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Abstract

We present a model for network transformation mediated by confinement, as a
demonstration of a simple network dynamics that has a direct connection with real
world quantities. The model has the capacity of generating complex structures similar
to real world networks by the use of two parameters. Starting from an Erdös-Rényi
network, nodes are randomly selected to be temporarily confined. Confined nodes
form new links among themselves at the same pace they lose connections with the
outside nodes. As the network evolves according to the parameters of the model, a
series of non trivial network characteristics emerge: the formation of stable
heterogeneous degree distributions similar to those of empirical networks, an
increasing clustering coefficient, and the emergence of communities outside the
confined space. Different from the traditional benchmarks used to create modular
networks, there is no arbitrary definition of the number of modules, nor node
meta-data defining it as a member of a particular community, nor a tunable parameter
directly related with expected modularity. Modules emerge as a result of the dynamics
while nodes move among them as connections are rewired. The proposed algorithm
has the potential to simulate community dynamics cases in situations where time
stamped network data is scarce or absent.

Keywords: Temporal communities, Modular networks, Dynamic network models,
Confinement models

Introduction
In several fields, there are networks exhibiting complex ordering and heterogeneity fea-
tures that are not present in strictly random networks. Among these complex features, we
can name some of special interest: clustering (Watts and Strogatz 1998), different forms
of network centrality (Freeman et al. 1991; Freeman 1977), heterogeneity of degree dis-
tribution, and network path length. The presence of such distinct features in real-world
systems suggests an underlying ordering, coming from non-linear interactions between
network elements, which can only be explained by taking such interactions into account.
In network science, two topics are of great interest nowadays: dynamic networks and

structural communities. Complex network data is generally collected as static snapshots,
while actual complex systems are naturally dynamic. They may grow or shrink as nodes
and connections are created, destroyed, or redirected. Structural communities are based
on the general idea that a group of nodes in the network are strongly connected, while
they are weakly connected to the rest of the network. This subject is in fact more complex
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since it includes the possibility of nested, intersected, or multilevel communities (Palla
et al. 2005). Communities in networks is also a very active subject (Fortunato 2010), with
contributions steadily coming on characterization of communities in real world networks,
faster algorithms for detecting such structures in large networks (Yang et al. 2016), and the
development of benchmarks (Condon and Karp 2001) for testing those models. The two
topics come together in the present contribution, where we study community structures
mediated by confinement in dynamic networks.
Several processes in the dynamics of complex networks are mediated by the temporary

confinement of agents. Considering imprisonment for instance, while there is some con-
troversy whether high levels of imprisonment actually decrease crime rates, it is common
practice worldwide. The idea is, precisely, to keep the criminal in quarantine away from
society, either as retribution, or for incapacitation, deterrence, or rehabilitation (Pratt
and Cullen 2005). Penal methods vary widely depending on the legal system —from the
Pennsylvanian solitary incarceration system, to the day work-night confinement Auburn
model, going through the progressive stages, or marking system, where conditions and
level of incarceration improve as a result of good behavior, time lapse, or other “marks”
(Kerley 2017). Regarding human dynamics, what usually happens in real world prisons is
that when someone is sent to jail, a fraction of their relationships are lost due to incarcera-
tion, while the closest relationships (family, partner) are weakened but kept. On the other
hand, the inmate is likely to make new contacts while serving time in prison, and some
of these new relationships may remain after the person is released, possibly resulting in
recidivism (Brame et al. 2018).
Nevertheless, confined spaces are not restricted to prisons; they can be a neighbor-

hood, where residents are prone to meet, an on-line group of people connected by a
common interest, a school or university where students enter and leave the institution
every year, due to enrollments, transferring, and graduation. In such examples, while the
structure of the community remains approximately the same, the individuals who form
these structures change over time. Two mechanisms can be identified then: the favorable
conditions for forming new connections in a subset of a bigger social network, and the
flow of agents inside and outside that subgroup; mechanisms that we call “confinement
dynamics". Spaces do not have to be defined by physical boundaries, they may be real
or virtual spaces where agents tend to connect more easily among themselves than with
agents outside of confined space, while remaining there for a finite period of time.
We propose a simple model for capturing and studying the essential aspect of the

processes discussed above, based in two parameters with clear meaning: the relative
size of the confined space and the rate of exchange in and out of the confinement.
In order to study the confinement dynamics we propose a computational model con-
sisting of a graph which represents a network and where the confined space is a
subgraph of nodes labeled as confined. There is flux of nodes in and out of the con-
finement and the connections are rearranged in order to reflect the tendency of the
confined subgraph to increase internal connections while losing external connections.
We show that the dynamics based on the proposed model provides a simple explana-
tion for the appearance of complex structures observed in social networks, such as high
clustering, heterogeneous degree distribution, and hubs. In addition, the results show
the emergence of highly connected subgraphs that fit modern definitions of structural
communities.
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In “Introduction” section we present the methodology, including the description of
the numerical simulations. “Methodology” section contains the results on the networks’s
dynamics and a discussion about the emergence of communities and other relevant
measures. “Results” section is devoted to conclusions.

Methodology
The confinement mediated dynamic network model

The model is characterized by an initial network N (not necessarily fully connected),
where each node is in one of two states: confined or free. Links are unweighted and undi-
rected, without self connections. The initial network is transformed by changing the states
of nodes and rewiring of connections, which occurs at every time step, until a steady
topological state is eventually reached. The detailed algorithm works as follows:

• We start with a random networkN (〈k〉), with N nodes and an average degree 〈k〉,
built by the Erdös-Rényi (E-R) algorithmN (p,N) (Erdös and Rényi 1959).

• A subset of Nc nodes is randomly selected and temporarily labeled as confined ; we
refer to this subset and its links as a confined space or simply a confinement, and we
call it P . During the dynamics, nodes enter and leave the confinement while keeping
Nc constant. We define the relative confinement size, ps, as the ratio between Nc and
the network size N:

ps = Nc
N

, (1)

which is one of the model’s key parameters.
• The algorithm proceeds in discrete time steps, each one composed of two phases: a)

the flux phase and b) the rewiring phase. At the flux phase, Nf nodes outside
confinement are randomly selected and turned into confined, while Nf confined
nodes are randomly selected and set free. Notice that at this phase the topology of the
network does not change, only the labels of the nodes. Then, the flux of nodes is
governed by a second key parameter, the flux ratio pf :

pf = Nf

N
. (2)

• Therefore, all the links in the network are of one of three types (�in, �out , �io)
identified as follows: �in is the number of links among confined nodes or internal
links, �out is the number of connections between free (external) nodes, and �io
denotes the number of links between free and confined nodes. These three quantities
vary with time but the total number of edges, �, is conserved:

� = �in(t) + �out(t) + �io(t). (3)

• The topology changes at the rewiring phase: each one of the Nc randomly selects one
of its connections to a free node, redirecting it to a confined one, selected randomly
as well. This represents the tendency of the confined nodes to alienate from the
non-confined, or “outside”, part of the network, while they increase their links among
themselves. Denoting a confined node as ncj , it will have one of its links changed if it
has at least one link outside the confinement and if there is a confined node not yet
connected to it (multiple links between nodes are not allowed). If both conditions are
fulfilled, one of the links to the outside is selected, cut, and replaced by a link to a
confined node selected at random among all the possible candidates.
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There are two binding conditions between the parameters ps and pf . The influx/outflux
can not exceed the size of the confined space, so Nc � Nf , i.e.:

ps � pf . (4)

On the other hand, Nf � N − Nc must be satisfied, for the number of influx nodes (Nf )
has to be less than the number of available free nodes, that is

ps + pf � 1 , (5)

however, as in any realistic scenario, Nc � N , from condition Eq. 4, condition Eq. 5 is
always satisfied.
As the dynamics progress, the topological characteristics of the network transform,

except the number of nodes and edges, until a steady state is eventually reached. At this
stage, the roles of individual nodes and edges are in continuous transformation, but the
general form of the network remains stable. Hereafter, we use this model to demonstrate
the complex behavior that emerges from the described confinement dynamics, as well as
the influence of the size and the flux in the resulting networks.

Computational simulations

Unless otherwise stated, all simulations use E-R random networks, with N = 104 nodes
and average connectivity degree 〈k〉 = 4 as starting conditions. Different network sizes
and link densities may modify the numerical results of the simulations; however, in this
research, we focus mainly on the effects of the confinement parameters: ps (relative con-
finement size) and pf (relative flux). Besides, we restrict the study to networks with
a single confined space; afterward, we introduce multiple confined spaces and discuss
system size scaling.
Each simulation runs until the network reaches a steady state. One simulation time step

is defined as a rewiring phase that sweeps all confined agents, followed by a flux phase.
The number of individual time stepsm necessary to reach a steady state, depends on the
parameters ps and pf ; for all results presented here we use 103 < m < 2× 104. In general,
both a smaller ps (smaller confined spaceP) and a smaller pf (smaller flux of nodes trough
P) require longer times to reach a steady state.
During the network evolution we compute the following metrics: the average cluster-

ing coefficient C (Watts and Strogatz 1998), the degree distribution P(k), and network
fragmentation, i.e. size and stability of the largest connected component. Besides, the
dynamics tend to create highly interconnected clusters with lower connectivity between
them. In order to find partitions that may define these clusters, we use the “Louvain
algorithm” (Blondel et al. 2008), which we also use to follow the time evolution of the
modularity.

Results
Clustering Increase

Most empirical networks of interest, particularly social networks, display highly intercon-
nected subgraphs. The concept of a global clustering coefficientC, or transitivity (Holland
and Leinhardt 1971), is one of the ways we use to quantify this effect. It is well known that
large random networks present very low clustering coefficient compared to real world
networks with equal density —in social networks we can find usually C ∝ 10−1 (Albert
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and Barabási 2002; Liljeros et al. 2001). This relatively elevated coefficient must be driven
by some intentional or plannedmechanism typical of social interactions.
Figure 1 shows the time evolution of the global clustering coefficient, starting from a

random network (C ≈ 〈k〉/N = 4 × 10−4), for a fixed ps = 0.01 and several values of the
parameter pf ; it can be seen that C always increases and, after a transient, reaches a sta-
ble state. Hence, the confinement dynamics transforms the initial E-R network, gradually
increasing the clustering coefficient, depending on the parameters ps and pf , which play
a key role in such reshaping. The increase in C occurs inside the confined space, where
nodes tend to connect to each other due to the rewiringmechanism. Such behavior, which
increases the confinement subgraph density, is typical of a socially driven network. At the
same time, the flux dynamics continuously disseminates members of these groups to the
outside of the confinement.
Noteworthy, the asymptotic values of C are independent of the initial network; if, for

example, we start from a Watts-Strogatz (WS) network, the clustering decreases to the
same asymptotic values of Fig. 1, which, for fixed N, seem to depend inversely on param-
eter pf . The reason different input networks yield the same resulting steady state is the
quasi-random nature of the dynamics, in which confined and released nodes, along with
the rewiring, are all chosen randomly. Therefore, the initial configuration has no influence
in the asymptotic state.
We have previously shown that the clustering coefficient inversely depends on the flux

pf ; in addition, it weakly depends on the relative confinement size ps. This behavior can
be better visualized in the phase diagram of C in the ps − pf plane (Fig. 2). A smaller
flux makes nodes spendmore time in confinement, gaining more links and having greater
chances of forming new triangles, thus increasing clustering. On the other hand, a bigger
confined space P increases the chance of forming new triangles, partially because nodes

Fig. 1 Time evolution of the clustering coefficient C due to the confinement dynamics. Initial network is
random with N = 104 and 〈k〉 = 4 with a near zero clustering C = 0.0004. The confined spaceP has relative
size ps = 0.01 for all curves while the flux pf is different. After a transient, C reaches a stable value inversely
proportional to pf . C is measured over the largest connected component
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Fig. 2 Map of clustering coefficient (of the connected component) as a function of parameters ps and pf .
Smaller flux results in the nodes remaining more time insideP , increasing the probability to form triangles in
the enclosed space. Larger confined spaces increase the chance of forming new triangles, partially because
nodes stay longer insideP , having more time to form new connections, but also because the number of
links that can be redirected to the confinement is proportional to the number of nodes inside of it. Initial
network is random with N = 104 and 〈k〉 = 4 with a near zero clustering C = 0.0004

stay longer inside P , having more time to form new connections, but also because the
number of links that can be redirected to the confinement is proportional to the number
of nodes inside it. The newly formed triangles eventually go outside the confinement,
contributing to the general increase in the value of C.
Nevertheless, if ps is of the size of the system, there is no actual confinement, just pure

reshuffling. In such a case, C is not expected to change from its very low initial value.
Therefore, a non monotonic behavior for C vs ps would be exhibited if all possible values
of ps were explored, but that is outside the region of practical interest (ps � 1).
We have to mention that a size dependence of C(ps, pf ) is observed and it is discussed

in the last two sections, which regard the size scaling of the model.

Community Emergence:

Apart from increasing the global clustering, the proposed confinement dynamics gen-
erates highly internally connected clusters, weakly linked between them; the kind of
network structures associated with the idea of structural communities. The detection and
characterization of communities (or modules) in large networks is a trending topic in net-
work science (Barabási and et al 2016), and the emergence of community structures is a
remarkable result of the proposed network dynamics.
We use a modularity (Newman 2006) maximization algorithm, the “Louvain method”

(Blondel et al. 2008), for partitioning the network, measuring the modularity Q, and
detecting communities. Moreover, we visually inspect the networks’ configuration by
making snapshots using a drawing software (Bastian et al. 2009; Martin et al. 2011) and a
force-directed graph drawing algorithm (Jacomy et al. 2014) (see Fig. 3).
Unlike known benchmarks for modular networks, the proposed dynamics does not pre-

fix the modularity value, and neither the number of modules nor the average size of them;
communities emerge naturally during simulation, without the use of any a priori grouping
meta-data. While the procedure is not crafted to produce the modular separation of the
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a

b

Fig. 3 From an initial random network of size N = 104 and 〈k〉 = 4, the confinement dynamics creates a
stable and more complex network. The figure shows the effect of a single confined space, where the
dynamics parameters are ps = 0.025 and pf = 0.00275. In this visual representation of the resulting network
a force algorithm is used for node positioning (Jacomy et al. 2014), resulting in strongly connected nodes
being grouped together. Upper panel: nodes are color coded according to the resulting partitioning of the
community detection algorithm (Blondel et al. 2008). Lower Panel:With the same node and link disposition,
nodes are color coded as confined in red or free in blue. During the dynamics, nodes enter and leave
confinement, and links are rewired, but the general characteristics of the network remain the same. There is
clear overlap between one of the communities of the upper panel (the gray one on the right side) and the
confinement of the lower panel
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graph, it is obviously the mechanism behind the emergence of such reordering of the
network.
In order to understand how communities emerge during the dynamics, we consider

the confined space P as being one partition or community, named c, and examine its
contribution to the global modularityM, namedMc (Newman 2006):

Mc = 1
2�

c∑

i,j

(
Aij − kikj

2�

)
. (6)

In Eq. 6, � is the number of edges in the entire network, so
∑N

i=1 ki = 2�, Aij is the
adjacency matrix, kikj2� is the expected number of connections between nodes i and j for a
random network, and the sum

∑c
i,j is computed over the nodes inside the partition c with

Nc nodes. This expression forMc can be written in a simple form as

Mc = �c
�

−
(
kc
2�

)2
(7)

where �c = 1/2
∑c

i,j Aij and kc = ∑c
i ki are the number of links and the total degree

of partition c, respectively. As nodes inside P receive new connections, the connectivity
matrix gets additional Aij = 1 terms. For each node rewired, both �c and kc increase by 1,
and as usually kc � �, thenMc is increased by

�Mc ≈ 1
�
. (8)

The above increase in the local contribution to the modularity is for each node that is
rewired; in order to estimate the effective initial increase in modularity, all nodes that
participate in the rewiring have to be considered:

�Mt ≈ psN × 1
�
, (9)

and as � = 〈k〉N/2, we end up with

�Mt ≈ 2ps
〈k〉 . (10)

This mean field estimation of the modularity increase rate is restricted to the condition
ps � pf and even so, it represents an upper estimation, as fluctuations and correlations
are not taken into account. Moreover, it is valid at the beginning of the dynamics, when
the distribution of links is uniform, so modularity is at the random value M(0) = 0.5.
With the increase of internal connections after the transient, some nodes may no longer
have connections to the outside, thus less rewiring occurs.
Similar arguments can be applied to explain how clusters survive outside the confine-

ment using Eq. 6. Now consider that partition c is a cluster that has left P some time ago.
This newly formed cluster is rich with internal connections and is well connected to the
confined space, then it may be detected as a single community. As time goes on, internal
connections are preserved so the sum

∑c
ij Aij remains the same, but the second (negative)

term of the summation becomes less significant as the average connectivity 〈kc〉 decreases
—due to rewiring of edges between the confined space and the cluster outside— result-
ing in an increased modularityMc. Then, with less connections to the confined space, the
structure eventually separates from it. Summarizing, there is a constant process of com-
munity creation inside the confined space and its neighborhood, leaving and separating
from the confinement. These structures eventually may disappear as new communities
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a b

Fig. 4 Modularity associated with the partitioning of the resulting networks given different values of ps and
pf . Left panel: time evolution from initial random network, Right Panel: modularity map as a function of ps
and pf . In both figures initial networks are random with N = 104 and 〈k〉 = 4

are formed by the continuous process of confinement and flux; this dual mechanism
results in stable modularity, number of communities, and average community size, while
the nodes that form them change all the time.
The detection and evolution of communities in dynamic networks is still a debating task

(Palla et al. 2007; Delvenne et al. 2010), so we limit our investigation to taking snapshots
of the structures at each time step, measuring the modularity, and observing the stability
of other proposed quantities. Figure 3 shows one selected snapshot of the network, using
a force-directed algorithm for the visual representation in two different ways: the upper
panel colors the eight identified communities at the time of the snapshot, while the lower
panel colors the confined nodes (red) and outside confinement nodes (blue).
Figure 4 shows the time evolution of modularity for selected sets of relative confine-

ment sizes, ps, and relative flux parameter, pf , along with the phase diagram of modularity
in a region of interest of these two parameters. Partitioning of the network was achieved
using the Louvain algorithm. It is shown in the left panel that modularity reaches a sta-
ble state after a transient that depends on the input network. The right panel shows a
partial phase diagram of the key parameters of the model, showing a higher modularity
in the darker blue region, associated with a smaller flux and intermediate confinement
size. This sufficiently large confinement and small flux is consistent with the formation of
highly connected clusters inside the confinement and their slow separation, forming an
independent community.
While modularity is useful in evaluating the quality of a given partition and the detected

community structures seem to agree with graphical visualization, community detection
algorithms have limitations regarding detection resolution in situations such as the merg-
ing of two communities into a single one, the partitioning of a single community, or
ignoring nested communities. Another example of limitation is the finding of multiple
communities with modularity superior to zero, when the Louvain algorithm is applied
to a completely random network. This is due to local fluctuations in big networks, in
which possible community partitions may arise from the modularity maximization algo-
rithm. Nevertheless, as long as their limitations are taken into account (Fortunato 2010;
Lancichinetti et al. 2008), these detection algorithms remain very useful.
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As explained at the beginning of this section, communities are not predetermined, but
emerge as an indirect result of the confinement dynamics. Therefore, we propose a sec-
ond parameter to measure the existence and quality of the modules partition. We define
the parameter φ(c) of a given partition c of size Nc as the ratio between the numbers of
external and total links of that partition, so that for a node j of the partition c, kextj is the
number of external links and kj the degree of node j. Then,

φ(c) =
∑Nc

j=1 k
ext
j

∑Nc
j=1 kj

. (11)

So, for a partition with only internal connections, i.e. a completely closed community,
φ(c) = 0, while in a random partition of a random network we expect φ = 0.5. We are
interested in the average ratio for all partitions, thus, we define a global ratio �(N ) as a
complementary way to follow the emergence and stability of the community structures:

�(N ) =
∑N

j=1 k
ext,Nc
j

∑N
j=1 kj

. (12)

Where kext,Nc
j is the number of external links of node j in partitionNc, with the sumsmade

over the entire network. Figure 5 shows a clear correspondence with modularity data of
Fig. 4; using the same sets of parameters ps and pf , we see that the curve with the lower
asymptotic modularity has the higher asymptotic �(N).

Degree Distribution

Starting from the initial network, the dynamics change the degrees of individual nodes.
Eventually, the degree distribution P(k) reaches a stationary state, while the degree of
individual nodes continue to change over time. The stable asymptotic form of P(k)
depends on the network sizeN, the average degree 〈k〉, and the parameters ps and pf of the
dynamics. Figure 6 shows the final stable distributions obtained from simulations using
some sets of the parameters ps and pf . Increased degree heterogeneity results for smaller
pf and bigger ps, (i.e. bigger confinement and/or smaller flux).
The distributions P(k) presented in Fig. 6 are some examples of the many different dis-

tributions that can be generated, each one corresponding to a distinct set of parameters.

a b

Fig. 5 Left Panel: time evolution of � for some choice parameters, the same ones used in Fig. 4, initial
network is random with N = 104 and 〈k〉 = 4 with ratio very close to � = 0.5, with the detection algorithm
bias giving slightly reduced values. � decreases with time in all cases where ps �= pf , reaching a stable state.
Right panel: phase diagram showing the ratio � in relation with the parameters ps and pf , all points originate
from an initial random network with N = 104 and 〈k〉 = 4
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a b

Fig. 6 From an initial random network with N = 104 and 〈k〉 = 4 with a Poisson degree distribution, P(k)
changes to become more heterogeneous until a stable state is reached. This figure tries to isolate the effects
of the parameters ps and pf in the heterogeneity. Left panel: Using a fixed flux rate pf = 0.003 three curves are
shown, each corresponding to the final stable P(k) of a different confinement size ps . Right panel: using a
fixed confinement size ps = 0.03 another three distributions are shown, each using a different value of pf

If ps = pf the network stabilizes and displays Poisson’s degree distribution like a random
network of the same size and average degree. As the confinement increases and/or the
flux decreases the resulting degree distributions shift to longer tails type with increas-
ing heterogeneity. Among the P(k) distributions found in the simulations we encounter
curves that could be better fitted either with Poisson or Gaussian distributions. However,
log normal and power law distributions are ubiquitous, mostly in the lower region of pf ,
and to a less significant effect, in bigger confinement sizes, as can be seen in Fig. 7-left.
Through the rewiring mechanism, confined nodes tend to increase connectivity, while

free nodes tend to lose connections. By the flux mechanism, nodes are confined at ran-
dom, and will also leave confinement at random. This means that the time spent in the
confinement for t → ∞ is similar for every node, so the heterogeneity of node degree

a b

Fig. 7 Different dynamic parameters generate distinct forms of degree distributions. Left Panel: For a fixed
value of confined space, ps = 0.035, two distributions are shown, one with higher pf (red triangles)
juxtaposed to a fitted log normal (black dotted line), and the other with a smaller pf (purple circles) fitted to a
power law. Lower pf , means nodes spend more time insideP , which allows for more in-confinement
connections, then increasing degree heterogeneity. Both curves emerge from initial random networks with
N = 104 and 〈k〉 = 4. Right panel: Comparison with a real network obtained from the Brazilian Federal Police
(see text for details of the data) (da Cunha and Gonçalves 2018). As the real data hasM = 0.96 and C = 0.43,
the degree distribution obtained from the model corresponds to the parameters that give the largestM and
C. Even when they are not as large as the real ones, the similarity between both distributions is remarkable
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must come from confinement during the last time steps. Assuming that a node j is con-
fined at time t = t′, the probability Pjf (t = t′ + 1) that the same node is released at the
next flux step is:

Pjf (t = t′ + 1) = pf
ps

. (13)

Since ps ≥ pf , such probability is well defined, where a lower ratio means less chance
of release. Since all nodes are picked at random, some pass quickly trough the confine-
ment, while others might linger. The probability that a node stays in the confinement for
a certain period �t, (1− pf /ps)�t , decreases exponentially with time. Nodes tend to gain
connections while confined due to the rewiring dynamics, so those confined for a longer
time tend to become more connected. From the exponentially decaying probability of
confinement time, its average can be estimated as τ ≈ ps/pf , which explains why degree
heterogeneity increases if ps increases (pf fixed, Fig. 6-left) and/or pf decreases (ps fixed,
Fig. 6-right).
In order to check if the present model makes sense, we compare its results with a real

network case. The data appeared in the paper “Topology, robustness, and structural con-
trollability of the Brazilian Federal Police criminal intelligence network” (da Cunha and
Gonçalves 2018), which consists of the network representation and topological analysis of
data, obtained after several Brazilian Federal Police investigations in 2013. The network,
designated BFP2013, shows very high modularity (M = 0.96) and high clustering coeffi-
cient (C = 0.4), higher than the maximum values of the present simulations (M = 0.88
and C = 0.14) obtained with N = 104, 〈k〉 = 4, ps = 0.035, and pf = 0.005. Taking
the stable state of the network that corresponds to the above parameters, we compute
the normalized degree distribution P(k) and compare it with the normalized P(k) of the
BFP2013 network (Fig. 7-right). Considering that the real network is much more modular
structured, the qualitative agreement is remarkable. Wemust notice that the real network
is only a small part of a much bigger social network (all Brazilian inhabitants) while in
the simulation we consider the whole population, scaled down. If we restrict ourselves to
nodes recently released from confinement, we would probably observe values even closer
to those of the real criminal network. Given this practical case, we can say that the model
has the potential for representing real case scenarios.

Network Fragmentation

The rewiring phase increases the link density inside the confined space. As the number
of links is conserved in the whole network, nodes outside P tend to have their connec-
tivity degree reduced, eventually reaching k = 0. Therefore, the outside confinement
sub-graph may eventually fragment, decreasing the size of the largest connected compo-
nent (LCC). This fragmentation is counterbalanced by the constant influx and outflux of
random nodes, so an orphaned node or a separated cluster may be reconnected to other
nodes, when confined to P . In order to follow and characterize the level of fragmentation
of the network, we measure the time evolution and stable states of the LCC and show the
results in Fig. 8.
Figure 8, left panel, shows that after a time transient those two effects, fragmentation

by rewiring and reconnection by flux, balance each other and a stable size of the LCC is
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a b

Fig. 8 Left panel: time evolution of the largest connected component for an initial random network with
N = 104 and 〈k〉 = 4. The size of the component is given in relation to the size N of the network, with
N → 1, and curves for different sets of parameters are shown. After a transient state, the giant component
stabilizes, while nodes leave and reenter the connected component. Right panel: phase diagram showing the
size of the largest connected component as a function of parameters ps and pf . The size of the component is
given in relation to the size N of the network. Dark blue regions representing a larger component. Larger
confinement spaces result in increased reduction of connectivity degree of the nodes outside P), resulting
in more disconnections. Likewise, with a smaller flux, less detached clusters and nodes are reattached. Initial
network is random with size N = 104 and 〈k〉 = 4

reached. The size of the LCC depends, apart obviously from network size and link den-
sity, on the two parameters of the dynamics, ps and pf . The phase diagram of ps and pf
in the right panel of Fig. 8 shows increasing fragmentation for bigger relative size of con-
finement ps, which is an expected result since the number of links rewired to subgraph
P is proportional to psN , resulting in decreased connectivity degree outside of P . Like-
wise, when pf decreases, nodes outside P are less likely to be confined and reconnected
to other clusters. The average degree outside P also decreases with lower flux as the con-
nectivity of nodes outside depends only on the link sets �io and �out , which are created
only trough outflux of nodes.

Size scaling with multiple confined spaces

The single confinement dynamics is useful to introduce and illustrate the mechanism
that results in increased clustering, community forming, and degree heterogeneity, in rel-
ative small sized network. However, we briefly noticed, in previous sections, that, for a
fixed confinement size ps and flux pf , different network sizes and densities yield net-
works with different metrics and a degree distribution which does not scale with size. In
other words, the single confinement space does not scale with network size. Nonetheless,
in the real world, we expect the number of confined spaces to pace with the size of the
population.
It can be shown that introducing multiple confined spaces inside the same network

makes the model to scale with size. We start with a small network, N = 1000. With
ps = 0.05 and pf = 0.005 we have a confined space of size 50 with 5 nodes changing
during flux phase. When the network size doubles (N = 2000), instead of increasing the
confinement to 100 nodes and the flux to 10 nodes, we add a second confined space of
the same size than the first one. We repeat the process as the network grows, keeping
the confinement size and flux rate, but increasing the number of confined spaces so the
network still has a fixed relative number of confined nodes ps and relative flux pf , but
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divided among independent confined spaces. Each confined space operates only with the
free nodes (apprehending, releasing, and rewiring as previously described); once a node
is released, it can be re-apprehended by other confined space or even the same one.
In this multiple confinement scenario, the clustering and the relative size of the giant

component have size invariance, as can be seen in Fig. 9-left. Meanwhile, modularity, as
well as community size, exhibits a weak dependence with network size (N), both increas-
ing slowly with N (Fig. 9-left). As we mention before, community detection algorithms
have limitations, particularly concerning resolution. The “true” community structure that
emerge from our proposed model is not known a priori. It is an emerging, dynamic, and
indirect consequence of the key parameters of the model. Therefore, partitions sizes and
modularity are good indicators of the observed structure but not the exact ones.
In the left panel of Fig. 9 we present the resulting degree distributions for different sizes

showing a nice size invariance, except for a normalization and a weak but expected tail
dependence on size.
Finally, we want to point out that while multiple confinements is a whole new venue for

further research (for example multilevel confined spaces or intersecting confinements), it
was considered here just for scaling matters.

Final considerations

In “Degree Distribution” section (degree distributions), we pointed out that hubs are
formed inside the confinement: while the rewiring is random, only the nodes inside the
confinement receive new links. In real social networks the mechanism of preferential
attachment is not always explicit, and the reason for a node to form connections can be
as subtle as one remaining in a limited place while other nodes go through that place.
The main difference from standard growing models with preferential attachment is

the dynamic nature of the hubs inside the structure. Older nodes of the network are
not necessarily hubs, but rather the older confined nodes. We can scale the network
size up (adding nodes, edges, or confined spaces) or down. As long as the dynamics
have sufficient time to reach the steady state, the networks preserve their form and
the measured metrics. In this sense, our results differ from the temporal growth model

a b

Fig. 9 Size invariance comes from multiple confined spaces. Left panel: network size dependence of some of
the measures for a fixed confinement absolute size (number of confined nodes is Nc = 50 and flux node
number is Nf = 5). The number of confined spaces for each network size N isP = N/1000. Right panel:
different network sizes result in different degree distribution, but with the proposed method of size scaling
there is a family of distributions similar but for a multiplicative factor (or a vertical translation on the log scale)
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proposed by Bagrow and Brockmann (2013) in which new nodes attach to older ones
with an initial attractiveness proportional to the clustering coefficient of each node. This
model gives rise to several interesting features, including community formation. How-
ever, Bagrow and Brockmann model evolves adding new nodes on the system, while
our research focuses on the dynamic of topologically confined subsets (of fixed size)
of nodes.
The proposed model also produces nodes with degrees of variable timespan, a fea-

ture that most social networks exhibit. When a perturbation is applied to the network
structure, after a short transient, the network reaches an equivalent stable state.

Conclusions
In the present contribution we have introduced a simple model for dynamic networks,
which we call confinement dynamics. The proposed model and the parameters that con-
trol it bear similarities with complex phenomena of real networks, particularly social
networks, and so do the resulting structures. The size and number of confined spaces can
be associated with real world organizations: individuals of a commercial firm, inmates of
a prison, or social media groups. As for the flux, it can be associated with the time scale
dynamics.
We have shown that themodel gives rise to the appearance and stability of complex phe-

nomena observed in empirical networks, such as high clustering, heterogeneous degree
distributions (scalable with network size), and formation of communities. Size scalability
is verified using multiple confined spaces, and the stability of the general network form
is observed while the components are in continuous flux —an important characteristic
often manifested in real systems. Remarkably, all those features emerge from just two
parameters (ps and pf ) and from any input network; indeed the self organization of the
resulting networks becomes evident due to the choice of random networks –which lack
all the complex structures developed during the dynamics– as starting configurations.
The key element for such independence from the initial conditions is the random criteria
for confinement, release, and rewiring of individual nodes, with no memory of the ini-
tial state —except, naturally for the transient behavior— in addition to network size and
number of links.
The incarceration example is of particular interest when analyzing criminal dynamics.

Criminal network detection and dismantling models are of great utility in generating pub-
lic welfare and in reducing personal and patrimonial damages. Most models assume that
an inmate is removed from the network while incarcerated (Duijn et al. 2014; Gordon et
al. 2009; Gambra and Frey 2011; Schneider et al. 2014). This assumptionmay overestimate
the incarceration system’s ability to remove the agent from criminal dynamics, and, at the
same time, overlooks the capacity of the confinement systems to generate new contacts
and reorganize criminal networks.
Future research could aim to further develop this model by considering simulations

with more realistic initial conditions, such as seed networks, and more complex wiring
dynamics, such as the configuration model or non-Markovian wiring.
Characterizing the time evolution of communities, as they born or dye out, merge,

or split, is a difficult task that involves dealing with huge sets of time-stamped data,
and tracking individual modules of the network (Palla et al. 2007; Hopcroft et al. 2004).
Although themodel we introduce represents a simplified view of a complex phenomenon,
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we believe it can help to understand, in a simple way, the underlying modular character-
istic of real complex networks and, more importantly, how communities can emerge and
evolve.

Abbreviations
BFP2013: Brazilian federal police network available in ref (da Cunha and Gonçalves 2018); E-R: Erdös Rényi networks; LCC:
Largest connected component; WS: Watts-Strogatz networks
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