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ABSTRACT

The propagation of plasma waves in a new nonlinear, logarithmic electrodynamics model is performed. A cold, uniform, collisionless fluid
plasma model is applied. Electrostatic waves in magnetized plasma are shown to correspond to modified Trivelpiece-Gould modes, together
with changes in the plasma and upper-hybrid frequencies, driven by the logarithmic electrodynamics effects. Electromagnetic waves are
described by a generalized Appleton-Hartree dispersion relation. The cases of propagation parallel or perpendicular to the equilibrium mag-
netic field are analyzed in detail. In particular, generalized ordinary and extraordinary modes are obtained. We determine the changes, due
to logarithmic electrodynamics, in the allowable and forbidden frequency bands of the new extraordinary mode. Estimates are provided
about the strength of the ambient magnetic field so that the nonlinear electrodynamics effects become decisive.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094769

I. INTRODUCTION

In 1923, the experiments by Compton on the scattering of
X-rays off electrons demonstrated that Einstein’s light quanta carry
not only energy but also momentum, making it clear that they
behave as true particles.1 It was Lewis, in his 1926 article, “The
Conservation of Photons,”2 who coined the word photon to name
the particles of light, though, to his sense, the photon was understood
as a sort of atom of light. One year later, in the 1927 Solvay Meeting,
entitled “Electrons and Photons,” Compton used the term photon as
we understand it today.3

Ever since there started a broad activity aimed to study the light
by light scattering, once the light quanta—the photons—were then
understood as genuine elementary particles, and therefore, they could
scatter each other. In 1930 and 1931, a series of papers was devoted to
detecting the collision between photons and to check whether or not
the superposition principle was respected.4 The perception was that
the photon-photon scattering could unveil nonlinear effects in the
electromagnetic theory once deviations from the superposition

principle were detected. However, only in 1933, a theoretical investiga-
tion, based on the 1928 Dirac’s theory for the electron,5 was proposed
by Halpern,6 who claimed that virtual electron-positron pairs could be
the actual origin of photon-photon collisions. This short—but deep
and consequent—work provided a more qualitative framework to be
applied in the description of the photon-photon scattering. Halpern’s
paper opened up a very intensive line of investigation in the immediate
following years. Later on, in 1935, Euler and Kockel, both Heisenberg’s
students, based on the early developments of Quantum
Electrodynamics (QED), derived the leading nonlinear corrections to
the Maxwell equations in vacuum.7 The years 1933–1936 were a rich
period for the inspection of nonlinear electrodynamic (NLED) models,
when the Delbr€uck scattering,8 the Breit-Wheeler effect,9 the sponta-
neous decay of photons,10 and the Euler-Heisenberg11 and Born-
Infeld12 models were investigated. Photon-photon scattering and
the detection of physical phenomena in vacuum as a consequence of
nonlinear electrodynamics (NLED) remain a challenge up to now for
both theoretical and experimental physics.13
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More recently, there has been a renewed interest in NLED in
connection with new Physics beyond the Standard Model, especially
the possibility of detecting nonlinear electromagnetic vacuum effects
induced by quantum gravity corrections to Maxwell electrodynam-
ics.14 In connection with black holes, one has focused on different
NLED models to get a broad class of singularity-free black hole solu-
tions.15 In a recent paper,16 a logarithmic electrodynamic action has
been presented and inspected to analyze the thermodynamic implica-
tions of NLED on an “AdS” black hole solution. The present paper
sets out to pursue an investigation of this particular (logarithmic)
NLED in the context of plasma, as it shall be described in the sequel.

The propagation of electromagnetic waves in a logarithmic
electrodynamics context has already been derived in free space.17

However, the analysis of wave propagation in a material medium gov-
erned by logarithmic electrodynamics has not yet been carried out.
In a first approach to this subject, the present work considers a cold,
nonrelativistic, collisionless plasma, composed of electrons in a fixed
homogeneous ionic background. The choice of the simplest possible
plasma allows to investigate the main new effects induced by logarith-
mic electrodynamics on some of the most salient plasma waves. It
would be impossible to perform a similar analysis for all relevant
plasma waves. For instance, in the first attempt, magnetohydrody-
namic waves or waves taking into account the ion response (e.g.,
ion-acoustic waves) are not yet addressed. Similarly, high amplitude,
nonlinear waves are not considered here. Nevertheless, a rich variety
of logarithmic-electrodynamics-driven essential new aspects of wave
propagation in plasmas shall be identified. A basic result common to
all classes of waves considered in our analysis is that logarithmic elec-
trodynamic effects crucially depend on the parameter cB0/b, where c is
the speed of light, B0 is the equilibrium magnetic field, and b is a fun-
damental parameter of the model, which we presently consider to be
positive. The general result can be of help for the determination of b,
which is here taken as a phenomenological parameter within logarith-
mic electrodynamics.17

The inspection of a wide class of NLED models is also motivated
by the new extreme light experiments, such as the Shanghai Super-
intense Ultrafast Laser Facility (SULF), which reached, in 2016, an
unprecedented 5.3 PW with pulses lasting less than 1 ps. A 100-PW
laser, the Station of Extreme Light (SEL), is also a project to start oper-
ating at SULF by 2023. In the next few years, new extreme light devices
should switch on in Romania and the Czech Republic, in connection
with the Europe’s Extreme Light Infrastructure, and in Russia, where
physicists expect to carry out experiments with a 180-PW laser,
the Exawatt Center for Extreme Light Studies (XCELS). Plans for a
75-PW laser facility are under development at the University of
Rochester, the Optical Parametric Amplifier Line (OPAL). This new
generation of lasers will produce intensities high enough to thoroughly
investigate the QED vacuum so that particle- and astrophysicists, mate-
rials scientists, and the recent branch of Physics known as nuclear pho-
tonics will greatly benefit from these devices. Boosted by these
prospects, we wish to go deep into the search of properties of NLED
models; in this contribution, we concentrate efforts to understand prop-
erties of the logarithmic electrodynamics model discussed in the sequel.

This work is organized according to the outline that follows: to
go through a logical path, we start in Sec. II from the simplest plasma
waves, viz., electrostatic waves, in both unmagnetized and magnetized
plasma. In Sec. III, electromagnetic perturbations are allowed, which

are known to be described by the Appleton-Hartree equation,18 for the
arbitrary propagation angle. Here, a modified Appleton-Hartree equa-
tion is obtained, with changes driven by the logarithmic electrodynam-
ics. In Sec. IV, we treat the special case of waves propagating along the
direction of the ambient magnetic field. In Sec. V, the perpendicular
wave propagation is addressed to, along with the derivation of the cor-
responding modified ordinary and extraordinary modes. Section VI
shows some physical estimates on the strength of the effects stemming
from logarithmic electrodynamics. In Sec. VIII, we cast our concluding
comments.

II. ELECTROSTATIC WAVES

According to Ref. 17, logarithmic electrodynamics is described by
the following Lagrangian density:

L ¼ �2b2e0 ln 1þ 1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2

c2jBj2 � jEj2
� �r" #

þ 2b e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2

c2jBj2 � jEj2
� �r

; (1)

where E and B denote the electric and magnetic fields, respectively. In
addition, b is a fundamental physical parameter, c is the speed of light,
and s is a number such that s ¼ –1 is adopted whenever jEj � cjBj. If
the situation discussed is such that cjBj > jEj, then we consider
s¼þ1.

The corresponding field equations, in the presence of charge and
current densities q and j, read as follows:

r �D ¼ q
e0
; (2)

r� E ¼ � @B
@t
; (3)

r � B ¼ 0; (4)

r�H ¼ l0 jþ
1
c2
@D
@t

; (5)

where e0 is the vacuum permittivity, l0 is the vacuum permeability,
and the auxiliary fieldsD andH are given by

D ¼
ffiffiffi
2
p

bEffiffiffi
2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s jEj2 � c2jBj2
� �q ;

H ¼
ffiffiffi
2
p

bBffiffiffi
2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s jEj2 � c2jBj2
� �q : (6)

In a first approach, let us focus on the electrostatic case, using the
fluid theory in the cold plasma limit

@n
@t
þr � nuð Þ ¼ 0; (7)

@u
@t
þ u � ru ¼ � e

m
Eþ u� B0ð Þ; (8)

r �D ¼ e
e0

n0 � nð Þ : (9)

Here, n is the electrons’ number density, u is the electrons’ fluid veloc-
ity field, –e and m are the electron charge and mass, respectively, B0 is
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the equilibriummagnetic field, and n0 is the ions’ background number
density (with atomic number Z¼ 1). For simplicity, ions are supposed
to be infinitely massive, which is appropriate for high frequency waves.
Likewise, thermal or collisional effects are also disregarded.

Linear electrostatic waves consider n ¼ n0 þ dn; u ¼ du, and E
¼ dE, where dn, du, and dE are first order plane wave perturbations
proportional to exp i k � r� xtð Þ½ �, where k is the wave vector and x
is the (angular) wave frequency. Magnetic field perturbations will be
discussed in Sec. III. Hence, at this stage, theH field is not required. In
passing, we note that for a cold plasma and for linear waves with zero
equilibrium fluid velocity, a nonrelativistic treatment is sufficient.

Initially, in the unmagnetized case (B0 ¼ 0), we have, from Eq.
(6), that dD ¼ dE. Therefore, in this situation, we detect no changes
due to the logarithmic electrodynamics, at least for small amplitude,
linear waves. The usual (nonpropagating) electron plasma wave with

x2 ¼ x2
p is recovered, where xp ¼ n0e2= me0ð Þ

� �1=2 is the plasma

frequency.
In the magnetized case, one has jB0j ¼ B0 > jEj=c, since the

magnetic field is finite and the electric field is a perturbation. Hence,
from Eq. (6), we have s¼ 1 and

D ¼
ffiffiffi
2
p

bEffiffiffi
2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2B2

0 � jEj
2

q : (10)

Linearizing Eqs. (7)–(10) and assuming B ¼ B0ẑ ; k ¼ kx̂;E ¼ dEx̂
(longitudinal wave) yield

x2 ¼ ~x2
h ¼ ~x2

p þ x2
c ; (11)

wherexc¼ eB0/m is the electron’s cyclotron frequency,

~xp ¼ xp 1þ cB0ffiffiffi
2
p

b

� �1=2

(12)

is a modified plasma frequency, and ~xh is a modified upper-hybrid
frequency. In the limit B0� b, one re-obtains the usual upper hybrid
wave x2 ¼ x2

h ¼ x2
p þ x2

c . Otherwise, Eq. (11) shows a modified
upper hybrid wave due to log effects.

With more generality, propagation in an arbitrary direction
so that k k E but with k ¼ k sin h; 0; cos hð Þ gives a modified
Trivelpiece-Gould dispersion relation

x4 � ~x2
p þ x2

c

	 

x2 þ ~x2

px
2
c cos

2h ¼ 0; (13)

yielding

x2 ¼ 1
2

�
~x2
p þ x2

c6 ~x2
p � x2

c

	 
2
þ 4~x2

px
2
c sin

2h

� �1=2�
: (14)

For h ¼ p/2, we recover Eq. (11). The modes following from Eq. (14)
are always stable (x2 � 0). In the low field case cB0� b, we recover
the usual Trivelpiece-Gould modes. Notice that the original work by
Trivelpiece and Gould19 has considered wave propagation along an
arbitrary angle, see also Fig. 4.21 in Ref. 20.

III. GENERALIZED APPLETON-HARTREE EQUATION

We now turn to electromagnetic electron waves in cold, collision-
less magnetized plasma in a fixed homogeneous ionic background.

The relevant equations are the Faraday’s law, Eq. (3), the force equa-
tion, namely,

@u
@t
þ u � ru ¼ � e

m
Eþ u� Bð Þ; (15)

and the modified Ampère-Maxwell law, Eq. (5), which can be recast as

r�H ¼ �l0neuþ
1
c2
@D
@t

: (16)

Following the usual procedure,21–23 we are going to linearize
around the homogeneous equilibrium n ¼ n0, u¼ 0, E¼ 0, and
B ¼ B0 6¼ 0. Notice that from Eq. (6) for B0 ¼ 0 gives dD ¼ dE, dH
¼ dB, whatever the sign of s, so that no logarithmic effects show up in
this case, which is associated with the standard electromagnetic plasma
wave x2 ¼ x2

p þ c2k2 for k � E¼ 0 and with the electron plasma

mode x2 ¼ x2
p for k � E 6¼ 0.

As in Sec. II, in the magnetized case for linear waves, we must set
s¼ 1. We have

D ¼
ffiffiffi
2
p

bEffiffiffi
2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2jBj2 � jEj2

q ; H ¼
ffiffiffi
2
p

bBffiffiffi
2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2jBj2 � jEj2

q : (17)

Assuming n ¼ n0 þ dn;u ¼ du;E ¼ dE;B ¼ B0 þ dB, for small
amplitude perturbation, yields, in particular,

dD ¼ H0

B0
dE ; H ¼ H0 þ dH; (18)

whereH0 ¼ jH0j,

H0 ¼
ffiffiffi
2
p

bB0ffiffiffi
2
p

bþ cB0
; dH ¼ H0

B0
dB� cB0 H0 � dBffiffiffi

2
p

bB0

� �
; (19)

and

H0

B0
¼

ffiffiffi
2
p

bffiffiffi
2
p

bþ cB0
: (20)

The parameter H0/B0 � 1 plays a significant rôle. For instance, from
Eq. (12), we have ~xp ¼ B0=H0ð Þ1=2xp.

Assume plane wave perturbations proportional to
exp i k � r� xtð Þ½ �, for B0 ¼ B0ẑ ; k ¼ k sin h; 0; cos hð Þ, so that h is
the angle between k and the equilibrium magnetic field. The linear
wave analysis in this context is well-known.21–23 We shall isolate the
linearized velocity field du ¼ (dux, duy, duz) from Eq. (15) in terms of
dE¼ (dEx, dEy, dEz), yielding as usual

dux ¼
e
m

xcdEy þ ixdEx
� �

x2
c �x2

� � ; duy ¼
e
m

�xcdEx þ ixdEy
� �

x2
c �x2

� � ;

duz ¼ �
iedEz
mx

: (21)

Using k � dE ¼ xdB and inserting the results from Eq. (21) into the
modified Ampère-Maxwell law (16) yields a linear homogeneous sys-
tem for the electric field components

S � g2 cos2h �iD g2 cos h sin h
iD S � a hð Þg2 0

g2 cos h sin h 0 P � g2 sin2h

2
4

3
5 dEx

dEy
dEz

2
4

3
5 ¼ 0; (22)
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where Eqs. (18) and (19) were also needed. Here, g ¼ ck/x is the
refraction index, a hð Þ ¼ cos2hþ H0=B0ð Þ sin2h and

D ¼
xc ~x

2
p

x x2
c � x2

� � ; S ¼ 1þ
~x2
p

x2
c � x2

; P ¼ 1�
~x2
p

x2
; (23)

are modified D (Difference), S (Sum), and P (Plasma) coefficients. In
the limit H0/B0! 1, one recovers the usual result.21–23 Setting P ¼ 0,
we get x2 ¼ ~x2

p, while setting S ¼ 0 yields the modified upper-
hybrid wave in Eq. (11).

The determinant of the matrix in Eq. (22) must vanish.
Following, as closely as possible the traditional notation,21–23 we find

Ag4 � Bg2 þ C ¼ 0; (24)

where

A ¼ a hð Þ S sin2hþ P cos2hð Þ; (25)

B ¼ RL sin2hþ PS a hð Þ þ cos2h½ �; (26)

C ¼ PRL ; R ¼ S þD ; L ¼ S �D; (27)

also introducing modified R (Right) and L (Left) coefficients.
After standard rearrangements, the solution to Eq. (24) can be

expressed as

g2 ¼ 1� 2 A� Bþ Cð Þ
2A� B6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p (28)

or

g2 ¼ 1�
~x2
p=x

2

Q
; Q ¼ Q06F=Q1; (29)

where

Q0 ¼ 1þ
1� 2a hð Þð Þx2

c ~x2
p sin

2hþ a hð Þ � 1ð Þx2
c ðx2 þ ~x2

pÞ � a hð Þ � 1ð Þðx2 � ~x2
pÞ

2

2ððx2 � ~x2
pÞð~x2

p þ a hð Þ � 1Þx2
� �

� a hð Þ � 1ð Þx2
cx

2 sin2hÞ
; (30)

Q1¼
½ 2�a hð Þð Þx2� ~x2

p�~x2
pþ a hð Þ�1ð Þx4� a hð Þ�1ð Þx2

cx
2 sin2h

x2�x2
c

� �
x2=2

;

(31)

F2 ¼ RL� H0=B0ð ÞPS½ �2 sin4hþ 4a hð ÞP2D2 cos2h: (32)

In the low field limitH0/B0! 1, one has

Q ¼ 1� x2
c sin

2h
2 x2 � x2

p

� �6
x4

c sin
4h

4 x2 � ~x2
p

	 
2 þ x2
c cos

2h
x2

0
@

1
A

1=2

; (33)

which is the standard result.21–23

Equation (29) is a generalized Hartree-Appleton equation,
describing electromagnetic wave propagation in cold, uniform plasma
governed by a logarithmic electrodynamics. In the low field limit, the
usual Appleton-Hartree equations18 are recovered in the collisionless
case. Since ion motion was neglected, to apply Eq. (29), the frequency
must be large in comparison with the ion cyclotron frequency.

Since the analysis of Eq. (29) is quite involved in general, we con-
sider the special cases of propagation parallel or perpendicular to the
ambient magnetic field.

IV. PROPAGATION PARALLEL TO B0

For h ¼ 0, we have a(h) ¼ 1, irrespective of the strength of B0.
We also find, from Eq. (29), that Q¼ 1 6 xc/x, leading to a modified
right-hand circularly polarized (RCP) wave

c2k2

x2
¼ 1�

~x2
p

x x� xcð Þ
(34)

and a modified left-hand circularly polarized (LCP) wave

c2k2

x2
¼ 1�

~x2
p

x xþ xcð Þ
(35)

where the only change in comparison with the usual RCP and LCP
waves is the replacement xp ! ~xp. The properties of RCP and LCP
waves are well-known21–23 and are reproduced here provided that the
larger effective plasma frequency is used.

However, the parallel propagation case admits another possibil-
ity, since for h¼ 0, all three coefficients A, B, and C in Eq. (24) become
proportional to P. Setting P ¼ 0, one regains the modified electron
plasma oscillationsx2 ¼ ~x2

p.

V. PROPAGATION PERPENDICULAR TO B0

For h¼ 90	, one has a(h)¼H0/B0 and two wave modes,
described below.

A. Modified ordinary mode

Taking the minus sign in Eq. (29), we have Q¼ 1 and x2

¼ ~x2
p þ c2k2, which is the ordinary (O) mode, modified by the pres-

ence of the new plasma frequency ~xp, instead of the usual one. With
this proviso, the standard analysis of the O-mode applies.21–23

B. Modified extraordinary mode

Taking the plus sign in Eq. (29), we are left with an involved
expression of Q and the dispersion relation
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H0

B0

c2k2

x2
¼ x2 � ~x2

R

� �
x2 � ~x2

L

� �
x2 x2 � ~x2

h

� � ; (36)

where

~xR¼
1
2

xcþ x2
c þ4~x2

p

	 
1=2� �
; ~xL¼

1
2
�xcþ x2

c þ4~x2
p

	 
1=2� �
;

(37)

and where ~xh is the modified upper-hybrid frequency defined in Eq.
(11). Apart from the overall factor H0/B0 on the left-hand side of Eq.
(36), we have the same result as the dispersion relation of the well-
known extraordinary (X) mode, with the replacements xp ! ~xp;
xh ! ~xh.

The analysis of the modified X-mode is more involved than for
the other waves considered so far, but it may be performed with the
aid of the definitions of cutoff and resonance. We recall20 that a cutoff
happens whenever the refraction index, g, goes to zero, while a reso-
nance occurs if g becomes infinity. In general, a wave is absorbed at a
resonance and reflected at a cutoff. From Eq. (36), we have that the
location of cutoffs and resonances for the modified X-mode are the
same as for the standard case but in terms of the new plasma and
upper-hybrid frequencies. Therefore, the standard analysis applies
with the net result shown in Fig. 1. Notice that the X-wave only propa-
gates for ~xL < x < ~xH or for x > ~xR.

It is apparent, from Eq. (37), that ~xL increases due to the loga-
rithmic electrodynamic effects, with the corresponding increase in the
left forbidden band in Fig. 1. In addition, for the allowed band
~xL < x < ~xh, one has

~xh� ~xL¼xh�xL�Dx2
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ4x2
p

q � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þx2
p

q0
@

1
AþO D2ð Þ;

D¼ cB0ffiffiffi
2
p

b
; ð38Þ

while for the forbidden band ~xh < x < ~xR, one has

~xR� ~xh¼xR�xhþDx2
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ4x2
p

q � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þx2
p

q0
@

1
AþO D2ð Þ;

(39)

where xR,L is the limit of ~xR;L in standard electrodynamics. The cor-
rection terms in Eq. (38) and (39) are always negative (positive), show-
ing a smaller allowed band and bigger forbidden band due to the log
effects. The conclusion can be shown to be true for an arbitrary order
too.

In particular, for strongly magnetized plasmas, where xc
 xp,
one has, up toO Dð Þ

~xh � ~xL ¼ xc 1�
x2

p

2x2
c

 !
�

Dx2
p

2xc
; ~xR � ~xh ¼

x2
p

2xc
1þ Dð Þ:

(40)

For convenience, we recall that x2
p=x

2
c ¼ l0mn0c2=B2

0 ¼ 1:02 n0=B2
0

so that Eq. (40) requires B0 

ffiffiffiffiffi
n0
p

, always in terms of S.I. units.
Similarly, for high density plasmas, such that xp
 xc, one has

~xh � ~xL ¼ xc 1þ 3xc

4xp

� �
� 3Dx2

c

16xp
;

~xR � ~xh ¼
xc

2
1� 3xc

4xp

� �
þ 3Dx2

c

16xp
; (41)

up toO Dð Þ.
VI. PHYSICAL ESTIMATES

We may present at least an estimate of the strength of the new
effects concerning wave propagation in plasma. We notice that the
main changes come from the parameter

~xp

xp
¼ 1þ cB0ffiffiffi

2
p

b

� �1=2

: (42)

If we estimate b/c� 1011 T, we find b � 1019 V/m, which is one order
of magnitude larger than the Schwinger critical field Ec ¼ m2c3= e�hð Þ
� 1018V=m, where �h is the reduced Planck’s constant. Therefore, sig-
nificant changes in plasma wave propagation may occur, for strongly
magnetized plasma with B0� 1011 T. Although the result has been
obtained in the cold, uniform, collisionless, and nonrelativistic approx-
imation, it is expected that the main conclusion remains true for more
general plasmas, together with additional features.

A possible candidate for such strongly magnetized plasmas would
be the surface of a magnetar, with magnetic fields B� 1010–1012 T,
where standard atomic nuclei comprise a solid lattice together along
with a sea of electrons.24 However, in this case, more involved and
detailed models would be necessary, with a more appropriate equation
of state in connection with quantum and general-relativistic effects.25

Nevertheless, the relevance of the parameter ~xp=xp will also certainly
show up in a more detailed treatment. Ultrastrong magnetic fields
beyond the QED limit are also found in other extreme astrophysical
environments, such as the interior of neutron stars, Central Engines of
Supernovae and Gamma-Ray Bursts (GRB) and inner parts of GRB
jets.26 Finally, the attainability of the Schwinger limit in laboratory
with extreme power lasers should be mentioned.27

VII. COMPARISON WITH THE LITERATURE

The propagation of circularly polarized waves as well as features
of the O and X modes modified by the inclusion of the vacuum polari-
zation current in the Maxwell equations have been investigated.28,29 In
the context of the present work (linear waves, no thermal or quantum

FIG. 1. Dispersion relation of the modified X-wave from Eq. (36). The arrows indi-
cate the effects from the logarithmic electrodynamics. Forbidden bands: 0 < x
< ~xL and ~xh < x < ~xR .
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diffraction effects), for instance, the O-mode dispersion relation from
Ref. 29 taking into account the QED effects reads

x2 ¼
x2

p

1� b0
þ c2k2 � x2

p 1þ b0ð Þ þ c2k2; (43)

where

b0 ¼
2a
45p

cB0

Ec

� �2

; (44)

in terms of the fine structure constant a ¼ e2= 4pe0�hcð Þ, assuming a
magnetic field intensity much smaller than the Schwinger limit. On
the other hand, in the log electrodynamics theory, one has the O-
mode dispersion relation x2 ¼ ~x2

p þ c2k2, in terms of a modified

plasma frequency ~xp ¼ xp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cB0=

ffiffiffi
2
p

b
� �q

, yielding by inspecting

the same gross features from QED vacuum polarization effects.
However, notice the plasma frequency shift proportional to B2

0 and B0
in QED and logarithmic electrodynamics theory, respectively. Exactly
the same remarks apply when comparing with the linear dispersion
relation for the X-mode29 and for circularly polarized modes:28 one
has to replace ~xp by the new plasma frequency xp(1 þ b0/2) to
achieve correspondence between the two approaches. We expect that
experiments and astrophysical observations will help to elucidate the
appropriate scaling on the magnetic field intensity. Likewise, the influ-
ence of photon-photon scattering in the wave propagation in electron-
positron plasmas has been analyzed,30 which is a possible system to be
investigated in the future in terms of logarithmic electrodynamics.

VIII. CONCLUDING COMMENTS AND NEW PROSPECTS

In a first attempt to analyze plasma waves in a logarithmic elec-
trodynamics, we have chosen a cold uniform plasma immersed in a
magnetic field, not only because of the mathematical tractability but
also because a large number of wave modes in more detailed treat-
ments may be associated with the modes obtained within the simplest
approach. In the words by Stix,21 “the cold-plasma model gives, in
fact, a remarkably accurate description of the common small-
amplitude perturbations that are possible for a hot plasma.”

Within the cold-plasma model, we have found a modified
Trivelpiece-Gould dispersion relation for electrostatic waves in mag-
netized plasma, along with adequate changes of the plasma and
upper-hybrid frequencies, due to the logarithmic electrodynamics
effects. Allowing for electromagnetic waves yields a generalized
Appleton-Hartree dispersion relation. The cases of propagation par-
allel or perpendicular to the equilibrium magnetic field are analyzed
in detail so that in particular, generalized ordinary and extraordinary
modes are found. We determined the changes, due to logarithmic
electrodynamics, in the allowable and forbidden frequency bands of
the new extraordinary mode. According to physical estimates, non-
linear electrodynamics effects become unavoidable for ultrastrong
magnetic fields, which exist in extreme astrophysical plasma environ-
ments. Such developments are relevant for the determination of the
b parameter entering the basic new NLED Lagrangian density.

NLED models appear as effective photonic descriptions that take
into account the sum over the quantum effects of virtual (charged)
particle-antiparticle pairs. So, from the very onset, they are supposed
to correctly describe electromagnetic effects associated with waves

whose (wave)lengths are much bigger than the Compton wavelength
of the charged particle whose quantum effects have been integrated
over. In the case of electronic matter, we are talking about typical
frequencies not higher than 1021Hz. So, our results for the logarithmic
electrodynamics give a good description up to this region of
frequencies.

According to QED, the vacuum is not as empty as classical phys-
ics seems to indicate. Pairs of electrons and positrons are continuously
created and annihilated one another over extremely short time scales,
by virtue of quantum-mechanical uncertainty. But, very intense lasers,
to which very high electric fields are associated, could, in principle,
tear apart electrons and positrons before they collide and annihilate
each other. At intensities on the order of 1024 Wcm�2, the field is
strong enough (1013Vm�1) to prevent the mutual attraction between
pairs. The laser field would then accelerate the particles which cause
them to emit electromagnetic waves in the region of gamma rays. The
latter, in turn, yields creation of new pairs of electrons and positrons,
such that a true cascade of particles and radiation could be detected.
This is a very special situation to investigate new physics and compare
different proposals of nonlinear electrodynamical models.

There is a number (around 15) of NLED models in the literature.
Among those, Born-Infeld electrodynamics is widely studied in many
scenarios and besides eliminating the singularity in the electric sector,
it exhibits a more involved structure of electric and magnetic fields
than the logarithmic model we have contemplated here, for it also
involves the Lorentz-invariant quantity E � B. So, as a further step, we
wish to consider Born-Infeld model in a plasma medium, and this
investigation would allow a new estimation of the Born-Infeld parame-
ter, based on Plasma Physics. In the case of Born-Infeld and those
models for which E � B is present, the D– and H–fields are modified
by the additions of a term in B and E, respectively. This brings about a
new feature that is not contemplated in our present contribution. We
shall be soon reporting on that elsewhere, providing new insights
about the existing connections31 between Born-Infeld theory and wave
propagation at arbitrary angles, now in the context of a warm magne-
tized plasma.
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