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Resumo 

O controle do mosquito Aedes aegypti é importante para evitar que milhões de pessoas 

contraiam arboviroses e é um desafio aplicado de Ecologia de Populações. Porém há 

uma distancia grande entre os estudos com A. aegypti e a abordagem moderna de 

análise de populações, a modelagem hierárquica de parâmetros populacionais. Realizei 

este trabalho visando promover o maior uso desta abordagem no estudo do A. aegypti. 

Ajustei um modelo da dinâmica intra-anual da infestação por A. aegypti em Porto 

Alegre, Rio Grande do Sul, Brasil utilizando dados de quatro anos de monitoramento 

entomológico semanal por uma rede de centenas de armadilhas para adultos. Em 

seguida usei análise de sensitividade para inferir qual o melhor período do ano para 

aplicação de controle. A infestação variou de quase todos os lugares infestados nos 

meses de verão, a aproximadamente 10% infestados no inverno. Contudo, a maior 

sensitividade ao controle foi encontrada no outono. Acredito que este trabalho tem 

resultados práticos para ser aplicado no combate a arboviroses em Porto Alegre, mas 

também seja inspirador para que mais pessoas usem modelagem hierárquica de 

parâmetros populacionais no estudo do A. aegypti. 

Palavras chaves: Ecologia de Vetores, Modelo Dinâmico, Demografia, Dengue, 

Zika, Cidade Subtropical, Ocupação de Sítios  
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Abstract 

The control of the Aedes aegypti mosquito is important both to avoid arboviral 

disease transmission to millions of humans and as an applied challenge in Population 

Ecology. However, there is a great gap between studies with A. aegypti and the modern 

approach to population analysis, the hierarchal modeling of population parameters. I 

developed this work with the aim of promoting a greater use of this approach in A. 

aegypti studies. I fitted a model of intra-annual infestation dynamics by A. aegypti in 

Porto Alegre, Rio Grande do Sul, Brazil, using four years of weekly entomological 

monitoring data obtained with a network of hundreds of adult traps. Next, I used 

sensitivity analysis to infer what is the best period of the year to apply mosquito control. 

Infestation varied from almost all sites infested in summer months, to nearly 10% 

infested in winter; however, greater sensitivity to control was found during the autumn 

months. I believe this work has relevant practical implications in the fight against 

arboviral diseases in Porto Alegre, and hope that it can inspire more people to apply 

hierarchal modeling approaches in the analysis of A. aegypti populations.  

Keywords: Vector Ecology, Dynamic Model, Demography, Dengue, Zika, 

Subtropical City, Site Occupancy   
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Introdução geral 1	

O mosquito da dengue (Aedes aegypti) é um fator de risco para a saúde publica a nível 2	

global1. Ele é o vetor de várias arboviroses que infectam milhões de pessoas todos anos. 3	

A principal arbovirose é a Dengue,2 que, por ano, afeta 58 milhões de pessoas e causa 4	

10 mil mortes. A maior parte dessas arboviroses não tem uma vacina amplamente 5	

funcional, incluindo a Dengue.3 Por tanto, manter a abundância do mosquito 6	

suficientemente baixa para evitar a transmissão é a melhor forma de prevenir as 7	

arboviroses.  8	

O controle do A. aegypti pode ser visto como um desafio prático de Ecologia de 9	

Populações. Conhecendo os processos que controlam a distribuição e abundância do 10	

mosquito é possível não só prever onde e quando haverá maior risco de transmissão, 11	

como averiguar e prever o efeito de diferentes técnicas de controle. Como as populações 12	

do A. aegypti variam anualmente de forma diferente dependendo de fatores ambientais,4 13	

principalmente precipitação e temperatura, também é possível identificar locais 14	

semelhantes quanto a dinâmica do mosquito, onde resultados obtidos em um local 15	

seriam mais facilmente replicados em outro. 16	

A Ciência do controle de A. aegypti foi majoritariamente praticada por médicos 17	

e veterinários, o que criou um distanciamento do resto da Ecologia. Esta distância fica 18	

clara principalmente comparando os princípios de amostragem, apesar de já existirem 19	

aproximações.5 Os ecólogos de populações têm buscado se afastar de calcular índices, 20	

para estimar diretamente parâmetros populacionais.6 Estas estimativas são 21	

preferencialmente feitas através de uma sepração formal entre o processo de 22	

amostragem e da dinâmicas populacional.  Esta abordagem, que pode ser descrita como 23	

modelagem hierárquica de parâmetros populacionais, permite comparações entre 24	
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resultados obtidos de diferentes técnicas de amostragem, com a incerteza quanto às 25	

estimativas explicitamente expostas. 26	

No monitoramento do mosquito da dengue ainda há a premissa, ainda que 27	

implicita, que o processo biológico e de amostragem não pode ser separado. Por 28	

exemplo, numa revisão recente sobre controle integrado de vetores,7 as técnicas de 29	

amostragens apresentadas são acompanhadas de seu índice entomológico específico. 30	

Apesar de já ter sido útil, esta abordagem dificulta a comparação entre resultados 31	

obtidos com diferentes técnicas de amostragens, além de ser suscetível a vieses 32	

causados pela amostragem e de não produzir uma medida explicita de incerteza. Além 33	

disso um índice pode indicar se uma população em um lugar é maior ou menor que 34	

noutro lugar, porém não o número real de indivíduos. Uma estimativa de abundância 35	

real é muito mais interessante do ponto de vista prático, já que pode ser utilizada para  36	

calcular, por exemplo, a razão entre humanos e mosquitos, fator importante na 37	

modelagem de epidemias.8 38	

Minha motivação para a realização deste trabalho foi esta necessidade da 39	

amostragem do A. aegypti incorporar conceitos de amostragem da Ecologia de 40	

Populações. Eu acredito que, para esta incorporação acontecer, pesquisadores e 41	

tomadores de decisão sobre o mosquito da dengue devem tomar conhecimento de 42	

trabalhos que, usando estes conceitos, cheguem a resultados confiáveis e interessantes. 43	

Na esperança de fazer um destes trabalhos, modelei a população do mosquito da dengue 44	

em Porto Alegre com base em dados de monitoramento entomológicos da Prefeitura 45	

Municipal. Meu objetivo foi primeiramente descrever a dinâmica anual da população, 46	

para que posteriormente cidades parecidas com ela possam obter resultados 47	

comparáveis. Depois, usei a técnica de analise de sensitividade9 para investigar qual o 48	

momento ideal do ano para se aplicar controle epidemiológico.  49	
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ABSTRACT 95	

 96	

The Aedes aegypti mosquito inhabits most tropical and subtropical regions of the globe 97	

where it transmits arboviral diseases of substantial public health relevance, such as 98	

Dengue fever. In subtropical regions, A. aegypti often presents an annual abundance 99	

cycle driven by weather conditions. Because different population states may show 100	

varying responses to control, we are interested in studying what time of the year is most 101	

appropriate for control. To do so, we developed a dynamic site-occupancy model based 102	

on more than 200 weeks of mosquito-trapping data from nearly 900 sites in a 103	

subtropical Brazilian city. Our phenomenological, Markovian model, fitted to data in a 104	

Bayesian framework, accounted for failure to detect mosquitoes in sites where they 105	

actually occur and for temporal variation in dynamic rates of local extinction and 106	

colonization of new sites. Infestation varied from nearly full cover of the city area in 107	

late summer, to approximately 10% of sites occupied in winter. Sensitivity analysis 108	

reveals that changes in dynamic rates should have the greatest impact on site occupancy 109	

during the Autumn months, when the mosquito population is declining. We discuss the 110	

implications of this finding to the timing of mosquito control.  111	
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INTRODUCTION 112	

 113	

Control of the mosquito and disease vector Aedes aegypti is an important public health 114	

challenge.1 Originated from Africa and unintentionally dispersed by humans around the 115	

world, A. aegypti is currently present in tropical and subtropical regions of Africa, Asia, 116	

Oceania and the Americas.2 It is well adapted to urban environments because it can 117	

breed in artificial water containers and feed on human blood.2 Although dormant eggs 118	

can survive unfavorably cold and dry seasons, the survival, growth and reproduction of 119	

the other life stages is dependent on rainy and hot weather.3 Thus, A. aegypti 120	

populations present high year-round abundances in tropical humid regions and annual 121	

cycles of abundance in most other regions where the species occurs.3 When sufficiently 122	

abundant, A. aegypti is a vector of many disease-causing arboviruses, including 123	

Chikungunya,4 Zika,5 Yellow fever6 and Dengue fever.7 Dengue fever is of particular 124	

concern since it is the most common human arboviral disease.8 More than one third of 125	

the world population is at risk of contracting Dengue,9 with yearly numbers of 58 126	

million people infected, 10 thousand deaths, and 1.14 million DALY (Disability 127	

Adjusted Life Years) lost due to the disease.8 With no universal vaccine for Dengue 128	

available, vector control is still the most reliable way to prevent epidemics.10 129	

Since the 1970’s, control of A. aegypti has relied mostly on ultra-low volume 130	

insecticide spraying and community-based removal of breeding sites.7 However, with 131	

all the effort that has been spent on control, the number of people infected by the 132	

disease is still increasing, doubling every 10 years since 1990.8 Brazil and Mexico, for 133	

example, have not managed to contain the disease despite spending yearly amounts of, 134	

respectively, US$ 450 million11 and US$83 million12 during the last decade. The growth 135	

of Dengue incidence over the last forty years makes it clear that vector control has been 136	
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insufficient.13 Acknowledging the need to improve vector control, the scientific 137	

community and public health agencies routinely discuss existing and potential control 138	

strategies.10,14,15 These discussions usually emphasize development and introduction of 139	

new control methods, such as biocontrol, sterile male release or genetic-modifications 140	

that render mosquitoes incapable of transmitting Dengue. 141	

Our interest here is not on how but when to apply control measures: an aspect of 142	

control planning that is easily overlooked. Appropriate timing matters regardless of the 143	

method of choice and requires knowledge of mosquito population dynamics. Control 144	

interventions applied in distinct moments of a mosquito’s annual population cycle may 145	

result in very different consequences, with modeling results suggesting that intervening 146	

when abundance reaches above a threshold may not be the optimal strategy.16 Applying 147	

control permanently is budget intensive and may lead to evolution of resistance on the 148	

mosquito population. Researchers have employed computer models of mosquito 149	

population growth and Dengue infection through time to answer questions about the 150	

optimal frequency of control interventions18, 19 and about early detection of 151	

epidemics.20,21 Studies that research what time of the year is most appropriate for 152	

control, our focus here, however, are rarer.  153	

Direct study of control timing requires experimenting over large areas and 154	

relatively long time periods. We believe, however, that substantial information may be 155	

obtained indirectly, via the study of mosquito population dynamics. Sensitivity analysis 156	

is a tool, developed for the study of age or size-structured populations, by which one 157	

may ask how a small change in one of the population parameters, such as immature 158	

survival or adult fertility, impacts on a descriptor of the population state, such as size or 159	

growth rate.22 Sensitivity analysis thus helps identify which parameters, when modified, 160	

produce the most cost-effective impact on a state variable of interest. Tran et al.,23 Ellis 161	
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et al.,24 and Luz et al.,19 for example, employed sensitivity analysis of mosquito 162	

population models to infer what were the life-stage-specific demographic rates to which 163	

different metrics of mosquito population state are most sensitive. In a different but 164	

related study, Emery and Gross25 also employed sensitivity analysis, this time to infer 165	

what is the best time of the year for controlled burning of an invasive plant species. In 166	

our study, we apply sensitivity analysis, not to a structured model of the mosquito 167	

population, but to a site-occupancy model of mosquito infestation. Our model, informed 168	

by field observations from the Brazilian city of Porto Alegre, enables us to identify the 169	

time of the year when overall infestation is most sensitive to changes in the occupancy-170	

dynamics parameters that explain the expansion and contraction of mosquito 171	

distribution in space. Effective control measures affect those occupancy-dynamics 172	

parameters, and, therefore, our sensitivity results identify times of the year that may be 173	

most appropriate for control.   174	

MATHERIALS AND METHODS 175	

Study Setting 176	
	177	

Our study examines A. aegypti infestation in Porto Alegre, the largest city of Rio 178	

Grande do Sul, the southernmost state in Brazil (Figure 1). The city proper has 179	

approximately one and a half million habitants, whereas the metropolitan area has more 180	

than 4 million. The city’s climate is subtropical humid, with hot summers, mild winters, 181	

and rainfall evenly distributed throughout the year. A. aegypti was first recorded in 182	

Porto Alegre in 2001 and it is now present in all the city’s neighborhoods. Locally 183	

transmitted Dengue cases have been recorded since 2010, mostly in late summer and 184	

early fall.  The largest outbreak happened in 2016, with 301 confirmed cases.  185	

Currently, municipal Dengue control relies on peridomestic insecticide spraying as well 186	

as on community-based actions to eliminate breeding sites. Spraying is only applied 187	
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when local infection is happening, taking place in locations frequented by infected 188	

patients, with the objective of suppressing further infections.189	

	190	

Figure 1. The city of Porto Alegre, with its location in South America (left) and the distribution of adult 191	

mosquito trapping sites throughout the city (right). Map lines show sampling unit boundaries. Black dots 192	

show all the sites sampled at least once throughout the 4 years of monitoring included in this study.	193	

Data Collection 194	
	195	

We analyzed data collected by the Núcleo de Vigilância de Roedores e Vetores (NVRV) 196	

of the Porto Alegre Municipal Department of Health, from September 23rd 2012, to 197	

August 14th 2016. Sampling spanned 204 weeks and consisted of weekly deployment of 198	

hundreds of adult mosquito traps throughout the city. The number of traps deployed in 199	

one week ranged from 481, in September 23rd 2012, to 893, in October 8th 2016, 200	

steadily increasing through time according to the availability of resources and the 201	

monitoring priorities of the NVRV. The choice of trapping locations followed the 202	

spatial distribution of confirmed Dengue cases and evidence of high Aedes spp. 203	

infestation. Traps were deployed outdoors either in public or private places and with a 204	

N

0 1000 2000 km 0 2 4 km

Porto Alegre
 

Brazil

N

Figure 1
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minimum distance of 250 meters from each other. There was some inevitable relocation 205	

of traps throughout the study period, mostly due to changes in accessibility to trapping 206	

sites that were beyond the control of the NVRV. 207	

The NVRV uses a commercially available adult mosquito trap (Mosquitraps®, 208	

Ecovec, Belo Horizonte, Brazil), which consists of a 30-centimeter-high black plastic 209	

cylinder with a funnel-shaped opening on top. When deployed, traps were half filled 210	

with water treated with a slow-release chemical attractive that mimics the effects of a 211	

hay infusion (AtrAedes®, Ecovec, Belo Horizonte, Brazil). Female mosquitoes 212	

attracted by the odor enter the cylinder to lay eggs, get trapped by the funnel access, and 213	

eventually stick to an adhesive ribbon that lines the inner wall of the trap. Each NVRV 214	

agent is responsible for approximately 55 traps that she visits once a week, from 215	

Monday to Friday. On each visit to each trap, agents remove the adhesive ribbon and 216	

check for glued mosquitoes. If the ribbon has any mosquitoes that the agent identifies as 217	

being a female A. aegypti, the mosquito is sent to a laboratory to test for Dengue, 218	

Chikungunya, and Zika viruses.  219	

For the purpose of our analysis, we outlined 756 sampling units (Figure 1) on a 220	

map of Porto Alegre land cover and use (the Porto Alegre Environmental Diagnostic 221	

map26) overlaid with a map of the Brazilian federal government human socio-economic 222	

census sectors.27 While outlining units, we sought to homogenize socio-economic and 223	

land use variables within each unit. Although we also tried to keep unit area as constant 224	

as possible (mean ± SD of 28.9 ± 16.9 ha), the geography of land cover and use 225	

combined with limits of census sectors resulted in a range of areas spanning three orders 226	

of magnitude, from approximately 5 to 150 ha. Nonetheless, more than half of the units 227	

have between 20 and 32 ha in area. Our data set contains mosquito trapping data from 228	

286 out of the 756 units in the city. Of these 286 units, there was an average of 2.5 ± 2.1 229	
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traps per site per week. Traps deployed in the same unit and week are treated as 230	

replicate samples of a closed system, so that if trap k detects A. aegypti on unit j and 231	

week i, any failure to detect mosquitoes in other traps from the same unit and week will 232	

be treated as a false negative result. We will refer to the deployment of one set of traps 233	

in one unit and week as a trapping event. The result from one trapping even is said to be 234	

positive if at least one of the traps captures one mosquito during that event. 235	

Data Analysis 236	
	237	

We modelled trapping data using Royle and Kéry’s28 Bayesian state-space 238	

implementation of the site-occupancy dynamics model developed by MacKenzie et al.29 239	

This model formally separates the biological process of unit infestation from the 240	

sampling process of mosquito trapping, with the latter conditioned on the former. The 241	

infestation state is represented by the partially observable variable  𝑧!,!, which takes the 242	

value 1 when unit i is infested by A. aegypti at time t, and the value 0 otherwise. The 243	

trapping data is represented by the variable 𝑦!,!,!, which takes the value 1 when trap j 244	

detects A. aegypti mosquitoes on unit i and week t, and the value 0 otherwise. We say 245	

that 𝑦!,!,! is conditioned on 𝑧!,! because there can be no positive trap results for 𝑦!,!,! 246	

when 𝑧!,! = 0.  247	

The dynamic component of the model describes changes in infestation through 248	

time as a first-order Markov process, where the value of 𝑧!,! depends on the value of 249	

𝑧!,!!!. At the outset, when t = 1, we model the infestation state 𝑧!,! as a Bernoulli trial 250	

with infestation probability 𝜓!,!, estimated from the data: 251	

 252	

𝑧!,!~Bern 𝜓!,! .     (1) 253	
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 254	

Subsequently, changes in infestation are given by the probabilities of local extinction, 255	

𝜀!, and colonization, 𝛾!, also estimated from the data. The parameter 𝜀! represents the 256	

probability that a unit infested at time t will not be infested at time t + 1; conversely, 𝛾! 257	

represents the probability that a unit that is not infested at time t will be infested at time 258	

t + 1. Thus, the infestation state after the first week will be a Bernoulli trial with 259	

probability 𝜓!,!!! given by: 260	

 261	

𝜓!,!!! = 1− 𝑧!,! ∗ 𝛾! − 𝑧!,! ∗ 1− 𝜀! .    (2) 262	

 263	

Thus, if a site is not infested at time t, 𝜓!,!!!  equals 𝛾!; if it is infested, 𝜓!,!!! equals 264	

1− 𝜀!, which can also be described as a probability of local persistence.  265	

We also want to take into account, however, that 𝛾! and 𝜀! are not constant 266	

through time. In fact, they must vary cyclically throughout the year because the 267	

infestation follows a year-long cycle. To capture this periodic cycling in a mathematical 268	

form, we adapted the model to represent temporal change in 𝛾! and 𝜀! by the following 269	

trigonometric functions in logit space: 270	

 271	

logit 𝛾! = 𝛼! + 𝛽! cos(2𝜋 (𝜏! − 𝜏0!)),    (3) 272	

 273	

logit 𝜀! = 𝛼! + 𝛽! cos(2𝜋 (𝜏! − 𝜏0!)).    (4) 274	

 275	
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These functions measure time as a continuous variable τ, which varies between zero and 276	

one. Our dataset keeps track of time with an integer week counter; therefore, for a given 277	

week t, 𝜏! is the mean Julian day of the week divided by the total number of days in the 278	

year. The parameters 𝛼, 𝛽, and 𝜏0, indexed by dynamic parameters 𝛾 or 𝜀 in equations 3 279	

and 4, respectively, are estimated from the data. Parameter 𝛼 gives the corresponding 280	

dynamic parameter mean value, 𝛽 gives the amplitude of the cycle, and 𝜏0 gives the 281	

time—in τ units—at which the dynamic parameter takes its maximum value. 282	

The sampling component of our model is much simpler, since it treats the 283	

probability 𝑝 of detecting A. aegypti mosquitoes at trap j of infested unit i on time t 284	

(𝑦!,!,! = 1) as being constant through time, across sites, and between traps of the same 285	

site. Formally, this consists of modeling the binary detection data 𝑦!,!,! as a Bernoulli 286	

trial with probability 𝑧!,! ∗ 𝑝: 287	

 288	

𝑦!,!,!~Bern 𝑧!,! ∗ 𝑝 .      (5) 289	

 290	

This equation captures the hierarchical nature of the model, as it conditions the 291	

possibility of a non-zero detection probability on the biological state of the system.  292	

We fit our model to data in a Bayesian framework with uninformative priors, 293	

sampling from the posterior distribution of model parameters with a Markov Chain 294	

Monte Carlo (MCMC) algorithm.30 The algorithm was implemented with the software 295	

JAGS,31 accessed through R32 with the library jagsUI.33 We ran 3 chains with 15,000 296	

iterations and a burn-in of 2,500 iterations. Model code can be found in Supplemental 297	

Material Appendix 1. 298	
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Part of our inference is based on metrics derived from the dynamic parameters 299	

of the site-occupancy model. We derived three infestation and two sensitivity metrics 300	

from the posterior samples given by the MCMC. The infestation metrics are also 301	

described on Royle and Kéry28 as general occupancy metrics.  302	

The predicted equilibrium infestation denoted 𝜓!
!"

, is the infestation probability that 303	

the system converges to if 𝛾! and 𝜀! remain constant for a sufficient time. We obtained 304	

𝜓!
!"  for each week of the study period, from the respective values of 𝛾! and 𝜀!,: 305	

 306	

𝜓!
!" =  !!

!!!!!
.       (6) 307	

 308	

A second infestation metric, infestation probability, represents the expected infestation 309	

rate on the theoretical infinite statistical population of units from which our sample was 310	

obtained. This metric is equal to 𝜓! when t = 1 and in all subsequent times is given by: 311	

 312	

𝜓! = 1− 𝜓!!! ∗ 𝛾! +  𝜓!!! ∗ (1− 𝜀!),    (7) 313	

 314	

The third infestation metric is the finite sample infestation, which expresses the actual 315	

proportion of sample units infested at time t. We denoted this metric 𝜓!
(!") and obtained 316	

it from a function of the latent variables: 317	

 318	

𝜓!
(!") =  !

!
𝑧!,!!

!!! ,       (8) 319	
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 320	

with M representing the total number of sampling units, in this case 286. 321	

In order to evaluate the extent to which changes in the dynamic parameters—322	

eventually provoked by control measures—affect the equilibrium infestation 323	

probability, we also obtained two sensitivity metrics, s!,! and s!,!, which measure the 324	

sensitivity of 𝜓!
(!") to infinitesimal changes in, respectively, 𝛾! and 𝜀!. We derived 325	

sensitivities as proposed by Martin et al.,34 using the equations: 326	

 327	

s!,! =
!!

(!!!!!)!
, and       (9) 328	

 329	

s!,! =
!!

(!!!!!)!
,       (10) 330	

 331	

which give de derivatives of 𝜓!
(!") respectively on 𝛾! and 𝜀! 332	

 333	

RESULTS 334	

 335	

We gathered data from 150,453 trapping events, 33,499 (~22%) of which returned 336	

positive results. The greatest proportion of positive results on any given week was 337	

0.627, in week 131, the last week of March 2015. Throughout the whole 204-week 338	

study period, there were only 4 weeks with no positive traps at all. This happened in 339	

weeks 47, 49, 50—late August and early September 2013—and in week 201, at the end 340	



	 	 	 24	

of July, 2016. Observed infestation, given by the ratio of sites with positive results to all 341	

sites sampled in one week, ranged from 0.854, in week 131, to 0, in weeks 47, 49, 50 342	

and 201. The mean observed infestation was 0.434. 343	

Detection probability, or the probability of obtaining a positive result at a site 344	

that is infested, was estimated as 0.37±0.002. If only one trap were set per location, the 345	

observed infestation would be less than half its true value. With 3 traps per site, which 346	

is close to the average number of traps per sampled site in this study, the probability of 347	

obtaining at least one positive result at any given time is approximately 0.75. 348	

The annual oscillation in mosquito infestation is evident from the temporal 349	

variation of 𝜓!
(!") (Figure 2). Predicted equilibrium infestation ranges from a minimum 350	

of 0.10±0.003 in late July (July 25) to a maximum of 0.97±0.002 in early February 351	

(February 5). Overall, the 𝜓!
(!") estimates predict that the Porto Alegre A. aegypti 352	

population spends more time per year increasing (from August to late January) than 353	

decreasing, from early February to the end of July. The annual decline in predicted 354	

equilibrium infestation in the Fall is slightly steeper than its increase in Spring. 355	
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 356	

Figure 2. Variation of colonization probability (solid line, γt), local extinction probability (dashed line, εt) 357	

and equilibrium occupancy (dotted line, 𝜓!
(!")) throughout the year. Black lines (dashes or dots) show 358	

mean predicted values for each day, gray shading around the black lines represents uncertainty about the 359	

predicted values. Each shade includes 250 predictions of the respective variation, each prediction 360	

resulting from one sample of underlying (𝛼, 𝛽, and 𝑡0) parameters from their respective posterior 361	

distributions.   362	

Variability in 𝜓!
(!") reflects variability in local extinction (𝜀!) and colonization 363	

(𝛾!) rates. On average, 𝜀! peaks just after the middle of Winter, at 0.78±0.012 on August 364	

12, a few weeks after the minimum value of 𝜓!
(!"). The minimum value of 𝜀! is 365	

0.01±0.001, corresponding to February 11, just after the peak predicted equilibrium 366	

infestation. The colonization rate also oscillates, albeit with lower amplitude, from 367	

0.08±0.004 on July 11 to 0.42±0.020 on January 9, its variation nearly coinciding with 368	

variation in 𝜓!
(!").  369	

Seen throughout the whole study period, 𝜓!
(!") closely follows 𝜓! the infestation 370	

probability (Figure 3). Observed infestation is often lower than both 𝜓!
(!") and 𝜓!. In 371	
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the abnormally warm winter of 2015, observed infestation was exceptionally high, and 372	

higher than 𝜓!
(!") or 𝜓!, which do not express variation between years. The infestation 373	

metric that best captures inter-annual variation is the finite sample infestation, which 374	

oscillated from 0.98±0.007 in week 127 (last week of February 2015) to 0.03±0.010 in 375	

week 201(one of the weeks without mosquito detection). 376	

 377	

Figure 3. Different metrics of infestation by A. aegypti throughout the sampling period. Empty circles 378	

show observed infestation, the proportion of sampled sites which had at least one A. aegypti capture in the 379	
corresponding week. The three black lines show the mean values for three estimates of infestation 380	

probability: finite sample infestation (𝜓!
(!"); solid line), population infestation (𝜓!; dashed line), and 381	

equilibrium infestation predicted under current dynamic parameter (εt, 𝛾!) estimates (𝜓!
(!"); dotted line). 382	

Gray shading around the black lines represents 250 infestation predictions for each black line, each 383	

prediction based on one random sample of parameters (𝛼, 𝛽, and 𝑡0) from the posterior.  384	

The variation of sensitivity throughout the year has a greater amplitude for 𝜀! 385	

(s!,! ) than for 𝛾! (s!,!; Figure 4) reflecting the greater oscillation in the values of 𝜀!. 386	

During the austral summer and fall months, when 𝜀! is smaller than 𝛾!, sensitivity to 387	

changes in extinction probability (s!,!) tends to be greater than sensitivity to changes in 388	
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colonization (s!,!); the reverse being true for the winter and spring months, when 𝛾! is 389	

smaller than 𝜀!. The months of March to July comprise the period of highest sensitivity 390	

for both dynamic parameters.  391	

 392	

Figure 4. Sensitivity of equilibrium occupancy to changes in probability of colonization (solid line) and 393	
probability of extinction (dashed line), as it varies throughout the year. Gray shading around the black 394	
lines represents 250 predictions of the same variation, based on random samples of underlying parameters 395	
(𝛼, 𝛽, and 𝑡0) from their posterior distributions. 396	

 397	

DISCUSSION 398	

 399	

Our analysis of site-occupancy by A. aegypti in the city of Porto Alegre uses adult 400	

mosquito trapping data to fit a model of neighborhood infestation dynamics along a 401	

typical year. The resulting trigonometric function shows infestation fluctuating from 402	

almost full occupancy throughout the city on summer months to nearly 10% of 403	

neighborhood occupancy during the peak of winter, so that adult mosquitoes are never 404	

completely absent. Colonization and local extinction probabilities fluctuate out of phase 405	
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throughout the year, with peaks respectively in late summer and late winter, separated 406	

by half a year. The period when equilibrium occupancy is most sensitive to variations in 407	

colonization and extinction probabilities is the Fall, suggesting that mosquito control 408	

should be most effective during the months of April, May and June. 409	

The modeling approach at the core of this study stands on two choices that merit 410	

clarification prior to further discussion of the results. First, our model follows a site-411	

occupancy approach. That is, we focus not on the number of individual mosquitos at a 412	

given site, but at the occupancy state of each site. Second, we take a phenomenological, 413	

not a mechanistic path towards prediction of the annual cycle of mosquito infestation. 414	

Our interest on the occupied versus non-occupied state of sites is akin to the well-415	

established research approach known as metapopulation biology and employs 416	

mathematical abstractions initially developed for the study of agricultural pests.35 The 417	

metapopulation approach aims at understanding population dynamics over many sites, 418	

where the fate of an aggregate of sites depends more on the movement of individuals 419	

between sites than on demography within each site. Site-occupancy dynamics is thus 420	

captured by the twin metrics of local extinction and colonization probability, which 421	

measure the probability of transition between site states. From an applied perspective, 422	

mosquito control measures aim to maximize local extinction and/or minimize 423	

colonization, in order to reduce mosquito population below a level of transmission risk. 424	

Within this analytical framework, one can evaluate the timing of control measures 425	

through the sensitivity analysis proposed by Martin et al.,34 which measures the extent 426	

to which a given change in transition probabilities affects the equilibrium site-427	

occupancy probability. We seek the analytical advantages of the site-occupancy 428	

approach but note that a positive relationship between abundance and occupancy is a 429	

common feature of many populations36 that has already been documented in A. 430	
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aegypti.37,38 431	

Our second choice, of building a phenomenological model of occupancy 432	

dynamics, was guided by an interest in generic, prediction-based management 433	

recommendations, applicable to any future year and not just to the peculiar 434	

environmental conditions of a given observation period. If our goal were to test 435	

hypotheses about the mechanisms underpinning population dynamics, it would be 436	

appropriate to build a mechanistic model. Such model should include as independent 437	

variables the environmental factors that hypothetically condition population change. In 438	

the current analysis, however, we wanted to predict mosquito infestation and sensitivity 439	

to control measures at any time of a typical year, without the need for local 440	

environmental information. To achieve this goal, we found it reasonable to model the 441	

temporal variation of 𝜀! and γ! as a mathematical abstraction determined only by time, 442	

under an oscillatory behavior of period equal to one year, or one full cycle of four 443	

seasons. The choice of a phenomenological approach obviously comes with a price. For 444	

example, the exceptionally warm winter of 2015 produced a peak in infestation that is 445	

not captured by our oscillatory model. Nonetheless, we find the agreement between 446	

observations and oscillatory predictions throughout the rest of the study period 447	

encouraging enough to support our approach in the context of our current goals.  448	

Phenomenological or mechanistic, any hierarchical model of site occupancy 449	

offers the advantage of accounting for imperfect detection. In our case, the model 450	

estimates the probability p that a trap detects mosquito presence at a site that is actually 451	

infested. Our estimate of p ~ 0.33 implies that in approximately two out of three 452	

instances one trap will fail to detect mosquito presence at an infested site. This provides 453	

substantial motivation for using more than one trap per site and strengthens the notion 454	

that assuming perfect detection (p = 1) leads to negatively biased infestation estimates. 455	
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While accounting for imperfect detection, our results identify four distinct 456	

periods of a yearly infestation cycle that roughly correspond to the four seasons. The 457	

austral Summer months of January, February and March comprise the longest stretch of 458	

high and steady infestation, with mosquitoes present throughout nearly the entire city. 459	

The Fall season, corresponding to April-June, shows a sustained decline in infestation 460	

until a new period of relatively steady but low (𝜓 ~0.1) mosquito presence is attained in 461	

the Winter months. Finally, during the months of October-December, spring weather 462	

accompanies the recovery of infestation throughout the city, until infestation reaches 463	

again the high levels typical of the Summer months and the cycle starts over again. 464	

Although the oscillation of mosquito presence does not come as a surprise to anyone 465	

familiar with Porto Alegre, our results offer a timing of the cycle and a quantitative 466	

assessment of its amplitude, which is relevant and new. With weekly estimates of 𝜓 467	

ranging from ~0.1 to ~1, Porto Alegre can be placed in Scenario 2 of Eisen et al.'s3 468	

classification of cities according to year-round activity of A. aegypti. Scenario 2 469	

corresponds to locations with “year-around activity but potential for high abundance of 470	

the active stages only during the most favorable part of the year”.3 Cities classified 471	

under Scenario 2 have subtropical climate with an unfavorable cold season, or tropical 472	

climate with an unfavorable dry season. Similarities in climate likely entail similarities 473	

in mosquito population dynamics, such as a clear annual oscillation in infestation 474	

without complete disappearance of adult mosquitoes during the most unfavorable 475	

months. The permanence of infestation throughout the year motivates epidemics 476	

prevention strategies based on constant monitoring of disease cases and application of 477	

mosquito control measures only to suppress further infections. Such strategies have 478	

been applied in Porto Alegre, Brazil39, and in other cities classified as Scenario 2 such 479	

as Cairns, in Australia.40 480	
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Cyclical variation in infestation is the outcome of cyclical variation in local 481	

extinction and colonization rates. The relationship between dynamic parameters and 482	

occupancy is clearly outlined in our model, but the underlying relationship between 483	

mosquito demographic parameters of individual mortality and transition between 484	

development stages is more difficult to grasp. It is reasonable to expect that local 485	

extinction probability will have a positive relationship with adult mortality and a 486	

negative relationship with adult emergence from the pupal stage. Likewise, colonization 487	

should be related to the same two demographic parameters, albeit with different signs: 488	

increased adult mortality should decrease colonization rates, while increased emergence 489	

should have the opposite effect. Changes in one demographic rate, however, such as 490	

adult mortality or pupal emergence, may affect both the local extinction and the 491	

colonization rates. Nonetheless, we can assert from our results that a) the variation of 492	

local extinction throughout the year shows greater amplitude than the variation of the 493	

colonization rate; and b) that the two occupancy-dynamics parameters vary almost 494	

exactly out of phase, with a lag of approximately one month between one parameter’s 495	

maximum and the other’s minimum values. Why this should be so is still open to 496	

investigation, pending a more detailed understanding of the biological mechanisms 497	

driving each of the dynamic rates.  498	

Even without precise knowledge of the biological mechanisms that cause 499	

temporal variation in colonization and local extinction, we can use this variation to draw 500	

inference about the most appropriate timing for control measures. Such measures are 501	

often applied in response to locally high values of vector infestation or disease 502	

transmission. The appropriateness of a responsive approach, however, should not 503	

preclude the preemptive application of control measures. Clearly, though, the 504	

effectiveness of preemptive control depends on timing. We suggest that sensitivity 505	
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metrics offer useful timing criteria, because they identify when a unit change in local 506	

extinction or colonization has the greatest effect on infestation, as measured by the 507	

equilibrium occupancy estimate. This is tantamount to identifying the period at which 508	

the mosquito population is most vulnerable to control. Interestingly, the peaks of 509	

sensitivity to variation in both local extinction and colonization rates fell within the 510	

same period from April 13 to May 25, which corresponds roughly to the Austral Fall. 511	

So, even though we cannot establish a straightforward connection between alternative 512	

control measures and the two occupancy dynamic rates, we identify a relatively narrow 513	

period during which any form of control that affects colonization or local extinction 514	

probability should reach its maximum effect.  515	

One note of caution, regarding the timing criterion, is that it rests on the validity 516	

of equilibrium occupancy as a metric of infestation. Equilibrium occupancy is the 517	

occupancy that would be attained at equilibrium if the current dynamic parameters 518	

remained constant for sufficient time. Considering the temporal variation in dynamic 519	

parameters that is embedded in our model, one might find reason to doubt the validity 520	

of the metric, especially if there were evidence that the Spring recovery in infestation is 521	

the result of immigration from outside Porto Alegre. Nevertheless, we do not know of 522	

any such evidence and we found a remarkable proximity in the estimated values of 523	

equilibrium and population infestation in Figure 3. It is also reasonable to think that 524	

control measures in the fall will reduce the winter egg stock and thus limit infestation 525	

through the whole next year. Coincidentally or not, a study of spatio-temporal patterns 526	

of dengue epidemic events in Argentina found a positive relationship between average 527	

Fall temperature and the number of dengue cases reported in the subsequent year.41 One 528	

way to test the relevance of focusing control measure in the fall would be to perform a 529	

controlled experiment where urban areas that are continuously monitored for infestation 530	
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receive a treatment of intensive mosquito population control during the Fall months. We 531	

believe that the results presented in our study provide sufficient motivation for such an 532	

experiment. 533	
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Considerações finais 659	

Nesta dissertação, produzi resultados que são interessantes por si só, mas que também 660	

servem para ressaltar os pontos positivos da abordagem de modelagem hierárquica de 661	

parâmetros populacionais para o problema do A. aegypti. Descrevi a dinâmica intra-662	

anual da população de A. aegypti em Porto Alegre apresentando resultados úteis para os 663	

gestores se prepararem com antecedência para os períodos de maior infestação. Além 664	

disso, ao aplicar modelos parecidos em dezenas de outras cidades brasileiras em que o 665	

M.I. Aedes está presente, será possível identificar semelhanças entre elas. Com base 666	

nessas semelhanças, o Ministério da Saúde pode orientar estratégias de controle comuns 667	

para cidades com realidades entomológicas parecidas. 668	

 Com base na análise de sensitividade, propus a hipótese de que o controle do 669	

mosquito teria mais efeito a nível municipal se aplicado no outono. Um experimento 670	

pode ser planejado para testar esta hipótese, em que um ano com controle no outono é 671	

comparado a um sem controle, quanto ao nível de infestação. Se for comprovada, 672	

podemos abrir caminho para uma estratégia de controle em cidades como Porto Alegre 673	

que impeça preventivamente o mosquito de alcançar abundância que propicie epidemia.  674	

 Apesar dos avanços, as minhas decisões analíticas tiveram fraquezas. Algumas 675	

delas são consequências de tentar analisar uma base de dados já existente, ao invés de 676	

planejar a amostragem. Assim tive que fazer premissas mais fracas que o ideal, como, 677	

por exemplo, da homogeneidade entre áreas amostrais. A abordagem de ocupação de 678	

sítios também revelou uma fraqueza: com praticamente toda cidade infestada no verão, 679	

não seria possível identificar áreas de risco somente com essa abordagem. Seria 680	

necessário estimar a abundância local do mosquito nos diferentes sítios. Espero que com 681	

a popularização da modelagem hierárquica de parâmetros populacionais em estudos 682	

sobre o A. aegypti e amostragens planejadas especificamente para tal, estas e outras 683	
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dificuldades possam ser superadas coletivamente pela Ciência visando construir 684	

estratégias mais eficientes em prevenir os danos que as arboviroses causam à vida das 685	

pessoas. 686	


