
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

EDUARDO KOCHENBORGER DUARTE

An End-to-End Defense Mechanism for
Industrial Real-Time Networks

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Edison Pignaton de Freitas
Coadvisor: Prof. Dr. João Cesar Netto

Porto Alegre
August 2020

CIP — CATALOGING-IN-PUBLICATION

Kochenborger Duarte, Eduardo

An End-to-End Defense Mechanism for Industrial Real-Time
Networks / Eduardo Kochenborger Duarte. – Porto Alegre:
PPGC da UFRGS, 2020.

65 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2020. Advisor: Edison Pignaton de Freitas; Coadvisor: João
Cesar Netto.

1. Real-Time Industrial Networks. 2. Scalable Security Mech-
anism. 3. SCADA. 4. PLC. I. de Freitas, Edison Pignaton. II. Ce-
sar Netto, João. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“For in the sciences the authority of thousands of opinions is not worth as much

as one tiny spark of reason in an individual man.

Besides, the modern observations deprive all former writers of any authority,

since if they had seen what we see, they would have judged as we judge.”

— GALILEO GALILEI, Frammenti e Lettere

ACKNOWLEDGMENTS

I would like to thank my family for all the support given to me during these long

years of study. I thank all my colleagues, friends, and professors who supported and

helped me in any way during this period. Specially, I would like to thank my advisors,

Edison Freitas and João Netto for advising me during my studies; Tiago Dall’Agnol and

Ivan Silva for helping me conduct the experiments and for being open to discussing my

work.

ABSTRACT

Real-time Ethernet protocols are commonly used in control task industrial applications.

Some of these applications are safety-critical, business-critical and/or confidential. A dis-

ruption in the well-functioning of the industrial plant can cause serious damage in terms of

lives and costs. There are vulnerabilities caused by the clear-text communications of I/O

data between the entities in the industrial (SCADA) network, which can be exploited once

an attacker gains access to the network. It is imperative to ensure secure communications

between all the entities to prevent unwanted attacks and leakage of confidential infor-

mation. This work studies the viability of using an authenticated encryption algorithm

by proposing the use of a security mechanism along with metrics to evaluate its perfor-

mance. The proposed mechanism is easily deployable at a very low cost, preventing an

attacker from tampering with input/output (I/O) data and preventing control information

leakage. The usage of authenticated encryption as a defense mechanism in this kind of

scenario had not been addressed so far. The solution can be used to implement scal-

able secure I/O communication that can be used alongside a secure fieldbus protocol to

achieve a secure zone, according to IEC 62443. Furthermore, the solution can be used to

implement a security mechanism that encompasses communications between one or more

programmable logic controllers (PLCs) and the supervisory control and data acquisition

(SCADA) system. Experiments have been conducted in two parts using a testbed com-

prised of industrial equipment as a proof of concept. The first part involves assessing the

viability of the proposed security mechanism in the communications between PLCs and

I/O stations, while the second part involves assessing the viability of the proposed mecha-

nism in the communications between PLCs and the supervisory system. The experiments

were designed based on the amount of I/O points of a moderate-sized application. The

results show that this a viable solution to the problem in both cases, presenting scalability

in terms of I/O points with processing time growing linearly and a small increase without

spikes in the latency.

Keywords: Real-Time Industrial Networks. Scalable Security Mechanism. SCADA.

PLC.

RESUMO

Protocolos de tempo real baseados em Ethernet são frequentemente usados em tarefas de

controle em aplicações industriais. Algumas dessas aplicações são críticas em termos de

segurança, críticas para os negócios e/ou confidenciais. Uma interrupção no bom fun-

cionamento da planta industrial pode causar sérios danos em termos de vidas e custos.

Existem vulnerabilidades causadas pelas comunicações em texto não criptografado dos

dados de entrada/saída (E/S) entre as entidades da rede industrial, que podem ser explo-

radas quando um invasor obtém acesso à rede. É imperativo garantir a existência de uma

comunicação segura entre todas as entidades para evitar ataques indesejados e vazamento

de informações confidenciais. Este trabalho estuda a viabilidade do uso de um algoritmo

de criptografia autenticado, propondo o uso de um mecanismo de segurança junto com

métricas para avaliar seu desempenho. O mecanismo proposto é facilmente implantável

a um custo muito baixo, impedindo que um invasor adultere os dados de E/S e impe-

dindo o vazamento de informações de controle. O uso da criptografia autenticada como

mecanismo de defesa nesse tipo de cenário não havia sido abordado até o momento. A

solução pode ser usada para implementar uma comunicação de E/S segura escalável que

pode ser usada juntamente com um protocolo de secure fieldbus para se obter uma zona

segura, de acordo com o padrão IEC 62443. Além disso, a solução pode ser usada para

implementar um mecanismo de segurança que engloba as comunicações entre um ou mais

controladores lógicos programáveis (CLPs) e o sistema de supervisão (sistema SCADA).

Os experimentos foram conduzidos em duas partes, usando uma plataforma de teste com-

posta de equipamentos industriais como prova de conceito. A primeira parte envolve a

avaliação da viabilidade do mecanismo de segurança proposto nas comunicações entre

CLPs e estações de E/S, enquanto a segunda parte envolve a avaliação da viabilidade do

mecanismo proposto nas comunicações entre CLPs e o sistema SCADA. Os experimentos

foram projetados com base na quantidade de pontos de E/S de uma aplicação de tamanho

moderado. Os resultados mostram que essa é uma solução viável para o problema nos

dois casos, apresentando escalabilidade em termos de pontos de E/S, com o tempo de

processamento crescendo linearmente e um pequeno aumento sem picos na latência.

Palavras-chave: Redes Industriais de Tempo-Real, Mecanismo de Segurança Escalável,

SCADA, CLP.

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application-Specific Integrated Circuit

CRC Cyclic Redundancy Check

DC Distributed Clock

DCS Distributed Control System

ERP Enterprise Resource Planning

ESC EtherCAT Slave Controller

FMMU Fieldbus Memory Management Unit

ICT Information and Communication Infrastructures

IDS Intrusion Detection System

IPS Intrusion Prevention System

I/O Input/Output

MAC Message Authentication Code

MES Manufacturing Execution System

OPC Open Platform Communications

OPC DA Open Platform Communications Data Access

OPC UA Open Platform Communications Unified Architecture

OS Operating System

PDO Program Data Object

PL Performance Level

PLC Programmable Logic Controller

SCADA Supervisory Control and Data Acquisition

SIL Safety Integrity Level

LIST OF FIGURES

Figure 2.1 Automation Pyramid..16
Figure 2.2 PLC scan cycle ..18
Figure 2.3 EtherCAT Master/Slave Communication ..19

Figure 3.1 System overview..30
Figure 3.2 Vulnerability in EtherCAT master/slave communication31

Figure 4.1 Overview of the secure I/O data exchange with an output station37
Figure 4.2 Overview of the secure I/O data exchange with an input station37
Figure 4.3 Solution overview ..43
Figure 4.4 Experiment schematic (SCADA reading PLC’s inputs)................................44

Figure 5.1 Measured slave cycle times in different scenarios...49
Figure 5.2 Master’s encoding operation showing a linear behavior51
Figure 5.3 Master’s decoding operation showing a linear behavior51
Figure 5.4 Example of a bus containing an external power supply and a PLC (man-

ufacturer name omitted as requested) ...54
Figure 5.5 Tag mapping on SCADA...55
Figure 5.6 Nodes configuration on SCADA ...56
Figure 5.7 Points mapping on SCADA...56

LIST OF TABLES

Table 2.1 Security and safety aspects of some well-known standards............................22
Table 2.2 Summary of Related Works ..28

Table 5.1 Master baseline performance ..48
Table 5.2 Slave baseline performance...48
Table 5.3 Detailed measured slave cycle times in different scenarios50
Table 5.4 Detailed measured master cycle times in different scenarios..........................50
Table 5.5 Measured master cycle times while encrypting I/O points52
Table 5.6 Measured master cycle times while decrypting I/O points52
Table 5.7 SCADA system baseline performance ..55
Table 5.8 SCADA system with secure communication performance57

CONTENTS

1 INTRODUCTION...11
2 BACKGROUND AND RELATED WORK..16
2.1 Background ...16
2.1.1 Automation ..16
2.1.2 PLCs...17
2.1.3 EtherCAT ...18
2.1.4 SCADA System ...20
2.1.5 Standards..21
2.2 Related Work...22
3 PROBLEM STATEMENT ...29
3.1 General Aspects...29
3.2 Communication between PLCs and I/O Stations ..30
3.3 Communication between PLCs and the SCADA Application32
3.4 Problem Summarization ..33
4 PROPOSED APPROACH..34
4.1 Common Aspects...34
4.2 Communication between PLCs and I/O stations ..35
4.3 Extending the Security Mechanism to the Communications between PLCs

and SCADA Application..41
5 EXPERIMENTS AND RESULTS...46
5.1 Communication between PLC and I/O station ..46
5.2 Communications between PLCs and SCADA System...53
6 CONCLUSION ...58
REFERENCES...60
APÊNDICE A RESUMO EXPANDIDO ..63

11

1 INTRODUCTION

Modern industrial facilities are usually distributed processes, sometimes with de-

vices placed geographically distant. It is imperative to ensure the well-functioning of the

process remotely, as constant physically inspecting devices may be impractical. Every

part of the system has to be monitored in real-time by the plant operators, supervising the

process variables, and ensuring every device is operating within the specified parameters.

The remote connection and monitoring are achieved by using control devices equipped

with control networks. These control networks are called supervisory control and data

acquisition (SCADA) networks (HOLM et al., 2015).

Nowadays, it is necessary for modern industries to connect to open access net-

works, such as the Internet. This makes the monitoring process much less troublesome,

cheaper and faster (REZAI; KESHAVARZI; MORAVEJ, 2017). However, the focus of

SCADA networks has been mostly on performing the desired functionalities while attend-

ing to the real-time requirements, despite the efforts in providing security to these systems

(VOLKOVA et al., 2018). This fact exposes the SCADA networks to commonly found

security problems, meaning they are vulnerable to attacks in which someone could easily

control the entire process. These attacks might cause big troubles, unaffordable costs and

life-threatening events.

SCADA networks can be used to control safety-critical processes that should not

be put at risk. Disrupting the well-functioning of such systems can cause serious con-

sequences. Different types of SCADA systems have been under attack, exposing the

potential impacts of such events (ANTON et al., 2017). Real-life examples include the

widely known Stuxnet, which is a computer worm that targets SCADA systems (FAL-

LIERE; MURCHU; CHIEN, 2011) and Flame, which was used to spy, steal and delete

data (MILLER; ROWE, 2012). It is important to notice that an attack can be focused on

any of the entities the SCADA network is comprised of, which emphasizes the need for

security in all nodes.

If an attacker gains access to the SCADA network, they could collect confidential

control process data and also tamper with it, possibly causing operation problems at the

plant. Obsolete standards for real-time data exchange still used in the industry, such as

OPC DA, fail to define directives regarding security. The communications are in-clear,

without any kind of security mechanism, which opens a door for attackers to damage the

system. This means that once attackers are inside the network, they are free to do as they

12

please (GHOSH; SAMPALLI, 2019). The same problem shows up in the communications

between other modules inside the network, which may use real-time Ethernet protocols

with no security as well.

This work focuses on securing the communications related to I/O data. More

specifically, for control plants that still use Open Platform Communications (OPC) Data

Access (DA) as the specification to define how to transfer their real-time data and Ether-

CAT as the communication protocol between PLCs and I/O stations.

Although the OPC DA specification does not include any specific measures re-

garding security aspects, there is the option of using newer specifications, such as OPC

Unified Architecture (UA). However, this will possibly incur the need of acquiring new

equipment, installing and configuring it to work properly. Sometimes the cost of such op-

eration might be too high, which makes the upgrade impossible or impracticable. Other

solutions, such as implementing firewalls and anti-virus can lead to delayed delivery of

data (GHOSH; SAMPALLI, 2019), which might not be acceptable for certain applica-

tions. Although the usage of OPC DA could be considered obsolete, the focus in this

technology is due to the pervasive presence of old industrial equipment, as various indus-

trial production units are kept with no software or hardware updates for years (ANTON

et al., 2017).

Besides the SCADA and the PLCs, there are other entities which act upon and

gather information from the industrial process, which are the I/O stations. It is also im-

portant to consider the security aspects of the communications between PLCs and I/O

stations. More specifically, the security aspects of the communication protocol used to

exchange data between these modules. Not every protocol is suitable for every applica-

tion due to its requirements. For example, the standard Ethernet protocol is used in a

wide range of application domains, but for specific applications, such as industrial con-

trol systems (ICS), it does not fulfill all the mandatory application requirements. These

requirements include time-deterministic communication and real-time requirements (DE-

COTIGNIE, 2005). However, there are Ethernet-based protocols which comply with

those requirements, e.g., PROFINET (Shi et al., 2016), EtherNet/IP (BROOKS, 2001)

and EtherCAT (BECKMANN, 2004).

More specifically, this work focuses on EtherCAT-based programmable logic con-

trollers (PLCs), which is one of the commonly used real-time Ethernet protocols due to its

performance and scalability features. EtherCAT is able to address an increasing number

of slaves with a minimal overhead increase, which is one of the reasons it is widely used

13

in the industry. These devices are susceptible to various security risks due to the cleartext

(without encryption) communication, which is not a disadvantage exclusive to EtherCAT

(PLIATSIOS et al., 2020). Despite the ability of EtherCAT and other real-time protocols

to comply with real-time requirements, there is still a small number of approaches that

handle security aspects in this segment. With the widespread usage of networked systems

solutions in a great variety of domains, security became a concern with highlighted rele-

vance. This is also true in industrial networked environments, as security vulnerabilities

may compromise the field operation, causing important losses if explored by attackers

(AKPINAR; OZCELIK, 2018). However, the adoption of security mechanisms is always

associated with overhead imposition. Considering industrial networks, this overhead may

potentially degrade the performance of the overall system in a way that it simply stops

working, as it is not able to meet its timing requirements. This could lead to potentially

delayed system reactions and unpredictable behavior. A study evaluating the performance

of real-time Ethernet protocols is presented in (ROBERT et al., 2012).

Summarizing, there are two different components of the SCADA network that

must be secured: the communication of input/output (I/O) data between I/O stations and

programmable logic controllers (PLCs); and the communications between PLCs and the

SCADA system. Each one of these components has its own performance and scalability

considerations. This work proposes a defense mechanism based on authenticated encryp-

tion that encompasses both ends and everything in between, while presenting, analyzing

and evaluating thoroughly the performance of the communications between PLCs and the

SCADA system, and between PLCs and I/O stations. The proposed method has been de-

signed considering how to optimize processing times, ensuring scalability and real-time

properties. It takes into account the performance advantages considering the whole com-

munication path, from one end to the other, i.e. from the I/O stations to the SCADA

system.

While there are works that study the usage of authenticated-encryption on fieldbus

communications, such as (WIECZOREK et al., 2012), to the best of the authors knowl-

edge, there is no work which takes into account the scalability aspects related to the

number of I/O points in the application. Observing this landscape, this work focuses on

the security analysis of the EtherCAT protocol used in PLCs and on the communications

between PLCs and SCADA system, proposing a software-based security mechanism. The

mechanism can be implemented in an industrial plant without actually acquiring new de-

vices, reducing the cost greatly. This solution adds a layer of security in the I/O exchange

14

by encrypting this data, which provides scalable secure I/O communication for appli-

cations using EtherCAT and OPC-DA. If integrated with a security fieldbus protocol to

secure the communication such as (WIECZOREK et al., 2012), the proposed solution will

provide a robust defense mechanism that achieves a secure zone according to IEC 62443

(SHAABAN; KRISTEN; SCHMITTNER, 2018). This is achieved without sacrificing the

real-time features or the performance, even on applications with hundreds or thousands

I/O points.

The proposed method represents a novel way of implementing secure I/O commu-

nication while taking advantage of specific application aspects which lower immensely

the overhead imposed by the mechanism. The mechanism can also be used to secure just

the EtherCAT communications or the data exchange between PLCs and SCADA system,

although the greatest performance advantage shows up when using it on both cases.

While the method proposed in this work is not enough on its own to ensure fully

secure communication, it is important to notice that there are alternatives for securing the

communication besides I/O data. Thus, the proposed solution represents a novel way of

implementing a security mechanism that integrates fully with EtherCAT-OPC-DA-based

applications. The same method can be applied to other types of data as well, e.g., secur-

ing the distributed clock frames. Moreover, it can also instigate further EtherCAT-focused

(and other real-time Ethernet protocols) security studies in the future, as well as studies

regarding the current security standards and general SCADA network security. It is also

important to emphasize that the actual cryptographic function is not part of the contri-

bution of this work, as it can be updated or changed as desired, given that the real-time

requirements remain fulfilled.

This work also addresses points stated by safety standards, such as IEC 61508.

The standard states that if a malevolent or unauthorized action that can lead to hazards

is reasonably foreseeable, then a security threat analysis should be carried out. It is im-

portant to emphasize that the increased security is also a requirement to comply with the

safety standard IEC 61784-3, which also references IEC 61508 (KANAMARU, 2017).

Summarizing, the main contributions of this work can be stated as:

• Designing, proposing and structuring a novel software-based defense mechanism

which takes advantage of application structure to provide secure I/O communica-

tion from I/O stations to the SCADA system, increasing security with very low cost

and time;

• Implementing and determining if an authenticated encryption software-based so-

15

lution is suitable for practical applications, taking a step towards the guidelines of

IEC 62443.

• Shedding light on security questions regarding SCADA networks and automation

in general, while motivating further security studies in this area and instigating the

use of low-cost, easily-deployable and viable security measures.

The rest of this paper is organized as follows: Section II presents an overview

of background concepts. Section III presents the problem formulation and the proposed

approach to address it is described in Section IV. Experiments and results are presented

and discussed in Section V. Section VI discusses related work and, concluding the paper,

Section VII brings discussions of possible future work directions.

16

2 BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Automation

The automation process is commonly represented by a hierarchy of levels known

as the automation pyramid. This hierarchy represents the gathering of information, i.e.

the information flow and the control flow. Usually, the information flow is represented

in a bottom-up fashion, with the information from the field devices rising through the

hierarchy up until the top. Similarly, the control flow is usually represented in a top-

down fashion, with the decisions coming from the top and reaching the field devices, at

the bottom level. The automation pyramid serves as a general design pattern for creating

information and communication infrastructures (ICT) for the industry (HOFFMANN et

al., 2016). A representation of the pyramid is shown in Figure 2.1.

Figure 2.1: Automation Pyramid

Source: (HOFFMANN et al., 2016)

Starting from the bottom, the first level is the field level. This is where the field

17

devices, such as actuators and sensors are located. They are responsible for the physical

actions and monitoring, and are most likely distributed in a large geographical area on

the production floor. These devices do not have any kind of "intelligence" as they are

controlled by the devices on the very next upper level. The entities which control the field

devices are called programmable logic controllers (PLCs).

On the next level, a distributed control system (DCS) or supervisory control and

data acquisition (SCADA) system will receive the information gathered by the PLCs.

This enables the whole process to be monitored at once, ensuring the well-functioning

and avoiding critical problems, as well as orchestrating one or more PLCs to perform a

task. On the next level, there is the Manufacturing Execution System (MES) level, which

gathers information from the levels below, monitoring the entire manufacturing process.

At the top level, there is the Enterprise Resource Planning (ERP), which is based on

historical data, such as product lists, processes, quantities. It also provides decisions for

the entire plant and performs long-term planning in terms of human and material resources

(HOFFMANN et al., 2016).

2.1.2 PLCs

PLCs are equipment designed to be used in automation and control tasks in in-

dustrial environments. They are specially designed to withstand temperature, humidity,

physical vibrations, noise and electromagnetic phenomena. The control task which cal-

culates the appropriate response based on the process’s current state is implemented on a

"user program". The program is programmed on the PLC using a development environ-

ment (BOLTON, 2015).

The module responsible for processing the control logic is not the same as the

modules responsible for obtaining information from the sensors or generating the desired

outputs. Although a PLC can be used as the only node of the system, in this work, the

focus is on distributed systems, where each module is a separate entity designed for a

task. The PLCs control the lower level (field level) devices according to the user program

that has been downloaded to them. This means that the field devices will serve as both

inputs and outputs of the system. They will receive information from the current state

of the process and act upon it, outputting the appropriate response calculated by the user

program (BOLTON, 2015). This is shown in Figure 2.2.

Due to the focus on distributed systems, there has to be some kind of communi-

18

Figure 2.2: PLC scan cycle

Source: Author

cation between the entities to exchange essential process information. The I/O stations

act as an interface between the external world, where the actual process happens, and the

control application, which is executed on the PLCs. Thus, the I/O stations have to relay

the data they collected from the process to the PLCs in order to calculate the appropri-

ate response. For this to be possible, a communication protocol between the modules is

necessary.

2.1.3 EtherCAT

The PLCs themselves communicate with I/O stations by the means of an industrial

communication protocol. However, not every protocol is suitable for industrial applica-

tions due to their specific real-time requirements. Therefore only protocols that comply

with these requirements are suitable, such as PROFINET (Shi et al., 2016), EtherNet/IP

(BROOKS, 2001) or EtherCAT (BECKMANN, 2004). The payload of the exchanged

messages contains the information provided by each I/O station’s port. This communi-

cation happens cyclically, enabling each PLC to periodically assess the current state of

the process, through reading its inputs, and to act upon it, through writing its outputs. In

terms of the control task implemented on the PLC, this communication happens transpar-

ently. The user program does not have to worry about dealing with sending and receiving

EtherCAT frames. The user program will simply have access to specific variables which

will be mapped to the inputs and outputs of the corresponding I/O stations. Similarly to

the I/O updates, the user program will also be executed cyclically, with the cycle being a

configuration related to the specific control task being performed.

EtherCAT complies with real-time requirements and aims to maximize the per-

formance by maximizing the utilization of Ethernet’s full-duplex communication. It uses

19

a master/slave communications model, where the master sends Ethernet frames and the

slaves read/insert data accordingly. The frames are processed "on the fly" by each slave,

effectively reading/writing data as the frame passes by. This introduces only a constant

delay, independent of the size of the packet. The frame passes through all slaves and is re-

flected at the end of each network segment, being sent back to the master (BECKMANN,

2004), (Prytz, 2008). Also, the only node able to send frames is the master, preventing

unpredictable behavior and ensuring consistency. This makes EtherCAT achieve remark-

able performance in terms of latencies and scalability, which makes it a very interesting

option.

The behavior of EtherCAT communications can be better understood with the aid

of Figure 2.3, where a slave is shown retrieving output values sent by the master and

writing its input values on the frame.

Figure 2.3: EtherCAT Master/Slave Communication

Source: Adapted from (OMRON Automation Pvt Ltd, 2016)

Each frame can contain one or more datagrams, which represent different actions

provided by the master. These datagrams may be commands to read, to write, to read-

write, or to access one or more slave devices. The network is able to expand up to 65,535

devices. Each slave has a Fieldbus Memory Management Unit (FMMU) which allows the

logical addresses to be mapped to the slaves’ physical addresses. This allows the Ether-

CAT master to be able to address several slaves at once, which is particularly important

in motion control applications (NGUYEN; JEON, 2016). The registers mapped by the

FMMU in each slave are called process data objects (PDOs), and there is a bidirectional

cyclical exchange of PDO data between the master and the slaves (BECKMANN, 2004).

20

2.1.4 SCADA System

A real industrial application will most likely be comprised of several different

devices, including PLCs, perhaps even from different manufacturers. Each one of these

PLCs will control a set of I/O stations related to one specific part of the control process.

Because these devices are usually far apart from each other, what would make monitoring

all of them a tedious errand, they are all interconnected by a network. This interconnection

enables the entire process to be monitored by operators using workstations. This is what

is represented on the automation pyramid on the third level (DCS/SCADA), in Figure 2.1.

The workstations provide the operators with real-time information relevant to the

process, ensuring the well-functioning by continuously polling field information and,

eventually, sending control commands. These workstations are typically able to gener-

ate alarms in case the monitored parameters deviate from the expected outcomes, keep

historical data to allow an analysis over time, among other functionalities. Typically, this

network is used to communicate messages related to the control process to master and

slave field devices.

The application needs all devices, even the ones of different manufacturers, to be

fully and seamlessly integrated to function as intended. This means that there has to be

some kind of "common language" to allow data to be exchanged between these devices.

In automation, the challenges concerning exchanging information between different de-

vices have been standardized by the OPC (Open Platform Communications) Foundation.

It defines how data should be transmitted from a data source to a data sink, in a standard

way. OPC is, nowadays, supported by most SCADA systems (ABBAS; MOHAMED,

2015), and it draws a line between hardware providers and software developers. This

standardization allows interoperability between devices of different manufacturers. Fur-

thermore, this allows SCADA developers to focus on their area of expertise, without hav-

ing to worry about developing and maintaining communication drivers and other device-

dependent components.

OPC DA does not define any specific security measures in its specification. Secu-

rity can be configured to a certain extent, but as it is not integrated into the specification,

this can be particularly troublesome. Some environments may not support security con-

figurations and some applications cannot be configured to support all security options

(HUNKAR,), which means the security options are really rudimentary.

To address several limitations of the Classic OPC, in 2008, OPC Unified Architec-

21

ture has been released. One of these addressed limitations is related to security. OPC-UA

is concerned with authentication, authorization, encryption, data integrity, and auditing

of client-server sessions (OPC Foundation,). However, while there are high-end devices

that support OPC-UA, there are several applications that continue to use Classic OPC.

Most notably, the manufacturer which designed the PLCs used on this work has only re-

cently started to conduct tests regarding the usage of OPC-UA. Furthermore, the authors

of (ANTON et al., 2017) emphasize the common presence of legacy devices in control

plants, which might be years or decades with little or no updates. Therefore, it is safe to

assume that the security concerns involving Classic OPC are not negligible, and this is

the reason why this work focuses on it. While there are still legacy devices operating with

less-than-ideal security features, it is important to try to achieve security by other, more

feasible and affordable, means.

2.1.5 Standards

There have been several efforts with the objective of aligning both safety and se-

curity standards, as shown in Table 2.1. IEC 61508 classifies safety levels in "Safety

Integrity Levels" (SIL), which represent risk reduction as the levels go up. Some of the

most general requirements of IEC 61508 have been adapted specifically to industrial ma-

chinery on the IEC 62061. Safety levels may also be classified by means of "Performance

Levels" (PL), according to ISO 13849.

IEC 61784-3 defines standards for industrial safety-related networking while ref-

erencing IEC 61508, which also defines as necessary for safety applications to address

the security threats and risk assessments. This shows that there is a strong connection

between safety and security aspects, while emphasizing even more the importance of se-

curing the communications due to the possible risks imposed by an attacker in terms of

cost and lives.

IEC 62443 and IEC 61784-4 address general security concerns and security related

to specific technologies, respectively. The approach is to break the system into smaller

parts, called "zones", which communicate with each other through "conduits". Because

the two main standards for safety and security are applicable to a wide range of domains,

there are standards which focus on the control and automation domain. These standards

are called IEC 63069 and IEC 63074 and they focus on different approaches on how to

bridge safety and security harmoniously.

22

Table 2.1: Security and safety aspects of some well-known standards

Standard Safety Security
IEC 61508 X
IEC 62061 X
ISO 13849 X
IEC 62443 X
IEC 63069 X X
IEC 63074 X X

IEC 61784-3 X
IEC 61784-4 X

Source: Author

2.2 Related Work

To ensure that the control process works as intended, there are two main points

of view to look for: protecting the system against accidental failures, which can be as-

sessed in terms of probabilities and protecting the system against intentional attacks. Such

aspects are addressed by safety and security domains, respectively. This work focuses

mostly on the security aspect, although it is important to emphasize that security is a

requirement according to various safety standards, which means that there is a relation

between the two parts. More specifically, in terms of this work, the security aspect is

analyzed in two parts as well: the internal bus and the communications with the SCADA

system.

The authors in (SHAABAN; KRISTEN; SCHMITTNER, 2018) follow the guide-

lines of IEC 62443 and IEC 61784-4 to define the automation control devices and I/O

stations as one zone, according to the standard’s recommendations. Using a scalable de-

fense mechanism to secure I/O data, as proposed in this work, alongside a protocol to

secure regular communications, the zone which contains the automation device and I/O

stations will be fully secured.

Regarding the protocols used in the communications between PLCs and I/O sta-

tions, there are many studies which have discussed security aspects of Ethernet and many

other commonly used protocols. Yet, a much smaller number of studies have discussed

the security aspects of real-time protocols, such as the protocol focused in this work, the

EtherCAT. Since EtherCAT is an Ethernet-based protocol, it also suffers from the same

vulnerabilities as standard Ethernet (GRANAT; HÖFKEN; SCHUBA, 2017). The proto-

cols which target the control automation domain are not the only ones to suffer from vul-

23

nerabilities. Other buses used in vehicular applications, such as CAN, LIN, and Flexray

do not provide any kind of security mechanism either (WIECZOREK et al., 2012). Gener-

ally speaking, there are two main points to be considered: providing the means to achieve

the necessary security, and taking into consideration the performance requirements of the

system.

Among the currently available safety standards, there are PROFIsafe, CIP-safety,

CC-Link Safety, PowerLink Safety, and TwinSAFE. They use black channel principles

to achieve safety features using a standard, not safety-related network. They also en-

capsulate data relevant to safety, such as cyclic redundancy check (CRC), timestamps,

etc. While this may provide some rudimentary security as well, they rely on underlying

security infrastructure, such as MACsec, IPsec and TLS/SSL. This means they require

specific equipment to be installed to be fully functional (SATO et al., 2015). As previ-

ously mentioned, one of the goals of this work is to provide a security mechanism that

avoids the need of new equipment. Furthermore, an analysis shown in (ÅKERBERG;

BJÖRKMAN, 2009) shows that it is possible to manipulate safety-related information on

PROFIsafe without any of the protocol’s safety mechanisms detecting it. This shows that

the rudimentary security provided by the safety standards might not be enough on its own.

Specifically about EtherCAT, an analysis of the protocol’s vulnerabilities has been

performed, focusing on the EtherCAT communication principles case (AKPINAR; OZCE-

LIK, 2018). Three different types of attack have been evaluated by the authors: MAC

spoofing, data injection and slave address attack vectors, reviewing in detail each case.

The authors propose an EtherCAT preprocessor created for Snort, an intrusion detec-

tion/prevention system (IDS/IPS). However, while the solution may be effective in the

scenarios used to validate their proposal, EtherCAT still lacks a mechanism to provide

secure communication between master and slaves.

The authors in (WIECZOREK et al., 2012) established a security protocol for

securing fieldbus communications in security-critical applications using a stream cipher

and a message authentication code (MAC). They have shown through a proof-of-concept

implementation using EtherCAT that their security protocol is viable and causes minor

overhead. However, this work does not take into account the scalability aspect, such as

the increasing number of I/O points that a real application may have. Therefore, there is

no way to affirm that the proposed solution is able to cope with real applications, which

may be comprised of thousands of I/O points.

Regarding securing the communications between PLCs and SCADA system, as

24

previously mentioned, one of the possible ways of achieving in control networks is by

using OPC UA, which allows signed and encrypted communications. The authors in

(HANNELIUS; SALMENPERA; KUIKKA, 2008) highlight a roadmap of possible ways

to adapt current systems to take advantage of the features introduced by this possibility.

Similarly, in (CHUANYING; HE; ZHIHONG, 2012), the authors establishes a roadmap

for the migration to OPC UA by proposing different alternatives. However, these works

do not seem to assess if there is any performance drawback or how well these alterna-

tives scale. Therefore, it is hard to predict whether these solutions can be used on a real

application.

Specifically about SCADA systems security, in (NICHOLSON et al., 2012) and

(IGURE; LAUGHTER; WILLIAMS, 2006), the authors discuss threats, risks, and vul-

nerabilities, which can be useful to help understand the security issues as a whole. In

(SOMMESTAD; ERICSSON; NORDLANDER, 2010), the authors make an extensive

comparison of guidelines and standards related to SCADA security, even comparing it

with the international standard ISO/IEC 27002. According to the authors, the two most

common countermeasures suggested by the standards are authentication and cryptogra-

phy, respectively. Besides, the paper also describes spoofing, replay/interception/modification

of data and information gathering as the third, fourth and fifth most commonly mentioned

threats, respectively. These conclusions serve as great motivation to pursue a defensive

mechanism which focuses on these aspects, given their importance.

An extensive survey about security issues and challenges in SCADA networks has

been reported in (GHOSH; SAMPALLI, 2019). The authors provided a classification of

attacks based on security requirements while comparing standards and security schemes

proposed to overcome the weaknesses of the standards. Among the compared standards,

the authors discuss crypto-suite standards, such as IEC 62210, IEC 62351, and AGA-12.

The authors argue that AGA-12 is the best of the crypto-suite standards. However, they

disclaim that its cryptographic protection relies on algorithms with very high computa-

tional cost, which is very unlike to scale in big control plant applications. However, there

is no data to carefully analyze how well an application using these standards will scale.

This is a huge obstacle when trying to compare the achieved results with current known

standards.

In (ANTON et al., 2017), the authors present a history of attacks and exploitations

directed at industrial systems. They present a graph representing the amount of PLC-

exploitations over the years, which shows that these attacks appear to be growing as time

25

passes. Furthermore, the authors present their findings regarding field devices public

addressable, while also stating that many industrial production units are kept decades with

little or no software updates. All of this emphasizes the importance of studying security

aspects of SCADA systems.

Another analysis of SCADA-related incidents is performed at (PLIATSIOS et al.,

2020). The authors first explain in great detail the SCADA architecture and commonly

used field-bus protocols before presenting security vulnerabilities for several SCADA

protocols. Among the undesirable security vulnerabilities, the authors mention the un-

encrypted data exchange. It is remarkable that the majority of the protocols have vari-

ous vulnerabilities. There is also an extensive survey on the proposed security solutions,

with most of them involving traffic classification and attack detection approaches. Some

works, such as (SHAHZAD et al., 2015) and (FOVINO et al., 2009) attempt to make use

of encryption techniques to provide more security for Modbus protocol.

Another point of view in terms of security is presented in (VOLKOVA et al., 2018),

where the authors compare various communication protocols in terms of the security stan-

dard IEC 62351. Interestingly, the authors conclude that the most important requirements

of control systems involve the usage of legacy equipment and considerations regarding

24/7 operation and its real-time requirements. This emphasizes that even though certain

solutions might be considered obsolete by now, in real applications they might still be in

use. Furthermore, the authors also claim that future works regarding testing the perfor-

mance impacts of applying IEC 62351 must be conducted to ensure it is viable, as well as

measuring the impact of other proposed mechanisms.

Concerning the choice of which security mechanism to implement, there have

been works on multiple different types of defense mechanisms. For example, the authors

in (SONG; KIM; KIM, 2016) proposed an analysis based on the time in which messages

arrive at the receiving end: certain anomalies would make the presence of an attacker

quite evident. Considering the communications between PLCs and SCADA should occur

periodically, it is possible that this is a different feasible approach.

The scalability is not a straightforward matter to solve. It is important to notice

that it is a challenge to provide a mechanism that can ensure security and be lightweight

at the same time, because depending on the security mechanism, it may incur an impor-

tant performance degradation. There is most likely a trade-off between how lightweight

and how secure an encryption system is. Using cryptography as a security mechanism

is possible, but the two main points previously mentioned must be ensured. An exten-

26

sive survey of lightweight cryptography algorithms has been presented in (BIRYUKOV;

PERRIN, 2017). It also presents authenticated lightweight encryption schemes, which

provide an additional layer of protection against replay attacks, for example. It also dis-

cusses trade-offs commonly found on these algorithms, most notably performance and

security, which are basically the two main points of concern. This kind of mechanism

may also be applied to SCADA networks and industrial communication protocols. How-

ever, there is no cryptographic algorithm specifically designed to work with SCADA or

control automation tasks. Therefore, the implemented algorithm must be carefully chosen

so that it does not hinder the system’s real-time properties and performance.

To properly evaluate and compare the performance of the proposed solution, the

behavioural analysis proposed by (ROBERT et al., 2012) can be extremely useful to fa-

cilitate not only the comparison with other Ethernet-based protocols, but to evaluate the

performance of the mechanism. The authors proposed metrics that can be adapted to

provide an insight on the performance of the proposed solution.

It is also important to know if it is even possible to protect the network from one

of the main threats, the replay attacks. In (NARULA; HUMPHREYS, 2017), the au-

thors establish a set of conditions that must be fulfilled in order to make the secure clock

synchronization possible. The conditions are developed, proposed and proved based on

a generic system model. It has been proved that one-way clock synchronization proto-

cols are vulnerable to replay attacks. Although this is a different scenario, the messages

generated by the master during I/O updating share similar characteristics with the ones

generated during the clock synchronization process. More specifically, due to the inher-

ent ring topology of EtherCAT networks, it is a two-way protocol. Therefore, the same

conditions can be applied to determine whether it is possible or not to protect the network

from replay attacks, and to successfully design a protective mechanism.

There are other means of protecting the system other than cryptography. In (Huang

et al., 2019), the authors propose a different approach to secure industrial cyber-physical

systems: a security decision-making approach based on stochastic game model. The

authors mention that existing countermeasures, such as encryption, for instance, lack the

decision-making mechanism to defend against advanced persistent threats. The proposal

is very promising, but there can be difficulties specifying the model parameters, which

might delay the deployment of the countermeasures.

The authors of (NAZIR; PATEL; PATEL, 2017) have conducted an extensive re-

search regarding different approaches of evaluating the efficacy of a SCADA system

27

against cyber-attacks. Various techniques to expose hidden vulnerabilities and to assess

the degree of protection are presented. Naturally, securing the SCADA system is desir-

able as well, and these techniques can be used to evaluate if any proposed mechanism is

effective.

A general summary of most related works used in this research is presented in

Table 2.2. As it can be seen, although several works address individual points, none

of them address the end-to-end security aspect of the communications, while evaluat-

ing performance and scalability metrics. For example, (ROBERT et al., 2012) does not

take into account the security aspect applied to real-time protocols. In (PLIATSIOS et

al., 2020) there is an extensive discussion regarding challenges and security aspects, but

no performance evaluation in terms of scalability. In (VOLKOVA et al., 2018), there are

numbers quantifying the performance impact on the Modbus protocol, but since it is a dif-

ferent standard, it is not directly comparable to EtherCAT or OPC DA. The circumstances

present themselves as obstacles when trying to compare directly the results achieved at

this work. The bibliographical research in this work has been conducted by using the rel-

evant combinations of the column cells presented in Table 2.2. For instance, "EtherCAT

performance evaluation" or "SCADA Networks Security". The search terms were used

mainly on three digital bibliographic libraries/databases: Google Scholar, IEEE Xplore,

and ACM Digital Library.

28

Table 2.2: Summary of Related Works

Author Security Scalability Discusses/Uses
Standards

Performance
Evaluation EtherCAT SCADA

Networks
Shaaban X X

Wieczorek X X X
Sato X X X X

Åkerberg X X
Akpinar X X

Hannelius X X
Chuanying X X
Nicholson X X

Igure X X
Sommestad X X X

Ghosh X X X
Anton X X X

Pliatsios X X X X
Shahzad X X
Fovino X X X
Volkova X X X

Song X X
Biryukov X X

Robert X X X
Narula X X
Huang X X
Nazir X X X

(this work) X X X X X X
Source: Author

29

3 PROBLEM STATEMENT

The problem studied in this work comprises securing two separate segments of

the communication stack, considering the path from I/O information captured by the field

devices to the SCADA system. There are two main segments: the first responsible for

the communications between PLC and I/O stations, and the second responsible for the

communications between PLCs and the SCADA system. Naturally, these two segments

are part of the application and are not intended to function separately, but they have been

subdivided to facilitate the study conducted in this work.

This chapter is subdivided as follows: the first section contains general aspects of

the problem; the second part contains the aspects related to the communication between

PLCs and I/O stations; the third part presents the aspects related to the communication be-

tween PLCs and the SCADA application; finally, the fourth part summarizes the problem

taking into consideration aspects of both communication segments.

3.1 General Aspects

While achieving security in the communication of I/O would not be enough to

guarantee fully secure communication, it is a step towards that, and therefore it is of in-

terest. A solution that would secure the entire path of the I/O data, from the I/O stations

to the SCADA system would be the ideal one, and that is the reason this study focuses

on the two previously mentioned segments. However, this approach must take into con-

sideration the performance and scalability aspects of the PLCs, the I/O stations and the

SCADA system. If any of the nodes are not capable of handling the overhead introduced

the proposed mechanism, it cannot be used. This problem can be better understood by the

aid of Figure 3.2, which provides an overview of the entire system.

As shown in Figure 3.2, there is an exchange of information between the PLC

itself, which is the master, and the I/O stations, which are the slaves. Note that an applica-

tion might be composed of several PLCs, each one in a different bus. The PLCs will then

be able to send the information to the SCADA software through the OPC Server. The

OPC Server is connected to the same network as the SCADA software, which is the OPC

Client.

The attacker is assumed to be able to enter the network and capture packets in

both cases, which can be either altered or sent in a later moment as a replay attack. The

30

Figure 3.1: System overview

Source: Adapted from halvorsen.blog

attacker cannot read or alter any of the devices’ memory to obtain any kind of sensitive

information as the access to the devices is protected with a username/password scheme.

3.2 Communication between PLCs and I/O Stations

Regarding the communications between master and slaves, in this work, the focus

is on EtherCAT-based PLCs. Since the communications are made using EtherCAT, this

data is susceptible to the same vulnerabilities and threats as the protocol itself. This

study focuses specifically on the security aspects of communications related to the I/O

updating and its scalability. For securing the communications in its entirety, i.e. other

data exchanges unrelated to I/O, the proposed solution can be used alongside a security

protocol for fieldbuses, such as the one proposed at (WIECZOREK et al., 2012).

If a malicious user gains access to the internal bus, it is possible to change the con-

tents of the packets, possibly causing severe damage to critical systems and even putting

lives in danger. Since the protocol itself does not contain any security mechanisms, all

the data is transmitted as cleartext. The data transmitted without encryption means the

attacker can also obtain sensitive and/or confidential information about the industrial con-

trol process, which might pose a threat. Besides, it also enables the attacker to capture a

frame passing through the bus and to attempt to create a replay attack by resending some

31

old frame, as there are no security schemes to detect such attack. The vulnerability in the

EtherCAT communications is shown in Figure 3.2.

Figure 3.2: Vulnerability in EtherCAT master/slave communication

Source: Adapted from (OMRON Automation Pvt Ltd, 2016)

One way of preventing such malicious interferences is ensuring that communica-

tions between the master and the slaves are encrypted through a cryptographic algorithm.

Furthermore, ensuring that the messages are properly authenticated so that each side of

the communication will only accept incoming packets from the other side. In the scope

of this work, a "message" is the I/O data exchanged between the master and the slaves.

Even though there are other ways of damaging the control system, such as altering Ether-

CAT commands inside a telegram, the focus of this work is on securing the I/O data itself

and to show that it can be done through a software-based solution with low cost, easy

deployment and without any major performance loss. The low cost and easy deployabil-

ity are important because they enable industrial plants equipped with old equipment that

use, for example, OPC DA, to implement security mechanisms without a big investment.

The reasoning is that the plants which still use legacy equipment are most likely trying to

avoid the costs of acquiring new equipment. Therefore, if the proposed solution required

a considerable financial investment, it would most likely not reach the target applications.

Due to its characteristics, the EtherCAT traffic is dealt with by hardware (commer-

cial solutions), which means there is no way to implement security on the EtherCAT com-

mands without acquiring/designing new hardware, making the solution not as low-cost

and not as easily deployable. In this case, further studies would be required to correctly

assess the viability of hardware implementation. However, even in the more specific case

of securing the I/O data only, there are multiple performance considerations to be taken

32

into account when dealing with control systems, which have hard real-time requirements.

One of the challenges of using an approach based on authenticated encryption is

that the scale of the applications PLCs are used for can vary widely. That means certain

applications are more strict concerning cycle times, like motion control. Others might

have hundreds of I/O points (or even more), like a beer brewery automation process.

More specifically, while it is important to achieve a certain degree of security to

mitigate this security threat, it is also important not to compromise the determinism of the

system or cause excessive overhead in ways that could compromise its well-functioning.

It is possible that a solution using encryption/authentication might not be suitable for

every kind of application, depending on how much it impacts the performance of both the

EtherCAT master and slaves.

3.3 Communication between PLCs and the SCADA Application

Regarding the data communicated from the PLCs to the SCADA (or vice-versa),

there is a similar problem with the lack of security. This data contains information re-

lated to inputs and/or outputs and is transmitted as cleartext, without encryption. In the

event that attackers succeed in entering the network, they can capture or tamper with the

packets. There are many possible ways they could interfere with the well-functioning of

the process in both segments, which could lead to serious damage and confidential data

leakage.

One possible solution to the problem would be to insert several external crypto-

graphic modules in the middle of the communication stack, which would ensure fully

encrypted communication between all the nodes of the network. This would mean that

the PLCs, the I/O stations and the SCADA system would not have to worry about the

overhead associated with encoding or decoding data. However, this may not necessarily

be a feasible option due to difficulties accessing the nodes and the possible costs in acquir-

ing new equipment. This work aims precisely to overcome difficulties such as replacing

and/or acquiring new hardware (changing the PLCs for a more robust model or acquiring

external cryptographic modules).

In terms of an attacker gaining access to the communications between SCADA and

PLCs, besides possibly obtaining confidential information, there are mainly two cases in

which the attacker could cause damage: the first occurs if the attacker decides to change

an input variable being read by the SCADA system from a PLC (either by modifying

33

an ongoing packet or by injecting a new one); and the second, if the attacker decides

to change an output value being sent by the SCADA system to a PLC (once again, by

modifying or injecting a packet). For example, altering values read from a sensor or

changing the desired output of an actuator.

3.4 Problem Summarization

Therefore, the problem to be addressed is how to provide the necessary security

only by software, implementing it in the application layer, because it is much easier to

deploy software updates in a plant than to install new hardware. In fact, it is not only

much easier but much cheaper and faster too. Thus, a software-based solution is more

appealing for both segments.

It is absolutely critical to take into consideration the performance of all entities in

the application. The focus of this work is on proposing an approach to use authenticated

encryption to secure I/O data, while determining how the proposed mechanism will affect

the performance of each entity. This will allow the question regarding the viability of

authenticated encryption in this context to be answered for all entities. The entities in

question are: the I/O stations, the PLCs and the SCADA application. Therefore, the

research questions proposed by this work can be summarized as:

• How much slower will an EtherCAT slave be when using a security mechanism

based on authenticated encryption?

• How scalable is this solution on different scenarios, with different quantities of I/O

points, when analyzing the master’s point of view? How much slower will the

master be?

• How scalable is this solution in terms of I/O points when analyzing the SCADA ap-

plication’s point of view? Is the solution viable in real applications, with hundreds

or thousands of I/O points?

34

4 PROPOSED APPROACH

This chapter is subdivided in three sections based on the partitioning of the prob-

lem. First, the common aspects of both parts of the problem are presented. Then, the

aspects related to the communication between PLCs and I/O stations. Finally, in the last

section, the aspects related to the communication between the PLCs and the SCADA

application are presented.

4.1 Common Aspects

Having the problem properly stated, it is possible to look into finding solutions to

defend the system. The main objective is to prevent malicious tampering of the packets

contents and disclosure of confidential information. As previously mentioned, one way of

defending the system is by using an authenticated encryption scheme. There are studies

in the area of cryptography that focus on algorithms, suitable for hardware and/or soft-

ware implementations, for resource-constrained devices, typically targeting one of a list

of metrics. Some of these metrics are memory consumption, throughput, and code size

(ENGELS et al., 2011).

Out of the proposed authenticated encryption algorithms, Hummingbird-2 (EN-

GELS et al., 2011), which is a symmetric-key algorithm, was chosen for the implemen-

tation of the proposed solution due to its properties, such as having authentication and

not increasing the size of data upon encryption. Maintaining the same number of bits

after the encryption is particularly interesting in terms of scalability. Besides, it will also

help to isolate the actual overhead from the possible side effects that could be caused by

increasing the network traffic. Certainly, other algorithms can also be used, but for the

sake of providing a proof of concept, this work focuses on one algorithm. Future works

regarding comparing the usage of different algorithms can also be conducted.

Hummingbird-2 is an authenticated encryption algorithm which works with a 128-

bit encryption key and a 64-bit initialization vector. It operates on 16-bit blocks, inheriting

properties from both stream and block cipher categories. The encryption and decryption

are entirely based on 16-bit operations, such as exclusive or between words, addition and

subtraction modulo 65536, and a nonlinear mixing function.

The encryption and decryption, are based on a 16-bit keyed permutation function

WD16 and its inverse, respectively. Let S(x) be the computation of S-boxes S1...S4

35

defined in (ENGELS et al., 2011), L(X) be the linear transformation described below,

� be the left circular rotation and ⊕ be the exclusive or operation. The WD16 function,

which is used for encryption, is defined as follows:

S(x) = S1(x0) | S2(x1) | S3(x2) | S4(x3)

L(X) = x⊕ (x� 6)⊕ (x� 10)f(x) = L(S(x))

WD16(x, a, b, c, d) = f(f(f(f(x⊕ a)⊕ b)⊕ c)⊕ d)

And its inverse, WD16−1, which is used for decryption, is defined as follows,
using the inverses of each function (CHAI; GONG, 2012):

S−1(x) = S−1
1 (x0) | S−1

2 (x1) | S−1
3 (x2) | S−1

4 (x3)

L−1(X) = x⊕ (x� 2)⊕ (x� 4)⊕ (x� 12)⊕ (x� 14)

f−1(x) = L−1(S−1(x))

WD16−1(y, a, b, c, d) = f−1(f−1(f−1(f−1(y)⊕ d)⊕ c)⊕ b)⊕ a

The presented steps are only part of the computation executed during the encryption or

decryption process. For more details about the algorithm and the step by step encryp-

tion/decryption and authentication process, refer to (ENGELS et al., 2011).

According to its authors, the algorithm is suitable for both hardware and software

implementations. Besides the interesting properties previously discussed, another of the

main reasons behind its choice are that this algorithm is mainly designed for low-cost

devices and is suitable for software implementations.

4.2 Communication between PLCs and I/O stations

First, the communication between PLCs and I/O stations must be analyzed. Specif-

ically, to evaluate the performance of these entities the main metric proposed in this work

is the latency metric represented by the cycle time. The cycle time allows the performance

of both PLCs and I/O stations to be properly evaluated. By comparing the baseline case

with the case using the proposed method, it is possible to determine the performance im-

pact of the proposed mechanism. Since the only change in the cases is the usage of the

mechanism, it is possible to isolate its performance impact by calculating the difference

between the measured times. The introduction of the security mechanism must not cause

any kind of interference in the compliance of the device with the application’s real-time

36

requirements. The latency will be most important on the most extreme application scenar-

ios, such as: the ones where the control system is executed with a very small period, using

few I/O points; and those in which the control system is executed with a larger period,

using large numbers of I/O points. For the proposed method to be valid, it is a require-

ment that the real-time properties of the system are preserved, even with the necessary

computations.

The first step towards a solution is to consider whether it should be implemented on

hardware, e.g., ASIC, or software, such as a user or OS program. Usually, implementing

on hardware yields better performance, but it is much harder to deploy on the actual plant

due to the hassle of changing equipment and possibly higher costs. A software solution

could be downloaded on the firmware of each slave and master, making the deployment

of the solution much easier, cheaper and faster. Also, the proposed solution could be

implemented in hardware in the future if needed. Evaluating the software based solution is

the most general case, as the performance of a software implementation tends to be lower.

Therefore, this is the reasoning the support the choice of implementing the proposed

solution in software.

Based on the chosen algorithm previously detailed in Section 4.1, the proposed

mechanism is to use the algorithm to encrypt relevant I/O data. An overview of the solu-

tion is described in Figures 4.1 and 4.2. The EtherCAT master encrypts and authenticates

its messages to the slaves using the chosen algorithm. The EtherCAT slaves decrypt the

message sent by the master and process it. Depending on whether they are input or output

stations, they will either just read the EtherCAT commands and data sent by the master, or

they will read the EtherCAT commands and write their own encrypted data, respectively.

Naturally, the stations can also be de facto I/O stations, i.e. one station which has inputs

and outputs. In that case, inputs and outputs can be dealt with separately using the cases

presented in Figures 4.1 and 4.2.

It is important to notice that, due to the design of the algorithm, the number of bits

generated after the encryption operation is performed remains the same. Since the same

number of bits will be sent (even though they are now encrypted), there is absolutely no

change in the on-the-fly characteristic of the EtherCAT protocol, as the packet forwarding

is independent of the algorithm execution. The only difference is the meaning associated

with each bit and the processing that will be necessary once the data is received by a node.

This would be the only difference seen when comparing the packets with or without the

mechanism. It is also possible to include a variable that would act as a packet counter,

37

having a unique identifier for each packet. Once encrypted, an attacker would not be able

to update this number, and therefore, old packets can be rejected. In this case, there would

be the addition of a single variable of, for example, 16 bits. Thus, it is possible to prevent

a replay attack using this scheme.

Figure 4.1: Overview of the secure I/O data exchange with an output station

Source: Author

Figure 4.2: Overview of the secure I/O data exchange with an input station

Source: Author

Naturally, the master and all the slaves must have some shared key in order to com-

municate. In (SAARINEN, 2013), it has been noted that Hummingbird-2 is susceptible

to certain related-key attacks. The first 64 bits of the key can be independently recovered

with only 236 effort. Although this makes the algorithm less strong, the proposal here is

that the secret key should be exchanged (or renewed) from time to time, periodically. This

interval should not be too long that it would be time enough for the key to be discovered,

but should also not be too short to avoid unnecessary overhead. Evaluating this time inter-

38

val is outside of the scope of this work, as this would also depend on the chosen algorithm,

and the proposed solution does not intend to obligate the usage of Hummingbird-2.

Regarding the key exchange, it is important to take into consideration the premise

that states the network is considered unsafe due to the possibility of an attacker having

access to it. For instance, a simple straightforward exchange of keys will not prevent

an attacker from obtaining the key. Therefore, whichever the key exchange algorithm

might be, it must be one that will be able to achieve a secure key exchange over an unsafe

network, such as Diffie-Hellman (WIECZOREK et al., 2012). After the first key exchange

occurs, in which the master sends the key to the slaves, a time interval to renew the key

should be specified on the master. When the time interval has passed, the master renews

the key and the new key should be encrypted with the old one. Once the slaves receive

the new key, both master and slaves should start securing the data with it.

The exchange of messages will be made using mechanisms implemented by the

EtherCAT protocol itself. On the slave, to ensure the data consistency, EtherCAT uses a

mechanism called SyncManager to prevent multiple simultaneous access to the EtherCAT

Slave Controller (ESC) memory. In practice, this memory can be accessed by the Ether-

CAT network (the master) or by the local microcontroller (the slave). The SyncManager

has two modes of operation: the buffered mode, which is used for cyclic data exchange

(the I/Os, for example), and the mailbox mode, which is used for acyclic data exchange

by the means of a handshake mechanism.

In this proposed solution, each slave encrypts its own I/O information using the

secret key, which should be known by all devices in the bus. It is important to notice that

each slave’s algorithm processing time will not affect other slaves, since the EtherCAT

stack is implemented by hardware and it does not have to wait for the slave to finish pro-

cessing it to forward the packet to the next slave. Therefore, while one slave is encrypting

its I/O data, the packet is already being forwarded to the next node on the bus. It is also

important that all modules must have the same key to ensure that the application will per-

form as expected. Techniques such as using hot swap features which allow redundancy

can be used to ensure that the security mechanism will only start being used when all

modules have the key.

In this case, as defined, the encrypted message contains only the I/O data, meaning

it is only a part of the EtherCAT frame. This data is then sent to the master using the Sync-

Manager’s buffered mode. This is the standard operation of a slave when exchanging I/O

information. Due to the properties of the algorithm and because the size of the exchanged

39

data remains the same, the only difference will be the fact that the master will have no

more access to the input data in clear (without performing a decryption operation). Input

data is mentioned separately in this case because the master can maintain a copy of the

unencrypted value, as the master is the one who sets these values.

It is also proposed that the exchange of keys between modules should use the

SyncManager’s mailbox mode. With this mode, it is possible to avoid causing unneces-

sary overhead or exchanging the same key multiple times, as the mailbox communication

does not happen cyclically like the I/O exchange.

To assess how viable this security mechanism is in practice, a performance evalu-

ation is performed focusing on two main points: the master and the slaves.

On the master, the performance evaluation method is based on two metrics:

• Cycle time: the time between the activation of the control task and the completion

of its execution, which comprises the execution times of the embedded software

routines and of the security mechanism. With this metric, it is possible to isolate

how much impact the mechanism will have. The same insight has been used on

(ROBERT et al., 2012) to compare the performance of various real-time Ethernet

protocols.

• Time variation amplitude (tmax − tmin): the difference between the maximum and

minimum cycle times measured during a certain period of observation. With this

metric, it is possible to determine if the computations related to the security mech-

anism introduce any peaks in time, which would deteriorate the time-determinism

of both master and slaves in terms of jitter.

First, the performance of the master running without the security mechanism must

be determined. This is achieved by collecting samples of the minimum, average and

maximum cycle times. These samples are collected over a period of time and represent the

baseline performance of the master. Then, the process is repeated in the master, now with

the security mechanism running. After this, it is possible to compare the performances

of both cases and measure the actual impact of the implemented mechanism using the

two metrics. The sample times are measured with the master’s internal timers, which

are displayed on the programming tool. It is important to notice that, while the security

mechanism has the objective of securing EtherCAT communication, the cycle times refer

to the whole task execution time. This comprises the times from interrupt requests, the

entire communication stack, and the operating system itself, among others. Therefore,

40

these times include not only the EtherCAT communication time itself, but other significant

times as well.

It is also important to emphasize how critical the scalability is for the master. The

master must handle the communication with all slaves, as big as the number of slaves may

be. On the other hand, the slaves will have to deal exclusively with its own number of

I/O points (e.g, 8 points). This does not mean, however, that scalability can be neglected

on the side of the slaves. However, in an application with, for example, 1000 I/O points,

while the master will have to process all the points, the plant will be comprised of several

individual slave modules, each with a much smaller number of I/O points.

Usually, the master can process a task with the same computational effort in less

time than the slaves. Because the entity responsible for running the control task is the

master, it is equipped with more "powerful" hardware capable of running much bigger

applications than the slave. This means that it is possible to introduce in the master more

calculations related to the security mechanism without disrupting the intended function-

ing of the device. While it is also important to verify if the mechanism does not introduce

peaks or jitter in the cycle time, a more worrisome concern is the scalability, when con-

sidering bigger quantities of I/O points. Therefore, it is absolutely critical to verify how

scalable this mechanism is for an increasing number of I/O points if the results for a single

slave prove to be acceptable.

In the case of communicating with an input station, the master sends a reading

command to the corresponding slave. Since this packet does not contain any sensitive

data, only the command itself, and since the scope of this work is to secure the I/O data,

not the EtherCAT commands, it can be transmitted in clear. However, when the master

receives the input data, which has been encrypted by the slave, the master needs to decrypt

it.

In the other case, when the master communicates with an output station, the master

will send a value to be written on one (or more) of the slave’s outputs. Therefore, the

master has to encrypt the sensitive data in the packet, i.e., I/O data, before sending it to

the slave. Then, the slave has to decrypt it once the packet has been received.

Therefore, considering that computations related to the chosen algorithm occur on

both ends, these operations add some overhead to the slave as well. One way of evaluating

the performance of the slave is based on (CENA et al., 2012). While the scope of the au-

thors’ work was directed at evaluating the performance of EtherCAT’s Distributed Clock

(DC) mechanism, the same tests could be used to compare the performance of slaves with

41

and without the security mechanism by measuring how synchronized they are. Specifi-

cally, in the performed test two input stations (slaves), one with the security mechanism

and the other without, are fed with the same nonconstant signal, and compared the times-

tamp they take on specific level variations.

However, the proposed test to evaluate the performance is to actually measure the

software cycle time in the slave module using its internal software timers. The reason

for this choice is that the algorithm is implemented in software and, measuring the time

using software avoids introducing more factors, such as another slave module or even the

precision of EtherCAT’s DC mechanism, while also allowing an analysis on the impact

of the data transfers to the application. Although software timers might not be the most

precise option for measuring hard real-time applications, it is believed that it is precise

enough as a proof-of-concept, given that the slave cycle time is in the order of magnitude

of milliseconds.

4.3 Extending the Security Mechanism to the Communications between PLCs and

SCADA Application

This section analyzes the aspects related to the communications between PLCs and

SCADA application and how to prevent the threats previously defined. Similarly to the

case of the communications between PLC and I/O stations, it is also possible to deploy a

hardware-based solution to secure the communications between PLCs and SCADA. How-

ever, this would also cause unwanted costs and efforts in this case, which go against the

objectives of this work. Besides, the proposed solution involves integrating the same secu-

rity mechanism in both segments of the communication to take advantage of its structure

to increase the performance. Therefore, just like in the previous case, this will be dealt

with using a software-based solution.

In the case of the SCADA application, it is possible to implement user-created

scripts that can be used to process data, generate charts, visual representations, etc. This

can also be used to implement the encrypting and decrypting operations of the chosen

algorithm. There must be, however, a concern regarding performance in both ends due

to the real-time requirements, whatever the adopted defense mechanism is. The perfor-

mance of such operations will also most likely be affected by the computational power

of the computer running the SCADA application. Therefore, it is important to specify

the parameters of the system while designing the whole industrial application. Naturally,

42

depending on the chosen algorithm, the system may present a different performance as

well.

Using regular cryptographic algorithms on real-time systems can be tricky due to

the performance considerations, as it may incur an unacceptable latency or power con-

sumption. This is the case of the algorithms mentioned by the SCADA security standards

analyzed in (GHOSH; SAMPALLI, 2019), which show how important is the performance

aspect, especially considering scalability aspects. While neither the PLCs themselves or

the SCADA system are low-end devices, they have an important requirement related to

response time, which must be met.

The proposed solution focuses on ensuring the secure communication of I/O data

while targeting scalability and performance aspects of all nodes, including the SCADA

software application. This is achieved by making use of the already encrypted data cal-

culated by each PLC in the application. The proposed approach can be better understood

with the aid of Figure 4.3, by dividing it in the two parts previously defined: the first part

is the communication of each individual PLC with the I/O stations, which are their slaves;

the second part represents the communication of all the PLCs present in the plant with the

SCADA system.

The first part has been thoroughly described in Section 4.2. The important detail

to understand how the security will be applied to SCADA is to note that each PLC will

store the encrypted values of each I/O variable. This is necessary to avoid the overhead of

encrypting all the relevant variables once again before sending them to the SCADA appli-

cation, which would most likely not be feasible in terms of performance. When looking

at the whole control process, it is possible to say that the encryption will be computed

distributedly, as they will be calculated by the PLCs and I/O stations beforehand.

At this point, given that all variables of interest have their encrypted form calcu-

lated, there is no additional overhead for the PLCs or the I/O stations. Therefore, the PLCs

are able to send the encrypted variables in a very straightforward way to the SCADA sys-

tem. This also means that extending the security mechanism to the SCADA system will

happen in an almost transparent way from the point of view of the PLCs and I/O stations,

the only drawback being having to use more memory to store the copies of the variables

(on the PLC).

The exchange of data between all the entities is represented in Figure 4.3. The

two arrows which go from the writing value (W) and the reading value (R) represent the

values that were previously calculated and will be sent to the SCADA system by each

43

PLC. Naturally, the writing value should only be sent once the master receives a confir-

mation that the value has been successfully written. However, this has been represented

differently in the figure to facilitate the understanding.

The same process can be repeated for all the PLCs in the control plant. Each

one of the PLCs will then send their relevant variables to the SCADA system. As these

variables are all encrypted, the I/O data is now secure. Once the variables reach the

SCADA system, the software application must decrypt all of them before showing them

to the end user, whatever the user application may be. This part might be a problem in

terms of scalability, depending on the overall performance of the chosen cryptographic

algorithm and on the computer running the SCADA application. As the SCADA system

will receive variables from all PLCs, which could sum up to thousands of variables, it is

important to carefully choose the algorithm to be used. If it is possible to estimate the

size of the control application, that information can also be used to determine the viable

option when choosing the algorithm.

Figure 4.3: Solution overview

Source: Adapted from halvorsen.blog

While it is not part of the contribution of this work to actively specify one cryp-

tographic algorithm, Hummingbird-2 has been chosen as a proof of concept in order to

assess if authenticated encryption is a valid way of securing I/O data. However, the same

mechanism can be applied using different algorithms, and the algorithm can be changed

if any other better option is proposed. Ideally, it would be good to conduct tests to com-

44

pare different algorithms and determine which one of them serves the best. Even a small

difference in the performance will reflect on each one of the possibly thousand variables

of the application, which could end up having a great impact on the final performance.

Similarly to the first part presented, there also must be some kind of key exchange

between the SCADA system and the PLCs. There are proposed key exchange schemes in

standards such as IEC 62531 and AGA-12 (GHOSH; SAMPALLI, 2019). This work does

not aim to assess the viability or to evaluate the performance of key exchanging protocols,

but to evaluate the overhead imposed by the proposed security mechanism. Therefore, the

performance considerations related to the key exchange are not considered in this study,

although they should be considered in future works and in real applications.

To assess the performance of the SCADA system, an experiment is proposed as

depicted in Figure 4.4. Because Hummingbird-2 is an algorithm which has the decryption

operation much more costly than the encryption, according to its authors. Therefore,

an experiment based on decryption was designed to evaluate the worst-case scenario.

If the worst-case scenario shows an acceptable performance, it is safe to say that any

combination of encryption and decryption operations will have an acceptable performance

as well. Therefore, the experiments are comprised of one or more PLCs that send their

encrypted variables through the network to the SCADA system. The SCADA will then

decrypt the received variables.

Figure 4.4: Experiment schematic (SCADA reading PLC’s inputs)

Source: Author

Based on the experience of engineers who work with SCADA system on a daily

45

basis, two metrics have been proposed to evaluate the impact of the proposed security

mechanism:

• Synchronization time: time to effectively start communicating (i.e, from starting

the system to the first data displayed on the screen);

• Response time: how long it takes for an I/O point to be updated, i.e., the time

between two reads or writes.

46

5 EXPERIMENTS AND RESULTS

5.1 Communication between PLC and I/O station

The experiments were conducted on a real setup comprised of one master, a com-

mercial PLC, and one slave, 8 analog input station, in which each input is represented by

16 bits. The slave is an embedded device, which runs a firmware, equipped with a 32 bits

ARM Cortex-M3 processor running at 72 MHz. The slave firmware code is written in C

and has been made available for this work. This firmware was adapted to implement the

proposed changes, such as the encryption and decryption of I/O variables.

The master is an ordinary PLC designed for small/medium-sized industrial appli-

cations, with up to 64 I/O stations in the same bus, which are addressed with EtherCAT’s

auto-increment addressing mechanism. Considering 8 input/output points per I/O station,

using a PLC which supports up to 64 I/O stations, that means up to 512 I/O points. It

runs a Linux operating system and executes a runtime system, which handles the tasks

directly related to making the device compliant with the IEC 61131-3 standard for indus-

trial controllers. Besides the I/O updates, there are other features also implemented on the

master, such as diagnostics; the discovery cycle, where the master tries to discover new

modules on the bus, which have not yet been configured; and the communication with the

programming tool. It is important to notice that the execution of these tasks also intro-

duces an overhead, as well as some variability in the execution time. On the EtherCAT

master, the measured times take into account the overhead introduced by these software

layers. It is equipped with a 32 bits PowerQUICC II Pro processor running at 417 MHz

and 64 MB RAM. The chosen algorithm was implemented on both modules according to

the proposed implementation.

According to the number of instructions for the implementation, the decoding op-

eration should be approximately 50% more costly. Although it is difficult to accurately

predict execution time, making a rough estimate by considering an average number of

cycles per instruction of one or two, the mechanism should be viable on both devices.

While it is expected that different PLCs and I/O stations have different perfor-

mances, the experiments can be conducted as a proof-of-concept, determining if it is

viable to use cryptography as a security mechanism for communications between master

and slave.

For the sake of evaluating the performance, the specific part about the key ex-

47

change between master and slave nodes, as proposed in Figures 4.1 and 4.2, has been

omitted because it is not an event that should frequently happen. The key exchange mes-

sages can be appended as one or more datagrams in an EtherCAT packet, such as read

and write commands, meaning its impact should be minimal. Therefore, this impact will

be considered negligible.

The testbed is comprised of the two modules, one master and one slave, connected

on a high-speed 100 Mbit/s network which uses EtherCAT. The master communicates

with the development environment through a point-to-point connection. In the execution

of each experiment, a user program has been programmed on the master to encrypt and/or

decrypt the I/O data received from the slave, according to its objective. The slave encrypts

or decrypts the data according to the algorithm implemented on its firmware. There is no

need for more than one slave to evaluate the performance of the algorithm, as each slave

will process its own I/O independently and that does not affect the packet forwarding to

the following modules.

As previously defined, the first experiment focuses on obtaining the baseline per-

formance of both modules running without the security mechanism by measuring cycle

times. On the master, 3500 samples of the cycle time were acquired.

The number of samples in each experiment was chosen to both optimize the testing

time by not collecting an excessive number of samples and, yet, provide meaningful and

trustworthy results. The results of experiments comprising 3500 and 7000 samples were

compared and no significant discrepancies have been found. Therefore, all the following

experiments on the master have been conducted with 3500 samples. The samples were

measured with an internal hardware timer with a precision higher than 1 µs.

On the side of the slave, due to memory restrictions on obtaining the samples, the

experiments have been conducted with 800 samples. Still, judging by the variability of

the samples, an experiment comprised of 800 samples is statistically meaningful. The

experiments were repeated ten times each and no significant discrepancies have been

found. The timer used on the slave has a precision of 62.5 µs, approximately. This has

been considered enough precision because of the order of magnitude of the cycle time,

which is in the order of milliseconds.

According to the obtained results reported in Table 5.1, it is noticeable that the

time variation amplitude is quite big (809 µs) even in a normal execution. Preliminary

studies point that the majority of this jitter is caused by the routines with process the

packets. These routines use a semaphore to achieve mutual exclusion of certain specific

48

Table 5.1: Master baseline performance

Cycle Time(µs)
Min Avg Max Std. Dev. tmax − tmin

1693 1878 2502 28.134 809

Source: Author

Table 5.2: Slave baseline performance

Cycle Time(ms)
Min Avg Max Std. Dev. tmax − tmin

6 6.07 6.5 0.216 0.5

Source: Author

resources, which cause certain threads to be blocked at times, generating a variation in

the cycle time. Still, since exploring the reasons for this variability and these peaks in the

cycle time is out of the scope of this work, the baseline performance will be considered

acceptable. The impact of the security mechanism will be evaluated in comparison to

the baseline performance, considering only the potential increase in the time variation

amplitude. It is also noticeable that the standard deviation is pretty small (approximately

28 µs). This information will be used to evaluate if the algorithm introduces variability in

the cycle time.

Analyzing the data in Table 5.2, it has been found that the cycle time in the slave

is much bigger than the one in the master. However, because of the fixed amount of

I/O points each slave must process, the potential impact on the cycle time is also much

smaller. It is also noticeable that the standard deviation is very small, meaning that there

is a very small variability over various cycles.

The first experiment conducted on the slave is comprised of encrypting its own 8

analog inputs, equivalent to 128 bits. This is the scenario that would actually be encoun-

tered in a real application using this mechanism in an input station.

In the second experiment, the slave decrypted its own 8 analog inputs, which is

performance-wise equivalent to the eight output values which would be sent by the master.

While the used slave station is an input station, i.e. it does not have to use decryption when

communicating with the master (it would only encrypt its I/O data before sending it), one

experiment evaluated the performance of the decryption. Although it does not necessarily

make sense for an input station to decrypt the I/O data in a real application, this scenario

is still useful to evaluate the case in which an output station would be used. Therefore,

49

this is a way of evaluating this scenario without actually using another different slave,

thus simplifying the setup for the experiments.

The comparison between the baseline and the two experiments can be seen in Fig-

ure 5.1. For the sake of a more detailed analysis, the cycle times are also presented in

Table 5.3. As previously mentioned, considering the slave performance, it is not nec-

essary to analyze or experiment with bigger quantities of I/Os, because each I/O station

is responsible for encrypting/decrypting the I/O data related only to its own I/O points.

Therefore, a control task with hundreds of I/O points would be comprised of several dif-

ferent I/O stations, each with a fixed number of I/O points (e.g., 8 points). It is therefore

assumed that on a real application, the individual performance of each I/O station can

be evaluated on a smaller testbed, as the number of I/O points each station will process

will be the same independently of the size of the application (assuming that the station is

processing all its available points).

The impact on the slave is percentually small, approximately 6% for encrypting

and 7.5% for decrypting I/Os. Also, the time variation amplitude did not present signifi-

cant changes, even showing smaller values. This is due to the precision of the timer used

in the measurements and that difference is therefore considered negligible. It is impor-

tant to notice that, if the station is a digital I/O station, the cycle times would be even

closer to the baseline, as the overhead would be much smaller because fewer bits would

be processed.

Figure 5.1: Measured slave cycle times in different scenarios

Source: Author

50

Table 5.3: Detailed measured slave cycle times in different scenarios

Cycle Time (ms)
Min Avg Max Std. Dev. tmax − tmin

Baseline 6 6.07 6.5 0.216 0.5
Encrypting

128 bits 6.375 6.430 6.812 0.228 0.437

Decrypting
128 bits 6.5 6.531125 6.9375 0.233 0.437

Source: Author

Table 5.4: Detailed measured master cycle times in different scenarios

Cycle Time (µs)
Min Avg Max Std. Dev. tmax − tmin

Baseline 1693 1878 2502 28.134 809
Encrypting

128 bits 1823 1953 2575 33.488 752

Decrypting
128 bits 1944 2024 2711 33.888 767

Source: Author

The first step in assessing the impact on the master is to consider a scenario where

the master communicates with a single slave. The experiment was conducted considering

scenarios in which the master communicates with an analog input station (i.e., it decrypts

received data) and in which it communicates with an analog output station (i.e., it encrypts

data before sending). The results are presented in Table 5.4.

According to the obtained results, there has been a slight increase in standard de-

viation in both cases, encrypting and decrypting I/Os. It appears there is no significant

increase in the time variation amplitude, which suggests no peaks in the processing time

caused by the security mechanism. While the obtained values are smaller than the base-

line, this is due to the inherent variability in the cycle time of the master, which results in

rare peaks in time, as can be noticed by analyzing the standard deviation of the baseline.

Last but not least, evaluating the scalability with an increasing number of I/O

points is also an important aspect. With this concern in mind, first, several experiments

were conducted, each time increasing 64 analog I/O points (1024 bits), to determine if the

cycle time grows in a linear fashion, proportional to the number of I/O points. The I/O

points were increased through software, i.e. the slave itself maintains its original number

of points. Since the evaluation is focused on the security of the I/O data itself, in practice,

51

this is equivalent to securing the data of a slave with more points. These experiments

were conducted for both encryption and decryption. The results of these experiments

are presented in Figures 5.2 and 5.3. Similarly to the results obtained on the slave, the

standard deviation while encrypting/decrypting many I/O points did not have a significant

change in respect to the values obtained in the baseline experiment.

Figure 5.2: Master’s encoding operation showing a linear behavior

Source: Author

Figure 5.3: Master’s decoding operation showing a linear behavior

Source: Author

52

Table 5.5: Measured master cycle times while encrypting I/O points

Cycle Time (µs)
Encrypting Min Avg Max Std. Dev. tmax − tmin

Baseline 1693 1878 2502 28.134 809
128 bits 1823 1953 2575 33.488 752
256 bits 1989 2066 2715 34.243 726
512 bits 2173 2270 2900 31.396 727

1024 bits 2608 2724 3402 30.439 794
2048 bits 3438 3527 4123 29.741 685
4096 bits 4976 5089 5577 29.772 601
8192 bits 8166 8345 8861 30.348 695
16384 bits 14535 14760 15224 31.586 689

Source: Author

Table 5.6: Measured master cycle times while decrypting I/O points

Cycle Time (µs)
Encrypting Min Avg Max Std. Dev. tmax − tmin

Baseline 1693 1878 2502 28.134 809
128 bits 1944 2024 2711 33,888 767
256 bits 1995 2163 2730 36,554 735
512 bits 2276 2492 2977 34,329 701

1024 bits 2789 3082 3454 30,556 665
2048 bits 4155 4295 4823 32,93 668
4096 bits 6503 6730 7258 37,592 755
8192 bits 11208 11424 12039 31,578 831
16384 bits 20670 21022 21570 35,658 900

Source: Author

According to these results, it is possible to state that the cycle time grows linearly

related to the number of encrypted/decrypted I/O points. Therefore, the final experiment

was the assessment of how much a big number of I/O points would affect the master. The

experiments were conducted up to 1024 I/O points (16384 bits), considering encryption

and decryption operations, and the results are presented in Tables 5.5 and 5.6.

With the obtained results, it is noticeable that the decryption operation demands

more execution time than encryption. This makes sense with the statement of the authors

of Hummingbird-2, who mention that the decryption operation is more costly. Evaluating

the time amplitude variation, it is also possible to conclude that the decryption does have

a certain contribution to the execution time peaks. Another fact worth mentioning is that

the decryption of 1024 I/O points results in an increase of approximately 20 ms in the

53

cycle time.

On the slave, for 8 analog I/Os, which correspond to 128 bits, the security mecha-

nism increased the cycle time by approximately 0.4 ms, when encrypting, and by 0.5 ms,

when decrypting. On the master, for a big application with 1024 analog I/O points (16384

bits), there was an increase of 20 ms in average cycle time, with no significant spikes in

execution time.

5.2 Communications between PLCs and SCADA System

The experiments were conducted on a real setup, using real equipment, four PLCs

and a computer running the SCADA system. Each PLC is equipped with a 32 bits Pow-

erQUICC II Pro running at 417 MHz and 64 MB RAM. The SCADA system runs on a

computer equipped with a Intel R© CoreTM i7-3770 running at 3.4 GHz and 8 GB RAM.

The PLCs and the SCADA system were connected to the university network dur-

ing work hours, meaning the network presented regular traffic from other users and univer-

sity affairs. The reason to avoid a point-to-point connection is that the university network,

with other users sending and receiving data through it, is much more similar to a real use

scenario. One of the PLCs used in the experiments is shown in Figure 5.4. This figure

shows two separate modules, one external supply (on the left) and one PLC (on the right),

connected on the same bus, as well as the PLC connected to the university network by an

ethernet cable.

As the focus of the work of these experiments is on the performance of the SCADA

system, the experiments were conducted with the PLC sending its variables to the SCADA.

In other words, the SCADA reads the PLCs’ inputs. This means that, according to the pro-

posed solution presented in Figure 4.4, the PLC encrypts the data and the SCADA system

decrypts it. The reason for this way of performing the experiments is that the decryption

process in Hummingbird-2 is more costly in terms of processing time. Therefore, this

is the worst-case scenario for the SCADA in terms of computational effort. If this case

proves to be acceptable, then there should be no problems with others.

The test application on the SCADA is a project with 20,000 integer variables,

each with a size of 16 bits, totaling 320,000 bits of data. Each one of the four PLCs has

5,000 variables, which are sent to the SCADA through the network. The SCADA system

chosen for the experiments is a commercial tool used in real applications. In a real plant,

not every variable is an integer, many can be just one bit (digital variables), but for the

54

Figure 5.4: Example of a bus containing an external power supply and a PLC (manufac-
turer name omitted as requested)

Source: Author

sake of this experiment, it has been decided to use a larger quantity of data. According

to discussions with industry personnel, 20,000 tags is a reasonable number of tags for a

real application. Notably, not necessarily a real application with 20,000 tags would be

comprised solely of four PLCs.

In Figure 5.5, the mapping of tags on the SCADA application is shown. This is

where the variables to be monitored are specified. In Figure 5.6, the PLCs which will

communicate with the SCADA are configured, defining OPC DA as the interface to be

used. In Figure 5.7, each tag is mapped to a real variable, i.e. the actual variable in one of

the PLCs.

The experiments have been repeated 100 times in both scenarios, i.e. with and

without the proposed security mechanism. The results from the baseline performance

(without security) are presented in Table 5.7. The results from the secure communication

case are presented in Table 5.8.

In the baseline case, the experiments have shown an average synchronization time

of approximately 41 seconds, while the case using the security mechanism has shown an

average of approximately 43.3 seconds. Considering the standard deviation and median

55

Figure 5.5: Tag mapping on SCADA

Source: Author

Table 5.7: SCADA system baseline performance

Metric Average Std. Dev. Median
Synch. Time (s) 41.03 11.03 41.18

Response Time (s) 15.11 5.58 14.36

Source: Author

of both cases, there is a slight increase which is most likely caused by the use of the

proposed mechanism. Still, considering the average time, it is an increase of just 5.6%,

which is considered a good result. While more than 40 seconds can be seen as too much

time in industrial applications, it is important to notice that this will only happen once,

at the startup of the plant. This means that, if the plant does not stop at any time, this

would not have an impact on the production. Besides, as the SCADA software used in

the experiments is a commercial solution, its baseline performance is deemed acceptable

for use in industrial applications. Therefore, every comparison is made considering the

baseline performance as an acceptable value.

Similarly, the response time in both cases is very similar, approximately 15 sec-

onds for the baseline case and 16.3 seconds with the security mechanism active. In this

56

Figure 5.6: Nodes configuration on SCADA

Source: Author

Figure 5.7: Points mapping on SCADA

Source: Author

case, the increase is a bit bigger, approximately 8.6%. It is important to notice that this

does not mean the system can only act upon the field devices once every 15 seconds. It

is the average time it takes for an operator, using a workstation, to notice a change in a

57

Table 5.8: SCADA system with secure communication performance

Metric Average Std. Dev. Median
Synch. Time (s) 43.36 11.90 43.62

Response Time (s) 16.31 5.76 16.60

Source: Author

variable, considering the moderate-sized plant with 20,000 integer variables, although the

control plant is still operating as intended in this meanwhile.

According to the results from the performed experiments, there have been no sig-

nificant differences in the usability of the SCADA system, considering the chosen met-

rics, using or not the proposed security mechanism. The reason behind this is because the

computer which will run the SCADA system has a vastly superior computational power

compared to the PLCs. This enables the SCADA application to deal with a much greater

number of operations, although it is important to emphasize that the computer used in

these experiments is by no means a high-end device. Still, it is important to be aware of

the performance considerations, meaning a lightweight cryptographic algorithm is still a

good choice for such an application. This is particularly important considering that the

computers running the SCADA system can be more low-end, or the plant can be big.

58

6 CONCLUSION

This work proposed and assessed the viability of introducing a security mecha-

nism based on authenticated encryption in industrial communications. Particularly, in the

EtherCAT communications between a master and its slaves and in the communications

between the PLCs and the SCADA system achieved using OPC DA. The studied target

applications are automation and control tasks, which have hard real-time requirements and

the focus has been on determining the impact introduced by the proposed mechanism.

Experiments have been conducted on both master and slave to answer two funda-

mental research questions: whether it is possible to implement this on a slave, considering

the overhead it would introduce; and how scalable the proposed solution is, considering

bigger applications with bigger number of I/O points, where the master would need to

communicate with many more slaves.

Evaluating the results on the side of the slave, it is noticeable that the impact

in performance is not very high, but it also depends on how many I/O points the slave

has. Naturally, using the mechanism would introduce a delay in the response time of

that station. Considering an extreme case where a fast response time is needed, e.g. a

saw safety braking mechanism, it would still take at least a few milliseconds. Therefore,

while there are some very selective applications that this small increase could potentially

cause damage, for most applications, the slave can be secured.

According to the results on the master’s side, it is possible and viable to use the

proposed mechanism for many applications, depending on the size of the application (in

number of I/O points) and on the required task cycle time.

Based on the obtained results from both master and slave, it is possible to state that

the mechanism is viable for many applications. Therefore, after concluding the security

mechanism is viable on both master and slave sides, causing no change to the real-time

characteristics of EtherCAT, it is safe to state that this is a viable option to prevent mali-

cious changes in packet content and retrieval of sensitive/confidential control information

for most applications. Some time-critical applications may not be able to benefit from this

type of defense, but in general, it is a suitable solution and enables securing the EtherCAT

I/O communications without requiring new devices. Furthermore, it is possible to state

that the proposed approach is a suitable way of providing a scalable defense mechanism

to secure the automation devices and I/O stations zone, according to IEC 62443 (SHAA-

BAN; KRISTEN; SCHMITTNER, 2018).

59

Analyzing the presented results related to the communications between PLCs and

SCADA, it is possible to conclude that cryptographic algorithms are a good choice to

secure the communications between PLCs and SCADA systems using OPC-DA. There

is no unviable or intolerable performance degradation by using the proposed security

mechanism. The proposed mechanism works well even with a large number of variables

being monitored as shown in the experiments.

As future work, the same security mechanism can be applied to a wide range of

other situations, such as securing EtherCAT’s distributed clock frames or securing data

that does not have strict temporal requirements, e.g. configuration frames. This shows

that the mechanism is versatile.

Moreover, a key exchange mechanism on EtherCAT can be developed, possibly

through mailboxes, and evaluating its performance to ensure that a complete security

mechanism is still viable. It would also be interesting to study the performance impact of

the key exchange algorithms related to the exchange between PLCs and the SCADA ap-

plication, studying if they scale well with increasing numbers of tags and variables, com-

paring the known security standards with each other. Another possible work is to evaluate

other cryptographic algorithms, even hardware-optimized ones, to determine which ones

are optimal for each application. It is also possible to compare these results with ones that

follow some of the standards previously mentioned.

60

REFERENCES

ABBAS, H. A.; MOHAMED, A. M. Review on the design of web based scada systems
based on opc da protocol. arXiv preprint arXiv:1506.05069, 2015.

ÅKERBERG, J.; BJÖRKMAN, M. Exploring network security in profisafe. In:
SPRINGER. International Conference on Computer Safety, Reliability, and
Security. [S.l.], 2009. p. 67–80.

AKPINAR, K. O.; OZCELIK, I. Development of the ecat preprocessor with the trust
communication approach. Security and Communication Networks, Hindawi, v. 2018,
2018.

ANTON, S. D. et al. Two decades of scada exploitation: A brief history. In: IEEE. 2017
IEEE Conference on Application, Information and Network Security (AINS). [S.l.],
2017. p. 98–104.

BECKMANN, G. Ethercat communication specification, version 1.0. EtherCAT
technology group, 2004.

BIRYUKOV, A.; PERRIN, L. State of the art in lightweight symmetric cryptography.
IACR Cryptology ePrint Archive, v. 2017, p. 511, 2017.

BOLTON, W. Programmable logic controllers. [S.l.]: Newnes, 2015.

BROOKS, P. Ethernet/ip-industrial protocol. In: IEEE. Emerging Technologies and
Factory Automation, 2001. Proceedings. 2001 8th IEEE International Conference
on. [S.l.], 2001. v. 2, p. 505–514.

CENA, G. et al. Evaluation of ethercat distributed clock performance. IEEE
Transactions on Industrial Informatics, IEEE, v. 8, n. 1, p. 20–29, 2012.

CHAI, Q.; GONG, G. A cryptanalysis of hummingbird-2: The differential sequence
analysis. IACR Cryptology ePrint Archive, Citeseer, v. 2012, p. 233, 2012.

CHUANYING, Y.; HE, L.; ZHIHONG, L. Implementation of migrations from class opc
to opc ua for data acquisition system. In: IEEE. 2012 International Conference on
System Science and Engineering (ICSSE). [S.l.], 2012. p. 588–592.

DECOTIGNIE, J.-D. Ethernet-based real-time and industrial communications.
Proceedings of the IEEE, IEEE, v. 93, n. 6, p. 1102–1117, 2005.

ENGELS, D. et al. The hummingbird-2 lightweight authenticated encryption algorithm.
In: SPRINGER. International Workshop on Radio Frequency Identification:
Security and Privacy Issues. [S.l.], 2011. p. 19–31.

FALLIERE, N.; MURCHU, L. O.; CHIEN, E. Symantec Security Response. [S.l.:
s.n.], 2011.

FOVINO, I. N. et al. Design and implementation of a secure modbus protocol. In:
SPRINGER. International conference on critical infrastructure protection. [S.l.],
2009. p. 83–96.

61

GHOSH, S.; SAMPALLI, S. A survey of security in scada networks: Current issues and
future challenges. IEEE Access, IEEE, v. 7, p. 135812–135831, 2019.

GRANAT, A.; HÖFKEN, H.; SCHUBA, M. Intrusion detection of the ics protocol
ethercat. DEStech Transactions on Computer Science and Engineering, n. cnsce,
2017.

HANNELIUS, T.; SALMENPERA, M.; KUIKKA, S. Roadmap to adopting opc ua. In:
IEEE. 2008 6th IEEE International Conference on Industrial Informatics. [S.l.],
2008. p. 756–761.

HOFFMANN, M. et al. Continuous integration of field level production data into
top-level information systems using the opc interface standard. In: Automation,
Communication and Cybernetics in Science and Engineering 2015/2016. [S.l.]:
Springer, 2016. p. 855–868.

HOLM, H. et al. A survey of industrial control system testbeds. In: BUCHEGGER, S.;
DAM, M. (Ed.). Secure IT Systems. Cham: Springer International Publishing, 2015. p.
11–26. ISBN 978-3-319-26502-5.

Huang, K. et al. A game-theoretic approach to cross-layer security decision-making
in industrial cyber-physical systems. IEEE Transactions on Industrial Electronics,
p. 1–1, 2019. ISSN 0278-0046.

HUNKAR, P. OPC UA vs OPC Classic. Available: <http://www.dsinteroperability.com/
OPCClassicVSUA.pdf>. Access: 12 aug. 2020.

IGURE, V. M.; LAUGHTER, S. A.; WILLIAMS, R. D. Security issues in scada
networks. Computers & Security, Elsevier, v. 25, n. 7, p. 498–506, 2006.

KANAMARU, H. Bridging functional safety and cyber security of sis/scs. In: IEEE.
2017 56th Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE). [S.l.], 2017. p. 279–284.

MILLER, B.; ROWE, D. A survey scada of and critical infrastructure incidents. In:
ACM. Proceedings of the 1st Annual conference on Research in information
technology. [S.l.], 2012. p. 51–56.

NARULA, L.; HUMPHREYS, T. E. Requirements for secure clock synchronization.
IEEE Journal of Selected Topics in Signal Processing, v. 12, p. 749–762, 2017.

NAZIR, S.; PATEL, S.; PATEL, D. Assessing and augmenting scada cyber security: A
survey of techniques. Computers & Security, Elsevier, v. 70, p. 436–454, 2017.

NGUYEN, V. Q.; JEON, J. W. Ethercat network latency analysis. In: IEEE. 2016
International Conference on Computing, Communication and Automation
(ICCCA). [S.l.], 2016. p. 432–436.

NICHOLSON, A. et al. Scada security in the light of cyber-warfare. Computers &
Security, Elsevier, v. 31, n. 4, p. 418–436, 2012.

OMRON Automation Pvt Ltd. EtherCAT Communication Manual. [S.l.]: OMRON,
2016. Available: <https://www.edata.omron.com.au/eData/Vision/Q179-E1-01.pdf>.
Access: 12 aug. 2020.

http://www.dsinteroperability.com/OPCClassicVSUA.pdf
http://www.dsinteroperability.com/OPCClassicVSUA.pdf
https://www.edata.omron.com.au/eData/Vision/Q179-E1-01.pdf

62

OPC Foundation. OPC-UA Security; 2018-12. Available: <http://wiki.opcfoundation.
org//index.php?title=Security>. Access: 12 aug. 2020.

PLIATSIOS, D. et al. A survey on scada systems: Secure protocols, incidents, threats
and tactics. IEEE Communications Surveys & Tutorials, IEEE, 2020.

Prytz, G. A performance analysis of ethercat and profinet irt. In: 2008 IEEE
International Conference on Emerging Technologies and Factory Automation. [S.l.:
s.n.], 2008. p. 408–415. ISSN 1946-0740.

REZAI, A.; KESHAVARZI, P.; MORAVEJ, Z. Key management issue in scada networks:
a review. Engineering science and technology, an international journal, Elsevier,
v. 20, n. 1, p. 354–363, 2017.

ROBERT, J. et al. Minimum cycle time analysis of ethernet-based real-time protocols.
International Journal of Computers, Communications and Control, v. 7, p. 743–757,
08 2012.

SAARINEN, M.-J. O. Related-key attacks against full hummingbird-2. IACR
Cryptology ePrint Archive, v. 2013, p. 70, 2013.

SATO, T. et al. Smart grid standards: specifications, requirements, and technologies.
[S.l.]: John Wiley & Sons, 2015.

SHAABAN, A. M.; KRISTEN, E.; SCHMITTNER, C. Application of iec 62443 for
iot components. In: SPRINGER. International Conference on Computer Safety,
Reliability, and Security. [S.l.], 2018. p. 214–223.

SHAHZAD, A. et al. Real time modbus transmissions and cryptography security designs
and enhancements of protocol sensitive information. Symmetry, Multidisciplinary
Digital Publishing Institute, v. 7, n. 3, p. 1176–1210, 2015.

Shi, W. et al. Edge computing: Vision and challenges. IEEE Internet of Things
Journal, v. 3, n. 5, p. 637–646, Oct 2016. ISSN 2327-4662.

SOMMESTAD, T.; ERICSSON, G. N.; NORDLANDER, J. Scada system cyber
security—a comparison of standards. In: IEEE. IEEE PES General Meeting. [S.l.],
2010. p. 1–8.

SONG, H. M.; KIM, H. R.; KIM, H. K. Intrusion detection system based on the analysis
of time intervals of can messages for in-vehicle network. In: IEEE. 2016 international
conference on information networking (ICOIN). [S.l.], 2016. p. 63–68.

VOLKOVA, A. et al. Security challenges in control network protocols: A survey. IEEE
Communications Surveys & Tutorials, IEEE, v. 21, n. 1, p. 619–639, 2018.

WIECZOREK, F. et al. Towards secure fieldbus communication. In: SPRINGER.
International Conference on Computer Safety, Reliability, and Security. [S.l.], 2012.
p. 149–160.

http://wiki.opcfoundation.org//index.php?title=Security
http://wiki.opcfoundation.org//index.php?title=Security

63

APÊNDICE A — RESUMO EXPANDIDO

Com a iminente necessidade de se aumentar a produtividade das plantas industri-

ais, o uso de equipamentos que automatizem os processos está cada vez mais frequente.

Estes equipamentos — chamados controladores lógicos programáveis (PLCs) — podem

estar localizados em locais de difícil acesso, ou geograficamente distantes, o que torna

necessário o uso de redes de comunicação para monitorar o bom funcionamento dos

processos. Este tipo de rede é denominado de supervisory control and data acquisition

(SCADA) network. O processo é monitorado e controlado através do software super-

visório, chamado de software SCADA, que está conectado aos dispositivos através desta

rede.

Contudo, devido à magnitude e à importância das atividades que se utilizam destes

dispositivos, é absolutamente crítico que sejam considerados aspectos de segurança desta

rede. Diversos protocolos e padrões utilizados na indústria para especificar a comunicação

entre dispositivos não possuem quaisquer mecanismos de segurança para evitar interfer-

ências maliciosas. Um atacante que venha a obter acesso à rede pode facilmente alterar

comandos de entrada e saída (I/O) destinados a receber informações do processo ou atuar

sobre ele, causando danos irreparáveis tanto em custo quanto em vidas humanas. Notavel-

mente, os padrões trabalhados neste estudo (EtherCAT e Open Platform Communications

Data Access (OPC DA)) não possuem qualquer tipo de mecanismos de segurança em suas

especificações.

Existem opções atualmente utilizadas em instalações modernas, como o uso de

módulos externos de criptografia e o uso de padrões mais modernos, como OPC UA,

que especifica mecanismos de segurança. Contudo, essas opções inevitavelmente impli-

cam na aquisição de novos equipamentos e/ou investimento pesado em desenvolvimento.

Isso vai de encontro ao modus operandi das próprias fábricas, que continuam utilizando

equipamentos obsoletos para não realizarem grandes investimentos, ou seja, não é uma

abordagem factível na prática. Notavelmente, a empresa fabricante dos equipamentos

utilizados neste trabalho começou apenas recentemente a desenvolver equipamentos que

trabalhem com OPC UA, o que mostra pervasividade de equipamentos legados na indús-

tria. Outros tipos de métodos podem ser utilizados desde que preservem as propriedades

de tempo real da aplicação. Ainda, a escalabilidade é um dos requisitos mais importantes,

pois estas propriedades precisam ser mantidas mesmo em aplicações de grande porte.

Este trabalho propõe um mecanismo de segurança baseado em software que pode

64

ser facilmente implantado, não acarretando grandes custos e, portanto, sendo principal-

mente voltado para plantas que continuam utilizando equipamentos obsoletos. A abor-

dagem escolhida é o uso de um algoritmo de criptografia com autenticação das men-

sagens, uma abordagem que não havia sido estudada de acordo com a pesquisa bibliográ-

fica conduzida neste trabalho.

O problema foi definido como sendo garantir a segurança das mensagens de en-

trada e saída dentro da rede, e foi subdividido em duas partes: a comunicação entre PLCs

e suas estações de I/O e a comunicação entre PLCs e o software SCADA. Um algoritmo

foi escolhido com base em suas propriedades para a implementação da prova de conceito,

embora a proposta seja aplicável para outros algoritmos de criptografia que garantam a

segurança das mensagens. O algoritmo escolhido foi o Hummingbird-2.

Para avaliar o desempenho do mecanismo proposto, foram propostas métricas para

cada uma das entidades envolvidas, i.e., as estações de I/O, os PLCs e o software SCADA.

Para as estações de I/O, a métrica proposta é uma métrica de latência baseada no tempo de

ciclo do firmware. No caso dos PLCs, foram propostas uma métrica de latência baseada

no tempo de ciclo da aplicação e uma de jitter. Finalmente, para o software SCADA, duas

métricas baseadas na latência e na taxa de comunicação dos dados foram propostas.

Os experimentos foram conduzidos considerando o tamanho de uma aplicação de

médio porte, usando a rede da universidade para simular uma situação de tráfego que se

aproxime da realidade. Para avaliar as estações de I/O, foram conduzidos experimentos

envolvendo encriptação e decriptação de suas portas de I/O. No caso dos PLCs, foram

conduzidos experimentos aumentando-se o número de variáveis sendo encriptadas e de-

criptadas. Por fim, para avaliar o software SCADA, foram conduzidos experimentos onde

o software precisava decriptar um total de 20 mil variáveis inteiras de 16 bits cada, o que

equivale a uma aplicação de médio porte.

Analisando-se os resultados obtidos, pode-se afirmar que a solução proposta é

viável para a maior parte das aplicações. Isso é válido tanto para aplicações pequenas

e com tempos de ciclo bastante pequenos, como aplicações de motion control, quanto

aplicações de até médio porte. O aumento percentual no tempo de ciclo da estação de I/O

foi 7,5% no pior caso. No PLC, para um grande conjunto de 1024 variáveis analógicas (16

384 bits), houve um aumento de 20 ms, o que é considerado um bom resultado dado que

aplicações grandes tendem a ter tempos de ciclo maiores. Finalmente, os experimentos

com o software SCADA apresentaram aumentos de 5,6% para o tempo de sincronização

e 8,5% para o tempo de resposta, no pior caso, para uma aplicação de 20 000 variáveis

65

inteiras de 16 bits (totalizando 320 000 bits).

A principal vantagem da abordagem proposta em termos de desempenho aparece

justamente quando se considera a escalabilidade do método. A abordagem utiliza um

método de computação distribuída onde cada PLC e cada estação de I/O criptografa suas

próprias variáveis. Isso significa que o envio destas variáveis criptografadas para o soft-

ware SCADA causa um impacto muito baixo em termos de desempenho, o que torna a

solução proposta altamente escalável. Notavelmente, o aumento de tempo em função do

aumento do número de variáveis apresenteu crescimento linear.

O método proposto pode, então, ser utilizado para se aumentar o nível de segu-

rança de plantas que não possuem interesse em realizar altos investimentos em equipa-

mentos novos no momento.

Sumarizando, as principais contribuições do trabalho são: projeto, proposta e es-

truturação de um novo mecanismo de defesa baseado em software que apresenta alta

escalabilidade e apresenta um baixo impacto no desempenho, com crescimento linear;

implementação e análise de viabilidade do uso de um algoritmo de criptografia com aut-

enticação no contexto de redes industriais e sistemas de tempo real; e, por fim, incentivo

a discussões e estudos no âmbito da segurança em redes industriais.

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.1.1 Automation
	2.1.2 PLCs
	2.1.3 EtherCAT
	2.1.4 SCADA System
	2.1.5 Standards

	2.2 Related Work

	3 Problem Statement
	3.1 General Aspects
	3.2 Communication between PLCs and I/O Stations
	3.3 Communication between PLCs and the SCADA Application
	3.4 Problem Summarization

	4 Proposed Approach
	4.1 Common Aspects
	4.2 Communication between PLCs and I/O stations
	4.3 Extending the Security Mechanism to the Communications between PLCs and SCADA Application

	5 Experiments and Results
	5.1 Communication between PLC and I/O station
	5.2 Communications between PLCs and SCADA System

	6 Conclusion
	References
	APÊNDICE A — Resumo Expandido

