed the same methodology to collect

its traffic. We record traffic data using sFlow (P. Phaal, S. Panchen, and N. McKee, 2001)

with a configured sample rate of 1:4096 packets. From this very large IXP, we examine

traffic exchanged during one day (April 12, 2018) in three distinct Colocation Facilities

part of its switching fabric infrastructure.

In line with Chapter 6 - §6.1, we collected datasets to the corresponding period

of the traffic under analysis, and we built new specific cones, as well as the required

MAC-to-ASN mappings (recall Chapter 5).

7.1.2 Analysis Procedure

At the time of the analysis, this large IXP had over 30 Colocation Facilities and 150

switches. For such larger network infrastructures, the diversity of interconnection practices

and local network topology arrangements that can exist may hinder the deployment of any

IP layer measurement method. To this end, we extended the Spoofer-IX implementation

to be more flexible about input parameters, and to run using information (i.e., traffic flow

data, topology information, and MAC-to-ASN mapping from members) from individual

networks. As a proof-of-concept, we collaborated with three Colocation Facilities that

are part of this second IXP. We collected traffic flow data from eight individual switches

across these distinct facilities, as well as topology and MAC-to-ASN mapping information,

and ran our method individually (i.e., per switch).

The traffic analysis per switch enables us to scale the execution to much larger

peering fabrics and lower the barrier to deploy the method, providing localized SAV

compliance enforcement (also discussed previously in Chapter 6 - §6.8.3). The steps which

should be executed are exactly the same ones as we did for the first IXP where the traffic

flow was collected at the core switch. The process of bootstrapping the execution of our

methodology (step 1, Chapter 5 - §5.3, figure 5.4) is mostly shared between all runs, if the

1Many times people do not have any idea of how complex are and how long does it take these procedures
and negotiations to obtain access do this kind of data. To give an idea, to have access to a small sample data
of the second IXP took 2 years and a half.
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Table 7.1: One day of traffic for individual switches of three distinct Colocation Facilities
of a second IXP in Brazil classified with our method. We omit the Bogon, Unassigned and
Out-of-cone classes since nothing was detected.

Facility Switches Max Traffic
Rate

Average
Traffic Rate

Average %
In-Cone Traffic

Average %
Unverifiable Traffic

Time to
Execute

CF1
SW1 684Gbps 398Gbps 94.16% 5.84% 4066.28s
SW2 99Gbps 32Gbps 68.18% 31.82% 2923.12s

CF2

SW1 7Gbps 5Gbps 88.36% 11.64% 865.28s
SW2 10Gbps 7Gbps 90.2% 9.8% 537.65s
SW3 43Gbps 28Gbps 73.88% 26.12% 777.54s
SW4 33Gbps 20Gbps 88.14% 11.86% 1123.05s

CF3
SW1 341Gbps 192Gbps 86.53% 13.46% 3008.04s
SW2 557Gbps 309Gbps 96.18% 3.81% 2967.50s

traffic flow period matches for all switches. The exceptions are local information regarding

the network and the switch under analysis. The cones construction (step 2) is done one

time and shared for all distinct executions, always matching the timeframe of traffic data

and BGP data. Finally, with the datasets bootstrap finished, the next steps (3 to 5) are

straightforward executions of our classification pipeline, followed by data transformations

and metrics computation, leveraging the datasets prepared.

7.1.3 Results

Spoofer-IX can handle the analysis of much larger network infrastructures and not

only IXP networks. Table 7.1 summarizes the classification results we observed during one

day in April 2018 for each switch in the partnered CFs. To perform the traffic classification

step we used the same server employed to the analysis of the first IXP (processor: 2x Intel

Xeon E5-2640 v4 2.4GHz - 40 threads, RAM memory: 64GB RDIMM, storage: 1TB

SSD SATA and 3x disks 1.2TB 10K RPM), which took on average 2400s (40 minutes)

to classify one day of traffic flow data. The table shows the set of switches grouped by

the Colocation Facility it belongs to, the max and average traffic rate in Gbps, the average

percentage of traffic found in each category, and the time (in seconds) to execute the

classification using the server mentioned. Through these three facilities we analyzed the

traffic sent by 485 members in total. As expected, the majority of traffic was classified as

valid (in-cone). Moreover, no traffic was classified as spoofed. Switches CF1-SW2 and

CF2-SW3 had a higher average of Unverifiable traffic due increased Provider-to-Customer

traffic going through them when compared to other switches. In contrast, CF1-SW1, CF3-

SW1 and CF3-SW2 handled well the highest rates, being responsible for delivering the
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traffic of big content providers to IXP members.

Through discussions with the IXP coordinators, we hypothesize that the strict set

of policies adopted by this second IXP lead to a more secure infrastructure. Among their

policies, they have a quarantine network for new members. It is an isolated network that

every new member must first connect in order to perform a validation of the security

properties and configurations, prior to join the shared switching fabric with all other

members. Besides that they also implemented a policy to drop traffic matching bogon

prefixes (IX.br, 2018).

7.2 Discussion on Methodology Generality and Limitations

We discuss three key points regarding our methodology. We start assessing the

generality of the methodology, followed by limitations, and conclude with IXP emerging

trends and impact on the detection of SAV.

Generality of the methodology. Assessing the generality of our approach requires

applying our method to traffic collected from a large set of IXPs, which is challenging

because it requires the assistance from other IXP operators. The system was designed and

developed with generality in mind, by following the Best Current Operational Practices

(BCOPs) defined by a group of IXPs (Euro-IX, 2019b; FREEDMAN et al., 2019; Internet

Society, 2019) that describe how IXP operators should configure IXPs. Those documents

describe how IXP operators should securely configure VLANs and route servers. Therefore,

it might be straightforward to apply our methodology to other IXPs; more generally, any

other method to infer spoofed traffic in IXP traffic data will have to address the same

challenges we encountered.

Applying our methodology requires two data sets: the traffic data sets themselves,

and the metadata that maps IXP infrastructure – VLAN tags on each packet, and MAC

addresses to ASes. Our methodology is automated except for inference of the siblings

(Chapter 6 - §6.2), which requires some manual effort. However, there are a wide variety of

IXP architectures that affect traffic visibility (Chapter 4 - §4.2), and our traffic classification

method may be impacted by new IXP architecture innovations to support advanced services.

Moreover, our use of traffic characterization was limited to the packet headers available to

us; full payload would enable improvements in traffic analysis, and additional cross-checks

(as pointed in Chapter 6 - §6.4).

Methodology Limitations. Spoofer-IX relies on public BGP observations (RIPE,
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2018; ROUTEVIEWS, 2018) to infer AS relationships, prefixes announcements, and the

owner ASN in order to build the Prefix-Level Customer Cone. However, we may make

mistakes in some of the inferences, as there are multiple possible explanations for the

topological arrangements and inter-domain phenomenons observed by AS relationship

and Customer Cone inference algorithms. Although we use state-of-the-art inferences

techniques, we have identified two situations that no existing Internet cartography algorithm

deals with today: dynamics of National Internet Registry (NIR) unassigned ASes, and

hijacked prefixes. The former requires validation of the fine-grained level of assigned

ASNs, other than only check at IANA level. That is due to regional ASNs, attributed

from IANA to NIRs, which have been in turn unallocated locally at the NIR, but continue

to be online in BGP announcements at public BGP collectors (stale information) but

not anymore in the Route Servers/LG servers at the IXP. With respect to the latter, to

avoid hijacked prefixes it is required the validation of every prefix identified in the public

BGP observations through the lens of Validation of Route Origination using the Resource

Certificate Public Key Infrastructure (RPKI) and Route Origin Authorizations (ROAs),

which only recently had a strong push from the IETF community to all networks to

implement by default (CHUNG et al., 2019; TESTART et al., 2019). As a result of the lack

of prefix validation, some cones may include hijacked prefixes, affecting how the traffic

will be classified.

Lastly, neither the Full Cone nor the Customer Cone handle the complexities that

sibling ASes (ASes under the same administrative control) bring. In particular, because

siblings may provide mutual transit to each other, the set of valid addresses that can transit

between each AS is the entire routed address space. However, to observe this behavior

in public BGP data, which both the FC and CC use, would require a view from each

sibling AS. Current sibling relationship inference methods (CAI et al., 2010; HUFFAKER

et al., 2019) use WHOIS data, which is not only inconsistently formatted across regions

(AFRINIC, APNIC, ARIN, LACNIC, RIPE NCC), but also becomes stale if not updated

as mergers occur, leading to false and missing inferences (HUFFAKER et al., 2019).

IXP emerging trends and impact on the detection of SAV. New IXP services

allow networks to self-provision private, on-demand bandwidth in seconds between data

center locations (a.k.a, colocation facilities) or cloud service providers, (MARCOS et al.,

2018; EPSILON, 2019; MEGAPORT, 2019; Packet Fabric, 2019; CONSOLE, 2019). In

2019, AMS-IX, DE-CIX and LINX joined to develop an API to provision and configure

interconnection services at multiple IXPs (BUCKINGHAM, 2019). The resulting IX-
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API (AMS-IX; DE-CIX; LINX, 2019) will allow users to manage their interconnection

services, from ordering new ports, to configuring, changing, and canceling services at

multiple IXPs. These proposals share a common goal: enable a more dynamic intercon-

nection environment, where networks and IXPs can adapt to changing conditions. They do

not propose to change methods to implement the configurations tackled in this thesis, but

rather create abstractions to facilitate configuration changes.

7.3 Considerations

Applying the Spoofer-IX method and system to both IXPs was a frustrating expe-

rience, requiring that we overcame many challenges, including: (1) policy enforcement,

e.g. NDA agreements to obtain access to traffic and topology data; (2) evolving processes

and architecture within the IXPs, e.g. obtaining up to date topology information; (3) inter-

facing with running systems and distinct device manufacturers; and (4) handling system

failures and data problems. These challenges will characterize any modern interconnection

environment, and navigating them is an integral aspect of successfully executing this sort

of analysis.

However, we see great potential in enabling execution of our methodology across

as broad a set of networks as possible, including IXPs distributed across many colocation

facilities and switch fabrics. The modular decomposition of our approach, including

bootstrapping and data preparation steps, promotes this generalizability and broad impact.

It helps to reduce the time and complexity to bootstrap the deployment of our method. It

also benefits the overall shared infrastructure within members by having multiple localized

SAV compliance enforcement in the distinct network attachment points. This case study

demonstrated that the Spoofer-IX methodology and system implementation can handle the

analysis of much larger network infrastructures, even beyond IXPs.
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8 FINAL CONSIDERATIONS

In this chapter we first summarize the thesis and present the conclusions (§8.1).

Then, we discuss prospective directions for future research (§8.2).

8.1 Concluding Remarks

The use of IXPs as a focal point to help on SAV deployment has received recent

attention by both the research (LICHTBLAU et al., 2017) and policy communities (ISOC,

2018; Tech Accord, 2018; NIC.br, 2019). However, inferring SAV deployment at an IXP

is remarkably challenging, more so than has been captured in the literature, due to a com-

bination of operational complexities that characterize today’s interconnection ecosystem,

and the inherently heuristic nature of topology and traffic inferences on persistently opaque

network infrastructure. Many of our discoveries were eye-opening, although not cause for

optimism for those interested in infrastructure protection.

In this thesis, we discovered several methodological challenges for inferring spoofed

packets at IXPs. We recognized the importance of using the semantics of AS relationships,

which is conceptually straightforward but even more painstakingly complicated in practice

than we expected. We designed, implemented, and applied a new methodology, called

Spoofer-IX, that accounts for both epistemological and operational challenges to accurately

classify spoofed traffic in the inter-domain level by processing heavily aggregated Internet

traffic data. In our research, we also showed how Spoofer-IX reveals inaccuracies in

previous methods that are agnostic to AS relationship semantics. In addition, we described

the potential pitfalls in using BGP-based filtering to infer the presence of spoofed packets

in traffic crossing links at an IXP. The complexity underlying this particular BGP-based

inference is subtle, and attempts to minimize false positives can easily come at the expense

of significant false negatives. The five main contributions of this thesis and a brief summary

follow.

First contribution. A detailed analysis of methodological challenges for inferring

spoofed packets at IXPs.

Summary. This contribution forms the basis of our methodology. The extensive

studies (MARCOS et al., 2018; MULLER et al., 2019a) performed on shared

switching fabrics, such as IXPs and Colocation Facilities, enabled us to identify

and analyze the methodological challenges and their implications for applying
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BGP-based SAV inference methods to modern IXP connectivity fabrics. The

findings from these studies, combined with a comprehensive analysis of previ-

ous work that attempted to tackle this inference problem, showed inaccuracies

in previous methods.

Second contribution. Designed and developed a methodology to classify traffic

flows for the purpose of accurately inferring spoofed traffic.

Summary. We design and implement Spoofer-IX (MULLER et al., 2019a), a novel

methodology to detect the transmission of spoofed traffic (which implies lack

of source address validation) by AS members of IXPs. Spoofer-IX addresses

two fundamental issues overlooked in the existing literature (LICHTBLAU

et al., 2017). First, Spoofer-IX considers the type of relationship between

neighbors at an IXP when determining which source addresses are valid in IP

packets crossing the IXP. Second, Spoofer-IX considers asymmetric routing

and traffic engineering, by designing a novel Prefix-Level Customer Cone that

includes addresses that may be valid source addresses for an AS to transit.

The accuracy of this method depends on the quality of BGP data and AS

relationship inferences, which we know to be imperfect (LUCKIE et al., 2013).

However, our method is congruent with what network operators do when

configuring static access control lists to deploy SAV (Internet Society, 2019;

FREEDMAN et al., 2019; Job Snijders, 2016).

Third contribution. The application of our methodology to classify and analyze

packets extensively at a medium-sized IXP, considering two periods, two years apart.

Summary. We applied our method to traffic and topology data from one of the

largest IXPs in Brazil, with more than 200 member ASes using the IXP switch-

ing fabric. We reported insights from the extensive analyses over the traffic

classifications conducted and our interactions with IXPs and network operators

of their member ASes. We investigated the impact of different filtering choices

on inferred valid address space, and the likelihood of false negatives when clas-

sifying traffic according to different filtering choices. We also compared our

methodology with a recently proposed method (LICHTBLAU et al., 2017) that

did not consider AS relationships in its inference of spoofed traffic, reporting

that the majority of members at the IXP sent spoofed packets, and demonstrate
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the inaccuracies of this approach (MULLER et al., 2019a).

Fourth contribution. Assess the deployment of Spoofer-IX to distinct networks.

Summary. We partnered with a second Brazilian IXP with over one thousand

members to assess and explore practical application, generalizability, and

scalability of our Spoofer-IX methodology and implementation to larger and

more complex IXP infrastructures. We discuss how to scale the analysis by

observing traffic per switch and how networks could independently adopt our

methodology to detect and filter spoofed traffic.

Fifth contribution. Find evidence that epistemological and cross-validation chal-

lenges remain. Describe and publish our code to promote further work.

Summary. We also found epistemological challenges remain. While we inferred

Out-of-cone traffic with our methodology at the mid-sized IXP, there are still

more complex edge cases, as some of the traffic appears to have signatures of

legitimate traffic. We publicly release our code (MULLER et al., 2019b) in

hopes that other researchers, IXPs, and other networks will use it to further

improve our collective ability to measure and expand deployment of SAV

filtering. Finally, the overall work presented in this thesis illustrates the deep

subtleties of scientific assessments of operational Internet infrastructure, which

exemplifies the persistent tension between the need for reproducibility of meth-

ods and results (BAJPAI et al., 2019b; BAJPAI et al., 2019a), and the opacity

of commercial infrastructure.

8.2 Future Research Directions

In spite of the progresses reported in the thesis, promising opportunities for future

research remain. In the following, we discuss the most prominent ones.

• Dormant address space analysis. Spoofer-IX can be refined to handle the analysis

of packets exploring what we call the dormant address space, i.e., BGP prefixes

allocated to ASes but not announced over the globe as seen by the public BGP

collectors from known projects (ROUTEVIEWS, 2018; RIPE, 2018; PCH, 2020).
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To begin with, it would be necessary to create a method to infer such address space,

as well as define the update frequency that should be considered to this resulting

dataset.

• IPv6 spoofing inference. In this thesis, we focus on IPv4 traffic exclusively, as

native IPv6 traffic still ranges below 5% at the vantage points of interest (IX.br,

2020; AMS-IX, 2020a; DE-CIX, 2020). However, with the increasing adoption

of IPv6 (IANA, 2018c; NRO, 2019), we can expect more IPv6 traffic, as well as

spoofing attacks. The study of IPv6 traffic requires an in-depth study, in the same

way as we did for IPv4 traffic in this thesis. Additional challenges include how to

deal with the changing nature of IPv6 ASes topology (GIOTSAS et al., 2015a) in

order to best capture inferences, starting on AS Relationships and Customer Cones.

• Refine methodology to academic networks / PoP level. Our methodology can also

be deployed at the Points of Presence (PoPs) of National Research and Education

Networks (NRENs) (e.g., RNP, GEANT, Internet2) however, it needs to be refined

to handle the related operational complexities. For example, many of these networks

make use of virtual circuits, provided through systems such as OSCARS (ESnet,

2020) or Internet2 Advanced Layer 2 Services (AL2S) (Internet2, 2020), when link-

ing campuses or research facilities together, and sometimes they may use reserved

prefixes in the traffic exchanges. Virtual circuits and other research related services

properties should be considered during the traffic classification processing pipeline.

• Develop a real-time version of Spoofer-IX to perform active traffic analyses.

We developed Spoofer-IX to perform on-demand analyses of passive traffic flow

data collected by network administrators. However, it will also be valuable for

networks to have our methodology always running, evaluating, and giving feedback

in real-time of their traffic. It would be necessary to cope with many challenges, such

as how to deal with continually evolving network conditions, as well as obtaining

fresh datasets for accurate results.

All the previous lines of work will expand the relevance of our work in the mea-

surement research community, as well as the technical community, and further our insights

into the spoofing problem in new scenarios.
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ABSTRACT
Ascertaining that a network will forward spoofed traffic usually
requires an active probing vantage point in that network, effec-
tively preventing a comprehensive view of this global Internet
vulnerability. Recently, researchers have proposed using Internet
Exchange Points (IXPs) as observatories to detect spoofed packets,
by leveraging Autonomous System (AS) topology knowledge ex-
tracted from Border Gateway Protocol (BGP) data to infer which
source addresses should legitimately appear across parts of the IXP
switch fabric. We demonstrate that the existing literature does not
capture several fundamental challenges to this approach, includ-
ing noise in BGP data sources, heuristic AS relationship inference,
and idiosyncrasies in IXP interconnectivity fabrics. We propose a
novel method to navigate these challenges, leveraging customer
cone semantics of AS relationships to guide precise classification of
inter-domain traffic as in-cone, out-of-cone (spoofed), unverifiable,
bogon, and unassigned. We apply our method to a mid-size IXP
with approximately 200 members, and find an upper bound volume
of out-of-cone traffic to be more than an order of magnitude less
than the previous method inferred on the same data. Our work
illustrates the subtleties of scientific assessments of operational
Internet infrastructure, and the need for a community focus on
reproducing and repeating previous methods.
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1 INTRODUCTION
Networks that allow spoofed source Internet Protocol (IP) addresses
in packets are a cybersecurity risk on the global Internet, because
they enable attacks such as spoofed denial-of-service (DoS) attacks
that are operationally infeasible to trace back to the actual source.
Recognizing that lack of source address validation (SAV) is fundamen-
tally an architectural limitation [10, 60], the Internet Engineering
Task Force (IETF) introduced best current practices recommending
that networks block packets with spoofed source addresses [9, 29].
Compliance with these filtering practices has misaligned incentives
i.e., it protects the rest of the Internet from attacks being sourced
from the network that must pay a non-trivial cost for deploying
and accurately maintaining the filters. Thus, despite many attempts
to improve SAV deployment and mitigate the impact of DoS attacks,
some of the most damaging DoS attacks in the Internet still lever-
age IP spoofing as a vector, setting new records each year for the
volume of traffic launched at even highly provisioned networks,
disrupting access to those networks [43, 44, 59, 71].

Identifying networks that do not filter spoofed packets is critical
to global network infrastructure protection, because it provides
a focus for remediation and policy interventions [53]. However,
identification of these networks is challenging at Internet scale.
The definitive method requires an active probing vantage point in
each network being tested, to see if a spoofed packet successfully
traverses the network [13, 15]. Since there are approximately 65K
independently routed networks on the Internet in 2019 [6, 75], this
method has limited feasibility for a comprehensive assessment of
Internet spoofing.

Broader visibility into the spoofing problem may lie in the capa-
bility to infer lack of SAV compliance from large, heavily aggregated
Internet traffic data, such as traffic observable at Internet Exchange
Points (IXPs). Most Autonomous Systems (ASes) connect to an IXP
to exchange traffic between their customers, i.e., via peering rela-
tionships where neither AS pays the other for transit. For these
ASes, legitimate source addresses in packets will belong to direct
or indirect customers of the AS sending the packets across the IXP
fabric to their peers.

However, inferring SAV deployment at an IXP is remarkably
challenging, more so than has been captured in the literature, due
to a combination of operational complexities that characterize to-
day’s interconnection ecosystem. First, determining which source
addresses are valid in packets arriving at a given port of an IXP
switch fabric is challenging, because there is no registry of which
addresses networks should forward; in practice, we must infer valid
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source addresses. Second, while the original role of IXPs was to pro-
mote peering between ASes, networks now also use IXPs to obtain
IP transit services from a provider [1], and we have found evidence
of organizations joining their sibling network ASes across an IXP.
For ASes offering transit across the IXP, and for sibling networks, it
is infeasible to infer invalid source addresses from IXP traffic data
– the set of valid addresses is potentially the entire address space.
Third, while IXPs may be thought of as a single switching fabric, in
practice IXPs and resellers offer complex services, including remote
peering, layer-2 transport, and virtualized segmenting of traffic into
multiple Virtual Local Area Networks (VLANs). These interconnec-
tion practices occur below and are thus not visible to the IP layer
or in the Border Gateway Protocol (BGP).

Accurately inferring SAV deployment at an IXP requires navigat-
ing all of these aspects. In this paper, we describe a methodology
that does so. One of our discoveries does not bode well for the ability
to automate this method: identifying the myriad cases that explain
patterns in traffic at a given IXP is largely manual in nature, and
must be repeated at each IXP to accommodate IXP-specific archi-
tectural engineering and business decisions. However, we imagine
its utility as part of an expert system suite of cybersecurity services
or compliance practices of modern IXPs.

This paper makes the following contributions:
(1) We provide a detailed analysis of methodological chal-

lenges for inferring spoofed packets at IXPs. Based on IP rout-
ing, addressing, and IXP concepts, we analyze methodological chal-
lenges and their implications for building IP spoofing detection
capabilities at IXPs (§2). We include a comprehensive analysis of
previous workwhich also inferred spoofing at IXPs.We also analyze
challenges specific to applying BGP-based SAV inference methods
to modern IXP connectivity fabrics (§3).

(2) We develop a methodology to classify traffic flows for
the purposes of accurately inferring spoofed traffic. We de-
sign and implement Spoofer-IX, a novel methodology to detect the
transmission of spoofed traffic (which implies lack of source ad-
dress validation) by AS members of IXPs (§4). Spoofer-IX addresses
two fundamental issues not addressed in the existing literature [45].
First, Spoofer-IX considers the type of relationship between neigh-
bors at an IXP when determining which source addresses are valid
in IP packets crossing the IXP. Second, Spoofer-IX considers asym-
metric routing and traffic engineering, by designing a prefix-level
customer cone that includes addresses that may be valid source
addresses for an AS to transit. The accuracy of this method depends
on the quality of BGP data and AS relationship inferences, which
we know to be imperfect [54]. However, our method is congruent
with what network operators do when configuring static access
control lists to deploy SAV [30, 37, 42].

(3)We use ourmethodology to classify packets at a IXP in
Brazil with approximately 200members.We apply our method
to traffic and topology data (described in §5) from one of the largest
IXPs in Brazil, with more than 200 member ASes using the IXP
switching fabric. We report our analysis findings, and results of
our interactions with IXP and network operators to validate the
findings (§6). We investigate the impact of different filtering choices
on inferred valid address space, and the likelihood of false negatives
when classifying traffic according to different filtering choices. We
also compare our method with a recently proposed method [45]

that did not consider AS relationships in its inference of spoofed
traffic, reporting that the majority of members at the IXP sent
spoofed packets, and demonstrate pitfalls of this approach. Indeed,
at the medium-sized IXP we studied, with approximately 200 mem-
bers, this previous method inferred spoofed traffic coming from
62.3% of addresses over a one-week period in May 2019, but our
AS-relationship-aware method inferred spoofed traffic coming from
less than 1 in 5 (18.7%) member ASes during our five-week obser-
vation period in May 2019.

(4) We find evidence that epistemological and cross-vali-
dation challenges remain, and we publish our code to pro-
mote furtherwork.Whenwe compared our results with CAIDA’s
crowdsourced measurements, we found that CAIDA received posi-
tive spoofing tests (lack of SAV) in 54% of the member ASes at this
IXP. This is not necessarily inconsistent, since even at a heavily
aggregating exchange point, one cannot detect lack of SAV without
actually observing spoofed packets, which CAIDA’s crowdsourced
approach explicitly injects. We conclude our paper with a discus-
sion of lessons learned (§8), including that we believe further work
is required to understand the degree to which IXPs can be used
as a lens into SAV deployment, and why we think such work is
important to future cybersecurity efforts. Our conclusions highlight
the persistent tension between the need for reproducibility of meth-
ods and results [7, 8], and the opacity characteristic of commercial
infrastructure. We publicly release our code [62] in hopes that other
researchers and IXPs will use it to further improve our collective
ability to measure and expand deployment of SAV filtering.

2 BACKGROUND AND RELATED WORK
2.1 Source Address Validation
The Internet architecture provides no explicit mechanism to pre-
vent packets with forged headers from traversing the network. This
vulnerability allows IP spoofing attacks, i.e., when hosts send IP
packets using fake source addresses that cannot feasibly be traced
back. To reduce the incidence of this type of attack, network op-
erators can configure their routers to identify and block spoofed
packets before these packets leave their networks. Such filtering is
well-specified and a standardized IETF best current practice [29],
frequently referred to as Source Address Validation (SAV) [38].
Network operators often implement SAV by using ingress filters
in routers, which drop packets with source addresses outside the
locally valid address space before they enter the global Internet.

2.2 Address Space Fundamentals
For the purposes of this study, we distinguish three main categories
of IP address space: Bogon, Unassigned, and Routed. Bogon ad-
dresses are reserved by the IETF [22, 61] for specific uses such as
private networks and loopback interfaces; they do not uniquely
identify any host, and should not be routed on the Internet. Unas-
signed addresses [34, 35] have not been assigned by an Internet
registry to an AS and should not be used or routed by anyone.
Routed addresses have been assigned to some AS, and are thus
potentially valid source addresses in inter-domain traffic.
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Figure 1: Illustration of the architecture of modern IXPs. Modern IXPs typically construct a switching fabric using a core
switch that interconnects other switches located in remote colocation facilities. ASes typically connect to a switch located in
a colocation facility, and can form bilateral peering relationships with neighbors. These ASes may request a VLAN to isolate
their traffic from other members at the IXP. Resellers can provide services such as remote peering and layer-2 transport.

2.3 IXPs as Observatories
IXPs are attractive vantage points to observe signals of SAV de-
ployment, as hundreds of ASes may be present at a single logical
location. The IXP operator assigns each member a unique IP ad-
dress from a prefix controlled by the operator, which the member
assigns to their router interface connected to the IXP, and uses to
establish BGP routing with other members. When a member AS’s
router transmits a packet across the Ethernet switching fabric, the
source and destination media access control (MAC) addresses in
the Ethernet frame uniquely identify the AS pair exchanging the
packet, and its direction.

Figure 1 illustrates the architecture of many modern IXPs [4, 23,
28, 30, 40, 41, 48]. The figure contains two separate IXPs and their
switching fabrics #X and #Y, with a core switch for each IXP. While
some IXPs may consist of a single core switch where participants
interconnect, operators achieve the scale of modern large IXPs by
placing switches at distinct physical colocation facilities, any of
which can serve as an IXP attachment point. The figure shows that
the switches are adjacent, but in practice colocation facilities are
usually in different buildings. IXP operators often use sFlow [66]
or NetFlow [19] to collect traffic flow statistics. A comprehensive
view of all traffic from all services at the IXP would require flow
data captured from all switches in the switching fabric, as traffic
between participants at a single colocation facility will not travel
to the core switch.

Participants can exchange traffic directly across the switching
fabric in a bilateral session. In figure 1, ASes A and B exchange
traffic directly. However, modern IXPs often use VLANs to provide
logical isolation between different types of interconnection [18, 27].
For example, an IXP may provide a route server, but only offer

that route server on a specific VLAN. Similarly, traffic between
two participants may be sufficiently sensitive or high volume that
members request a VLAN from the IXP to isolate their communica-
tions [3, 24, 47]. In figure 1, ASes C and D exchange traffic in their
own isolated VLAN.

To foster IXP growth and enable more networks to interconnect,
IXPs have supported resellers, which provide value-added services
at an IXP, such as remote peering and layer-2 transport [17, 39,
58, 64]. A reseller provides remote peering services so that an AS
that is not physically present at a colocation facility can still reach
other members at the IXP, without the AS incurring colocation
facility fees or port charges from the IXP operator. These resellers
require some cooperation with the IXP, e.g., [2, 46]. The IXP assigns
the remote peers any VLAN tags they require to participate at the
exchange as local members do.

An IXP may use different technical approaches to support re-
mote peering providers [17, 41, 64]. A reseller can bridge Ethernet
networks so that the MAC address of the customer router’s inter-
face will uniquely identify the origin of traffic in the peering fabric.
A second approach is for a reseller to push a tag (reseller-tag) to
uniquely identify their specific customer AS to the IXP, so that the
MAC address of the Ethernet frame corresponds to the reseller’s
router. Figure 1 illustrates this second approach, where reseller J
allows customer ASes F and G to reach other members. When the
reseller transmits these packets into the IXP, the reseller also pushes
a tag (reseller-tag) to uniquely identify their specific customer AS
to the IXP. The IXP bridges traffic into the IXP switching fabric by
removing the outer-most reseller-tag while keeping the IXP-tag. In
figure 1, the sFlow tap sees the IXP-tag and the MAC address of the
reseller, which uniquely identifies the AS that sent the packet.
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Figure 2: The customer cone constrains the set of source addresses expected in valid inter-domain traffic transiting an AS
behaving rationally in a c2p or p2p relationship. In the c2p relationship shown in (a), B transits traffic from its customers to
A, but not its peers and providers. Similarly, in the p2p relationship shown in (b), C only transits traffic from its customers to
D (likewise, from D to C). However, as shown in (c), the p2c relationship does not constrain the source addresses transited by
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A reseller can also provide remote peering to members colocated
at one IXP that want to reach members in a different IXP. Figure 1
shows a more complicated example, where AS E bridges their net-
work between metropolitan regions using the services of a reseller
(K) present at both IXPs.

2.4 AS Relationships and Customer Cones
The three primary classes of AS relationships are customer-provider
(c2p, p2c), peering (p2p) and sibling (s2s). In a c2p relationship (also
known as transit), a customer buys access to achieve global reach-
ability to all routed Internet address space. In a p2p relationship,
two ASes agree to exchange traffic destined to prefixes they or their
customers own, typically without either AS paying the other [31].
In a s2s relationship, a single organization operates both ASes, and
may transit packets received from any source.

An AS’s customer cone includes all ASes reachable through its
customer ASes, i.e., direct and indirect customer ASes (in other
words, ASes reachable only through p2c links) [54]. The customer
cone constrains which source IP addresses one should see in valid
inter-domain traffic transiting from a customer to its provider, or
between peers. Figure 2 illustrates the subtleties: an AS in a c2p or
p2p relationship with another AS should only send packets with
a source address from within its customer cone – respectively, (a)
and (b) in figure 2. In contrast, a link between a provider to its
customer or between two siblings may forward packets with any
routed source address – (c) and (d) in figure 2.

2.5 Measuring Deployment of SAV
Many academic research efforts have described techniques to pro-
mote deployment of SAV [25, 49, 50, 77]. Fewer efforts have tried
to empirically measure SAV compliance for networks attached to
the global Internet. In 2005, Beverly, et al. developed a client-server
technique to allow users to test networks to which they are cur-
rently attached [12], and operationalized a platform to track trends
over time [13, 15]. The platform allows for inference of deployed
SAV policy, but has limited coverage, because it relies on users
downloading and running measurement software. To overcome
this limitation, researchers have recently investigated techniques
to infer lack of SAV using macroscopic Internet data sets. In 2017,
Lone et al. reported a technique to infer spoofed traffic in mas-
sive traceroute archives, based on the assumption that an edge
network should never appear to be providing transit in a tracer-
oute path [51]. This method is limited by whatever appears in the
traceroute archives, and can be hampered by traceroute artifacts
caused by inconsistent Internet Control Message Protocol (ICMP)
implementations in routers [57].

Most closely related to our study, in 2017 Lichtblau et al. used a
large IXP as a vantage point for inferring which networks at the
IXP had not deployed SAV [45]. For each member at the IXP, their
method infers a set of IP prefixes containing addresses that may
legitimately appear in the source field of IP packets crossing an
IXP. They infer that a member AS that sends a packet into the IXP
switching fabric with a source address outside of those prefixes has
not deployed SAV. They argued against using AS relationships and
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Figure 3: Example full cones (§3.1.1) for six ASes given these
BGPpaths. The full cone for anAS includes every prefix that
contains that AS in the path for all routes observed by public
route collectors, regardless of the underlying relationships.

AS customer cones which they claimed did not address asymmetric
routing. However, their method did not consider ASes forming
customer-provider or sibling relationships at the IXP, where all
routed addresses may be legitimate source addresses in IP packets
crossing an IXP – (c) and (d) in figure 2. In these cases, there is no
way to infer SAV deployment across these links at the IXP.

3 TACKLING METHODOLOGICAL
CHALLENGES

We describe the core of our methodology in the context of two
complex challenges to inferring spoofed traffic in IXP traffic data.
The first challenge (§3.1) is determining which addresses are valid
source addresses in traffic transiting a given neighbor AS, i.e., pack-
ets with a source address that is in-cone for that AS. An incomplete
set of valid addresses could yield false inferences of failure to de-
ploy SAV, should a valid address appear in the observed packets
but not be in the in-cone set, i.e., be out-of-cone for that AS. The
second challenge (§3.2) is navigating the analytical implications of
modern IXP interconnection practices that can impede the visibility
of both topology and traffic. These practices complicate the analy-
sis of which ASes exchanged traffic and their routing relationship.
Once we address these challenges, the remainder of our method is
IXP-specific but straightforward, and we describe it in §4.

3.1 Subtleties in Cone Construction
Inferring the set of valid source addresses for packets traveling from
a specific AS to a specific adjacent AS at an IXP requires navigating
a multidimensional parameter space. Precision in this process is
crucial. Mistakenly excluding valid addresses could result in a mis-
classification of an AS as not performing source address validation
(false positive). Similarly, including invalid source addresses could
result in spoofed packets going undetected (false negatives). As
mentioned in §1, there is no global registry that contains ground
truth on which addresses are valid source addresses for packets
transited by an AS; instead, we must infer them from BGP routing
data sources [65, 68, 70], even though these sources may contain
spurious announcements [52].
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Figure 4: Example customer cones (§3.1.2) for six ASes using
the same BGP paths from figure 3. In customer cone con-
struction, we annotate each AS link with a c2p, p2c, or p2p
relationship before inferring the prefix-level customer cone.

3.1.1 Full Cone. The full cone (used in [45]) is the more permis-
sive of the two construction methods. Aiming to minimize false
positives, Lichtblau et al. chose to “not distinguish between peer-
ing/sibling, customer-provider and provider-customer links. Rather,
whenever [the algorithm sees] two neighboring ASes on an AS path,
[the algorithm] presumes a directed link between the two, where the
left AS is considered upstream of the right AS.” The resulting cone
for an AS, which they call its full cone (FC), includes every prefix
that contains that AS in the BGP route’s AS path [45], for all routes
observed by public route collectors in Routing Information Base
(RIB) snapshots and updates during the measurement period.

They acknowledged that this method intentionally sacrifices
specificity, i.e., inflating the address space considered legitimate for
each AS pair, in the interest of avoiding false positives, i.e., avoiding
mistakenly attributing a failure to deploy SAV. Using this method,
a stub AS that provides a public BGP view containing all prefixes it
received from its peers and providers will have all of these prefixes
included in its full cone, i.e, the entire routed address space will
be deemed valid. Figure 3 illustrates the full cones for six ASes;
if A were a stub AS and a customer of B, all three prefixes would
be included in A’s full cone even though no system in A should
originate packets with those source addresses.

3.1.2 Customer Cone. The customer cone is the more restrictive of
the two construction methods; it takes into account the semantics
of AS relationships. As described in §2, the AS-level customer cone
defines the set of ASes reachable using customer links from the
AS, including the AS itself [54]. We use the provider/peer-observed
customer cone (PPCC) algorithm defined in [54] to build an AS-level
customer cone. Using the paths in figure 4, the PPCC method con-
structs the cone of AS C using routes observed from its providers
and peers. The PPCC method accommodates hybrid relationships,
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Figure 5: The cone construction approach significantly impacts the source addresses each method will consider valid. In (a)
we show that 5.5% of all ASes had the equivalent of all routed addresses (175 /8 equivalents) in their full cone in April 2017.
In (b) we show that while 90.5% of ASes had (full and customer) cones covering the same set of addresses, 58% of the IXP-EU
members would have covered more addresses, with 42% of ASes having a full cone 100 times larger than their customer cone.
Note, per discussion in §3.2, an AS announcing 0.01% /8 equivalents is announcing less than 0.006% of the routed address space.

where an AS may not propagate all of its customer routes to all of
its peers and providers. Customer cone inference critically relies
on accurate routing relationship inferences; a customer link incor-
rectly inferred to be a peer link will result in address space that the
provider AS transits being incorrectly excluded from its customer
cone. Figure 4 illustrates the AS-level customer cones for the same
ASes and paths as figure 3, with link annotations to identify the
inferred routing relationships between ASes. However, an AS-level
customer cone does not define the set of valid source addresses in
traffic transiting a given neighbor AS.

Once we have the AS-level customer cone for C, we transform
it into its corresponding prefix-level cone by including all prefixes
originated by ASes in the AS-level customer cone for C during the
same observation window. This novel prefix-level cone construc-
tion accommodates traffic engineering practices, where an AS may
announce different prefixes through different providers, but for-
ward traffic fromwithin these prefixes according to the best route to
the destination. To illustrate, in figure 4, we include 203.0.113.0/24
in C’s prefix-level customer cone, even though that prefix is not
observed in any BGP paths involving C, because F is in C’s customer
cone. Importantly, we do not include these three prefixes in A’s
customer cone, because A has no customers. We also combine the
prefix-level customer cones of siblings, because a sibling C may
transit packets from the customer cone of any of C’s siblings to C’s
peers or providers.

3.1.3 Impact of the Cone Construction Method. Figure 5 shows
how the choice of cone construction method impacts inference of
valid address space for all ASes (figure 5a) and for the ASes at the
IXP-EU used in [45] and the IXP-BR in our study (figure 5b), in both
cases using traffic and BGP data from April 2017 (see §5 for further
detail on the datasets we used). In particular, 5.5% of all ASes in
the Internet had a full cone that contained all routed address space.
For 90.5% of ASes, the full cone and customer cone were congruent
(included the same addresses), but 58% of IXP-EU member ASes
had full cones covering more addresses than the customer cone,
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Figure 6: The inferred out-of-cone traffic volume for the full
cone is sensitive to changing BGP observation window sizes
in the construction of the cone. While the 7 and 9 day lines
are almost identical, the 5-day line contains an order ofmag-
nitude more traffic because the set of valid addresses for
each AS is smaller.

and 42% of ASes had an FC 100 times larger than their CC. This
disparity of cone sizes for all ASes compared to those at the IXP
is because while over 80% of the Internet’s ASes are stubs, i.e., do
not provide transit, these are less likely to peer at an IXP. Further,
IXPs are popular places to operate public route collectors because
the collector can obtain BGP routing views from multiple ASes
at a single place. Therefore, those ASes at an IXP that provide a
routing view will have all of the prefixes they announce in routes
to the collector, including those from their peers and providers, in
their full cone. Figure 6 shows how the choice of BGP observation
window impacts [20] the inference of out-of-cone traffic at our IXP
in Brazil in April 2017 using the full cone. This effect is because of
the FC’s permissive nature, which exposes the cone inference to
announcements across the whole Internet.

Neither the full cone nor the customer cone handle the com-
plexities that sibling ASes (ASes under the same ownership) bring.
Because siblings may provide mutual transit to each other, the set
of valid addresses that can transit between each AS is the entire
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routed address space. To observe this behavior in public BGP data,
which both the FC and CC use, would require a view from each
sibling AS. Current sibling relationship inference methods [14, 32]
use WHOIS data, which is not only inconsistently formatted across
regions, but also becomes stale if not updated as mergers occur,
leading to false and missing inferences [32].

3.2 Topology and Traffic Visibility
While the original role of IXPs was to promote peering between
ASes physically present and connected to a switching fabric, in
practice IXP services have become more complicated. For example,
many networks now obtain transit services from a provider at the
IXP [1]. Or, an organization can connect its sibling networks using
the IXP switching fabric. IXPsmay also offer services such as remote
peering and layer-2 transport, as well as virtualized segmenting of
traffic into multiple VLANs. These services present three challenges
to accurate inference of SAV deployment.

First, the BGP routing relationship between two IXP members
impacts whether the customer cone can constrain inference of valid
source address space. As discussed in §2.4, a provider AS may for-
ward packets with a source address from any routed prefix in the
Internet to their customer, and a sibling may forward packets from
the provider of one sibling to the customer of another sibling. In
these cases, we cannot apply a cone of valid addresses to infer the
SAV policy of the transmitting member. We can only make this
inference when that member has a peering or transit relationship
with another member. In contrast to prior work [45], we consider
the routing relationship between the two IXP member ASes ex-
changing traffic when evaluating the source address of a packet
crossing the IXP.

Second, there are traffic visibility impediments. As discussed in
§2.3, traffic between members connected to the same switch will
stay within the switch. In a distributed switching fabric, observing
all member traffic requires traffic capture from all switches. Simi-
larly, ASes may establish private interconnections with other ASes
at the same colocation facility; their traffic exchange does not use
the core IXP switching fabric. Further, to infer SAV policy of an
IXP member, we require hosts in the cone of the IXP member to
attempt to send spoofed packets to hosts they would reach across
the IXP. Because most ASes peer at an IXP, only destinations in the
customer cone of the receiving AS would receive that packet, i.e.,
the victim or the amplifier must be reached via the IXP. Because
most customer cones are small (figure 5a, where only 5% of ASes
have more than 0.006% of the routed address space in their customer
cone) the chance of a victim or amplifier also being reached via
a peering relationship at the IXP is small; a victim or amplifier is
more likely to be reached via a transit relationship at the IXP.

Third, shared use of IXP ports creates attribution challenges.
While the IXP can supply the AS number of record for a given
port, with the associated Ethernet MAC address, that port does not
necessarily uniquely identify the sending AS when a reseller uses
the port to provide layer-2 transport, in cases of remote peering and
port resale (§2.3), or when the port connects to another exchange.
Prior work has illustrated measurement challenges of inferring
remote peering [17, 64]. In this work, the IXP provided us the
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Figure 7: Spoofer-IX Inference Method Overview.

reseller and IXP tags they used to bridge remote peers. This IXP-
specific knowledge exemplifies why we believe a customer-cone-
based approach to SAV inference will ultimately be integrated into
expert system capabilities rather than be amenable to complete
layer-3 automation.

4 IMPLEMENTING CLASSIFICATION
PIPELINE

The customer cone construction method described in §3 underpins
our traffic classification method - how we infer invalid source ad-
dresses (presumably spoofed) in packets crossing an IXP, and the
ASes responsible for transmitting them. We describe how these
pieces fit together in our system implementation, which relies on
IXP traffic measurements and topological information, i.e., BGP
data and IXP switching fabric forwarding databases. The implemen-
tation, illustrated in figure 7, has two stages: (1) build an accurate
prefix-level customer cone from BGP data, and (2) verify that the cus-
tomer cone can serve to constrain our inference, and if so classify
traffic as in or out of the transmitting AS’s customer cone.

4.1 Stage 1: Build the Customer Cone
The first stage has three phases, as follows.
Phase 1: Filter and Sanitize AS Paths. To avoid incorrectly iden-
tifying non-existent links betweenASes, we use themethod from [54]
to discard paths with artifacts, such as loops, non-adjacent Tier-1
ASes, and reserved/unassigned ASes [33]. We also discard paths to
prefixes longer than /24 or shorter than /8.
Phase 2: Infer AS Relationships. We use the sanitized AS Paths
from phase 1 to derive AS relationships on a weekly basis, also
according to the algorithm in [54]. This algorithm applies heuristics
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to annotate each AS link with either a transit (C2P, P2C) or peering
(P2P) relationship.
Phase 3: Construct the Prefix-Level Customer Cone. An AS’s
prefix-level customer cone is the set of prefixes covering source
addresses from the AS and its customers, for which the AS will
transit traffic. Conceptually, constructing this cone is the most
complicated part of our method, and where mistakes can impact
its accuracy. We construct a prefix-level customer cone using the
method we described in §3.1.2.

4.2 Stage 2: Classify IXP Traffic
The second stage has three phases, illustrated in figure 8.
Phase 1: Filter Bogon andUnassigned Addresses.We first clas-
sify traffic with bogon and unassigned source IP addresses, accord-
ing to Team Cymru [73], as described in §5. Networks sending
packets with unassigned source IP addresses are unlikely to have
implemented SAV correctly, since the most obvious implementa-
tion blocks traffic from such addresses because they are not routed,
therefore have no feasible return path. This phase is independent
of any routing semantics, unlike the subsequent two phases, which
consider the sending and receiving ASes for the monitored link, the
routing relationship between them, and the prefix-level customer
cone of the sending AS.
Phase 2: Filter Unverifiable Packets. This phase classifies traffic
flows as suitable to inference of spoofing using the customer cone,
marking unsuitable traffic as Unverifiable. Verifiable traffic must
satisfy all of the following:

(1) It must have a valid MAC-to-AS mapping for both the send-
ing and receiving MAC addresses.

(2) It must not have a known router IP address in the source
IP address of the packet. Such a source IP address could be
from any interface on the router, which might be assigned
by an AS whose address space is not in the customer cone
of the router’s owner.

(3) It must not have a known IP address of the IXP LAN prefix.
These prefixes are assigned to the IXP operator and should
not be publicly announced, but sometimes member ASes
mistakenly announce them.

(4) It must not have a source MAC address from a remote peer
or layer-2 transport provider.

(5) It must not have a sourceMAC address from a known provider
or sibling of the receiving AS.

Phase 3: Classify PacketswithCustomerCone. The remaining
traffic has a MAC-to-AS mapping, and is either transmitted by a
customer of a transit provider at the IXP, or by a peer of another
AS at the IXP. If a relationship was not visible in BGP, then we
assume the traffic between these members was p2p and use the
cones to classify the traffic exchanged. For these transmitting ASes,
we classify traffic as in-cone or out-of-cone using the prefix-level
customer cone (henceforth customer cone or CC) created in the
previous stage. We classify a packet whose source IP belongs to the
sending AS’s customer cone address space as in-cone. Otherwise,
we classify the packet as out-of-cone.

5 DATASETS
IXP-BR: traffic and routing data.We used sFlow [66] traffic data
from a Brazilian IXP [40]. This IXP transports up to 200 Gbps of
traffic among 200+members. The IXP operators configured a sample
rate of 1:4096 packets, and we used two datasets from 1 April to 6
May 2017, and 1 May to 5 June 2019, to evaluate our method.
Topology data over connectivity fabric. To identify the pair of
adjacent ASes sending and receiving each flow across the IXP fabric,
we used layer-2 information (i.e., MAC addresses) since the source
and destination IP addresses in the IP headers of the observed pack-
ets contain the communication endpoints. To map MAC addresses
to sending and receiving ASes of each flow (the MAC-to-AS map-
ping), we relied on information from the forwarding database of
each switch that is part of the IXP switching fabric.
Router IP addresses. For comparability with previous work [45],
we used CAIDA’s Internet Topology Data Kit (ITDK) [16] to identify
router interface IP addresses. We used the ITDK snapshot closest
in time to the IXP traffic capture window. We consider traffic from
ITDK-inferred router interfaces to be unverifiable (§4.2) because the
source IP address could be from any of the interfaces of the router,
which might be assigned by an AS whose address space is not in
the Customer Cone of the router’s owner (§4.2).
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Figure 9: Five weeks of traffic for 2017 and 2019 classified with our method. We omit the unassigned class, which is negligible.
For all ten weeks, we inferred almost no out-of-cone traffic – a maximum of 40 Mbps for an IXP with a peak of 200 Gbps.

Bogons and unassigned addresses.We used Team Cymru’s Full-
bogons feed [72, 73] to filter out traffic with source IP addresses
that are bogons (e.g., private, special use, reserved) [22, 61, 76]
or unassigned. Unassigned prefixes are allocated by IANA to an
RIR [34, 35], but not subsequently assigned by the RIR to an end-
user (e.g., an ISP) [75]. We used the lists compiled by Team Cymru
in each 4h interval per day for the same time windows as our IXP
traffic data collection.
Public BGP Data. Our traffic filters rely on Customer Cones in-
ferred from public BGP routing table snapshots collected by Route
Views (RV) and RIPE’s Routing Information Service (RIS) [65, 70].
We downloaded one BGP RIB table per day from all available (18
and 16 in 2017, 19 and 18 in 2019 from RIS and RV, respectively)
collectors for the same time windows as our traffic data. We ex-
tracted all AS paths in these tables that announced reachability to
IPv4 prefixes, repeating this process for each week.
AS Siblings.We used CAIDA’s AS to Organization classification
of ASes into sets that likely belong to the same organizations [32].
CAIDA’s method parses the Regional Internet Registries’ WHOIS
dumps and delegation files to create a unified mapping between
ASes and organization names, then uses hints in the name strings,
delegation files, identifiers, and email addresses to infer AS sets
with common ownership. For each measurement period, we used
the AS-to-Organization mapping that CAIDA constructed using
WHOIS data collected closest to the traffic capture window.

6 RESULTS
Figure 9 shows the volumes of traffic we classified into each cat-
egory for two different five-week periods in 2017 and 2019. We
present these two five-week periods to show our results are con-
sistent at least for these time periods. In 2017, the peak rate across

the core switch during the period was 120 Gbps; in 2019 the peak
had grown to 200 Gbps, and as expected the majority of the traffic
across the exchange is classified as in-cone.

In 2017, the peak out-of-cone traffic we inferred was 3.7 Mbps,
and in 2019, 40 Mbps. We believe these values are upper-bounds
for out-of-cone traffic at the IXP core switch, and we derived these
volumes after investigating the underlying properties of traffic
between pairs of members, in rank order of contribution to the
out-of-cone traffic volume at the IXP. For packets that had a sig-
nal they were not spoofed – e.g., a Transmission Control Protocol
(TCP) packet with payload, or packets towards a known transport
provider, we manually investigated the relationships between the
parties. We found 27 sibling ASes in 11 distinct organizations that
were exchanging traffic across the IXP, but missing from CAIDA’s
public AS-to-Org dataset (§5). To determine which ASes were sib-
lings, we consulted the official website of those ASes to find infor-
mation on their ownership, contacted the ASes directly to enquire,
or contacted the IXP operators to understand the relationship be-
tween two ASes at the IXP. Further, through the IXP operators,
we approached 36 members of the IXP, and 34 of those members
responded with explanations of the behavior we saw.

Although the number of members was similar between 2017 and
2019 (208 and 203, respectively), 28 new members were present in
the 2019 analysis. Because we focused our manual investigations
on the 2017 data, we believe that there are additional sibling re-
lationships and routing behaviors in the 2019 data that we have
not discovered yet. We hypothesize that these missing sibling in-
ferences are the likely cause of the increase in out-of-cone traffic
between 2017 and 2019. Table 1 summarizes the number of unique
AS pairs we observed to exchange traffic for the five week periods
beginning 1 April 2017 and 1 May 2019. While we inferred more
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Figure 10: Classification of unverifiable traffic. 61.8% of the
unverifiable traffic was sent by a provider to a customer
across the exchange. Because a provider can transit pack-
ets from any source address in the Internet, there are no
invalid addresses which would allow detection of spoofed
packets. For completeness, we further classify traffic from
each provider as being in or out of their customer cone.

Relationship April 2017 May 2019
p2p 19,161 (98.7%) 12,057 (98.4%)
p2c 222 (1.1%) 183 (1.5%)
s2s 21 (0.1%) 10 (0.1%)
total 19,404 12,250

Table 1: Unique AS pairs observed exchanging traffic at the
IXP in each 5-week period. Approximately 1.4% of AS pairs
had a non-p2p relationship. (This IXP was rearchitected in
2019, which may explain the drop in observed peers.)

than 98% of the AS pairs had a p2p relationship, approximately 1.4%
of AS pairs had a different class of relationship that impacts our
ability to infer SAV policy of the transmitting AS.

Figure 9 also shows the volume of traffic with bogon source
addresses, with a peak of approximately 100 Mbps across the ex-
change for the Wednesday at the end of week 3 (9b-iv). We found
these networks deliberately used RFC1918 private addresses as
source addresses of packets used to tunnel traffic between members
– Generic Routing Encapsulation (GRE) and IP-in-IP represented
61.1% of the traffic, while the other 38.9% were ICMP, TCP, and
User Datagram Protocol (UDP).

For both the 2017 and 2019 observation periods, there was a peak
of approximately 25 Gbps of unverifiable traffic across the exchange,
representing 15.3% of total traffic exchanged at the IXP (figures 9a-ii
and 9b-ii). Figure 10 provides a classification of the traffic involved
for the first week of May 2019. 61.9% of the unverifiable traffic was
sent from a provider to a customer across the exchange, where no
cone of valid addresses applies (§2.4). If we had applied the customer
cone approach to this p2c traffic, we would have inferred 52% of it
was from within the provider’s customer cone, with the remaining
48% of traffic being from outside of the provider’s customer cone.
Because a provider can transit packets from any source address in
the Internet (§2.4), there are no invalid addresses that would allow
detection of spoofed packets. This potential for erroneous inference

Spoofer-CAIDA Spoofer-IX Sum
In-cone Out-of-cone

Spoof-received 17 2 19 (54.3%)
Spoof-blocked 14 2 16 (45.7%)
Sum 31 (88.6%) 4 (11.4%) 35

Table 2: Congruity between CAIDA’s public spoofer dataset
and inferences using the IXP. Of the 35 overlapping ASes,
CAIDA’s spoofer dataset inferred 54% of them had not de-
ployed SAV, becauseCAIDA received a packetwith a spoofed
source address. Only 4 of these 35 (11%) were observed to for-
ward an out-of-cone packet into the IXP; 2 of these 4 were
in CAIDA’s spoofer dataset as not deploying SAV.

is why we must classify all packets from a transit provider to a
customer as unverifiable. Another 21.4% of the unverifiable traffic
was because we did not have an AS mapping for either the source
or destination MAC addresses (the IXP lacked historical data for
this mapping), and for 14.1% of traffic we could not determine the
origin AS because the source MAC address and VLAN tag indicated
the traffic was from a remote peering provider. Finally, all of the
other categories summed to only 2.6% of the traffic, so we do not
discuss these categories further.

We inferred out-of-cone traffic for 38 of the 203 members (18.7%)
at the IXP between 1 May and 5 July 2019. Of the 203 members,
35 (17.2%) were also in CAIDA’s public spoofer dataset [15], which
requires a volunteer to have been present in the network to run an
active measurement test that explicitly sends packets with spoofed
source addresses to CAIDA’s servers to test SAV deployment of the
volunteer’s network (§2.5). Table 2 summarizes the (in)congruity
between the two datasets. Of the 35 ASes that overlapped, CAIDA’s
spoofer dataset indicated 54% of them had not deployed SAV. Only
4 of these 35 ASes (11%) were inferred by Spoofer-IX to forward
an out-of-cone packet into the IXP, implying that this IXP may not
provide effective visibility into SAV deployment, because partic-
ipants were not forwarding spoofed packets, at least during our
five-week observation window.

Figure 11 shows the volume of out-of-cone traffic inferred by
both the Spoofer-IX and full cone methods for traffic data captured
during the first week of May 2019. The Spoofer-IX method inferred
a peak of 40 Mbps of out-of-cone traffic (best seen in figure 9b),
whereas the full cone method inferred a peak of 2.5 Gbps. The diur-
nal pattern of the inferred out-of-cone traffic matches user-demand
for content, with no observable peaks suggesting a volumetric
spoofed-source attack launched from within member ASes of the
IXP. The second row of figure 11 shows churn in source IP ad-
dresses [11, 69] seen in each five minute window. For the full cone
method, the absolute volume of source addresses observed follows
the traffic volume profile as a whole, and is concentrated in 20-40
ASes per five minute window, which is not a typical pattern of
attacks that utilize randomly-spoofed source addresses.

The discrepancy between the size of the traffic classified as out-
of-cone by the full cone and Spoofer-IX methods is because the
full cone classified some provider-to-customer traffic as being out-
of-cone (§2.5), whereas Spoofer-IX classified provider-to-customer
traffic as unverifiable. Figure 10 shows Spoofer-IX classified 1 – 5
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spoofed packets by their IP address alone.

Gbps of out-of-cone traffic from providers to customers as part of
the unverifiable traffic that Spoofer-IX classified.Whenwe classified
the full cone’s out-of-cone traffic using the Spoofer-IX method,
92.6% of the traffic was from a provider to a customer across the
exchange, carrying 0.5 – 2 Gbps of traffic (figure 12).
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Figure 13: Classification of in-cone traffic for the full cone
that Spoofer-IX classified as unverifiable. The traffic pro-
file is similar to that in figure 10, with some unverifiable
provider-to-customer traffic classified as out-of-cone by the
full cone method (figure 12).

Finally, the traffic volume classified as in-cone by the full cone
method is larger than that by the Spoofer-IX method. 85.5% of
the traffic that the full cone method classified as in-cone was also
classified as in-cone by the Spoofer-IX method, with the remaining
14.5% classified as unverifiable by Spoofer-IX. Figure 13 shows how
the Spoofer-IX method classified 59.9% of this unverifiable traffic
as from a provider to a customer across the IXP, and 26.4% of the
unverifiable traffic as out-of-cone for the provider. We hypothesize
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that this traffic is classified as in-cone for the full-cone method
because some provider ASes (or their customers) provided a BGP
view, so the full cone included these addresses as in-cone for these
provider ASes (§3.1.3). Note that the traffic profiles in figure 10
and figure 13 are similar: the discrepancy is mostly due to the full
cone method classifying some of Spoofer-IX’s unverifiable provider-
to-customer traffic as out-of-cone (figure 12). However, all routed
addresses may be legitimate source addresses in IP packets crossing
an IXP from a provider to customer, and no cone of valid addresses
can infer the SAV policy of the provider for these packets.

7 DISCUSSION AND INSIGHTS
Challenges of Validation. We could not acquire ground truth
data to validate our results, in part due to the negligible amount
of out-of-cone traffic we observed, and the challenge of asking
any network to validate a small volume of packets. Due to lack of
accessible ground truth, we instead verified that our prefix-level
customer cone inferences (§3.1.2) were consistent with BGP data
extracted from the IXP’s route servers. The only inconsistencies
we found were due to ASes that had been returned to their RIR and
still appeared in public BGP announcements, but did not appear in
routes from the IXP route servers.
Generality of the methodology. Assessing the generality of our
approach requires applying our method to traffic from other IXPs,
which is challenging because it requires the cooperation of other
IXP operators. However, we believe our method is generalizable,
as we designed and developed Spoofer-IX to accommodate the
Best Current Operational Practices (BCOPs) defined by a group
of IXPs [28, 37] that describe how IXP operators should config-
ure IXPs. These documents describe how IXP operators should
securely configure VLANs and route servers. As such we believe
our methodology can be applied to other IXPs; more generally, any
other method to infer spoofed traffic in IXP traffic data will have to
address the same challenges we encountered.

Applying our method requires two data sets: the traffic data
sets themselves, and the metadata that maps IXP infrastructure
– VLAN tags on each packet, and MAC addresses to ASes. Our
method is automated except for inference of the siblings (§6), which
requires some manual effort. However, there are a wide variety of
IXP architectures that affect traffic visibility (§3.2), and new IXP
architecture innovations to support advanced services will require
careful consideration of their impact on our method. Our use of
traffic characterization was limited to the packet headers available
to us; full payload would enable improvements in traffic analysis,
and additional cross-checks.
Emerging IXP trends and their impact on the inference of
SAV policy. New IXP services allow networks to self-provision
private, on-demand bandwidth in seconds between data center
locations (a.k.a, colocation facilities) or cloud service providers,
[21, 26, 56, 58, 67]. In 2019, AMS-IX, DE-CIX and LINX joined to
develop an API to provision and configure interconnection services
at multiple IXPs [55]. The resulting IX-API [5] will allow users to
manage their interconnection services, from ordering new ports,
to configuring, changing, and canceling services at multiple IXPs.
These proposals share a common goal: enable a more dynamic
interconnection environment, where networks and IXPs can adapt

to changing conditions. They do not propose to change methods
to implement the configurations tackled in this paper, but rather
create abstractions to facilitate configuration changes.

8 LESSONS LEARNED
The use of IXPs as a focal point for SAV deployment has received
recent attention by both the research [45] and policy communi-
ties [36, 63, 74]. However, inferring SAV deployment at an IXP is
remarkably challenging, more so than has been captured in the
literature, due to a combination of operational complexities that
characterize today’s interconnection ecosystem, and the inherently
heuristic nature of topology and traffic inferences on persistently
opaque network infrastructure. Many of our discoveries were eye-
opening, although not cause for optimism for those interested in
infrastructure protection.

First, although we approached this project aware of several
methodological challenges for inferring spoofed packets at IXPs,
the reality was even more daunting. We recognized the importance
of using the semantics of AS relationships, which is conceptually
straightforward but even more painstakingly complicated in prac-
tice than we expected. We designed, implemented, and applied a
method that accounts for both epistemological and operational
challenges, and showed how this method reveals inaccuracies in
methods that are agnostic to AS relationship semantics.

But we also found epistemological challenges remain. While
we infer out-of-cone traffic with our method at our IXP, there are
still edge cases we have not yet explained, as some of the traffic
appears to have signatures of legitimate traffic. More importantly,
we believe further effort is required to understand the degree to
which any IXP could be used as a SAV deployment lens. We publicly
release our code [62] in hopes that other researchers and IXPs will
use it to further improve our collective ability to measure and
expand deployment of SAV filtering. Finally, this work illustrates
the deep subtleties of scientific assessments of operational Internet
infrastructure, which exemplifies the persistent tension between
the need for reproducibility of methods and results [7, 8], and the
opacity of commercial infrastructure.
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