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In this work we consider the QCD parton saturation models to describe soft interactions at the high
energy limit. The total and elastic cross sections, as well as the elastic slope parameter, are obtained for
proton-proton and pion-proton collisions and compared to recent experimental results. The analyses are
done within the color dipole formalism, taking into account saturation models which have been tested
against deep inelastic scattering data. The main point is that the matching between soft and hard interaction
occurs in the saturation region which can be described by high density QCD approaches. Discussion is
performed on the main theoretical uncertainties associated with calculations.
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I. INTRODUCTION

Describing soft processes using the QCD degrees of
freedom is a quite difficult task as they are dominated by
long distance (nonperturbative) physics. It has been shown
that soft observables, as the total and elastic cross sections,
depend on the transition region between the high parton
density system (saturation domain) and perturbative QCD
region [1–3]. The parton saturation phenomenon [4–6] is
a well-established property of high energy systems and
gives a high quality description of inclusive and exclusive
deep inelastic scattering (DIS) data. As evidence for the
successfulness of such approach we quote the description
of the light meson photoproduction cross section [7–12]
and diffractive DIS (DDIS) [13,14]. Both are hard proc-
esses, in which an important contribution to the cross
section comes from the kinematic region in the vicinity of
the saturation momentum, Qs. This dimensional scale
increases in the high energy region. A well-known formal-
ism which is intuitive and where saturation physics can be
easily implemented is the QCD color dipole picture. A
seminal work on this approach is Ref. [15] where the

unitarity corrections to the proton structure function at
small xwere derived and predictions are done for DDIS and
nuclear shadowing. There it was demonstrated that the
factorization of the photon-induced cross sections between
the Fock states wave functions of photon and multiparticle
dipole cross section provides clear identification of the
partial waves of the dipole cross section as an object of the
s-channel unitarization. Moreover, applications to the soft
hadronic scattering within the same formalism have been
done in [16]. It is expected [1] that soft processes measured,
for instance, at the Large Hadron Collider (LHC) in hadron-
hadron collisions probe distances at about r ∼ 1=Qs ≪ Rh,
with Rh being the hadron radius. In this context, hadron
scattering at the LHC could be described by color dipoles as
the correct degrees of freedom even at large transverse
distances. Moreover, it has been shown that the cross
sections for soft hadron-hadron collisions within saturation
approaches satisfy the Froissart-Martin bound [2,3]. In
addition, the role played by the unitarized hard Pomeron
contribution to the soft observables has also been carefully
discussed in Refs. [17,18]. The relationship and equivalence
between the Balitsky-Fadin-Kuraev-Lipatov (BFKL) and
dipole equation kernels are investigated by means of explicit
calculations in light-cone perturbation theory. A dipole
equation, equivalent to the usual equation for interactions
between four Reggeized gluons, is given in the largeNc limit.
The leading trajectory of the four-gluon system is bounded by
2αIP − 1 with αIP being the BFKL Pomeron intercept. [19]
An important property of the saturation formalism is the

geometric scaling phenomenon [20], which means that the
scattering amplitude and corresponding cross sections can
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scale on the dimensionless scale τ ¼ μ2=Q2
s , where μ2 is

the typical hard scale in the scattering process. For
instance, μ2 ¼ Q2 is the photon virtuality in DIS (i.e.,
the nucleon structure functions F2; FL) and deeply virtual
Compton scattering (DVCS) processes or μ2¼ðQ2þM2

VÞ
in the case of exclusive electroproduction (Q2 ≠ 0) and
photoproduction (Q2 ¼ 0) of vector mesons of masses
MV . The treatment of vector meson production (including
production of their excited states) within the color dipole
picture in terms of the scanning radius, rS, was first
addressed in Ref. [21] with the identification of the
relevant hard scale ðQ2 þM2

VÞ (for a comprehensive and
pedagogical review about vector mesons we quote
Ref. [22], where experimental results are summarized and
theoretical formalisms are compared with emphasis on
the BFKL color dipole and kt-factorization approaches).
Deviations from geometric scaling are also known when
the system is far from the saturation domain. Geometric
scaling is an intrinsic property of nonlinear QCD evo-
lution equations [4–6] in the asymptotic energy regime,ffiffiffi
s

p
→ ∞. This scaling property has been used in recent

years to construct phenomenological models for the QCD
dynamics at high energies. A very intuitive picture of
inclusive or exclusive DIS processes is the color dipole
picture [23–26]. In that picture the deep inelastic scatter-
ing process can be seen as a succession in time of three
factorizable subprocesses: (i) the photon fluctuates in a
quark-antiquark pair with transverse separation r ∼ 1=Q
long after the interaction, (ii) this color dipole interacts
with the nucleon target, and (iii) the quark pair is
projected into the considered final state. The nucleon
structure function is related to the γ�p cross section as

F2ðx;Q2Þ ¼ Q2

4π2αem
σγ

�p
tot . The latter is the overlap of the

dipole cross section on the transverse and longitudinal
photon wave functions. The interaction is then factorized
in the simple formulation [23–26],

σγ
�p
tot ðWγp;Q2Þ ¼

Z
dz d2r ðjΨTðz; rÞj2 þ jΨLðz; rÞj2Þ

× σdipðx̃; rÞ; ð1Þ

where z is the longitudinal momentum fraction of the

quark in the color dipole, x̃ ¼ Q2þm2
q

W2
γpþQ2 is equivalent to the

Bjorken variable and provides an interpolation for
the Q2 → 0 limit. The mass of the quark of flavor f
is labeled as mf. The photon wave functions
ΨT;Lðr; z;Q2Þ are determined from light-cone perturba-
tion theory and the dipole hadron cross section
σdipðx; rÞ ¼ 2

R
d2bNdipðx; r; bÞ contains all the informa-

tion about the target and the strong interaction physics
(including the impact-parameter b dependence). As an
example, the celebrated Golec-Biernat Wusthoff (GBW)
parametrization [14,27] takes the eikonal-like form,

σdipðx; r2Þ ¼ σ0

�
1 − exp

�
−
r2Q2

s

4

�
γs
�
; ð2Þ

Q2
sðxÞ ¼

�
x0
x̃

�
λ

GeV2; ð3Þ

where Qs is the saturation scale. The parameters are
obtained from the fit to the HERA data producing
σ0 ¼ 27.43 mb, λ ¼ 0.248, and x0 ¼ 0.40 × 10−4 for a
five-flavor analysis (See Ref. [28] for an updated fitting
procedure). Here, additional parameters are the effective
light quark mass, mf ¼ 0.14 GeV, which plays the role
of a regulator at the photoproduction limit. The charm
(bottom) mass is set to be mc ¼ 1.4ð4.6Þ GeV. The
GBW parametrization presents a geometric scaling form,
σdip ∝ fðr2Q2

satÞ. For small dipoles r2 ≤ 1=Q2
sat it can be

approximated by σdip ≃ σ0ðr2Q2
sat=4Þ, where the effective

anomalous dimension is equal to one, γs ¼ 1.
The advent of the LHC opened a new window for the

studies on diffraction, elastic and inelastic scattering,
as they are not strongly contaminated by nondiffractive
events. This is translated in the Regge theory language by
saying that the scattering amplitude is completely deter-
mined by a Pomeron exchange. The current measurements
on these soft observables at the LHC in proton-proton
collisions span a wide range energies from 100 GeV
including the very recent LHC data at 2.76, 7.0, 8.0, and
13 TeV [29–37]. In the context of saturation physics the
soft Pomeron may be understood as a unitarized perturba-
tion Pomeron [38]. It can be shown that the trajectory of
the soft Pomeron could emerge as a result of the interplay
between perturbative physics of the hard Pomeron and the
confining properties of the QCD vacuum. Specifically,
local unitarization in the impact-parameter plane can lead to
a reasonable description of intercept and the slope of the
soft Pomeron [38]. In the present work, we investigate the
soft observable in the small-t regime within the color dipole
picture and parton saturation approaches. Of course, some
words of reservation are needed here. We are aware that the
saturation scale, in general, is relatively small and its role in
perturbative QCD (pQCD) is highly debatable. The issue of
the extension of the color dipole language from the hard
BFKL pQCD region of small dipoles to the soft Pomeron at
hadronic scales remains an open one (we quote Ref. [39]
and references therein a careful discussion of this problem).
The paper is organized as follows. In the next section we
summarize the theoretical information to compute the cross
section for hadron-hadron collisions in two color dipole
approaches. First, we consider the asymptotic cross section
following Ref. [3], where the pp cross section is assumed
to be dominated by two-gluon production in the final state,
pp → ggþ X. There, the main ingredients are the gluon
distribution of the projectile and the partonic cross section
associated to the interaction gN → ggþ X. We also con-
sider the model presented in Ref. [1], where the cross
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section for the hadron-proton collision is viewed in a
similar way as Eq. (1), where the virtual photon wave
function is replaced by the corresponding wave function for
the hadron projectile. The hadron-proton interaction is
computed using the dipole-proton amplitude constrained
by DIS data. The numerical results from both models are
compared to experimental measurements focusing on the
LHC kinematic regime. In the last section we discuss
the main theoretical uncertainties and present the main
conclusions.

II. COLOR DIPOLE MODELS

A. Asymptotic model

Our first investigation will consider the color dipole
approach applied to the hadron-hadron collisions proposed
in Ref. [3]. For simplicity, we address initially the case for
proton-proton collisions in colliders. The formalism is able
to provide us with the production cross section of (heavy
or light) quark pairs or gluons at the final state. Namely,
similarly to photon-hadron interactions, the total quark
production cross section is given by [40,41]

σðpp → qq̄XÞ ¼ 2

Z
− lnð2mqffiffi

s
p Þ

0

dy x1G ðx1; μ2FÞ

× σðGN → qq̄XÞ; ð4Þ

where y ¼ 1
2
lnðx1=x2Þ is the rapidity of the pair and μF ∼

mQ is the factorization scale. The quantity x1Gðx1; μ2FÞ is
the projectile gluon density at scale μF and the partonic
cross section σðGN → qq̄XÞ is given by [40]

σðGN → qq̄XÞ ¼
Z

dz d2rjΨG→qq̄ðz; rÞj2σqq̄Gðz; rÞ; ð5Þ

with ΨG→qq̄ being the pQCD calculated distribution ampli-
tude, which describes the dependence of the jqq̄i Fock
component on transverse separation and fractional momen-
tum. It is given by

jΨG→qq̄ðz; rÞj2 ¼
αsðμRÞ
ð2πÞ2 fm2

qK2
0ðmqrÞ

þ ½z2 þ ð1 − zÞ2�m2
qK2

1ðmqrÞg; ð6Þ

where αsðμRÞ is the strong coupling constant, which is
probed at a renormalization scale μR ∼mQ. We notice
that the wave function will lead to a dominance of dipole
sizes around r ∼ 1=mq in the corresponding r integra-
tion. Therefore, for heavy quark production, the color
transparency behavior from the dipole cross section,
σdipðrÞ ∝ r2, will be the main contribution (pQCD). In
the charm case, an important contribution should come
from the saturation region as the typical dipole size,
r ≃ 1 GeV−1, can reach an order of magnitude similar

to the saturation radius, RsðxÞ ¼ 1=QsðxÞ ∝ ð ffiffiffi
s

p Þ−λ=2
(with λ ≃ 0.3). On the other hand, for light quarks,
mq ≃ 0.14 GeV, we are deep in the parton saturation (very
low x2 and small scale of probe) and nonperturbative
regions. This will be the case in the following calculation.
In the partonic cross section, σqq̄G is the cross section for

scattering a color neutral quark-antiquark-gluon system on
the target and is directly related with the dipole cross
section as follows:

σqq̄G ¼ 9

8
½σdipðx2; zrÞ þ σdipðx2; z̄rÞ� −

1

8
σdipðx2; rÞ: ð7Þ

The equation above was first derived in Ref. [15] and the
main idea is that at high energies a gluonG from the hadron
projectile can develop a fluctuation which contains a QQ̄
pair. Interaction with the color field of the target then
may release these heavy quarks. Such an approach is valid
for high energies, where the coherence length lc ≈ 1=x2
is larger than the target radius. Hence, it is a natural
framework to include the parton saturation effects and to
make use of the fact that the dipole cross section is uni-
versal; i.e., it is processed independently. For the sake
of completeness, the parton momentum fractions are
written in terms of quark pair rapidity and masses, x1;2 ¼
2mQffiffi

s
p expð�yÞ.
Following Ref. [3], we obtain the asymptotic hadron-

hadron total cross section within the color dipole approach
considering the dominant process, pp → GGX, at high
energies. Now, the gluon G from the projectile hadron
develops a fluctuation which contains a two-gluon (GG)
pair which further interacts with the target’s color field.
Accordingly, the expression for the total cross section for
gluon production at final state is given by [42]

σpp→GGX ¼ 2

Z
ỹ

0

dy x1Gðx1; μ2FÞσðGN → GGXÞ; ð8Þ

where ỹ ¼ − lnð2mGffiffi
s

p Þ and the effective gluon mass, mG,

has been introduced in order to regularize the calculation.
Thus, in this case one has x1;2 ¼ 2mGffiffi

s
p expð�yÞ.

The new partonic cross section σGN→GGX is given by

σGN→GGX ¼
Z

dz d2rjΨG→GGðz; rÞj2σGGGðz; rÞ; ð9Þ

with ΨG→GG being the corresponding distribution ampli-
tude associated to the jGGi Fock state. It is obtained
from Eq. (6) in the following way: jΨG→GGj2 ¼
2ðNc − 1ÞjΨG→qq̄j2. The partonic cross section, σGGG,
is the cross section for scattering a color neutral three
gluon system on the target and is directly related with the
dipole cross section in the following way [42]:
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σGGG ¼ 1

2
½σdipðx2; zrÞ þ σdipðx2; z̄rÞ þ σdipðx2; rÞ�: ð10Þ

The approach described above is derived from the non-
linear k⊥-factorization approach for the production of hard
gluon-gluon dijets in gluon-hadron collisions when the
coherence condition holds. This gluon-gluon dijet cross
section can be investigated in different color representa-
tions and their classification in universality classes can be
defined.
Now, we will present the corresponding phenomenology

using Eq. (8). From Ref. [3], basically we identify two main
shortcomings: the very low value for the effective gluon
mass, mG ¼ 154 MeV < ΛQCD, and the identification of
the scale μ with the starting evolution scale in the gluon
PDFs considered, μ2 ¼ Q2

0. Here, we will use the value
mG ¼ 400 MeV that is consistent with the usual values in
Refs. [43–45]. Moreover, the gluon parton distribution
function (PDF) probed in the low scale μ2 ¼ m2

G ¼
0.16 GeV2 will be given by a prediction from the parton
saturation physics,

xGðx;Q2Þ ¼ 3σ0Q2
s

4π2αs

�
1 −

�
1þQ2

Q2
s

�
e
−Q2

Q2
s

�
; ð11Þ

where updated values for the GBW model parameters have
been used [28]. Consistently, for the dipole cross section we
have used the GBW parametrization. It should be stressed
that the result is parameter free and corresponds to the soft
Pomeron contribution to the cross section.
Let us discuss quantitatively the main ingredients in the

asymptotic model. For example, take the LHC energy offfiffiffi
s

p ¼13TeV [ỹ¼− lnð2mG=
ffiffiffi
s

p Þ¼9.7 and Δy¼2ỹ≃19].
At central gluon rapidity, y ¼ 0, the longitudinal momen-
tum fractions will be x1 ¼ x2 ¼ 2mG=

ffiffiffi
s

p
≈ 6 × 10−5,

whereas at very forward rapidity x2 ≃ 4 × 10−9. The
corresponding saturation scale squared, Q2

sðx2Þ, will be
∼0.9 GeV2 (at y ¼ 0) and ∼10 GeV2 (at y ¼ ỹ). As
μ2 ≲Q2

s , then xGðy¼0Þ∼3σ0Q2
s=4π2αs∼5.4=αs, σGGG ∼

3σ0=2 (limit is value deep in the soft region) and
jΨGGj2 ∝ 2αsðNc − 1Þ=ð8πÞδðz − 1=2Þδðr2 − 1=2m2

GÞ.
This will give roughly,

dσtot
dy

ðy ¼ 0Þ ∼ 3σ0Q2
sðy ¼ 0Þ
16π3

σ0 ≈ 12 mb; ð12Þ

where, in the simplified expression above, the integration
on rapidity is of order 2 × 1=λ ≃ 8.1 [the rapidity depend-
ence comes mostly from Q2

sðx1 ¼ 2mGey=
ffiffiffi
s

p Þ ∝ e−λy].
This would give quantitatively σtot ∼ 95 mb, which is an
order of magnitude similar to the measured cross section.
Finally, we have also considered another color dipole

approach addressing the soft scattering processes. In such a
case, other observables can be described as the elastic cross
section and the elastic slope parameter.

B. b-CGC and Eikonal models

We follow Ref. [1] and compute the total cross section in
the following way:

σhptot ðsÞ ¼ 2

Z
d2bd2rdzjψhðr; zÞj2Nðs; r; bÞ; ð13Þ

which depends on the color dipole amplitude, Nðs; r; bÞ,
and on the hadron wave function, Ψhðr; zÞ. The expression
resembles the same equation for the DIS description within
the color dipole approach. That is, the photon wave
function is replaced by the hadron one. Furthermore, we
consider the exponential approximation of the elastic
differential cross section at the diffraction peak,

dσel
dt

≃
dσel
dt

����
t¼0

eBelt ¼ σ2totð1þ ρ2Þ
16π

eBelt; ð14Þ

where t ¼ −q2t is the momentum transfer in a hp collision,
ρ is the real-to-imaginary ratio of the forward elastic
amplitude

ρhpðsÞ ¼ ReAelðs; t ¼ 0Þ
ImAelðs; t ¼ 0Þ ≃

π

2σhptot

dσhptot
d lnðs=s0Þ

; ð15Þ

and the slope, Bhp
el ðsÞ ¼ B0 þ B0ðsÞ with B0 ¼ 7.8 GeV−2

and

B0ðsÞ ¼
R
b2d2bd2rjψhðrÞj2Nðr; b; xÞ

σtot
¼ 1

2
hb2i: ð16Þ

In Eq. (15) we invoke a first order derivative dispersion
relation to provide an estimate of the parameter ρ at LHC
energies, especially at 13 TeV. Once the leading terms in
the amplitude of dipole models are interpreted here in the
Regge language as Pomeron terms (softþ hard), we will
have not accounted for Odderon signatures. Therefore, our
predictions for pp and p̄p observables are degenerate (the
same being true for π�p).
Finally, the elastic cross section can be computed by

integrating Eq. (14) to give (as ρ2 ≪ 1)

σhpel ðsÞ ≃
½σhptot ðsÞ�2
16πBhp

el ðsÞ
: ð17Þ

Here, in the meson-proton scattering the meson is treated
as a qq̄ pair and the calculations follow that of DIS; i.e., the
interaction of a color dipole with a proton target and
saturation physics can be embedded in the dipole ampli-
tude. Similar approaches have also been considered in
Refs. [46,47], where the Pomeron dynamics is written
in terms of the dipole-dipole cross section. For instance, in
Ref. [46] the large dipoles are dominated by a soft Pomeron
contribution, whereas small dipoles are driven by a hard
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Pomeron. On the other hand, in Ref. [47], based on
Mueller’s cascade model, the authors discuss several
contributions including the effect of Pomeron loops.
For the wave functions of mesons and baryons, we use

the phenomenological ansatz by Wirbel-Stech-Bauer [46],
which gives

ψhðz; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ
2πS2hNh

s
exp

�
−
ðz − 1

2
Þ2

4Δz2h
−

r2

4S2h

�
; ð18Þ

where the hadron wave function is normalized to unityZ
dzd2rjψhðz; rÞj2 ¼ 1:

This condition yields the following normalization con-
stant, Nh:

Nh ¼
Z

1

0

dz zð1 − zÞe−ðz−1
2
Þ2=2Δz2h : ð19Þ

Therefore, mesons and baryons are assumed to have a qq̄
and quark-diquark valence structure. As quark-diquark
systems are equivalent to qq̄ systems, this allows us to
model not only mesons but also baryons as color dipoles.
The values of parameters in our case are the following:
Δzh ¼ 0.3ð0.2Þ and Sh ¼ 0.86ð0.607Þ fm, for p=p̄ðπ�Þ,
respectively [46]. Sh is a fit parameter which gives a
measure of the transverse hadronic radius. Hence, as the
hadron wave function has a Gaussian profile, which is
centered at Sh [see Eq. (18)], it is expected that dipoles with
approximately the hadron radius dominate the contribution
to the cross sections.
At this point, some discussion is in order. In our

calculations the proton is considered as a quark-diquark
system having a mesonlike structure. Specifically, the
proton can be viewed as a bound state of an up quark
and an isospin zero, quark spin zero spatially extended two-
quark state, the diquark. In this case, quark-diquark systems
are equivalent to quark-antiquark systems and we accord-
ingly obtain hzi ¼ 1=2 from the wave function for protons
in Eq. (18). The three-quark structure of a baryon makes the
model notably complex but produces similar phenomeno-
logical results as in the quark-diquark picture. A compari-
son between the three-body picture and the diquark one for
protons concerning soft observables has been done in
Ref. [48] (see, e.g., Fig. 1 and Table III in [48]). On the
other hand, in the literature different treatments for the
baryon wave function are considered. For instance, in
Ref. [49] the proton wave function is obtained by the
symmetric oscillator wave function of the valence three-
quark proton. In this approximation, the proton is viewed as
a 3=2 color dipole spanned between quark pairs. The
distribution of the size of color dipoles with transverse size
r spanned between qq̄ in the proton is considered Gaussian,

where hr2pi ¼ 0.658 fm2. This value is not far from the
value S2h ¼ 0.740 fm2 appearing in Eq. (18) for protons.
Accordingly, the average hzi ¼ 1=3 is obtained. However,
as we will see afterwards, the calculation of a low mass
(LM) single diffraction cross section becomes a hard task as
three color centers from constituent quarks should be used
and the average amplitude squared, hN2i, has to be taken in
each of these configurations.
Before discussing an impact-parameter dipole amplitude

extracted from DIS data, we would need to rewrite the
energy dependence from photon-hadron scattering in terms
of the appropriate Bjorken scaling variable x. In this work,
the following ansatz has been considered:

1

x
¼ sr2

ðs0R2
cÞ
; ð20Þ

which has been successfully considered in Ref. [52]
and where s20 ∼m2

h and Rc ¼ 0.2 fm. Such an ansatz
is numerically equivalent to the proposal 1

x ¼ s
Q2

0

, with

Q2
0 ∼ ð2mqÞ2 ≃m2

h, made in Ref. [1]. For simplicity and
faster numerical calculation, we consider the last relation,
where Q2

0 is a free parameter to be fitted to the total cross-
section data, above cm energies

ffiffiffi
s

p ≳ 100 GeV.
For the impact-parameter amplitude, we first consider

the parametrization based on the color glass condensate
ideas (called from now on the b-CGCmodel). In the b-CGC
model, the color dipole-proton amplitude is given by

Nðx; r; bÞ ¼
�
N0ðrQs

2
Þ2γeff ; rQs ≤ 2

1 − exp ½−Aln2ðBrQsÞ�; rQs > 2
; ð21Þ

where the effective anomalous dimension and the satura-
tion scale, Qs, are defined as

310 410 510
 [GeV]s

20

40
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m

b
]

el
�

, 
to

t
�

b-CGC
Eikonal
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Broilo-Luna-Menon
CD BFKL
pp
pp
TOTEM
ATLAS
AUGER
ARRAY

tot�

el�

FIG. 1. The total and elastic cross sections for pp collisions.
The upper cross sections are total cross sections, while the lower
ones are the elastic cross sections. Tevatron, SPS, LHC, and
cosmic rays data are presented [30–37,50,51]. The lines are
results from models considered with the fitted parameter Q2

0.
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γeff ¼ γs þ
1

κλY
ln

�
2

rQs

�
; ð22Þ

Qs ¼
�
x0
x

�λ
2

exp
�
−

b2

4γsBCGC

	
; ð23Þ

where, accordingly, Y ¼ lnð1=xÞ and κ ¼ χ00ðγsÞ=
χ0ðγsÞ ¼ 9.9, with χ being the leading-order BFKL char-
acteristic function. The updated values for the model’s
parameters are the following: BCGC ¼ 5.5 GeV−2, γs ¼
0.6492, N0 ¼ 0.3658, x0 ¼ 6.9 × 10−4, and λ ¼ 0.2023,
which have been published in Ref. [53]. That fit was per-
formed in the range x ≤ 0.01 and Q2 ∈ ½0.75; 650� GeV2,
with mc ¼ 1.4 GeV, using high precision combined
HERA data.
We have also tried an eikonal-like expression for the

dipole amplitude, which has a different impact-parameter
dependence. The function SðbÞ is now described by the
dipole-profile function. Namely, the amplitude has the
following form:

Nðx; r; bÞ ¼ 1 − exp

�
−
1

2
σ̂ðx; rÞSðbÞ

�
; ð24Þ

with

σ̂ðx; rÞ ¼ σ0
ðrQsðxÞÞ2

4
; ð25Þ

SðbÞ ¼ 2βb
πR2

K1ðβbÞ: ð26Þ

Moreover, we have considered the parameters for σ̂ from
the GBW saturation model [28], taking R2 ¼ 4.5 GeV−2

and β ¼
ffiffi
8

p
R .

The eikonal-like model above is strongly inspired in
the success obtained in Ref. [54], where a universal
expression of cross sections for the exclusive vector
meson production and DVCS in photon-proton and
photon-nucleus interactions based on the geometric scal-
ing phenomenon has been obtained. Using the same form,
Eq. (24), a theoretical parametrization based on the
scaling property where cross sections depend only on
the single variable τ ¼ ðμ2=Q2

sÞ (μ2 ¼ Q2 þm2
V for vector

mesons and μ2 ¼ Q2 for DVCS, respectively) was found.
In that work, the saturation scale controls the energy
dependence and nuclear effects as well. The eikonal-like
model then describes all available data from DESY-HERA
for ρ;ϕ; J=ψ production and DVCS measurements.
Furthermore, the photonuclear cross sections for ρ and
J=ψ production extracted from the ultraperipheral heavy
ion collisions at the LHC; i.e., σðγPb → VMþ PbÞ, are
also quite well described.

III. FIT RESULTS AND DISCUSSION

A. Total and elastic cross sections

Fits to the pp and p̄p total cross sections for the three
models presented in last section are shown in Fig. 1. Both
accelerator and cosmic ray data have been gathered from
the PDG2018 review [29], recent LHC measurements,
mostly by TOTEM and ATLAS Collaborations [30–37]
as well as from the Auger and Telescope Array Collabo-
rations [50,51]. All fits have been performed using the
TMINUIT class of the ROOT framework [55] through the
MIGRAD algorithm. Specifically, we minimize the total
cross section data, pp, p̄p, and πþp scatterings, forffiffiffi
s

p
≥ 100 GeV, using the chi squared per degrees of

freedom (d.o.f.), χ2=d:o:f., criterium as a goodness of fit
estimator. As previously mentioned, the asymptotic model
has only fixed parameters and for b-CGC and the Eikonal
models, the only fit parameter to be tuned is Q2

0. Best fit
parameters of these models are thus given in Table I.
As shown in Figs. 1 and 2, the asymptotic model

provides a reasonable description of the data in the wide
energy range, 100 GeV <

ffiffiffi
s

p
< 13 TeV. This feature can

be related to the dominant role of gluon production at very
low x, as the model has only four fixed parameters, namely,
mG; σ0; x0, and λ.

TABLE I. Best fit parameter Q2
0 and χ2=d:o:f: of fits to pp and

πþp total cross section data for b-CGC and Eikonal models.

Model Q2
0 [GeV2] χ2=d:o:f:

b-CGC (pp) ð9.44� 0.57Þ × 10−5 518.40=22 ¼ 23.6
b-CGC (πþp) 0.10� 0.12 9.88=6 ¼ 1.65
Eikonal (pp) 0.308� 0.019 70.25=22 ¼ 3.19
Eikonal (πþp) 13� 14 9.25=6 ¼ 1.54
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FIG. 2. The total cross section for πþp collisions. Data are
obtained from inclusive leading neutron spectra in the LHCf
Collaboration of the LHC [56,57]. Low energy data are also
presented.
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On the other hand, the b-CGC model gives a slowly
rising total cross section, with a preasymptotic form
σtot ∼ a ln s. Such behavior is related to the fact that dipoles
with sizes nearly the proton radius dominate once the
hadron wave function has a Gaussian profile centered at
Rp. For rQs ≥ 2, the dipole cross section in b-CGC is
mainly driven by the Balitsky-Kovchegov (BK) asymptotic
solution [see Eq. (21)]. At high energies (small x) the
saturation scale grows. Thereby, the quantity rQs becomes
larger and the dipole amplitude tends to the unity, which
leads to the saturation regime. At LHC and cosmic rays
energies, the system is saturated and the cross section has
already reached its limit.
Some words of caution are in order at this point. Most

saturation models [b-CGC, impact-parameter saturation
model (IPSAT), Golec-Biernat Wusthoff (GBW), and so
on] predict a total cross section proportional to quantity
σ0 ∼ 27 mb which is quite small compared to the
typical values of the measured cross section (even for
the pion case). This was discussed already in Ref. [1] for
the GBW model and the numerical solution of the BK
equation. The situation is similar here for the b-CGC
model, where the smallness of overall normalization had
to be compensated by an unrealistic value of the Q2

0

parameter in pp case (see Table I). The situation is
different for the Eikonal model, where the overall
normalization is given by the integration over impact
parameter of the profile SðbÞ ∝ bK1ðβbÞ, which corre-
sponds to the proton dipole form factor in the momen-
tum transfer representation.
Regarding the Eikonal model, the profile function

considered, SðbÞ ∼ b
RK1ðbRÞ, results in an asymptotic total

cross section, σtot ∼ ln2 s, as long as 1=x ∼ s, as stated by
the ansatz (20) [1]. This Froissart-bounded cross section
can be naturally obtained in structure function models with
the leading asymptotic form F2ðxÞ ∼ ln2ð1=xÞ, at low x,
such as in the model by Block-Durand-Ha [58,59], whose
analytical form ultimately leads to the dipole cross sec-
tion given in Ref. [3]. Thus, a deep link between the
dipole cross section (an its sizes) and the total cross section
cannot only be anticipated at very high energies, but it
is essential to understand low-x parton dynamics. In addi-
tion, the same asymptotic energy behavior is seen in soft
Pomeron models, such as BLM [60], COMPETE [61], and
PDG [29].
To establish a direct comparison with other popular

models of current Regge phenomenology we also plot in
Fig. 1 the prediction of the model by Broilo-Luna-Menon
(BLM) [60], in which the energy dependence of the soft
Pomeron is parametrized as follows (model II):

σPtotðsÞ ¼ AþD ln2ðs=s0Þ; ð27Þ

where A ¼ 29.6� 1.2 mb, D ¼ 0.251� 0.010 mb, and
s0 ¼ 4m2

p ≃ 3.521 GeV2. As this model is inspired in

the COMPETE analysis (pre-LHC) [61–63] we shall refer
to it as the BLM model.
We have also estimated the pion-proton total cross

section. Our predictions are shown in Fig. 2 compared
to recently extracted data from leading neutron production
in the TeV region [56,57] by using recent data from the
LHCf Collaboration [64]. The magnitude and energy
evolution predicted by the models tested is in quite good
agreement with the data, despite their large error bars.
For the asymptotic model, we use the additive quark

model, where σπNtot =σ
NN
tot ¼ 2=3. Regarding the b-CGC and

Eikonal models, we explicitly take into account jψπðz; rÞj2
from Eq. (18). The low energy data are also presented. In
the models discussed so far only the Pomeron contribution
is being computed. For low energy a nonperturbative
contribution as well as the Reggeon piece have to be added.
Predictions of models for the total cross section at LHC

energies of 7, 8, 13, and 14 TeV and at the cosmic ray
energies, 57 TeV (Pierre Auger Observatory) and 95 TeV
(Telescope Array), are shown in Table II. It is important to
mention that we have not presented the b-CGC predictions
because they did not have a good agreement with data, as it
can be clearly seen in Fig 1. Thereby, for the observables
calculated in the next sections, we will not take into account
the results presented by this model.
Before analyzing the ρ parameter and hadronic forward

slope in next subsection, we explicitly compare our predic-
tions to the color dipole BFKL-Regge expansion (CD-
BFKL) approach by Fiore et al. (Ref. [39] and references
therein). The main ingredient in this formalism is the BFKL
dipole cross section, σðY ¼ lnðx0=xÞ; rÞ, which sums the
∼αs lnð1=xÞ multigluon production cross sections in per-
turbative QCD. The initial condition for the evolution at
x ¼ x0 and dipoles having transverse size r is the Yukawa
screened two-gluon exchange. The evolution equation for
the dipole cross section concerning the nonunitarized
running CD BFKL amplitudes is given by,

∂σðY; rÞ
∂Y ¼

Z
d2r⃗1jψðr⃗1Þ − ψðr⃗2Þj2

×½σ3ðY; r⃗; r⃗1; r⃗2Þ − σðY; rÞ� ð28Þ
where ψðr⃗Þ ∝ r̂

Rc
K1ðr=RcÞ is the radial light-cone wave

function of the dipole with the vacuum screening of

TABLE II. Predictions of σpp=p̄ptot for the asymptotic and eikonal
models.ffiffiffi
s

p
(TeV) Asymptotic: σpp=p̄ptot (mb) Eikonal: σpp=p̄ptot (mb)

7.0 96.9 95.4
8.0 99.0 97.2
13 106 104
14 107 105
57 128 126
95 136 134
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infrared gluons (infrared cutoff regulator is Rc ¼ 0.26 fm).
The qq̄g-nucleon three-parton cross section, Eq. (7), is a
function of r⃗1;2, which are, respectively, the quark-gluon
and antiquark-gluon transverse separations in the two-
dimensional impact-parameter plane for dipoles generated
by the quark-antiquark color dipole source.
In [39], the unitarity absorption corrections are computed

using the BK nonlinear BFKL equation in the impact-
parameter representation. The evolution equation in this
case reads as

∂σðY; rÞ
∂Y ¼

Z
d2r⃗1jψðr⃗2Þ − ψðr⃗1Þj2

×

�
σðY; r⃗1Þ þ σðY; r⃗2Þ − σðY; rÞ

−
σðY; r⃗1ÞσðY; r⃗2Þ

4πB12

exp

�
−

r2

8B12

�	
; ð29Þ

where B12 ¼ B1ðY; r1Þ þ B2ðY; r2Þ and Bi ¼ BðY; riÞ.
The authors consider that the diffraction cone slope B
drives the area populated with interacting gluons.
Specifically, the diffraction slope for the forward cone in
the dipole-nucleon scattering is given by the expression
BðY; rÞ ¼ ðr2=8Þ þ ðR2

N=3Þ þ 2α0IPY, with R2
N ≃ 12 GeV−2

and α0IP≈0.1GeV−2.
Accordingly, in Fig. 1 the predictions of Fiore et al. [65]

for the total cross section (green dot-dashed curve) are
shown. We see that absorptive corrections are strong at
cosmic rays interaction and at the highest collision of the
LHC. Up to 2 TeV their results is very similar to ours. For
completeness, we also add the predictions from the CD
BFKL approach (without absorption corrections) for the
pion-proton cross section in Fig. 2. The dot-dashed curve
gives the hard contribution to πN cross section taken from
Ref. [49] [Eq. (28) and parameters in Table I from that
reference]. The low energy data is nicely described and the
high energy LHC values could be reproduced in case
absorption is included. The absorption effect should be
similar to the proton case in the same energy range.

B. Real-to-imaginary ratio and the forward slope

Furthermore, we also give predictions for two forward
energy-dependent observables: (i) ρpp;p̄pðsÞ, the real-to-
imaginary ratio of the elastic amplitude, which follows in
Fig. 3, and (ii) Bpp;p̄p

el ðs; t ¼ 0Þ the forward slope, which
is shown in Fig. 4. Both plots comprise very recent LHC
data and especially for ρ, an adequate description of the
LHC13 datum (within error bars) is achieved. On the
one hand, predictions from dipole models deviate signifi-
cantly from the data, especially the b-CGC model. Such
behavior is related to the very rapid decrease of the b
distribution at large impact parameters, Nðr; x; bÞ ∼ 1−
exp−αðr;xÞb4 , which approximately follows a black-disk

shape, Nðr; x; bÞ ∼ Θðb − RÞ, and leads to an almost flat
energy dependence of Bel. We recall that such behavior
is very similar to those presented in Ref. [1], where the
GBW and Glauber-Mueller models for the dipole cross
section were considered. In Ref. [65] no prediction is done
for the forward slope; however, an estimation can be done
using the forward cone in the dipole-nucleon scattering.
Taking for simplicity that the average dipole size is

hri ≈
ffiffiffiffiffiffiffiffiffi
hr2pi

q
, the corresponding slope is Bdipðs; hriÞ≈

ðhr2pi=8Þ þ ðR2
N=3Þ þ 2α0IP lnðsx0=m2

ρÞ. At 7 TeV a rough
estimation is Bel ¼ B0 þ Bdip ≈ ð7.8þ 8.87Þ GeV−2 ≃
17 GeV−2 which is close to the TOTEM measurement
(Bexp

el ð7 TeVÞ ¼ 19.9� 0.3 GeV−2).
Conversely, due to the smoother b distribution given in

Eqs. (24) and (26), the Eikonal model shows a better
agreement with data, yielding a more acceptable trend of
rising for BelðsÞ. Indeed, as we show in Fig. 5, predictions
of this model for the elastic differential cross section
reproduce the general structure of the diffraction cone
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(0 < −t≲ 0.2 GeV2) at LHC energies, especially at 7.0
and 8.0 TeV.
Finally, we present the corresponding ρ parameter for the

CD BFKL model based on the results for the total pp cross
section and make use of dispersion relations (derivative
dispersion relation). It is shown in Fig. 3 (black dot-dashed
curve), which is driven by the change of inflexion in the
total cross section in the high energy collider region. The
normalization is still in agreement with LHC data, whereas
the shape shows somewhat of a disagreement.

C. Low mass diffraction

For incorporating color transparency in a natural way,
color dipole models are a perfect framework to study
inelastic diffraction. Indeed, color dipoles can be regarded
as eigenstates of diffraction [69].
In the one-channel models we have developed so far, low

mass inelastic diffractive eigenstates can be treated using
the Good-Walker (GW) mechanism [70]. Since diffraction
arises from fluctuations in high-energy scattering ampli-
tude, we calculate the contribution of color dipoles to the
single diffractive cross section in the LM region through the
following relation:

σLMSD ðsÞ ¼ hN2i − hNi2; ð30Þ

where

hN2i ¼
�Z

d2b
Z

dzd2rjΨhðr; zÞj2N2

�
;

hNi ¼
Z

d2b

�Z
dzd2rjΨhðr; zÞj2N

�
:

The first term in Eq. (30) encompasses the quasielastic
cross-section term, where excitations of the target (beam)

particle can occur in the interaction with dipoles within the
proton. The second term corresponds to the pure elastic
scattering term. The predictions for the dipole model are
presented in Fig. 6, as a function of the center-of-mass
energy. The theoretical curve (we choose the Eikonal model
as reference) is compared to non-LHC collider data (ISR
[71], UA4 [72], UA5 [73], E710 [74] and CDF [75]) and
the recent LHC measurements. In particular, we consider
the ALICE data [76] at

ffiffiffi
s

p ¼ 0.9, 2.76, and 7 TeV
(MX < 200 GeV=c2), the measurements of TOTEM [77]
(3.4 < MX < 1100 GeV=c2) and CMS [78] (12 < MX <
394 GeV=c2), as well. An approach similar to ours is
presented in Ref. [79], where fluctuations in the BFKL
ladder are taken into account. It was demonstrated that in
high energy proton-proton collisions these fluctuations are
strongly suppressed by parton saturation.
The Good-Walker formalism was originally conceived

so as to describe a system of a nucleon plus its diffractive
N� isobars. Clearly, this simplistic approach is not suitable
for high energy diffraction where M2

diff is bounded by
0.05s, leading to a continua of diffractive Fock states [80].
GW models shortcomings are amended once multi-

Pomeron interactions are included, leading to a high
mass diffraction [81]. If we consider a single diffractive
channel pþ p → pþMSD, Mueller’s triple Pomeron
mechanism yields high single diffractive (SD) mass which
is non-GW [80].
CDF analysis suggests a relatively large value for G3IP.

Therefore, it is necessary to consider a very large family of
multi-Pomeron interactions (enhanced IP) which are not
included in the GW formalism. This dynamical feature
becomes significant above Tevatron energy and leads to
profound differences in the calculated values of soft cross
sections. As expected, it can be seen in Fig. 6 that GW
formalism does not show good results at high energies due
to the fact that high mass diffraction is not taken into
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account. The GWapproach just considers elastic processes,
i.e., on the forward direction. Hence, only the low mass
diffraction is taken into account. However, at high energies
the high mass contribution plays a significant role as
peripheral regions of the hadrons; i.e., inelastic processes
cannot be neglected in the computing of σSD.
Despite the high mass, diffractive dissociation is out

of the scope for the present study and it can be properly
addressed in a color dipole approach. For example, pre-
viously before both low and high mass excitations were
described by the Good-Walker mechanism in Ref. [79].
In that work, the high mass diffraction is connected to
fluctuations in the BFKL evolution and it is shown that in
pp collisions unitarity constraints and saturation decrease
those fluctuations towards the black-disc limit of the
scattering process. Moreover, the dipole cascade model
can reproduce the expected triple-Regge form for the bare
Pomeron with αIPð0Þ ¼ 1.21 and α0IP ¼ 0.2 GeV−2, and
the triple-Pomeron coupling is shown to be almost con-
stant, g3IP ≈ 0.3 GeV−1. It is argued that GW and triple-
Pomeron formalisms for high mass dissociative diffraction
are just different aspects of the same phenomenon.
Specifically, in both approaches, diffractive excitation is
the shadow of absorption into inelastic channels. This
conclusion is not completely new as in the seminal work
in Ref. [82] where a direct computation of the triple-
Pomeron coupling for both diffractive photoproduction and
DIS at large Q2 has been done within the CD BFKL
formalism already discussed. A weak dependence on Q2

was found, producing G3IPðQ2Þ ≈ 0.23 GeV−2 at Q2 ¼ 0

and G3IPðQ2Þ ≈ 0.36 GeV−2 for Q2 ≥ 3 GeV2. In the
context of the formulations presented here, within the
color dipole picture the high mass dissociation can be
understood as a three stage process. First, the penetration of
the projectile dipole through the target without inelastic
interaction then followed by the emission of one extra
gluon (considered a new dipole in large Nc limit). Finally,
one has the interaction of two produced dipoles with the
target. The main ingredient in the last stage is the amplitude
of gluon-dipole scattering that has been investigated in
Ref. [83]. Starting from the dipole amplitude in Eq. (13)
written in terms of the opacity function Ω, one has
Nðs; r; bÞ ¼ 1 − exp½− 1

2
Ωðs; r; bÞ�. For instance, in our

eikonal-type model, Eq. (24), Ωðs; r; bÞ ¼ σ̂ðx; rÞSðbÞ.
For the proton considered as an effective color dipole
(the quark-diquark picture) the high mass diffraction cross
section reads as

M2
σHMSD ðsÞ
dM2

¼ αsNc

2π

Z
d2bdz d2rjψpðr; zÞj2e−Ωðs;r;bÞ

×

�
e−Ωðs;r;bÞr2I1

�
s
M2

; r; b

�
− r2I2ðs; r; bÞ

�
;

ð31Þ

with the following auxiliary integrals:

I1 ¼
Z

∞

r2

dr02

r04

�
1 − exp

�
−
�
Ω
�

s
M2

; r0; b
�

−
1

2
Ω
�

s
M2

; r; b

���	
2

;

I2 ¼
Z

d2r0

2πr02ðr⃗ − r⃗0Þ2 ½1 − expð−Ωðs; r; bÞÞ�2; ð32Þ

where I2 is related to a change for the elastic scattering
of the original dipole (with transverse size r) due to the
emission of an extra gluon. In I1 the expression in the curly
bracket is the amplitude for gluon-dipole scattering [83].
Applications of the above formalism to the pp scattering
will be postponed for future studies.
As a final comment on the expression, Eq. (30), for the

low-mass contribution to the SD cross section, we see that it
is suitable for computing the corresponding proton-nucleus
(pA) cross section. This can be performed by replacing
the proton profile function SðbÞ in our case by the one
extracted from nuclear form factors, SAðbÞ (Woods-Saxon
or similar parametrizations). The investigation about the size
of nuclear effects in a single diffraction is an open question in
the literature. For instance, in Ref. [84] predictions for the
SD cross section in pPb collisions at the LHC are obtained
in the context of the Glauber model for nuclear scatterings
and take into account Regge phenomenology (including an
effective Pomeron flux, which describes the measured SD
cross section in pp collisions). Recently, in Ref. [85] the
authors investigate the diffractive excitation in pA collisions
based on the dynamics of relativistic nuclear collisions
through the concept of hadronic cross-section fluctuations.
These fluctuations are related to inelastic shadowing and
diffractive dissociation and their effect decreases at larger
energies and heavier nuclei.

IV. SUMMARY

In summary, we have applied to soft hadron-hadron
scattering the color dipole picture including the parton
saturation phenomenon as the transition region between
soft and hard domains. We have shown that the inclusive
process is mainly driven for dipole sizes near the saturation
radius in the high energy regime. The main advantage is
that the corresponding phenomenology is almost free of
parameters as they are completely constrained from DIS
data in ep interactions. The models rely on the dipole cross
section or the b-dependent dipole amplitude and indicate
that the impact-parameter profile is crucial for a good data
description. In this context, our best results followed from
the eikonal model, for which a smoother impact-parameter
structure was built. In fact, the wealth of high energy elastic
scattering data can be nicely described by this model,
including σtot, σel, ρ, dσel=dt in the diffraction cone and
σSD in the low mass region, using a one-channel eikonal
approach. These findings indicate a possible path of
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exploring even further the color dipole formalism as an
alternative approach to the more traditional Regge-
Pomeron calculus to handle soft hadron-hadron and
hadron-nucleus scattering processes, where, for instance,
the role of multiple parton interactions can be properly
addressed. We are currently investigating this possibility.
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