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In this work we analyze the entanglement entropy in deep inelastic scattering off protons and nuclei. It is
computed based on the formalism where the partonic state at small-x is maximally entangled with proton
being constituted by large number of microstates occurring with equal probabilities. We consider analytical
expressions for the number of gluons, Ngluon, obtained from gluon saturation models for the dipole-target
amplitudes within the QCD color dipole picture. In particular, the nuclear entanglement entropy per
nucleon is studied. We also study the underlying uncertainties on these calculations and compare the results
to similar investigations in literature.
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I. INTRODUCTION

Recently, high energy physics community make strong
efforts to use statistical physics concepts to describe the
outcome of particle collisions [1,2]. As an example, the
central distribution of multiplicities of particle produced in
such scatterings at high energies regime is related to the
entropy produced by the collisions. In this context, one
subject of study in recent years is the entanglement entropy
[3], SEE. It measures how far the particle system is from a
pure quantum state. Specifically, the SEE quantifies the
level of entanglement between different subsets of degrees
of freedom in a quantum state. In an entangled system its
quantum state cannot be factored as a product of states of its
local constituents. The confinement of quarks inside
hadrons is a typical example of quantum entanglement
as they are both correlated and not isolated objects. One
way to probe the short distance structure inside hadrons is
to consider hard scattering of deeply virtual photons off
nucleons or nuclei. For large momentum transfer, small
transverse distances of order 1=Q are probed by photons
having virtualities Q2. One place where this occurs is in
deep inelastic scattering (DIS) of leptons off hadrons. The
partons, i.e., quarks and gluons, constituting those hadrons
are experimentally investigated for a long time and the
kinematical range available by now for DIS off protons
reaches x≳ 10−5 and 0.065≲Q2 ≲ 105 GeV2 [4]. The
Bjorken-x variable is the longitudinal momentum fraction
carried by these partons. Then, one question that arises is

the tension between a nonzero entropy resulting from
different configurations of quasifree incoherent partons
and the zero von Neumann entropy for the probed hadron
which is a pure state in its rest frame. One answer to this
issue seems to be the quantum entanglement of partons [5].
The use of different theoretical techniques in quantum

chromodynamics (QCD) in order to describe the entropy
production and entanglement entropy of partons has been
employed nowadays. For instance, by using the dominance
of gluon fusion reaction in tt̄ production at high energy
colliders in Ref. [6] it was proposed the direct detection of
entanglement by measuring the angular separation of their
decay products (signature of spin-entanglement). Here, we
summarize some key works in literature related to these
issues. In Ref. [7] the definition of dynamical entropy for
dense QCD states of matter is proposed, which is written
as an overlap functional between the gluon distribution at
different total rapidities and saturation radius, RsðxÞ ¼
1=QsðxÞ. The typical momentum scale in the saturated
limit is the saturation scale, Qs. The formalism also has
been extended to the initial preequilibrium state of a heavy
ion collision. The entanglement entropy between the two
outgoing particles in an elastic scattering is presented in
Ref. [8] by using an S-matrix formalism taking into account
partial wave expansion of the two-body states. The iden-
tification of the physical origin of the divergence in the
entropy expression appearing in [8] and the its further
regularization is done in Ref. [9]. The obtained finite SEE is
then applied to proton-proton collisions at collider energies.
On the other hand, the entropy of a jet is determined in
Ref. [10] by using the entropy of the hard reduced density
matrix obtained from tracing over infrared states. The
thermodynamical entropy associated with production of
gluons is shown in Ref. [11] taking into account unin-
tegrated gluon distribution (UGD) based on saturation
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approach. One important conclusion is that the thermody-
namical entropy behaves like multiplicity of produced
gluons and there should exist an upper bound on entropy
of gluons coming from the saturated sector of gluon UGD.
In Ref. [12] the authors consider the entropy of quarks and
gluons by using the Wehrl entropy, SW , in QCD which is
the semiclassical counterpart of von Neumann entropy.
They use the parton phase space QCD Wigner and Husimi
distributions, which are obtained from models that include
gluon saturation effects. The obtained Wehrl entropy is
expressed in terms of the gauge invariant matrix element of
the quark and gluon field operators. In asymptotic regime,
Y ¼ lnð1=xÞ → ∞ they found SW ∝ Q2

sðYÞ ∼ eαY , which
agree in the same limit with the different definitions of
entanglement entropy referred above [7,11].
Focusing particularly on entanglement entropy, it has

been investigated for soft gluons in the wave function of a
fast hadron in Ref. [13]. There, the entropy production in
high energy collisions is also obtained in the context of
color glass condensate (CGC) formalism for the hadron
wave function. Along similar lines, in Ref. [14] the authors
define the CGC density matrix and present the evolution
equations for this matrix (afterward, the effective density
matrix was also analyzed in detail in [15]). These equations
turn out to be similar to the Lindblad evolution. At large
rapidities (high energies) the obtained SEE grows linearly
with rapidity both in the dilute and saturated regime driven
by different rates. In Ref. [16], an entropy of ignorance, SI ,
is introduced associated with the partial set of measure-
ments on a quantum state. It is demonstrated that in the
parton model the SI is equal to a Boltzmann entropy of a
classical system of partons. Moreover, it was shown that the
ignorance and entanglement entropies are similar at high
momenta and distinct at the low ones [16]. The main point
raised there is that the lack of coherence and large entropy
of partons must be due to the ability to measure only a
restrict number of observables rather than to the entangle-
ment of the observed partons with the degrees of freedom
which are not observed as advocated in Ref. [5].
Here, we focus on the work in Ref. [5], where the von

Neumann entropy of the parton system probed in DIS is
derived within the nonlinear QCD evolution formalism.
Then, this entropy is interpreted as the entanglement entropy
between the spatial region resolved by ep DIS and the rest
of the proton. The authors shown that there is a simple
connection between the gluon distribution, xGðx;Q2Þ, and
the SEE with all partonic microstates being equiprobable. In
particular, at small-x, SEEðYÞ ¼ ln½xGðY;Q2Þ�, where in the
limit of largeY the entanglement entropy ismaximal. In other
words, the equipartitioning of microstates that maximizes
SEE corresponds to the parton saturation. At asymptotic
regime the entropy takes the form SEE ≈ αsNc

π ln½r2Q2
sðYÞ�Y,

with r ∼ 1=Q being the characteristic dipole size in DIS.
In Ref. [17] an experimental test of these ideas was devised
where the entropy reconstructed from the final state hadrons

is compared to the entanglement entropy of the initial state
partons. It is demonstrated thatSh andSEE are in agreement at
small-x by using measured hadron multiplicity distributions
at the Large Hadron Collider (LHC).
Motivated by those studies in this work we compute the

entanglement entropy of partons within the nucleons and
nuclei at high energies using analytical parametrizations for
the gluon distribution function (PDF) based on parton
saturation approach. In particular, the usual integrated
gluon PDF, xGðx;Q2Þ, is obtained from the unintegrated
gluon distribution on the proton and nucleus using the
correspondence between the color dipole picture and the
k⊥-factorization formalism in leading logarithmic approxi-
mation. We compare the results with the recent extractions
of SEE from hadron multiplicities in DIS and proton-proton
collisions at the LHC [17]. In addition, we will cover
kinematical ranges relevant for future lepton-hadron col-
liders like LHeC/FCC-eh [18–20] and eRHIC [21].
Comparison with other approaches for parton entropy will
be presented. We also determine the nuclear entanglement
entropy per nucleon, SA. The paper is organized as follows.
In next section, we start by briefly reviewing the calculation
of the entropyof partonic densitymatrixwhich describesDIS
within the partonmodel. Given the protonwave function this
matrix is obtained by reducing it with respect to the
unobserved degrees of freedom and the SEE is identified
with the von Neumann entropy. A comparison is done with
other frameworks for computing parton entropy. In Sec. III
we present our main results and discuss the uncertainties and
limitations of the approach. In the last section we summarize
the main conclusions and perspectives.

II. THEORETICAL FORMALISM AND
COMPARISON WITH OTHER

APPROACHES

A. Parton entanglement entropy

Here we follows the formalism presented in Ref. [5],
where the entanglement entropy is obtained in the frame-
work of high energy QCD using both a simplified (1þ 1)
dimensional model of nonlinear QCD evolution and a full
calculation in (3þ 1) dimensional case described by the
Balitsky-Kovchegov (BK) evolution equation. The main
point is that the von Neumann (Shannon) entropy resulting
from entanglement between the two regions probed in
DIS can be interpreted as the SEE. The entropy is given by
the Gibbs formula, SEE ¼ −

P
n pn lnðpnÞ, where pn is the

probability of a state with n partons. Using a dipole
representation, where a set of partons is represented by a
set of color dipoles, the probability of microstates pn
is identified with the probabilities to find n color
dipoles inside the proton at rapidity Y, PnðYÞ. In the toy
model (1þ 1) dimensional, the latter quantity is obtained
from the following relation of recurrence (dipole cascade
equation),
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dPnðYÞ
dY

¼ −nαhPnðYÞ þ ðn − 1ÞαhPn−1ðYÞ; ð1Þ
where αh is the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
intercept, αh ¼ 4 ln 2ᾱs (ᾱs ¼ αsNc=π). This is quite sim-
ilar to the Bateman equations for unstable nuclide decays,
where the first term is due to the decay as n → ðnþ 1Þ
dipoles and the second term corresponds to a growth rate
due to the splitting of dipoles, ðn − 1Þ → n. In Ref. [5], the
equation is solved by using the generating function
technique, defining it as ZðY; uÞ ¼Pn PnðuÞun. The
initial conditions for dipole probabilities are P1ð0Þ ¼ 1
plus Pn>1ðYÞ ¼ 0, with

P
n PnðYÞ ¼ 1. These properties

lead to the initial and boundary conditions to the generatrix
function, Z. Assuming ZðY; uÞ ¼ ZðuðYÞÞ, it can be shown
that the dipole (parton) cascade equation includes nonlinear
evolution in the form,

∂Z
∂Y ¼ −αhðZ − Z2Þ; ð2Þ

Zð0; uÞ ¼ u; ZðY; 1Þ ¼ 1; ð3Þ

for rapidities near to those provided by the initial con-
ditions. The differential equation for ZðY; uÞ at any rapidity
is ∂Z=∂Y ¼ −αhuð1 − uÞ∂Z=∂u. By solving it in this
general case one obtains,

ZðY; uÞ ¼ ue−αhY
X∞
n¼1

unð1 − e−αhYÞn: ð4Þ

Rewriting the solution in terms of Pn, finally one obtains,

PnðYÞ ¼ eαhYð1 − eαhYÞn−1: ð5Þ
By doing the identification pn ¼ PnðYÞ and using the

Gibbs formula, the von Neumann entanglement entropy as
a function of Y reads as:

SEEðYÞ ¼ eαhYðαhYÞ þ ð1 − eαhYÞ ln ðeαhY − 1Þ; ð6Þ

which presents the following limit, SEEðαhY ≫ 1Þ ∼ αhY.
By defining the gluon distribution, xGðx;Q2Þ, as the

average number of partons, hni, probed with resolution Q2

at a given value of x, one obtains,

hni ¼
X
n

nPnðYÞ ¼ u
∂ZðY; uÞ

du

����
u¼1

¼ eαhY: ð7Þ

Comparing the average number of gluon hni ¼ x−αh and
the entropy expression in Eq. (6) the following relation is
obtained at the limit αhY ≫ 1,

SEE ¼ ln ½xGðx;Q2Þ�; ð8Þ
which is a key result presented in [5]. The limit αhY ≫ 1 is
satisfied by values of Bjorken-x less than ∼10−3. The von

Neumann entropy was obtained from the reduced density
matrix ρ̂A ¼ TrBρ̂AB (partial trace), where the proton
probed in DIS is considered as a bi-partite system (A is
the region of space probed in the hard process and B is the
one complementary to A, i.e., the rest of proton). The wave
function of this bipartite system is constructed based on the
orthonormal set of states, jψA

ni and jψB
n i by using Schmidit

decomposition, jψABi ¼
P

n cnjψA
nijψB

n i. The authors of
Ref. [5] assume that the full set of states is defined by the
Fock states with distinct numbers n of partons. Therefore,
ρ̂A ¼Pn c

2
njψA

nihψA
n j, where c2n ≡ pn is identified with the

probability of a state of n partons.
The calculation for a full (3þ 1) dimensional QCD is

more involved. The starting point is writing down the
parton cascade equation whose solution gives the proba-
bility to have n-dipoles, PnðY; frigÞ (with the notation,
frig ¼ r1; r2;…; ri;…; rn), at rapidity Y − y and trans-
verse size ri. The cascade equation conducts to the BK
evolution equation for dipole amplitude and takes the
form,

dPnðY;frigÞ
dY

¼−
Xn
i¼1

ᾱsωðriÞPnðY;frigÞ

þ
Xn−1
i¼1

Kðri;rnjr⃗iþ r⃗nÞPn−1ðY;fðr⃗iþ r⃗nÞgÞ;

ð9Þ

where Pn obeys a sum rule and similar initial condition as
the (1þ 1) case,

X∞
n¼1

Z Yn
i¼1

d2r⃗iPnðY; frigÞ ¼ 1; ð10Þ

Pn>1ð0; frigÞ ¼ 0;

P1ðY; r1Þ ¼ δð2Þðr⃗ − r⃗1Þe−ωðr1ÞᾱsY : ð11Þ

The surviving probability of one dipole is given by
ᾱsωðriÞ ¼ ᾱs lnðri=μ2Þ, with μ2 being an infrared cutoff.
The probability of a dipole having size jr⃗i þ r⃗nj to decay
into two with the transverse sizes ri and rn is given by,

Kðri; rnjr⃗i þ r⃗nÞ ¼
ᾱs
2π

ðr⃗i þ r⃗nÞ2
r2i r

2
n

: ð12Þ

In Ref. [5] the parton cascade equation is solved by using
the Mellin transform technique (with ω being the conjugate
variable to Y), which produces the following,
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PnðY; frigÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2π

eωᾱsYPnðY; frigÞ;

Pnðω; frigÞ ¼ 2πr2δð2Þðr⃗ − r⃗1Þ
�
1

2π

�
nYn
i¼1

Ωnðω; frigÞ
r2i

;

ωΩnðω; fωigÞ≡ −
�Xn

i¼1

ωi

�
Ωnðω; fωigÞ

þ
Xn−1
j¼1

Ωn−1ðω; fωi;ωjngÞ; ð13Þ

with the notation ωi ¼ ωðr⃗iÞ and ωij ¼ ωðr⃗i þ r⃗jÞ.
The general solution, given in terms of a recurrence

formula for the Ωn function takes the form,

Ωnðω; fωigÞ ¼ ðn − 1ÞΩn−1ðω; fωi;ωn−1;ngÞ
ωþPn

j¼1 ωj
; ð14Þ

which is solved explicitly in [5] for two special cases:
(a) for ri, rn ≫ jr⃗i þ r⃗nj (corresponding to the perturbative
QCD double logarithm approximation, DLA) and
(b) jr⃗i þ r⃗nj → ri while rn ≪ ri (corresponds to parton
cascade evaluated in the saturation region). In the latter case,
the solution is given by Ωnðω; fωigÞ ¼ ðn − 1Þ!Qn

j¼1ðωþP
n
l¼1 zlÞ−1 where zl ≡ ωi ¼ lnðr2i Q2

sÞ. Accordingly, the
solution in this case is given by,

PnðY; frigÞ ¼ 2πr2δð2Þðr⃗ − r⃗1Þ
�
1

2π

�
nYn
i¼1

1

r2i

×
Z

ϵþi∞

ϵ−i∞

dω
2π

eωᾱsYΩnðω; fzigÞ; ð15Þ

¼ 2πr2δð2Þðr⃗ − r⃗1Þ
�
ᾱsY
2π

�
nYn
i¼1

1

r2i

× e−ᾱsz1Y
Yn
i¼2

ΦðtiÞ; ð16Þ

where ti ¼ ᾱsY
P

n
l¼i zl with ΦðtiÞ ¼ ð1 − etiÞ=ti. Using

this solution, the following relation can be evaluated
analytically,

Z Yn
i¼1

d2r⃗iPnðY; frigÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2π

eωᾱsY
Z Yn

i¼1

dziΩn;

¼ 1

n!
Ξnðᾱsz1YÞe−ᾱsz1Y; ð17Þ

where the auxiliary functionΞ in the equation above takes the
form,

ΞðtnÞ ¼
Z

tn

0

ΦðtÞdt ¼ γE þ Γð0; tnÞ þ lnðtnÞ; ð18Þ

with γE being the Euler-Mascheroni constant and Γð0; tÞ is
the incomplete gamma function.
In the limit of large rapidity Y, with ᾱsz1Y ≫ 1, the

entanglement entropy in (3þ 1) QCD is evaluated as (see
Ref. [5] for details),

SEE ¼ −
X∞
n¼1

Yn
i¼1

Z
d2riPnðY; riÞ ln ½PnðY; riÞ�;

¼ ΔsY − e−ΔsY

Z
ΔsY

0

tnΦðtnÞeΞðtnÞdtn; ð19Þ

where one defines Δs ¼ ᾱs lnðr2Q2
sÞ with r being the

typical dipole size in DIS and QsðxÞ is the saturation
scale. The second term is subleading for any rapidity and
in the limit of large Y (very small-x) the entropy has the
asymptotic form SEE ≈ ΔsY. The latter has the same
behavior that the (1þ 1) calculation by the replacement
αh → Δs.
Now,we introduce our contribution to the theme.Here,we

will take into account an analytical expression for the gluon
PDF [22], which is valid forQ2 ≤ 50 GeV2 and allow us to
obtain the number of gluons down to very small virtualities,
Q2 ≪ 1 GeV2. This is an advantage compared to the usual
PDFs extracted from fitting initial conditions at Q2 ¼ Q2

0 ≈
2 GeV2 and furtherDGLAP evolution. Another advantage is
that it is an explicit function of the saturation scale, QsðxÞ.
Starting from the GBW saturation model [22] which nicely
describes all data on F2, FL, exclusive vector meson
production and diffractive structure function in the small-x
regime one obtains the unintegrated gluon distribution
(UGD),αsF ðx;k⊥Þ¼N0ðk2⊥=Q2

sÞexpð−k2⊥=Q2
sÞ, withN0 ¼

3σ0=4π2. The usual integrated gluon PDF can be calculated
from the UGD,

xGðx;Q2Þ ¼
Z

Q2

0

dk2⊥F ðx; k⊥Þ;

¼ 3σ0
4π2αs

Q2
s

�
1 −

�
1þQ2

Q2
s

�
e
−Q2

Q2
s

�
; ð20Þ

where QsðxÞ ¼ ðx0=xÞλ=2 gives the transition between the
dilute and saturated gluon system. In numerical calculations
in next section, we use the updated values for the model
parameters (fit result including charm): σ0 ¼ 27.32 mb, λ ¼
0.248 and x0 ¼ 4.2 × 10−5 [23]. The presence of the nucleon
saturation scalewill be useful when investigating the entropy
for DIS off nuclei as discussed in subsection III B.
Before doing our phenomenological analyses in next

section, we would like to contrast the entanglement entropy
proposed in [5] to other formalisms for evaluation of parton
entropy. In next subsection, we discuss the main results
coming from the entanglement entropy (von Neumann)
computed in the color glass condensate formalism and from
the semiclassical Wehrl entropy for gluons.
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B. Comparison to other frameworks

In this subsection, we compare the entanglement entropy
discussed above to other formalisms for the entropy of
parton states at high energy limit. We start with the
entanglement entropy evaluated in the context of color
glass condensate approach (CGC). It is obtained by taking
into account soft gluons (i.e., gluon field modes with small
longitudinal momenta) in the wave function of a fast
moving hadron. In Ref. [13], the reduced density matrix
for these soft modes is computed in the McLerran-
Venugopalan (MV) model, SEE ¼ −Tr½ρ̂MV ln ρ̂MV�. The
reduced ρ̂ is written in terms of the matrix elements of a
matrix Mab

ij ∝ g2=4π2
R
dudvμ2ðu; vÞðx − uÞiðy − uÞjδab

(see [13] for details), with g being the strong coupling.
By using translational invariance it is a function of soft
gluon transverse momentum, k, with Mab

ij ðpÞ ¼ g2μ2ðpÞ
ðpipj=p2Þδab. In MVmodel, the quantity μ2 is independent
of k and related to the gluon saturation scale. Authors
obtained parametric solutions for SEE from both large
(UV modes) and small (IR modes) transverse momenta
by expanding M accordingly. Namely,

SUVEE ∝
1

2
S⊥ðN2

c − 1Þ
Z

d2k
ð2πÞ2

g2μ2

k2
ln

�
k2

g2μ2

�
; ð21Þ

SIREE ∝
1

2
S⊥ðN2

c − 1Þ
Z

d2k
ð2πÞ2 ln

�
g2μ2

k2

�
; ð22Þ

where S⊥ is the total area of nucleon/nucleus projectile
and color factor ðN2

c − 1Þ ¼ 2NcCF appears as the density
matrix is a product of density matrices over the color
index. The gluon saturation scale is identified as Q̄2

s ¼
g4μ2 and the large momentum integration is logarithmi-
cally divergent and it is regulated by a UV cutoff, Λ. The
leading contributions for Eqs. (21)–(22) are found to have
the form,

SUVEE ≈
1

2
S⊥ðN2

c − 1Þ Q̃2
s

2πg2

�
ln
�
g2Λ2

Q̃2
s

�
þ ln2

�
g2Λ2

Q̃2
s

��
;

SIREE ≈
1

2
S⊥ðN2

c − 1Þ 3Q̃
2
s

4πg2
: ð23Þ

The calculation above performed in field basis has been
also done in the number representation basis in Ref. [16].
They are shown to be coincident. The full expression for
the von Neumann (entanglement) entropy in number basis
is given by,

SEE ≈
1

2
S⊥CF

Z
Λ2

0

d2k
ð2πÞ2

"
ln

�
g2μ2

k2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

g2μ2

k2

s

× ln

 
1þ k2

2g2μ2
þ k2

2g2μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

g2μ2

k2

s !#
: ð24Þ

In [13,16] only qualitative parametric expressions are
analyzed and no numerical calculations are presented for
SEE. Here, we intend to do some phenomenology. The
calculation above is performed at fixed rapidity and the
UV cutoff is not specified.1 For phenomenological pur-
poses we consider that the saturation scale can evolve with
rapidity, Y ¼ lnð1=xÞ, following the GBWansatz, Q̃2

sðxÞ ¼
ð9=4Þðx0=xÞλ. Moreover, we will identify the UV regulator
by the photon virtuality in DIS, with the arbitrary choice
Q2 ¼ g2Λ2. We have computed analytically the integration
above, which takes the form,

SCGCEE ¼ 1

2
S⊥

CF

4π
Q̃2

s

�
τ lnðτ−1Þ þ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ−1

p

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ−1

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4τ−1
p

− 1

�
þ ln2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ−1

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4τ−1
p

− 1

��
;

ð25Þ
where τ ¼ Q2=Q̃2

s . The parametric behaviors of Eqs. (23)
are properly obtained, since for τ ¼ 1 (Q2 ¼ Q̃2

s) then
SEE ∼ S⊥Q̃2

s . On the other hand, for large τ (Q2 ≫ Q̃2
s),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4τ−1
p

≈ 1þ ð2τ−1Þ and thus we easily get SEE ∼
S⊥Q̃2

s ½2 lnðτÞ þ ln2ðτÞ�. For numerical calculations we will
use the parameter S⊥ ¼ πR2

p ¼ σ0=2 and GBW parameters
for calculating the saturation scale as a function of rapidity.
Another formalism we will address is the Wehrl entropy

in QCD [12], which is the semiclassical analogue of the von
Neumann entropy. It is obtained in terms of phase space
distributions. In our context here, one considers the
multidimensional QCD Wigner phase space distributions
for gluons at small-x. One advantage is that the entropy for
quarks can be also computed in the same formalism, which
is more general and model independent that the approaches
considered before. The QCD Wigner distribution, W, is a
generalization of the usual collinear parton distribution
functions. Namely, it depends on parton transverse momen-
tum, k⃗, impact parameter, b⃗, and longitudinal parton
momentum fraction, x. By integrating the Wigner distri-
bution on the complete phase space, the usual PDFs are
recovered. If the Wigner distribution is positive definite
(and not strongly oscillating) for the parton considered,
then the Wehrl entropy can be defined,

1The evolution of entanglement entropy as a function of on the
hadron rapidity in weak coupling case can be computed using a
convolution of evolution equation kernels (BFKL, BK) with the
gluon UGD.
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SW ¼ −
Z

d2bd2kxWq;gðx; k; bÞ ln ½xWq;gðx; k; bÞ�;

xfq;gðxÞ ¼
Z

d2bd2kxWq;gðx; k; bÞ; ð26Þ

where xfqðxÞ ¼ xqðxÞ and xfgðxÞ ¼ xgðxÞ are the collin-
ear distributions for quarks and gluons, respectively.
For our purpose, we will consider the Weiszacker-

Williams (WW) gluon Wigner distribution,2 which can
be computed in a quasiclassical approximation [25,26].
It is written in terms of the forward S-matrix of a QCD
color dipole of transverse size r⃗, transverse momentum k⃗ at
impact parameter b⃗ in the adjoint representation, SA,

xWgðx; k; bÞ ¼
CF

2π4αs

Z
d2r⃗

eir⃗·k⃗

r2
ð1 − SAðx; r⃗; b⃗ÞÞ: ð27Þ

The WW Wigner distribution can be analytically evalu-
ated in the case of a Gaussian form for S-matrix,
SAðx; r; bÞ ¼ exp½−r⃗2Q̃2

sðx; bÞ=4�, where Q̃2
sðx; bÞ ¼

ðNc=CFÞQ2
sðx; bÞ is the impact parameter dependent gluon

saturation scale. Specifically, for the Gaussian S-matrix one
obtains,

xWgðx; k; bÞ ¼
CF

2π3αs
Γ
�
0;

k2

Q̃2
sðx; bÞ

�
; ð28Þ

which is positive definite with Γ being the incomplete
gamma function. Putting expression of Eq. (28) in the
definition of Wehrl entropy associated to the Wigner
distribution, Eq. (26), and disregarding overall prefactor
of xW in the logarithm, the entropy SW can be obtained. We
see that the integrand is a function of the ratio τk ¼ k2=Q̃2

s
and this fact helps the integration over transverse momen-
tum. Here, in order to introduce a dependence on the
resolution scale we replace the upper limit on k-integration
byQ2 instead of infinity. After change of variables, k → τk,
the entropy reads as,

SW ¼ −
CF

2παs

Z
∞

0

db2FðτÞQ̃2
sðx; bÞ; ð29Þ

FðτÞ ¼
Z

τ

0

dτkΓð0; τkÞ lnΓð0; τkÞ; ð30Þ

with τ ¼ Q2=Q̄2
sðx; bÞ. PuttingQ2 (and for consequence, τ)

to infinity, the function F is just a number,
Fðτ → ∞Þ ≈ −0.248. Notice that for finite Q2, F is a
function of both x and impact-parameter. For numerical
calculations, we will use the impact-parameter(quark)
saturation scale from the b-CGC model [27], where

Q2
sðx; bÞ ¼ ðx0=xÞλ exp½−b2=2γsBCGC�. The parameters

are fitted to small-x DIS data, with x0 ¼ 0.00105,
λ ¼ 0.2063, γs ¼ 0.6599 and BCGC ¼ 5.5 GeV−2 [27].
For simplicity, to avoid to compute numerically the impact
parameter integration we take into account that the satu-
ration scale has a maximum at b ¼ 0, with Q̃2

s;maxðxÞ ¼
Q̃2

sðx; b ¼ 0Þ ¼ ðNc=CFÞðx0=xÞλ. Moreover, in the small-x
region the typical saturation scale is of order 1 GeV or so
(using the b-CGC for the x0 parameter, the quark saturation
scale is of order unity around x ¼ 10−3). Therefore, in our
evaluations of SW we will use τ ¼ Q2=hQ̃2

si with
hQ̃2

si ¼ 1 GeV2. This gives F ≈ −0.095377 for Q2 ¼
2 GeV2 and F ≈ −0.247802 for Q2 ¼ 10 GeV2. For any
Q2, after integration on impact parameter, one has for the
b-CGC model for the impact parameter saturation scale,

SW ≈ −
2FγsBCGCNc

2παs
Q2

sðxÞ ¼ −
2FNcS⊥
6π2αs

Q2
sðxÞ; ð31Þ

where the quantity BG ¼ γsBCGC is related to the electro-
magnetic proton radius R2

p ¼ 3BG (with S⊥ ¼ πR2
p). Thus,

the parametric behavior of the Werhl entropy obtained from
the WW Wigner gluon distribution is SW ∝ S⊥Q2

sðxÞ.
Comparing the distinct approaches for entropy for

gluons at small-x we see that both CCC entanglement
entropy, Eq. (25), and the Wehrl entropy, Eq. (31), are
proportional to the transverse area of the target. This is an
intrinsic property of any extensive observable as the
entropy and the corresponding consequence for nuclear
targets will be addressed in the next section. Such a
property is not present in the parametric expression for
the entanglement entropy proposed in [5] (KL), Eq. (19).
In Fig. 1 a comparison is done between the different
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FIG. 1. The comparison of different approaches for the parton
(gluon) entropy at small-x. The entropy is plotted as a function of
x for virtualitiesQ2 ¼ 2 and 10 GeV2 in DIS off protons. Results
are shown for entanglement entropy by Kharzeev-Levin, the
entanglement entropy in the CGC formalism and the Werhl
entropy for gluons.

2The dipole Wigner distribution for gluons has been derived in
Ref. [24].
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evaluations for the gluon entropy. It is plotted as a function
of x for virtualities Q2 ¼ 2 (left panel) and 10 GeV2 (right
panel). We set αs ¼ 0.25 in the calculations. Results are
shown for entanglement entropy by Kharzeev-Levin (solid
lines), the entanglement entropy in the CGC formalism
(long dashed lines) and the Werhl entropy (dot-dashed
lines). The parametric expression of the KL model behaves
like S ∼ Y2, with a logarithmic suppression in 1=Q2 as seen
in the figure. The choice r2 ¼ ð4=Q2Þ for the average
dipole size was used and for the product inside logarithm
one has Q2

sr2 ¼ ð4Q2
s=Q2Þ þ e (the second term is to

prevent negative values of the argument when
Q2

s ≪ Q2). On the other hand, the Wehrl entropy behaves
like SW ∼ eλY and grows with Q2 in our simplification of
the k-integration, which is enough for the phenomenologi-
cal purpose presented here. Now, the CGC entropy behaves
as SCGC ∼ eY ½ln2Q2 − ð2λÞY�, which explains the mild
growth on Y in the figures.

III. RESULTS AND DISCUSSIONS

A. Entanglement entropy for hadrons

Here, we will focus on the numerical calculation of the
entanglement entropy in the small-x limit both for electron-
proton and electron-ion collisions. In Fig. 2 one presents
SEE for DIS off proton as a function of x (10−5 ≤ x ≤ 10−2)
for representative photon virtualities. We start with a very
low scale, Q2 ¼ 0.65 GeV2, typical of a soft regime which
in general cannot be addressed by DGLAP evolution
starting in an initial hard scale Q2

0 ∼ 2 GeV2. Notice that
the gluon distribution we are using is obtained from the
color dipole cross section including parton saturation,
which describes successfully the proton structure function,

F2ðx;Q2Þ at very low-x [23]. The results for virtualities
Q2 ¼ 2 and Q2 ¼ 10 GeV2 are also presented. It is very
clear the transition from soft to hard scales. Using the
parametrization for the saturation scale, Q2

sðxÞ ¼ ðx0=xÞλ
(with λ ¼ 0.248), one verifies that Q2

s is of order Q2 ¼
0.63 GeV2 at x≲ 10−3. The advantage of using an ana-
lytical expression for xG is to trace back the behavior in
terms of scaling variable τ ¼ Q2=Q2

s . At τ ≪ 1, the series
expansion gives xG ∝ Q4=Q2

s and than SEE ∝ − logðQ2
sÞ.

That is, SEE ∼ λ logðxÞ as viewed at very low x. When
τ ¼ 1, one obtains xG ∝ ½1 − ð2=eÞ�Q2

s which leads to
SEE ∼ −λ logðxÞ − 1 and we see in the curve the change in
inflection in the transition region Q2 ≈Q2

s . In the hard
regime, where Q2 ≫ Q2

s the asymptotic behavior is given
by xG ∝ Q2

sðxÞ and SEE ∼ −λ lnðxÞ. This is viewed in the
plots for Q2 ¼ 2 GeV2 at larger x and for all x in the
case Q2 ¼ 10 GeV2.
Here, some comments are in order. The gluon distribu-

tion obtained from the unintegrated gluon function shows a
valencelike behavior, xλ as x → 0. That is similar to the
behavior of the usual DGLAP approach with a valence type
parametrization for the gluon PDF at initial scale Q0.
However, in the last case the pattern quickly disappears
with Q2 evolution. The dipole approach includes all twist
corrections and then the obtained gluon PDF is somewhat
different from the LO DGLAP calculation which is leading
twist. In Ref. [28], these features are deeply investigated
and a model is proposed for the gluon PDF which at low
Q2 < 0.5 GeV2 behaves as xGðx;Q2Þ ∼Q2 and becomes
flat in x. Same behavior is found also in Kharzeev-Levin-
Nardi (KLN) type UGDs [29]. At low Q2 and very small-x
it would be interesting to compare our calculation to the
analytical expression of xGpðx; μ2Þ at next-to-leading-order
(NLO) level by Jones-Martin-Ryskin-Teubner (JMRT)
[30]. In this case, the parameters of the NLO gluon fit
are determined by a global analysis taking into account
DESY-HERA data and the LHCb measurements of exclu-
sive J=ψ production in proton-proton collisions (the probed
Bjorken-x reaches x ∼ 10−6, with μ2 ≃m2

c, in charmonium
photoproduction extracted from ultraperipheral pp colli-
sions). For sake of comparison, in Fig. 2 we present the
result for the SEE using at low Q2 scales the following limit
Q2 ≃Q2

sðxÞ. This is represented by the long-dashed curve
at Q2 ¼ 0.65 GeV2. In what follows we consider only the
kinematical ranges on Q2 where SEE is equal or smaller
than its maximum. For sake of completeness, the para-
metric expression for the entanglement entropy, Eq (19) is
also presented, using Q2

sr2 ¼ ð4Q2
s=Q2Þ þ e (dot-dashed

lines) as discussed before.
The determination of SEE from data was recently done in

Ref. [17]. For DIS off proton at small-x in DESY-HERA
energy range, ffiffiffiffiffiffiffisep

p ≃ 225 GeV, the authors considered
Monte Carlo simulations (PYTHIA6) for the multiplicity
distribution in order to obtain the entropy of the final state
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FIG. 2. Entanglement entropy as a function of x for virtualities
Q2 ¼ 0.63, 2, 10 GeV2 in DIS off protons. For the low scaleQ2 ¼
0.63 GeV2 themaximumentropy at small-x is shown (long-dashed
line). The parametric expression SEE ¼ ln½r2Q2

sðxÞ�Y is also
presented (dot-dashed lines).
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hadrons, Shadron, and compared it to the entanglement
entropy determined by the gluon distribution. The main
point is that the Sh and the entropy of initial state SEE obey
an inequality, Sh ≥ SEEðYÞ, if the second law of thermo-
dynamics applies to entanglement entropy. For instance,
they used the leading order parton distribution function
(PDF) set MSTW [31] and demonstrated that the entropy
reconstructed from the final state hadrons is not correlated
to SEE at Q2 ¼ 2 and Q2 ¼ 10 GeV2. In both virtualities,
one has a flat behavior Shadron ≈ 1.5 for any hxi against a
powerlike behavior for SEE. Our results using a saturated
gluon distribution for Q2 ≥ 2 GeV2 is somewhat similar to
those from MSTW PDF presented in Ref. [17], as expected
for a kinematic range where Q2 ≥ Q2

sðxÞ. It is argued that
DESY-HERA experiment did not cover the kinematic
regime where the expression of SEE in terms of gluon
distribution applies and the Monte Carlo models do not
encode quantum entanglement. It is expected that the
available range for x will be amplified in the proposed
epðAÞ colliders like the Large Electron-Hadron Collider
(LHeC). For LHeC with energy ffiffiffiffiffiffiffisep

p ≥ 1 TeV, DIS kin-
ematics cover 2 × 10−6 ≤ x ≤ 0.8 and 2 ≤ Q2 ≤ 105 GeV2.
Finally, we discuss the casewhen proton-proton collisions

are considered. In Ref. [17] the authors modify the multi-
plicity distribution, PðNÞ, doing an extrapolation in order to
reflect a single proton as in ep collisions. The procedure is
based on the assumption that final state hadrons are produced
coherently by the proton-proton collisions. Moreover, they
consider the typical scale in an average pp reaction as being
the saturation scale, Q2 ≈ hp2⊥i ≃Q2

sðxÞ. Here, we do not
argue about the reliability of hypothesis considered in the
extraction of Shadron in pp case. In Table I we present the
entanglement entropy given by Eq. (8) using the scaleQ2 ¼
Q2

sðxÞ and following the same procedure proposed in [17] to
compare it to final state Shadron. A selection on hadron
rapidity, y, is taken into account based on the different
experimental cuts formultiplicity distribution concerning the
hadron pseudorapidity, η. Thus, Shadron is extracted from
experimental data from CMS collaboration [32], which are
consistent with similar measurements done by ATLAS and
ALICE collaborations. On the other hand, SEE ¼ lnðNgluonÞ
is obtained computing the number of gluons Ngluon by
units of rapidity after integration of the gluon PDF over
the given rapidity range at a fixedQ2. Specifically, Ngluon ¼R
x2
x1
½xGðx;Q2

sÞ=x�dx and SEE ¼ lnðNgluonÞ is computed for
the average x, hxi. In Tables I-Vof [17] are shown the values

of the x interval, ½x1; x2�, corresponding to the rapidity range
and their averagevalues hxi. In Table I we present our results,
compared to some extracted values of the final states entropy.
Using Q2 ¼ Q2

s , we obtains an analytical expression for
SEE, which reads,

SEEðQ2 ¼ Q2
sÞ ¼ ln ½Q2

sðxÞ� þ S0; ð32Þ
where S0 ¼ ln½3ðe − 2ÞR2

p=4eπαs� ≃ 2 for αs ¼ 0.2 and
SEE ¼ S0 when Q2

s ¼ 1 GeV2. In. Fig. 3 we show the
entanglement entropy evaluated in this work with the values
extracted from the CMS data for the bins jηj < 0.5, jηj < 1.0
and jηj < 2.0. There is a good agreement between the SEE
predicted by the saturation model for the gluon PDF and the
entropy reconstructed fromhadronmultiplicity at very small-
x. Interestingly, on the other hand the usual collinear PDFs
give smaller values for SEE compared to data when the
average hxi increases. It should be noticed that the larger the
jyj interval the bigger the average hxi, for instance one has
hxi ¼ 1.41 × 10−4 for jyj < 0.5 in contrast to hxi ¼ 3.08 ×
10−4 for jyj < 2.4. The origin of the shortcoming for
collinear PDFs can be traced back to the typical powerlike
behavior on x even to low scales near the saturation scale
Q2 ∼Q2

s . On the other hand, in the saturation limit the
saturated gluon distribution considered in this work is
basically flat or at most logarithmic.

TABLE I. The entanglement entropy, SEE, in proton-proton collisions at the LHC predicted by gluon saturation PDF using procedure
from Ref. [17]. Some of the extracted values from CMS data are also presented (in parenthesis) [33].

ffiffiffiffiffiffiffispp
p (TeV) jyj < 0.5 jyj < 1.0 jyj < 1.5 jyj < 2.0 jyj < 2.4

7.00 1.668 (1.914� 0.212) 2.368 (2.673� 0.157) 2.787 3.093 (3.478� 0.236) 3.291
2.36 1.398 (1.271� 0.099) 2.100 (2.139� 0.318) 2.517 2.823 (3.142� 0.326) 3.022
0.90 1.160 1.860 (1.633� 0.130) 2.277 2.584 (2.671� 0.108) 2.784
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FIG. 3. Entanglement entropy in pp collisions at the LHC, with
the final state hadron entropy Shad determined in different
pseudorapidity ranges (the bins jηj < 0.5, 1.0, 2.0 are presented
taken from Ref. [17]). The numerical result from this work is
represented by the solid lines.
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B. Nuclear entanglement entropy

Now we address the entanglement entropy of partons in
case of nuclear targets. In order to investigate the entan-
glement entropy in the case of DIS off nuclei, for simplicity
we will consider the geometric scaling property of the
parton saturation approaches. That is, the DIS cross section
in eA collisions at small-x is directly related to the
cross section for a proton target. The nuclear effects are
absorbed in the nuclear saturation scale, Q2

s;Aðx; AÞ ¼
½AπR2

p=πR2
A�ΔQ2

sðxÞ ∼ A4=9Q2
sðxÞ, with Δ ≃ 1.27 [34]

and the normalization of cross section is rescaled relative
to ep by the change σA → ðπR2

A=πR
2
pÞσ0 ∼ A2=3σ0. Here,

RA ≃ 1.12A1=3 fm is the nuclear radius. Therefore, the
simplest extension of the gluon distribution in nuclei is
given by:

xGAðx;Q2Þ ¼ 3R2
A

4παs
Q2

s;A

�
1 −

�
1þ Q2

Q2
s;A

�
e
− Q2

Q2
s;A

�
: ð33Þ

The parametrization based on the color dipole picture
and parton saturation formalism is quite reliable and it
describes correctly inclusive γ�p and γ�A interactions at
small-x. In particular, the geometric scaling property
described above reproduces without further fitting pro-
cedure the experimental data on the energy and centrality
dependence of multiplicity of charged particles at RHIC
and LHC [34]. The main features of the measured ratios of
central and semicentral to peripheral pA and dA collisions,
RCP, are also roughly described. More recently, the same
approach was demonstrated to describe all exclusive
processes in ep and eA collisions at small-x like deeply
virtual Compton ccattering (DVCS) and exclusive vector
mesons production. Predictions for exclusive Z0 photo-
production, timelike DVCS, and exclusive dilepton pro-
duction are presented for instance in Refs. [35–37].
In Fig. 4 we calculate the corresponding nuclear entan-

glement entropy from the analytical parametrization for the
nuclear gluon PDF. We consider the virtualities Q2 ¼ 5, 10
and 50 GeV2 and the following nuclei: lead (Pb), gold
(Au), calcium (Ca) and silicon (Si). Nuclei Pb and Au
are reference for future electron-ion colliders like LHeC
and eRHIC. The case Q2 ¼ 2 is interesting as the nuclear
saturation scale (squared) is enhanced by a factor A4=9

compared to saturation scale for proton target. This is factor
10 for lead (A ¼ 208) and 5 for calcium (A ¼ 40).
Therefore, in the model we are using here the scale Q2

s;A

is of order 2 GeV2 already at x ≃ 10−2 for Pb and x ≃ 10−3

for Ca, whereas in the proton case it occurs at x ∼ 10−5 (see
Fig. 2). This means that the SEE will reach to its maximum
value for larger value of x compared to DIS off nucleons
due to the faster gluon saturation in the nuclear case. We see
that entropy plateau already appears for lead and gold at a
sufficiently hard scale Q2 ¼ 5 GeV2.

The topic of entanglement entropy and its connection to
nuclear shadowing was addressed recently in Ref. [38]. The
authors claim that the gluon shadowing is due to a reduction
of the entanglement between the observed and unobserved
degrees of freedom for gluons in a nucleus compared to those
in free nucleon. Specifically, the nuclear entanglement
entropy is given by SA ¼ A ln½xGAðx;Q2Þ=A�, and SA=A
is the entanglement entropy per nucleon (xGN=A ¼ xGA=A is
the nuclear gluon density per nucleon). Then, in [38] nuclear
shadowing is a direct measure of the variation of the
entanglement entropy by nucleon. For two nuclei having
atomic number A and B, respectively, the nuclear ratio takes
the form,

RA=B
g ðx;Q2Þ ¼

�
B
A

��
xGAðx;Q2Þ
xGBðx;Q2Þ

�
¼ exp

�
SA
A

−
SB
B

�
:

ð34Þ
Accordingly, the number of degrees of freedom per

nucleon investigated in DIS in a nucleus of atomic number
A,mA, is smaller that those for a free nucleon,mD (gluons in
deuterium are considered as those in a free nucleon). In [38]
one estimates the nuclear entanglement using the Page
approach [39,40] for the average entanglement entropy of
a subsystem applied to DIS in a nucleus target. In such
approach, one considers the Hilbert space with dimension
N ¼ mn of a quantum bipartite system having dimensionsm
and n, respectively. The Page conjecture provides analytical
expressions for the entanglement entropy in both cases
m ≤ n and m ≥ n (see Ref. [38] for details). Moreover, it
is proposed that antishadowing is connected to the con-
servation of total entropy, that is

R
1
0 ½SAðxÞ − SDðxÞ�dx ¼ 0.

In order to compare our calculations with those in
Ref. [38], in Fig. 5 the ratio SA=SD is presented as a
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FIG. 4. Nuclear entanglement entropy as a function of x for
virtualities Q2 ¼ 5, 10, 50 GeV2 in DIS off nuclei. For each
virtuality, the following nuclides are considered: Pb (solid lines),
Au (dotted lines), Ca (long-dashed lines) and Si (dot-dashed
lines).
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function of Bjorken-x for a fixed value of virtuality,
Q2 ¼ 1.7 GeV2. We consider the nuclides Pb (solid line),
Xe (dashed line), Ca (long dashed line), and C (dot-dashed
line). Notice that the ratios obtained in [38] are not
dependent on Q2 and the degrees on freedom mA are
obtained by fitting the EPPS16 [41] output for the gluon
shadowing at Q2

0 ≃ 1.7 GeV2. Our results for lead and
carbon are in agreement to those in [38], obtaining
SPb=SD ≃ 0.5 and SC=SD ≃ 0.85 at x ¼ 10−4 (the same
ratios there give 0.3 and 0.7 for equal values of x,
respectively). The nuclear gluon density we are taking into
account describes correctly the nuclear shadowing at small-
x for a large variety of nuclei (see Ref. [42] for the
corresponding phenomenology).
The nuclear entropy can be also evaluated in the CGC

and Wehrl approaches. Let us take as an example the Wehrl
entropy obtained from the QCD WW Wigner distribution
for gluons. For sufficiently large Q2 ≫ Q̃2

s;A (leading to a
constant F ¼ −0.248), where Q̃s is the gluon saturation
scale in a nucleus, we will obtain,

SAW ≈
CF

2παs

Z
∞

0

db20.248Q̃2
s;Aðx; bÞ; ð35Þ

where now Q̃s;Aðx; bÞ is the impact-parameter dependent
nuclear gluon saturation scale. There is a rich phenom-
enology on the determination of nuclear (quark) saturation
scale in heavy-ion physics. Its value can change whether
distinct treatments of the nuclear collision geometry are
considered. As an example, using a local saturation scale,
Q2

s;Aðx; bÞ ¼ Q2
s;Aðx; b ¼ 0ÞTAðbÞ with TA being the

nuclear thickness function (Qs;p is the saturation scale
for protons), and a Gaussian b-profile for the proton the
relation between Qs;A and Qs;p it was found in Ref. [43].
In the hard sphere approximation for the nuclear density ρA,
one has Q2

s;A ¼ 3AðRp=RAÞ2Q2
s;pΘðb − RAÞ, which gives

Q2
s;A ≈ 2.3Q2

s;p for a lead (A ¼ 208) nucleus. This means
that the nuclear saturation squared is a factor 2 or 3 bigger

than for protons and unitarity effects are more pronounced.
The expression is quite similar to that employed in our
calculation of xGA. In the hard sphere approximation, the
Wehrl entropy for a nucleus is given by,

SAW ≈
0.248CF

2παs

Z
R2
A

0

db2
�
Nc

CF

�
3A

�
Rp

RA

�
2

Q2
s;p;

¼ 0.744NcSA⊥
2π2αs

�
Rp

r0

�
2

A1=3Q2
s;pðxÞ; ð36Þ

where RA ≃ r0A1=3 for large nucleus with r0 ¼ 1.12 fm.
The quantity SA⊥ ¼ πR2

A is the nucleus total transverse
area and the nuclear Wehrl entropy behaves as SAW ∼
AQ2

s;pðxÞ ¼ AeλY . The CGC prediction will follow the
same trend. Therefore, it can be understood that the nuclear
entanglement entropy from CGC formalism and the Wehrl
entropy for gluons inside nuclei is additive respect to the
hadron ones. This feature is somewhat consistent with the
entropy being an extensive variable. The nuclear entropy
proposed in Ref. [38] discussed before is also consistent
with this picture.

IV. SUMMARY

We have investigated the entanglement entropy in deep
inelastic scattering for ep and eA collisions. The theoretical
formalism is based on the von Neumman entropy written in
terms of the gluon number as a function of Bjorken-x and
photon virtualities Q2. Specifically, we consider an ana-
lytical expression for the gluon density in proton related to
the parton saturation physics within the color dipole
picture. The integrated gluon density, xG, is then extracted
from the corresponding unintegrated one. The approach is
able to describe all the important observables in DIS at
small-x and up to intermediate Q2 ∼ 50 GeV2. Based on
geometric scaling property, an extrapolation is done in
order to obtain the nuclear gluon density, which also has
been tested against nuclear ratios data in eA collisions. The
obtained nuclear entanglement entropy is compared to
other proposals in literature. In ep case, it was found that
the results are similar to those in Ref. [17] with deviations
only at very low scales, Q2 ≲ 1 GeV2. The origin of this
deviation is traced back to the behavior of gluon PDF below
saturation scale, QsðxÞ. In eA case, we analyze the relation
between gluon shadowing and the decreasing of the
entropy per nucleon proposed in [38]. The results corrobo-
rate the main results found in that reference. The direct
comparison to data is done in Fig. 3, with SEE in agreement
with final state hadron entropy in the rapidity region
extracted from CMS data. The results are similar to those
obtained in [17] using the usual gluon PDFs like MSTW
parametrization not including saturation aspects or higher
twist effects. There is some improvement for larger values
of average x compared to usual collinear PDFs. This can be
understood on the distinct behavior of the proposed
saturation model gluon density at the saturation line,
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FIG. 5. Ratio SA=SD as a function of x at Q2 ¼ 1.7 GeV2 for
different nuclei. It is shown prediction for lead (Pb), xenon (Xe),
calcium (Ca), and carbon (C).
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Q2 ≈Q2
sðsÞ. The main results is that the entanglement

entropy at scale Q2 ≈Q2
s;T behaves as SEE ∝ ln½Q2

s;TðxÞ�Þ
for a proton target, T ¼ p, as well as a nuclear one, T ¼ A.
In summary, our study shed light on the entanglement

entropy in hard scattering processes using analytical tools
which could bring a better understanding on the underlying
dynamics in a quantum bipartite system. The detailed
investigation on the entropy production and the entangle-
ment entropy in these processes are crucial to understand
the dynamics of multiparticle production in pp and AA
collisions at high energies (see Ref. [44] for a review).

For instance, the thermalization present in those reactions
in accelerators like LHC and RHIC could be explained as
due to the high degree of entanglement in the wave function
of colliding particles [45–48].
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