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“You check out guitar George, he knows all the chords

Mind, he’s strictly rhythm he doesn’t want to make it cry or sing

And an old guitar is all he can afford

When he gets up under the lights to play his thing”
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ABSTRACT

A search algorithm with an admissible heuristic function is the most common approach

to optimally solve classical planning tasks. Recently DAVIES et al. (2015) introduced the

solver OpSeq using Logic-Based Benders Decomposition. In this approach to planning,

the master problem is an integer program derived from the operator-counting framework

that generates operator counts, i.e., an assignment of integer counts for each task operator.

Then, the operator counts sequencing subproblem verifies if a plan satisfying these oper-

ator counts exists, or generates a violated constraint to strengthen the master problem. In

OpSeq, the subproblem is solved by a SAT solver.

In this thesis, we show that this subproblem can be better solved by state-space search.

We introduce OpSearch, an A∗-based algorithm to solve the operator counts sequencing

problem: it either finds an optimal plan, or uses the frontier of the search, i.e., the set

of generated but yet unexpanded states, to derive a violated constraint. We show that

using a standard search framework has three advantages: i) the search scales better than a

SAT-based approach for solving the operator counts sequencing, ii) explicit information

in the search frontier can be used to derive stronger constraints, and iii) stronger heuristics

generate more informed constraints.

We present results using the benchmark of the International Planning Competition, show-

ing that this approach solves more planning tasks, using less memory. On tasks solved

by both methods, OpSearch usually requires solving fewer operator counts sequencing

problems than OpSeq, evidencing the stronger constraints generated by OpSearch.

Keywords: Artificial Intelligence. Classical Planning. State-Space Heuristic Search.

Integer Programming. Operator-Counting Framework.



Sequenciamento de Contagens de Operadores com Busca em Espaço de Estados

RESUMO

Um algoritmo de busca com uma função heurística admissível é a abordagem mais co-

mum para resolver otimamente tarefas de planejamento. Recentemente DAVIES et al. (2015)

introduziram o resolvedor OpSeq usando uma Decomposição de Benders Baseada em Ló-

gica. Nesta abordagem para planejamento, o problema principal é um programa inteiro

derivado da estrutura de operator-counting que gera contagens de operadores, isto é, uma

atribuição de contagens inteiras para cada operador da tarefa. Em seguida, o problema

de sequenciamento de contagens de operadores verifica se um plano satisfazendo estas

contagens de operadores existe, ou gera uma restrição violada para fortificar o problema

principal. Em OpSeq, o subproblema é resolvido por um resolvedor SAT.

Nesta dissertação, mostramos que este subproblema pode ser melhor resolvido por busca

em espaço de estados. Introduzimos OpSearch, um algoritmo baseado em A∗ para resol-

ver o problema de sequenciamento de contagens de operadores: ele encontra um plano

ótimo, ou usa a fronteira da busca, isto é, o conjunto de estados gerados mas ainda não

expandidos, para derivar uma restrição violada. Mostramos que utilizar uma estrutura

de busca padrão tem três vantagens: i) a busca escala melhor que uma abordagem base-

ada em SAT para resolver o sequenciamento de contagens de operadores, ii) informação

explícita na fronteira de busca pode ser usada para derivar restrições mais fortes, e iii)

heurísticas mais fortes geram restrições mais informadas.

Apresentamos resultados utilizando o conjunto de instâncias da Competição Internacional

de Planejamento, mostrando que esta abordagem resolve mais tarefas de planejamento,

usando menos memória. Nas tarefas resolvidas por ambos os métodos, OpSearch geral-

mente requer resolver menos problemas de sequenciamento de contagens de operadores

que OpSeq, evidenciando as restrições mais fortes geradas por OpSearch.

Palavras-chave: Inteligência Artificial, Planejamento Clássico, Busca Heurística em Es-

paço de Estados, Programação Inteira, Estrutura de Operator-Counting.
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1 INTRODUCTION

In optimal classical planning, a solution for a planning task is a plan, a sequence

of operators, that achieve some goal state from an initial state. Finding solutions to plan-

ning tasks is a PSPACE-complete problem (BÄCKSTRÖM; NEBEL, 1995), and hence in-

tractable in general. However, heuristic search algorithms such as A∗ (HART; NILSSON;

RAPHAEL, 1968) with automatically derived heuristic functions (heuristics), e.g., pat-

tern databases hPDB (EDELKAMP, 2014), hLMCut (HELMERT; DOMSHLAK, 2009) and

merge and shrink hM&S (HELMERT et al., 2007), have achieved notable progress. A∗

with these strong heuristics can search large state-spaces efficiently, solving many hard

planning tasks in practice.

Many recently proposed heuristics are based on linear programming. The operator-

counting framework (POMMERENING et al., 2014) is of particular interest because it

combines information from many admissible heuristics in terms of constraints of a lin-

ear program, that must be satisfied by every plan for the planning task. Thus, the op-

timal value of the objective function is an admissible estimate of the cost of an opti-

mal plan, an admissible heuristic. Among the sources of admissible operator-counting

constraints are: disjunctive action landmarks hLMC (BONET; BRIEL, 2014), state equa-

tion hSEQ (BONET, 2013), post-hoc optimization hPhO (POMMERENING; RÖGER;

HELMERT, 2013), and the optimal delete relaxation h+ (IMAI; FUKUNAGA, 2014).

The operator-counting framework and methods from Operations Research have also in-

spired the development of alternative views for the planning problem.

DAVIES et al. (2015) introduced a novel approach for cost-optimal planning, rec-

ognizing that the primal solution of the operator-counting linear program contains useful

information that can be understood as a possibly incomplete and unordered plan. This ap-

proach interprets the operator-counting framework beyond its primary use as a heuristic

function and decomposes the process of finding solutions to a planning task into two inde-

pendent but related problems, using a Logic-Based Benders Decomposition (HOOKER;

OTTOSSON, 2003).

In this decomposition for planning problems, there is a master problem and a

combinatorial subproblem used to explain the infeasibility of a solution to the master. The

master problem is modeled as an integer program, corresponding to an operator-counting

heuristic. The subproblem is modeled as a propositional satisfiability problem (SAT)

encoding the planning task and the operator counts obtained from the primal solution of
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the master. A SAT solver is then used to sequence the operator counts, i.e., to check if a

plan with these counts exists. If there is no plan with the given operator counts, the SAT

solver returns a violated constraint for the master problem.

In this thesis, we propose an algorithm to solve the operator counts sequencing

subproblem using heuristic search instead of a SAT-based formulation. This new approach

is based on an A∗ search that employs information unavailable to SAT solvers, such as

the f -value of search nodes and the explicit structure of the search graph. We present a

novel strategy to construct a violated constraint during the expansion of the search graph

by considering the frontier of the search. We show that this strategy generates an admissi-

ble generalized landmark constraint. We experimentally show that the resulting algorithm

OpSearch has better coverage and less memory requirements than a SAT-based approach

and can generate smaller and more informative explanations of infeasibility, as shown by

the total number of solved subproblems required to solve the planning tasks. We believe

this approach is relevant because it opens new research directions towards specialized op-

erator counts sequencing methods based on well-known classical planning technologies.

The paper Sequencing Operator Counts with State-Space Search containing the

main results presented in this thesis was accepted for publication at the 30th International

Conference on Automated Planning and Scheduling (ICAPS 2020).
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2 BACKGROUND

2.1 Automated Planning

2.1.1 Overview

Automated planning aims to find a sequence of operators, called plan, whose appli-

cation achieves a goal state from an initial state. States describe currently valid conditions

and operators modify them at some cost. There exists only one initial state but possibly

many goal states. Planning is a general problem solving technique with many applica-

tions in industry; for example, robot navigation, activities scheduling, tasks automation,

puzzle solving, and many others. Here, we focus on classical optimal planning, in which

operators have discrete, deterministic and fully observable effects, the plan is computed

offline and has the global minimal cost (GHALLAB; NAU; TRAVERSO, 2004).

As an illustrative example, consider the planning task Πrobot presented in Figure

2.1 in which a robot must transport one ball from the left to the right room. The robot

starts in the left room and must return to it after transporting the ball. We can model this

task using two variables: ball_at for the ball position and robot_at for the robot position.

Variable ball_at can assume the value left, when the ball is in the left room, right when the

ball is in the right room, and robot when the ball is in the robot’s hand. Variable robot_at

can assume the value left when the robot is in the left room and right when the robot is

in the right room. In the initial state we have ball_at=left and robot_at=left and in goal

states we want ball_at=right and robot_at=left.

Figure 2.1: Example planning task Πrobot.
Initial state Goal state
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We define six operators to reach the goal by changing the values of ball_at and

robot_at: pick_left and pick_right cause the robot to pick the ball at the left or right

room, drop_left and drop_right cause the robot to drop the ball at left or right room, and

move_right and move_left cause the robot to move from the left room to the right and from

the right room to the left. To apply pick_left or pick_right, both the robot and the ball must

be in the left or right room, respectively. To apply drop_left or drop_right, the ball must

be in the robot’s hand and the robot must be in the left or right room, respectively. To

apply move_left or move_right, the robot must be in the right or left room, respectively.

We can define any non-negative costs for the operators. For example, if we want

to minimize the total number of applied operators or steps, we can define all costs equal

to one. If we want to minimize the movements made by the robot, possibly because they

consume fuel or energy, we can define non-zero costs for the move_left and move_right

operators and zero cost for the others. For instance, the optimal plan for task Πrobot consid-

ering that operators pick_left and pick_right cost 4, drop_left and drop_right cost 2, and

move_left and move_right cost 10 is 〈pick_left,move_right, drop_right,move_left〉

with total cost of 4 + 10 + 2 + 10 = 26. This plan is illustrated in Figure 2.2. Operator

pick_left causes the robot to pick the ball, move_right causes the robot to move to the

right room while holding the ball, drop_right causes the robot to drop the ball in the right

room and move_left causes the robot to move back to its initial position.

Figure 2.2: Plan to task Πrobot.
Initial state After pick_left After move_right After drop_right After move_left

Domain-independent planning aims to find a plan based only on a high-level spec-

ification of the task, having no other useful information about the specific domain or in-

stance that humans could easily perceive. This allows planners to be flexible and try to

solve any problem that could be described using this specification. A domain-independent

optimal planner is a software that takes a planning task description written in some for-

malism and outputs a plan with optimal cost. This description allows the planner to com-

pactly represent tasks internally since it contains only the initial state, the goal speci-

fication, the variables and the operators. Furthermore, it allows to implicitly represent

state-spaces in a declarative way. One such high-level formalism for planning is SAS+.



15

2.1.2 SAS+ Formalism

Definition 1 (SAS+ Task). An SAS+ planning task Π is a tuple 〈V , O, s0, s∗, c〉 where:

• V is the set of variables;

• O is the set of operators;

• s0 is the initial state;

• s∗ is the goal condition;

• c is the cost function for operators.

Each variable v ∈ V has a finite domain D(v) that describes the possible values v

can assume. An atom can be written as 〈v = x〉 where v ∈ V and x ∈ D(v), denoting the

assignment of one of the values in the variable’s domain to v. A complete state or state s

is a complete assignment for all variables v ∈ V to values x ∈ D(v) and a partial state s

is a partial assignment over some subset of V . We write vars(s) for the set of variables

defined in state s, s[v] for the value of variable v in state s, and S for the set of all states

of Π, also known as the state-space. State s0 is complete and s∗ is partial. We say that a

state s is consistent with a partial state s′ if s(v) = s′(v) for all v ∈ vars(s′). A goal is a

state consistent with s∗.

Each operator o ∈ O is a pair of partial states 〈pre(o), post(o)〉. Partial state

pre(o) represents preconditions: operator o is applicable in all states s that are consistent

with pre(o). Partial state post(o) represents effects of applying operator o to a state s,

which produces a new state s′ identical to s but with updated values for affected variables,

i.e., for all v /∈ vars(post(o)): s′[v] = s[v] and for all v ∈ vars(post(o)): s′[v] =

post(o)[v]. Function c : O → Z+
0 assigns to each operator o ∈ O a non-negative cost

c(o). We say that task Π is unit-cost if for all o ∈ O we have c(o) = 1.

An s-plan π is a sequence of operators 〈o1, . . . , on〉 such that there exists a se-

quence of states 〈s1 = s, . . . , sn+1〉 where oi is applicable to si and produces state si+1,

and sn+1 is consistent with s∗. The plan length of π is n, i.e., the total number of opera-

tors. The plan cost of π is defined as cost(π) =
∑

o∈π c(o). Finally, an s0-plan is simply

called a plan, and solving a classical planning task optimally means to find a plan π for Π

of minimal cost or prove that no plan exists.

To illustrate the SAS+ formalism, we show the formulation of the example plan-

ning task Πrobot discussed earlier. The task Πrobot encoded using the SAS+ formalism is

a tuple Πrobot = 〈V , O, s0, s∗, c〉 in which:
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The set of variables is V = {ball_at, robot_at} with:

D(ball_at) = {left, right, robot};

D(robot_at) = {left, right}.

The set of operators is O = {pick_left, pick_right, drop_left, drop_right,

move_left,move_right} in which:

pick_left = 〈robot_at = left ∧ ball_at = left; ball_at := robot〉;

pick_right = 〈robot_at = right ∧ ball_at = right; ball_at := robot〉;

drop_left = 〈robot_at = left ∧ ball_at = robot; ball_at := left〉;

drop_right = 〈robot_at = right ∧ ball_at = robot; ball_at := right〉;

move_left = 〈robot_at = right; robot_at := left〉;

move_right = 〈robot_at = left; robot_at := right〉.

The initial state is s0 = 〈ball_at = left∧robot_at = left〉 and the goal condition

is s∗ = 〈ball_at = right ∧ robot_at = left〉.

Finally, the cost function c for operators is:

c(o) =


4, if o ∈ {pick_left, pick_right},

2, if o ∈ {drop_left, drop_right},

10, if o ∈ {move_left,move_right}.

The Domain Transition Graph (DTG) for a planning task and some of its variables

v is a common representation that describes the transitions of values of v by the applica-

tion of task operators. A DTG for a variable v ∈ V is a directed graph with nodes for

each value x ∈ D(v) and a labeled arc for each transition over v, in which each label

corresponds to an operator in the planning task. The arcs can contain more than one label,

since several operators can change the value of a variable in the same way. Figure 2.3

shows the DTGs for the variables of the example planning task Πrobot. For each variable,

the initial states are marked by an incoming arrow and goal states are double circled. Arcs

between nodes correspond to transitions induced by applicable operators.
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Figure 2.3: DTGs for the task Πrobot.

leftrobot_at : right

move_right

move_left

leftball_at : robot right

pick_left

drop_left

drop_right

pick_right

Planning tasks are usually solved using heuristic search algorithms to efficiently

explore the state-space. These algorithms rely on heuristic functions to map each state to

an estimate of the remaining cost to a goal. In the next section, we discuss the A∗ algo-

rithm, that is widely applied in the planning field and expands the state-space preferring

to extend the most promising plan prefixes found until the moment.

2.1.3 A∗ Algorithm

A∗ (HART; NILSSON; RAPHAEL, 1968) is the most prominent heuristic search

algorithm in classical optimal planning and in the area of artificial intelligence in general.

In the context of planning, A∗ aims to find a plan with minimal cost from the initial state

s0 to some goal state consistent with s∗, using three functions f , g and h to map states to

numeric values. Function g(s) is the cost of the best-known plan from the initial state s0 to

state s at the current step of A∗. Function h(s) is the heuristic function that estimates the

cost of an optimal plan from s to some goal state. Finally, function f(s) = g(s) + h(s)

estimates the cost of an optimal plan from s0 to a goal state, going through state s. A∗

is itself admissible, i.e., always returns a cost-optimal plan, when using an admissible

heuristic function. In the next section we define relevant properties of heuristic functions.

A∗ maintains two lists of states during the search process: the open and closed

lists. The open list stores the states yet to be expanded by A∗ and is usually implemented

as a priority queue with elements ordered in ascending order by f -values. The closed

list stores states already expanded and is implemented as a set. Both lists are populated

during the state expansion step. In state expansion, the A∗ algorithm expands a state s by

generating its successor states, i.e., it applies all the available operators to s. When state s
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is expanded, it is removed from the open list and inserted in the closed list and each of its

successors is inserted in the open list if it was not generated before, i.e., it is not in open

or closed, or it has a better g-value than any equivalent state previously generated.

Initially, the open list contains only the initial state. A∗ iteratively chooses the state

with the smallest f -value from the open list to expand. A∗ stops when it chooses a state

s consistent with s∗. The plan is constructed by backtracking from state s to the initial

state s0 using the search graph constructed during the process. The time complexity of

the A∗ algorithm is usually measured by the number of state expansions performed before

reaching a goal state. Below we present the A∗ algorithm:

Algorithm 1: The A∗ algorithm.
open := priority queue ordered by ascending f -value
closed := ∅
push s0 to open
while open 6= ∅ do

pop a state s from open
if s is consistent with s∗ then

return plan from s0 to s
for each operator o applicable in s do

apply o in s generating a state s′

if s′ /∈ closed ∪ open then
push s′ to open

else
if ∃ s′′ ∈ open s.t. s′′ = s′ and g(s′) < g(s′′) then

replace s′′ with s′ in open
if ∃ s′′ ∈ closed s.t. s′′ = s′ and g(s′) < g(s′′) then

remove s′′ from closed and push s′ to open
push s to closed

return Failure

An important component of the A∗ algorithm is the heuristic function h, that al-

lows the algorithm to prune unpromising states during search and is the main responsible

for its efficiency. In the next section we discuss heuristic functions in more detail.

2.1.4 Heuristic Functions

A heuristic function h : S → Z+
0 ∪ {∞} maps a state s to an h-value, an estimate

of the cost of an s-plan. The perfect heuristic h∗ maps a state s to the cost of an opti-

mal s-plan or to∞ if no plan exists. Below we summarize some properties of heuristic

functions:
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• h is safe if h(s) =∞ implies h∗(s) =∞ for all states s ∈ S;

• h is goal-aware if h(s) = 0 for all states s ∈ S consistent with s∗;

• h is admissible if for all s ∈ S we have h(s) ≤ h∗(s);

• h is consistent if for all transitions s o−→ s′, h(s) ≤ h(s′) + c(o) is valid;

• If h is admissible, then it is also goal-aware and safe;

• If h is consistent and goal-aware, then it is also admissible.

A heuristic function is safe if it correctly detects dead ends. A dead end is a

state s for which there does not exist an s-plan. However, this does not imply that a safe

heuristic h detects all dead ends of the planning task, i.e., there could exist a state s in

which h(s) 6=∞ but h∗(s) =∞. A heuristic is goal-aware if it correctly detects all goal

states. If s is a goal state, it is easy to see that the cost of an s-plan should be 0. A heuristic

is called admissible if it is a lower bound on the optimal plan cost for all states. Finally,

a heuristic h is consistent if the application of an operator o in state s, generating state

s′, always decreases the heuristic estimate from h(s) to h(s′) by at most its cost c(o). A∗

with a consistent heuristic is guaranteed to expand a state at most once (HOLTE, 2010).

We can compare admissible heuristics using the concept of dominance: an admis-

sible heuristic function h2 is said to dominate other admissible heuristic h1 if for all states

s ∈ S the inequality h2(s) ≥ h1(s) is valid and there exists at least one state s for which

h2(s) > h1(s). It seems intuitive to think that A∗ is guaranteed to expand fewer states

using h2 than h1. Although there exist experimental results showing correlations between

the use of more informed heuristics and the expansion of fewer states during search by

A∗, HOLTE (2010) shows that this is not always true, even for consistent heuristics.

It is possible to automatically derive heuristic functions by relaxing some aspects

of the planning task through a process denominated task relaxation. The resulting heuris-

tics are usually grouped in heuristic function classes, depending on the relaxation pro-

cedure applied. Currently, well-known heuristic function classes are critical path, delete

relaxation, abstraction and landmark (HELMERT; DOMSHLAK, 2009).

Critical-path heuristics estimate plan costs using sets of atoms of cardinality m,

representing sub-goals that must be achieved during the plan execution. The main exam-

ple is the hm heuristic family (GEFFNER; HASLUM, 2000). Delete relaxation heuris-

tics assume that variables can preserve their past values through the application of op-

erators. The delete effects of operators are ignored and they can only add new valid

atoms. Some examples are the h+, hmax, hadd, and hFF heuristics (HOFFMANN; NEBEL,
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2001; BONET; GEFFNER, 2001). Abstraction heuristics use optimal costs of simpler

tasks as heuristic estimates. The task is mapped to several abstract tasks that can be op-

timally solved more efficiently than the original. Examples of such heuristics are the

pattern database heuristics hPDB and the merge-and-shrink hM&S (EDELKAMP, 2014;

HELMERT et al., 2007). Landmark heuristics use atoms or operators that must occur in

every s-plan to estimate plan costs. Although deciding if an atom or operator is in fact a

task landmark is a PSPACE-hard problem, there are methods able to efficiently compute

a subset of all landmarks at each search state. Examples are the hLMC, hL, hLA and hLMCut

heuristics (KARPAS; DOMSHLAK, 2009; HELMERT; DOMSHLAK, 2009).

First uses of linear programming in cost-optimal planning relate to cost-partitioning,

a method to admissibly combine several abstraction heuristics by partitioning operator

costs among them. KATZ; DOMSHLAK (2008) is the seminal work that proposes a

linear programming formulation to the non-negative cost-partitioning method in plan-

ning, that restricts the partitioned operator costs to be non-negative. POMMERENING et

al. (2015) demonstrate that enforcing this constraint is not necessary and proposes a gen-

eral cost partitioning scheme that allows negative costs and also introduces the family of

potential heuristics. Other examples of cost-partitioning methods are the saturated cost

partitioning (SEIPP; HELMERT, 2014) and uniform cost-partitioning (SEIPP; KELLER;

HELMERT, 2017).

POMMERENING et al. present several admissible heuristics that can be expressed

using linear programming such as disjunctive action landmarks, state equation and post-

hoc optimization. Others heuristics are the IP formulation for the optimal delete relaxation

heuristic h+ introduced by IMAI; FUKUNAGA (2014) and the dynamic merging method

from (BONET; BRIEL, 2014) based on flow constraints. Due to the hardness of IP prob-

lems, generally the objective function value of the linear relaxation is used to guide a

heuristic search algorithm. POMMERENING et al. (2014) also show that it can be ad-

vantageous to optimize a linear program at each search state and that some combinations

of constraints originated from different heuristics can be more informative than each of

its components alone.
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2.2 Integer Programming

2.2.1 Overview

Integer programming is a technique originated from the Operations Research field

that aims to encode a combinatorial optimization problem as an Integer Program (IP). In

this class of problems, we usually have a finite set of elements N , a numeric weight for

each element, and a set F of feasible subsets of N . The objective is to find a feasible sub-

set of elements with minimum total weight. Examples of problems that can be formulated

as integer programs are train scheduling, in which train travels are scheduled based on the

time spent at each station and total travel time; airline crew scheduling, in which crews

are assigned to serve flights weekly, satisfying constraints regarding to the total flying

time, minimum rest, and others; and telecommunications, in which there is a demand to

install new capacities to satisfy predicted demands for data transmission in certain areas

while minimizing costs (WOLSEY, 1998).

A Linear Program (LP) is a mathematical formulation of some problem written

in terms of a set of variables, a set of linear constraints modeled as linear inequalities

and a linear objective function. Solving an LP means to find values for the variables that

optimizes the objective function, subject to the constraints. Some subset of these variables

are called the decision variables and usually encode decisions that must be taken, for

instance, which train travels from station A to B or in which location L to install a facility

F , or even quantities such as the cost budget available to compose a flight crew.

Definition 2 (Linear Program). A Linear Program (LP) consists of:

• a finite set of real-valued variables V;

• a finite set of linear constraints over V;

• an objective function Z, which is a linear combination of V;

• an optimization objective, which should be to minimize or maximize Z.

In IPs, the variables can assume only integer values and this requirement is usually

called the integrality constraints. In a binary integer program (BIP), all variables can

only assume two values: 0 or 1. In a mixed integer program (MIP), some variables can

assume any real value while others can assume only integer values. The objective function

maximizes or minimizes some linear combination of the variables.

Sometimes it is preferable to describe LPs using vector and matrix notations from
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Linear Algebra. We only present the representation for minimization problems, since it is

analogous for maximization.

Definition 3 (Matrix Notation for Linear Programs). A Linear Program can be written

using matrix notation with a column vector b = 〈b1, . . . , bm〉T , a column vector c =

〈c1, . . . , cn〉T , and an n × m matrix A. The problem is to find a column vector y =

〈y1, . . . , ym〉T to minimize bTy subject to Ay ≥ c and y ≥ 0.

Note that a minimization problem can be converted to a maximization problem and

vice versa by multiplying the objective function by−1 sinceminimize(Z) = maximize(−Z)

and converting constraints in the form Ay ≥ c to −Ay ≤ −c.

A vector y is feasible if it satisfies the constraints. An LP is feasible if there exists

a feasible vector, otherwise it is infeasible. A minimization problem is unbounded if

the objective function can assume arbitrarily large negative values with feasible vectors,

otherwise it it bounded. The optimal objective value of a bounded feasible minimization

problem is the minimum value of the objective function with a feasible vector.

Next we illustrate the integer programming formulation of a particular instance of

the general set covering problem (WOLSEY, 1998): given a certain number of cities, we

must decide which set of emergency centers to install. The cost to install a center and the

cities that it could serve are previously known. The objective is to choose a set of centers

with minimum total installation cost, guaranteeing that all cities are covered.

Let M = {1, . . . ,m} be the set of cities and N = {1, . . . , n} be the set of centers.

Let Sj be the cities that could be served by the center j and cj its installation cost. This

problem can be formulated as a BIP with variables xj , denoting if center j is installed or

not.

The objective function can be expressed as
∑n

j=1 cjxj . The constraints in the form∑
j∈[n] | i∈Sj

xj ≥ 1 express the condition that each city i must be served by at least one

emergency center. Finally, the constraints xj ∈ {0, 1} restrict the variables xj to the

binary domain {0, 1}. The complete BIP for this problem can be written as:

minimize
n∑
j=1

cjxj

subject to
∑

j∈[n] | i∈Sj

xj ≥ 1 for 1 ≤ i ≤ m,

xj ∈ {0, 1} for 1 ≤ j ≤ n.
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Finding an optimal solution to an IP is an NP-hard problem (GAREY; JOHNSON,

1990). However, its linear program relaxation, that ignores the integrality constraints and

allows all variables to assume any real value, can be solved in polynomial time (KAR-

MARKAR, 1984).

Definition 4 (Linear Relaxation). The linear program relaxation or simply LP-relaxation

of an integer program is the problem that arises by removing the requirement that vari-

ables are integer-valued. i.e., the variables can also assume real values.

2.2.2 The Branch and Cut Algorithm

There are several techniques to optimally solve integer programs. Of particular

interest to this thesis is the Branch and Cut (BC) algorithm (MITCHELL, 2002), that is an

exact method for solving integer programming problems and arises from the combination

of cutting plane methods and Branch and Bound algorithms.

Cutting plane methods iteratively refine a linear relaxation of an integer program-

ming problem aiming to approximate the original problem solution. Initially the linear

relaxation is solved and it is incrementally improved by adding discovered violated con-

straints called cuts (WOLSEY, 1998). Such methods were neglected for many years after

conception due to slow convergence, but they have been used successfully to strengthen

other general approaches, such as the Branch and Bound (MITCHELL, 2002).

The Branch and Bound algorithm solves an integer program in a divide-and-

conquer manner, performing an implicit enumeration of the search space. An LP-based

Branch and Bound algorithm solves several linear relaxations during the solving process

to help in two important open decisions of the general algorithm: how to branch and

how to bound. A simple way to decide how to branch is by choosing the integer vari-

able with the most fractional value in the linear relaxation solution. There exist others

more involved and effective branching strategies in the literature, such as the pseudocost

and strong branching (ACHTERBERG; KOCH; MARTIN, 2005). The selected variable

is used to create nodes and add subproblems to the Branch and Bound tree. Depending

on the decision of how to bound, the algorithm is able to prune a significantly number

of nodes from the tree. It can be tackled by solving linear relaxations of the nodes and

comparing it to a global lower bound value. For minimization, if the solution to the linear

relaxation is greater than the global lower bound, the node can be pruned since a better
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solution cannot be reached through it (MITCHELL, 2002; WOLSEY, 1998).

The BC algorithm is derived from the general Branch and Bound approach with

the addition of cutting planes generated throughout the expansion of the Branch and

Bound tree. This combination allows BC to efficiently solve many difficult IPs in prac-

tice (MÉNDEZ-DÍAZ; ZABALA, 2006; VASILYEV; KLIMENTOVA, 2010). Below we

present the general BC algorithm for the minimization case:

Algorithm 2: The Branch and Cut Algorithm for minimization.
IP0 is the original integer programming problem
L := {IP0} is the set of active nodes
z̄ := +∞ is an upper bound on the optimal solution
while L 6= ∅ do

choose and remove a problem lIP from L
let lLP be the linear relaxation of lIP

search and add cutting planes to lLP

if lLP is feasible then
z := the optimal objective value of lLP

x := the primal solution of lLP

if z < z̄ then
if x is integral feasible then

z̄ := z
else

choose a variable xi from x that is fractional
choose an integer value a, for instance a = bxic
add a new problem lIP1 with xi ≤ a to L
add a new problem lIP2 with xi ≥ a+ 1 to L

return z̄ and the associated primal solution x
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2.2.3 Logic-Based Benders Decomposition

Classical Benders Decomposition (CBD) (BENDERS, 2005) is a technique to

solve mixed integer linear programs by partitioning the original problem into two prob-

lems: i) a master programming problem which may be linear or not, and ii) a linear pro-

gramming subproblem. Each problem uses a mutually exclusive subset of the variables.

This decomposition aims to avoid the computation of the complete set of constraints for

the original problem by designing two multi-step procedures that, in a finite number of

steps, lead to a set of constraints for the optimal solution of the original problem. CBD

can be applied to solve problems described as below (RAHMANIANI et al., 2017):

minimize fTy + cTx

subject to Ay = b,

By +Dy = d,

x ≥ 0,

y ∈ Z+
0 .

Variables y ∈ Rn1 can assume only positive integer values and must satisfy the

constraint set Ay = b, where A ∈ Rm1×n1 and b ∈ Rm1 are a given matrix and vector,

respectively. The variables x ∈ Rn2 and y must satisfy the constraint set By + Dx = d,

where B ∈ Rm2×n1 , D ∈ Rm2×n2 and d ∈ Rm2 . The objective function minimizes

fTy + cTx, where f ∈ Rn1 and c ∈ Rn2 . This model can be concisely rewritten as

follows:

minȳ∈Y {fT ȳ + minx≥0{cT : Dx = d−Bȳ}}.

Variables ȳ denotes some given values for the variables y and originate from the

set Y = {y|Ay = b, y ∈ Z+
0 }. The inner minimization problem can be rewritten in terms

of a maximization problem, using a set of dual variables κ associated with the constraint

set Dx = d−Bȳ. The previous formulation can then be rewritten as:

minȳ∈Y {fT ȳ + maxκ∈Rm2{κT (d−Bȳ) : κTD ≤ c}}.

The feasible space F of the inner maximization problem is independent of the

choice of ȳ. This inner maximization problem is called the subproblem. This problem can
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be either unbounded or feasible for any arbitrary choice of ȳ. If it is unbounded, given a

set of extreme rays Q from F , we can add the following cuts indicating the infeasibility

of the ȳ solution:

rTq (d−Bȳ) ≤ 0 ∀q ∈ Q.

If the solution is feasible, it is one of the extreme points κe, e ∈ E, where E is the

set of extreme points of F . Considering Q and E, we can rewrite the model as follows:

minimizey,η fTy + η

subject to Ay = b,

η ≥ κTe (d−By) ∀e ∈ E,

0 ≥ rTq (d−By) ∀q ∈ Q,

y ∈ Z+
0 .

This problem is denominated the Benders Master Problem (MP). The complete

enumeration of the cuts from the sets Q and E is generally impractical. Therefore, the

strategy adopted consists of iteratively generate relaxations of these cuts. The CBD ap-

proach repeatedly solves the MP that includes only a subset of the cuts from Q and E to

obtain some value for ȳ. Then it solves the inner maximization problem, the subproblem,

fixing the values of ȳ. If the subproblem is feasible and bounded, a cut from E is gener-

ated. If it is unbounded, a cut from Q is generated. In both cases, if the current solution

violates the cuts, they are added to the current MP and the process repeats (RAHMANI-

ANI et al., 2017).

As discussed by (HOOKER; OTTOSSON, 2003), the main idea of the CBD strat-

egy is to assign some feasible values to variables and then try to find the best solution con-

sistent with this assignment. During this process, the algorithm learns something about

the quality of the solutions and uses this knowledge to reduce the number of feasible

solutions generated before finding an optimal solution. In the literature, this strategy is

referred to as learning from one’s mistakes.

CBD works by deriving Benders cuts to remove uninteresting solutions. These

cuts are formulated by solving the dual problem of the subproblem fixed with the assign-

ment. Therefore, the subproblem must have an associated dual problem, such as in linear

or non-linear programming problems (HOOKER; OTTOSSON, 2003).
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The variables are partitioned in two mutually exclusive sets X and Y . Then, CBD

fixes values for Y and defines a subproblem containing only variables inX . If the solution

for the subproblem indicates that the values fixed for Y are infeasible, the solution of the

dual problem associated to the subproblem is used to identify a number of other values

of Y that are also infeasible. The next values used to fix Y must not have been excluded

in previous iterations. Eventually the algorithm terminates after enumerating a few of the

possible values of Y (HOOKER; OTTOSSON, 2003).

The solutions tested during the CBD solving process can be viewed as tuples

(Y, z), in which Y are the fixed values and z is the objective function value. The Benders

cuts that can be generated have the form z ≥ β(Y ), where β(Y ) is a bound on the optimal

solution value that depends on Y (HOOKER; OTTOSSON, 2003).

Logic-Based Benders Decomposition (LBBD) (HOOKER; OTTOSSON, 2003)

generalizes the CBD approach by extending the concept of duality with the inference

dual, whose solution is a proof of optimality written using some logical formalism. This

generalization extends the class of problems in which CBD can be used. While LBBD

can be applied to any class of optimization problems, a method that generates Benders

cuts must be developed for each class.

Since the subproblem may be distinct from traditional linear or non-linear pro-

gramming problems, LBBD allows to take advantage of the subproblem internal structure

and specialized algorithms, that may not be possible in the CBD. An example is the appli-

cation of LBBD as a framework for combining optimization and constraint programming

proposed by HOOKER (2011).

A similar idea of CBD’s learns from mistakes has been developed in the constraint

programming field, in which it is referred to as nogoods. In constraint programming,

when a partial solution to a problem cannot be completed to obtain a feasible solution, the

solving algorithm can try to explain the motivating reason. The resulting explanation can

be used to construct a constraint called nogood to invalidate a number of partial solutions,

i.e., these solutions will not be generated later during the solving process. It is desirable to

generate as strong as possible nogood constraints to invalidate as many as possible partial

solutions (HOOKER; OTTOSSON, 2003).

The key aspect of the LBBD approach is the generalization of the dual problem

used to construct the Benders cuts. As discussed by HOOKER; OTTOSSON (2003): the

dual must be definable for any type of subproblem, not just linear ones, and must provide

an appropriate bound on the optimal value. HOOKER; OTTOSSON (2003) formulate
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the dual observing that β can be directly inferred from the constraints of the subproblem,

which is called the inference dual, that is the problem of inferring a strongest possible

bound β from the constraint set. A solution to the inference dual problem provides a

logic-based Benders cut, that is written using some logical formalism. HOOKER; OT-

TOSSON (2003) discuss the use of the Propositional Satisfiability Problem (SAT) to gen-

erate the logic-based Benders cuts, which is strongly related to the work of DAVIES et

al. (2015) and this thesis.
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2.3 The Operator-Counting Framework

2.3.1 Overview

Operator-counting (POMMERENING et al., 2014) unifies information from sev-

eral different heuristics into a single integer program. The program contains an operator-

counting variable Yo for each operator o ∈ O, that counts the number of occurrences

of operator o in some plan. Its objective function is to minimize the total cost of the

selected operators while satisfying all operator-counting constraints. Operator-counting

constraints and heuristics are defined below as in POMMERENING et al. (2014).

Definition 5 (Operator-counting constraints). Let Y be a set of non-negative real-

valued and integer variables, including an integer variable Yo for each operator o ∈ O

along with any number of additional variables. Variables Yo are called operator-counting

variables. If π is a plan for planning task Π, we denote the number of occurrences of op-

erator o ∈ O in π with Yπo . A linear inequality over Y is called an operator-counting

constraint for state s if for every s-plan there exists a feasible solution with Yo = Yπo for

all o ∈ O. A constraint set for s is a set of operator-counting constraints where the only

common variables between constraints are the operator-counting variables.

Definition 6 (Operator-counting IP/LP Heuristic). The operator-counting integer pro-

gram IPC for a set of operator-counting constraints C for state s is

minimize
∑
o∈O

c(o)Yo

subject to C,

Yo ∈ Z+
0 .

The IP heuristic hIP
C is the objective value of IPC , and the LP heuristic hLP

C is the objective

value of its linear relaxation. If the IP or LP is infeasible, the heuristic estimate is∞.

If π is a plan for Π then Yo = Yπo for all operators o ∈ O is a solution for IPC .

Thus, the cost of an optimal plan π∗ is an upper bound for the objective value of IPC and

therefore the IP heuristic is admissible. Since an integer solution for IPC is also a solution

for its linear relaxation, the LP heuristic is also admissible. Note also that adding more

constraints to the model can only improve the heuristic estimates, possibly subject to a

higher computational cost to optimize the model.
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2.3.2 Sources of Operator-Counting Constraints

2.3.2.1 Action Landmarks

Action landmarks constraints (POMMERENING et al., 2014) are based on dis-

junctive action landmarks for the planning task. These landmarks encode necessary con-

ditions for all plans by stating that at least one of a set of operators must occur. Comput-

ing all action landmarks given a planning task is a PSPACE-complete problem (HOFF-

MANN; PORTEOUS; SEBASTIA, 2004). However, some subset of action landmarks can

be efficiently computed using the LMCut algorithm (HELMERT; DOMSHLAK, 2009) or

with a delete-relaxed exploration (HOFFMANN; PORTEOUS; SEBASTIA, 2004).

In the literature, these constraints are frequently applied to strengthen other heuris-

tics, because they can enforce lower bounds on the number of times some operators are

applied. The operator-counting constraint corresponding to a disjunctive action landmark

is a set of operators for a state s such that every s-plan must contain at least one operator

from the disjunctive action landmark:

Definition 7. The operator-counting constraint corresponding to a disjunctive action

landmark L ⊆ O for a state s of a planning task Π is

∑
o∈L

Yo ≥ 1.

Figure 2.4 illustrates an example state-space with goal state s8 where o1 and

o8 are action landmarks and Yo1 ≥ 1 and Yo8 ≥ 1 are valid operator-counting con-

straints. Additionally, the operator-counting constraints Yo2 + Yo3 ≥ 1, Yo4 + Yo5 ≥ 1

and Yo6 + Yo7 ≥ 1 can also be derived from valid disjunctive action landmarks.

Figure 2.4: Example state-space for action landmarks constraints.
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2.3.2.2 Post-hoc Optimization

Post-hoc Optimization (POMMERENING; RÖGER; HELMERT, 2013) is a heuris-

tic that exploits the fact that sometimes the set of operators that effectively contribute to

a heuristic estimate is known. It is also a framework that can combine information from

several admissible heuristics. The most prominent family of heuristics used in post-hoc

optimization is the pattern database heuristics (PDB) (CULBERSON; SCHAEFFER,

1998; EDELKAMP, 2014).

PDB heuristics projects the original planning task to a subset of the original vari-

ables P ⊆ V called pattern. This projection changes the semantics of the states and

operators, resulting in a significantly easier abstract task that only accounts for variables

v ∈ P and ignore others. The entire abstract state-space for the projection is explicitly

generated and the exact plan costs for all abstract states are computed and stored in a

table. To compute the heuristic estimate during search, a state s is mapped to an abstract

state s′ and the table is consulted, returning the exact plan cost for s′.

All PDB heuristics are admissible, since plan costs for abstract states can never be

greater than the plan costs for original states. We can use the heuristic estimate of some

PDB heuristic hP for some pattern P , as a lower bound on the total combined cost of some

subset of operators relevant to P . Fortunately, it is easy to compute the set of relevant

operators R to pattern P in PDB heuristics: only operators that affect some variable

v ∈ P , i.e., change its value, effectively contribute to the heuristic estimate. Below we

define the operator-counting constraint associated to post-hoc optimization heuristics:

Definition 8. The operator-counting constraint corresponding to the post-hoc optimiza-

tion for some state s and a PDB heuristic hP for some pattern P with a set of relevant

operators R is ∑
o∈R

c(o)Yo ≥ hP (s).

To illustrate these operator-counting constraints, consider the state-space illus-

trated in Figure 2.5. This state-space corresponds to a simple planning task with variables

V = {x, y} and domains D(x) = D(y) = {0, 1, 2, 3}. Since each operator only induces

one state transition in this task, they are presented directly in the figure. For instance,

preconditions and effects of operator o1 are 〈x = 0, y = 0〉 and 〈x := 1, y := 1〉, respec-

tively. The initial state is s0 and s5 is the goal. The cost of operator oi is i. In the figure,

the notation 〈i, j〉 inside nodes denotes that variable x assumes the value i ∈ D(x) and y

assumes the value j ∈ D(y).
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Figure 2.5: Example state-space for post-hoc optimization constraints.
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Figure 2.6 presents the DTG for atomic projections over the variables of this task:

P1 = {x} and P2 = {y}. The heuristic estimate for the initial state s0 for pattern P1

is hP1(s0) = 7 since 〈o1, o6〉 is a cost-optimal plan for the projected task. Analogously,

hP2(s0) = 6 since 〈o2, o4〉 is a cost-optimal plan for the projected task using pattern P2.

Figure 2.6: DTG for atomic projections on variables x and y.
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The operator-counting constraints generated from these PDB heuristics and post-

hoc optimization are presented below. For hP1(s0), operator o4 is irrelevant because it

does not change the value of x. Similarly, o6 is not relevant for hP2(s0) since it does not

change variable y.

Yo1 + 2Yo2 + 3Yo3 + 5Yo5 + 6Yo6 ≥ 7, for hP1(s0),

Yo1 + 2Yo2 + 3Yo3 + 4Yo4 + 5Yo5 ≥ 6, for hP2(s0).
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2.3.2.3 State Equation and Network Flow

State equation constraints (BONET, 2013) are derived from the hSEQ heuristic

and obtained by mapping planning tasks to Petri nets and computing net changes for all

possible atoms of the task. The net change ∆s
〈v=x〉 of an atom 〈v = x〉 and some state

s expresses the change in the atom’s truth table from state s to some goal state s∗, i.e.,

∆s
〈v=x〉 is +1 if the atom 〈v = x〉 becomes true at s∗, −1 if it becomes false and 0 if it is

unchanged. The net change ∆s
〈v=x〉 can be precisely denoted as:

∆s
〈v=x〉 =


+1, if s[v] 6= x and s∗[v] = x,

−1, if s[v] = x and s∗[v] 6= x,

0, otherwise.

Based on the net changes ∆s
〈v=x〉, it is possible to construct a set of state equation

constraints, one for each atom 〈v = x〉 of the planning task. These constraints express

balance for variables values considering the goals and the current state s, and can even

describe dependencies between operators. It is possible to model situations in which

the application of an operator o1 adds atoms required by another operator o2, or when

atoms are produced and consumed by symmetric but necessary operators. We say that an

operator is a producer of 〈v = x〉 if makes it true. Conversely, an operator is a consumer

of 〈v = x〉 if makes it false. Next we define the operator-counting constraints derived

from state equation heuristics.

Definition 9. Let Prod(〈v = x〉) and Cons(〈v = x〉) be the sets of producers and

consumers of atom 〈v = x〉, respectively. Then, the operator-counting constraint corre-

sponding to the state equation heuristic for atom 〈v = x〉 and state s is

∑
o∈Prod(〈v=x〉)

Yo −
∑

o∈Cons(〈v=x〉)

Yo ≥ ∆s
〈v=x〉.

To illustrate the state equation constraints, consider a planning task with variables

V = {x, y} with D(x) = D(y) = {1, 2, 3}, unit-cost operators O = {o1 = 〈x = 1 ∧ y =

2;x := 1 ∧ y := 3〉, o2 = 〈x = 2 ∧ y = 2;x := 3 ∧ y := 3〉, o3 = 〈x = 3 ∧ y = 3;x :=

2 ∧ y := 3〉, o4 = 〈x = 1 ∧ y = 3;x := 2 ∧ y := 2〉, o5 = 〈x = 2 ∧ y = 2;x := 3 ∧ y :=

1〉, o6 = 〈x = 1 ∧ y = 2;x := 3 ∧ y := 2〉}, initial state s0 = 〈x = 1 ∧ y = 2〉 and goal

s∗ = 〈x = 3 ∧ y = 1〉. The net changes ∆s
〈v=x〉 considering s = s0 are:
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∆s
v=x =


+1, if 〈v = x〉 ∈ {〈x = 3〉, 〈y = 1〉},

−1, if 〈v = x〉 ∈ {〈x = 1〉, 〈y = 2〉},

0, if 〈v = x〉 ∈ {〈x = 2〉, 〈y = 3〉}.

The producers and consumers sets for this illustrative planning task are:

Prod(〈x = 1〉) = {o1}; Cons(〈x = 1〉) = {o1, o4, o6};

Prod(〈x = 2〉) = {o3, o4}; Cons(〈x = 2〉) = {o2, o5};

Prod(〈x = 3〉) = {o2, o5, o6}; Cons(〈x = 3〉) = {o3};

Prod(〈y = 1〉) = {o5}; Cons(〈y = 1〉) = ∅;

Prod(〈y = 2〉) = {o4, o6}; Cons(〈y = 2〉) = {o1, o2, o5, o6};

Prod(〈y = 3〉) = {o1, o2, o3}; Cons(〈y = 3〉) = {o3, o4}.

Finally, the operator-counting constraints derived from the state equation for state

s0 are presented below. Note that an operator that is simultaneously a producer and a

consumer of an atom cancels out, for instance, operator o1 in the constraint for atom

〈x = 1〉.

Yo1 − Yo1 − Yo4 − Yo6 ≥− 1, for 〈x = 1〉,

Yo3 + Yo4 − Yo2 − Yo5 ≥ 0, for 〈x = 2〉,

Yo2 + Yo5 + Yo6 − Yo3 ≥+ 1, for 〈x = 3〉,

Yo5 ≥+ 1, for 〈y = 1〉,

Yo4 + Yo6 − Yo1 − Yo2 − Yo5 − Yo6 ≥− 1, for 〈y = 2〉,

Yo1 + Yo2 + Yo3 − Yo3 − Yo4 ≥ 0, for 〈y = 3〉.

As POMMERENING (2017) discusses, network flow and state equation are very

similar and the former can be seen as a generalization of the latter. The main difference

is that network flow constraints are constructed considering abstract states and transitions

and state equation constraints consider atoms and operators. Also, network flow con-

straints use one variable for each abstract transition and state equation constraints use one

variable for each operator. Due to this similarity, we only discuss and detail the constraints

for state equation.
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2.3.2.4 Optimal Delete-Relaxation

Heuristics based on delete relaxation (MCDERMOTT, 1999; BONET; GEFFNER,

2001; HOFFMANN; NEBEL, 2001) change the semantics of planning tasks by allowing

variables to maintain past values, discarding the delete effects from operators. Conse-

quently, they produce relaxed tasks that are significantly easier than the original, since

each operator is applied at most once in a feasible plan. In spite of that, finding cost

optimal plans for delete-relaxed tasks is still an NP-hard problem (BYLANDER, 1997).

IMAI; FUKUNAGA (2014) introduce an IP formulation compatible with the operator-

counting framework to compute h+, the optimal delete relaxation heuristic. This formu-

lation accounts for operators and atoms that are part of the optimal relaxed plan, as well

as the order in which operators are executed and atoms are first reached. Below, we intro-

duce the IP model variables, where F denotes the set of all atoms, π+ is a delete-relaxed

optimal plan, and add(o) is the set of atoms added by the application of operator o:

∀f ∈ s0, If ∈ {0, 1} : If = 1 if f ∈ s0;

∀f ∈ F,Rf ∈ {0, 1} : Rf = 1 if f is reached by π+;

∀o ∈ O,Uo ∈ {0, 1} : Uo = 1 if o is part of π+;

∀o ∈ O, ∀f ∈ add(o), Ao,f ∈ {0, 1} : Ao,f = 1 if f is reached by π+ and o adds f first;

∀f ∈ F, Tf ∈ {0, . . . , |O|} : Tf = t when f is reached by π+ and π+
t−1 adds f first;

∀o ∈ O, To ∈ {0, . . . , |O| − 1} : To = t when is the t-th applied operator in π+.

To = |O| − 1 when o is not applied in π+.

Finally, IMAI; FUKUNAGA (2014) introduce a set of counting and net change

constraints. The authors experimentally show that these constraints improve the heuristic

estimate of h+, originating a new heuristic function. However, we do not use these con-

straints since the operator-counting heuristic usually dominates h+. Next, we introduce

the base model constraints without the enhancements presented in the paper. We add the

linking constraints defined by Equation (7) to link the delete relaxation variables Uo to the

operator-counting variables Yo.
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Definition 10. The operator-counting constraints corresponding to the delete relaxation

h+ heuristic are

∀f ∈ s∗, Rf = 1, (1)

∀f ∈ F, If +
∑

o∈O | f∈ add(o)

Ao,f ≥ Rf , (2)

∀o ∈ O, ∀f ∈ add(o), Uo ≥ Ao,f , (3)

∀o ∈ O, ∀f ∈ pre(o), Rf ≥ Uo, (4)

∀o ∈ O, ∀f ∈ pre(o), Tf ≤ To, (5)

∀o ∈ O, ∀f ∈ add(o), To + 1 ≤ Tf + (|O|+ 1)(1− Ao,f ), (6)

Yo ≥ Uo. (7)

To illustrate the operator-counting constraints derived from the optimal delete re-

laxation heuristic h+, consider a planning task Πh+ with variables V = {x, y} with

D(x) = {1, 2} and D(y) = {0, 1, 2}, unit-cost operators O = {o1 = 〈x = 1 ∧ y =

1; y := 0〉, o2 = 〈x = 2 ∧ y = 2; y := 0〉, o3 = 〈x = 1 ∧ y = 0; y := 1〉, o4 =

〈x = 2 ∧ y = 0; y := 2〉, o5 = 〈x = 1;x := 2〉, o6 = 〈x = 2;x := 1〉}, initial state

s0 = 〈x = 1 ∧ y = 1〉 and goal s∗ = 〈x = 1 ∧ y = 2〉. The optimal plan for Πh+ is

〈o1, o5, o4, o6〉 with cost 4.

We use the task Π+
h+ resultant from the delete-relaxation of the original task Πh+

to construct the respective operator-counting constraints. This relaxation causes changes

to the variables’ domains D(x) and D(y) to support sets of values. Effectively, D(x) =

{{1}, {2}, {1, 2}} and D(y) = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. The se-

mantics of operators are changed so they only add values to the variables when ap-

plied and are applicable if the variables contains the value specified in preconditions:

O = {o1 = 〈1 ∈ x ∧ 1 ∈ y; y := y ∪ {0}〉, o2 = 〈2 ∈ x ∧ 2 ∈ y; y := y ∪ {0}〉, o3 =

〈1 ∈ x ∧ 0 ∈ y; y := y ∪ {1}〉, o4 = 〈2 ∈ x ∧ 0 ∈ y; y := y ∪ {2}〉, o5 = 〈1 ∈ x;x :=

x ∪ {2}〉, o6 = 〈2 ∈ x;x := x ∪ {1}〉}. The initial state is s0 = 〈x := {1} ∧ y := {1}〉

and goal s∗ = 〈1 ∈ x ∧ 2 ∈ y〉. The optimal plan for Π+
h+ is 〈o1, o5, o4〉 with cost 3.

Next, we present the operator-counting constraints generated for state s0 consid-

ering Definition 10. For Equation (1) we have:

R〈x=1〉 = 1; R〈y=2〉 = 1.
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For Equation (2):

1 + Ao6,〈x=1〉 ≥ R〈x=1〉; 1 + Ao3,〈y=1〉 ≥ R〈y=1〉;

0 + Ao5,〈x=2〉 ≥ R〈x=2〉; 0 + Ao4,〈y=2〉 ≥ R〈y=2〉;

0 + Ao1,〈y=0〉 + Ao2,〈y=0〉 ≥ R〈y=0〉.

For Equation (3):

Uo1 ≥ Ao1,〈y=0〉; Uo2 ≥ Ao2,〈y=0〉; Uo3 ≥ Ao3,〈y=1〉;

Uo4 ≥ Ao4,〈y=2〉; Uo5 ≥ Ao5,〈x=2〉; Uo6 ≥ Ao6,〈x=1〉.

For Equation (4):

R〈x=1〉 ≥ Uo1 ; R〈y=0〉 ≥ Uo3 ;

R〈y=1〉 ≥ Uo1 ; R〈x=2〉 ≥ Uo4 ;

R〈x=2〉 ≥ Uo2 ; R〈y=0〉 ≥ Uo4 ;

R〈y=2〉 ≥ Uo2 ; R〈x=1〉 ≥ Uo5 ;

R〈x=1〉 ≥ Uo3 ; R〈x=2〉 ≥ Uo6 .

For Equation (5):

T〈x=1〉 ≤ To1 ; T〈y=0〉 ≤ To3 ;

T〈y=1〉 ≤ To1 ; T〈x=2〉 ≤ To4 ;

T〈x=2〉 ≤ To2 ; T〈y=0〉 ≤ To4 ;

T〈y=2〉 ≤ To2 ; T〈x=1〉 ≤ To5 ;

T〈x=1〉 ≤ To3 ; T〈x=2〉 ≤ To6 .
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For Equation (6):

To1 + 1 ≤ T〈y=0〉 + 7(1− Ao1,〈y=0〉); To4 + 1 ≤ T〈y=2〉 + 7(1− Ao4,〈y=2〉);

To2 + 1 ≤ T〈y=0〉 + 7(1− Ao1,〈y=0〉); To5 + 1 ≤ T〈x=2〉 + 7(1− Ao5,〈x=2〉);

To3 + 1 ≤ T〈y=1〉 + 7(1− Ao3,〈y=1〉); To6 + 1 ≤ T〈x=1〉 + 7(1− Ao6,〈x=1〉).

Finally, for the linking constraints from Equation (7) we have:

Yo1 ≥ Uo1 ; Yo4 ≥ Uo4 ;

Yo2 ≥ Uo2 ; Yo5 ≥ Uo5 ;

Yo3 ≥ Uo3 ; Yo6 ≥ Uo6 .

2.3.3 Operator Counts

An operator counts C : O → Z+
0 is a function that assigns to each operator o ∈ O

the integer count Yo obtained from the primal solution of the operator-counting IPC for

state s. These counts can be seen as an estimate on how often each operator is used in a

feasible solution for IPC . We interpret operator counts as multisets of operators and say

that C1 ⊆ C2 if C1(o) ≤ C2(o) for all o ∈ O.

For instance, suppose that we have a planning task with four operators o1, o2, o3

and o4. Then we solve the operator-counting heuristic corresponding to this planning task

with some set of operator-counting constraints, obtaining the primal solution Yo1 = 2,

Yo2 = 1, Yo3 = 4 and Yo4 = 0. Then the operator counts corresponding to this primal

solution is C = {o1 7→ 2, o2 7→ 1, o3 7→ 4}. We only show counts for non-zero operators.

2.3.4 Generalized Landmarks

DAVIES et al. (2015) introduced a generalization of disjunctive action landmark

constraints that counts the number of occurrences of operators. A generalized landmark

constraint (GLC) is a disjunction of binary variables called bounds literals. A bounds

literal [Yo ≥ ko] is true if there are at least ko occurrences of operator o in the solution of
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the IPC . This generalization is compatible with operator-counting constraints and can be

used to express constraints of the form [Yo1 ≥ ko1 ]+ . . .+[Yon ≥ kon ] ≥ 1. To satisfy this

constraint, at least one of the bounds literals must be true, enabling to encode necessary

conditions of feasible plans directly over the operator counts.

Definition 11 (Generalized Landmark Constraint). A generalized landmark constraint

L for a state s and a planning task Π, corresponding to a disjunctive action landmark

A ⊆ O ×Z+, is defined as ∑
∀〈o,k〉∈A

[Yo ≥ k] ≥ 1.

Domain constraints are used to link bounds literals with the operator-counting

variables Yo: we have for all k ≥ 1:

[Yo ≥ k] ≤ [Yo ≥ k − 1] ; (1)

Yo ≥
k∑
i=1

[Yo ≥ i] ; (2)

Yo ≤M [Yo ≥ k] + k − 1. (3)

Constraint (1) ensures that bound [Yo ≥ k] is only valid when the next smallest

bound [Yo ≥ k − 1] is; (2) ensures that the total number of valid bounds literals for opera-

tor o is a lower bound on the number of operators Yo; and (3) ensures that bound [Yo ≥ k]

is set when Yo ≥ k. Combined, (2) and (3) guarantee that Yo is the number of occurrences

of operator o.

For instance, if we had a disjunctive action landmark with countsA = {〈o1, 2〉, 〈o2, 1〉},

the corresponding GLC would be L = [o1 ≥ 2] + [o2 ≥ 1] ≥ 1. Consequently, the fol-

lowing domains constraints would have to be included in the model:

[Yo1 ≥ 2] ≤ [Yo1 ≥ 1] ;

[Yo1 ≥ 1] ≤ [Yo1 ≥ 0] ;

Yo1 ≥ [Yo1 ≥ 1] + [Yo1 ≥ 2] ;

Yo1 ≤M [Yo1 ≥ 2] + 1;

Yo1 ≤M [Yo1 ≥ 1] .

[Yo2 ≥ 1] ≤ [Yo2 ≥ 0] ;

Yo2 ≥ [Yo2 ≥ 1] ;

Yo2 ≤M [Yo2 ≥ 1] .
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3 PLANNING WITH LOGIC-BASED BENDERS DECOMPOSITION

3.1 Overview

POMMERENING et al. present several heuristic functions to guide A∗ that are

based on linear programming. Even though linear programs are polynomial-time solv-

able, one must use them as heuristic functions carefully, since the state-space expanded

by A∗ grows exponentially in the number of states, according to the planning task spec-

ification, and the cost of solving a linear program to compute the heuristic for each state

is not negligible. Of particular interest among these heuristics is the operator-counting

framework discussed before, that estimates the optimal plan cost from the number of times

the operators are used in some feasible plan.

Usually only the objective value of the linear relaxation of the operator-counting

IP is used to guide the search to solve planning tasks. However, DAVIES et al. (2015)

note that the operator counts associated to the IP’s primal solution contains an interesting

information that can be used to solve the problem. Specifically, it can be interpreted

as a possibly incomplete and unordered plan to the planning task, with some missing

necessary operators. It originates the idea to incrementally search for missing operators

until a complete and ordered plan is found.

DAVIES et al. (2015) propose an LBBD to decompose the process of solving

planning tasks into two related problems: i) a master problem that solves IPC : a relaxation

of the original planning task, which generates operator counts C, and ii) a subproblem

which tries to sequence C, constructing and returning a violated constraint on failure. The

main idea consists of incrementally strengthening the master problem relaxation with

some learned knowledge about the infeasibility of its current solution. These constraints

should be as informative as possible to decrease the number of total iterations between the

master and the subproblem. The process stops when the BC algorithm from the master

proves the optimality of the current incumbent plan. Figure 3.1 illustrates the overall

process.
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Figure 3.1: LBBD to cost-optimal planning (adapted from DAVIES et al. (2015)).

Master Problem Subproblem

Operator Counting
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Operator Counts
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This decomposition establishes an interface between operator-counting heuristics

and operator counts sequencing procedures. In the next section we discuss how DAVIES

et al. (2015) solve the operator counts sequencing subproblem.

3.2 Operator Counts Sequencing with SAT

The solver OpSeq introduced by DAVIES et al. (2015) applies a SAT model that

encodes the planning task limited to an operator counts C as a formula in the conjunctive

normal form. They use this model to solve the sequencing operator counts subproblem.

If the formula is satisfiable, OpSeq can directly extract a plan. If the operator counts does

not correspond to a plan i.e., if the formula is not satisfiable, OpSeq uses assumptions to

generate an explanation of its infeasibility. The assumptions are special variables relating

to the current operator counts. The generated explanation is a disjunction of negated

assumptions that can be directly translated to a generalized landmark constraint (GLC)

and added to the master problem.

OpSeq does not solve the entire operator-counting IPC at each step of the LBBD.

Instead, it solves the linear relaxation and obtains a valid operator counts by rounding

up the primal solution values to the nearest integers, only if its cardinality and objective

value are within 20% of the fractional operator counts. Consequently, OpSeq is able to

generate violated constraints that also remove fractional solutions.

Most IP solvers support the definition of control callbacks to dynamically interact

with the BC algorithm. OpSeq uses this mechanism to heuristically construct plans using

the round-up method and to add constraints to strengthen linear relaxations or invalidate

integer solutions that cannot be sequenced to a feasible plan. These callbacks also allow

OpSeq to call the sequencing procedure whenever an operator counts is available in a node

of the BC tree, independently if it comes from a fractional or an integral primal solution.



42

OpSeq follows the main idea of planning using LBBD. The process begins by

using a BC to solve the IPC . If BC finds an integer solution it calls the SAT sequencing

procedure to try to sequence the corresponding operator counts. If BC finds a relaxed

solution it obtains a valid operator counts by rounding up the primal solution values to the

nearest integers, and sequences it if it is within the 20% threshold or ignores it otherwise.

If this operator counts is sequencable, OpSeq informs the BC that a new solution has been

found. This process continues until BC proves that one of the found plans is optimal.

A restart occurs when a generated GLC contains more than one weak bounds

literal. It results from a missing bounds literal [v ≥ k] that has not been allocated yet, for

some v ∈ {Yo, ∀o ∈ O} ∪ {Yf} and some value of k. During the BC algorithm, OpSeq

solves this issue by adding the weak bounds literal v/k corresponding to the missing

bounds literal [v ≥ k]. Initially, OpSeq allocates bounds literals up to k = 2. If a restart

occurs, the IP solving process is reinitialized and the weak bounds literals are replaced

with new conventional bounds literals allocated.

To illustrate this situation, assume that we have a planning task with three opera-

tors o1, o2 and o3, with pre-allocated bounds literals up to k = 1. Also, o1 and o2 are action

landmarks for this task and the IP contains the corresponding constraints [Yo1 ≥ 1] ≥ 1

and [Yo2 ≥ 1] ≥ 1. If we solve the linear relaxation of this IP, we obtain the primal

solution P0 = 〈Yo1 = 1, Yo2 = 1, Yo3 = 0, [Yo1 ≥ 1] = 1, [Yo1 ≥ 0] = 1, [Yo2 ≥ 1] =

1, [Yo2 ≥ 0] = 1, [Yo3 ≥ 1] = 0, [Yo3 ≥ 0] = 1〉. Now, suppose that the corresponding op-

erator counts is not sequencable and the GLC L1 = [Yo1 ≥ 2] + [Yo3 ≥ 1] ≥ 1 is learned.

Since the bounds literal [Yo1 ≥ 2] is not allocated in the model, the constraint that is effec-

tively added is 1
2
Yo1 + [Yo3 ≥ 1] ≥ 1. Solving the linear relaxation of the model with this

constraint would return a primal solution P1 = 〈Yo1 = 1, Yo2 = 1, Yo3 = 0.5, [Yo1 ≥ 1] =

1, [Yo1 ≥ 0] = 1, [Yo2 ≥ 1] = 1, [Yo2 ≥ 0] = 1, [Yo3 ≥ 1] = 0.5, [Yo3 ≥ 0] = 1〉. In

this case, since P1 6= P0, a GLC with only one weak bounds literal still invalidates

the current solution P0. On the other hand, suppose that instead we learn the GLC

L2 = [Yo1 ≥ 2] + [Yo2 ≥ 2] + [Yo3 ≥ 1] ≥ 1. Since the bounds literals [Yo1 ≥ 2] and

[Yo2 ≥ 2] are not allocated, the constraint would be 1
2
Yo1 + 1

2
Yo2 + [Yo3 ≥ 1] ≥ 1. Solv-

ing the linear relaxation of the model with this constraint would return a primal solution

P2 = P0, therefore, constraint L2 does not invalidate the solution P0.

The SAT model constructed by OpSeq is composed of layers and only one operator

can be applied in each layer. OpSeq uses the variable YT to limit the total number of

layers, computed as the total number of operators in the operator counts. It constructs
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a set of assumptions and informs the solver to use them. On failure, the SAT model is

able to construct a GLC based on these assumptions, explaining why the operator counts

is not sequencable. This constraint is derived by the Conflict-Directed Clause Learning

algorithm (MARQUES-SILVA; SAKALLAH, 1999) implemented in SAT solvers, that

backtracks until it reaches to the assumptions that cause the formula’s unsatisfiability.

Below we present the SAT formulation proposed by DAVIES et al. (2015) for each

layer l, where v =l x denotes that variable v holds the value x in layer l; ol that operator o

occurs in layer l; L = YT =
∑

o∈O C(o) is the total number of layers; ≤k (S) denotes the

at-most-k constraint that enforces that k or fewer literals from a set S are simultaneously

true (SINZ, 2005); and prod(〈v = x〉) denotes the set of operators that are producers of

atom 〈v = x〉:

≤1 ({ol|o ∈ O}); (1)

∀v ∈ V : ≤1 ({v =l xi|xi ∈ D(v)}); (2)

∀〈v = x〉 ∈ s0 : v =0 x; (3)

∀o ∈ O :
∧

v=x∈pre(o)

(¬ol ∨ v =l−1 x); (4)

∀o ∈ O :
∧

v=x∈post(o)

(¬ol ∨ v =l x); (5)

∀〈v = x〉 ∈ V : v =l+1 x =⇒ v =l x ∨
∨

o∈prod(〈v=x〉)

ol+1; (6)

∀〈v = x〉 ∈ s∗ : v =L x ∨ [ΣC(o) ≥ L+ 1] ; (7)

∀o ∈ O : ≤C(o) ({ol|l ∈ [1, L]}) ∨ [Yo ≥ C(o) + 1] . (8)

Part (1) ensures that at most one operator occurs by layer; (2) ensures that a vari-

able can only assume one value from its domain at a time; (3) that the atoms in the initial

state are valid at first layer l = 0; (4) that an operator can occur at layer l only if its

preconditions are satisfied at the previous layer l − 1; (5) that the effects of an operator

applied are valid at layer l; (6) that an atom can only be valid at layer l if it is valid at

the previous layer l − 1 or an operator which is a producer of this atom is applied at l;

(7) ensures that all atoms from the goal state are valid at the last layer L; and (8) that

the total number of times each operator is applied is bounded by the number of operators

available in the operator counts C. Variables [ΣC(o) ≥ L+ 1] and [Yo ≥ C(o) + 1] are the

assumptions informed to the SAT solver and used to express the formula’s infeasibility

explanation as a GLC.



44

4 PROPOSED APPROACH

4.1 Overview

We propose the solver OpSearch, which uses the A∗ search algorithm to solve the

operator counts sequencing subproblem. OpSearch works in the same way as OpSeq:

given an operator counts C, it returns a plan π if C is sequencable, or a violated condition

as a GLC L, otherwise. The master problem is unchanged. The presence of potentially

useful information in the search graph, such as f -values, motivates the use of heuristic

search algorithms as base for an alternative method. This approach could generate smaller

and more informed constraints and, as observed by CIRÉ; COBAN; HOOKER (2013),

eliminating irrelevant parts of constraints can significantly decrease the solving time of

an integer program.

4.2 Extended State and Generation of Successors

Usually, only a set of atoms constitutes the default A∗ state representation in a

search node, representing the current assignment of values x ∈ D(v) to all variables

v ∈ V . Since the number of variables |V| and the domain sizes |D(v)| are known, current

implementations store states in a memory-friendly bitstring. This efficient representation

enables planners to expand large state-spaces without running out of memory. However, it

is insufficient to sequence operator counts by heuristic search, since a partial assignment

of variables can be reached by applying distinct sequences of operators.

To address this issue, we extended the A∗ state representation with the operator

counts. The number of distinct operators with counts greater than zero in the operator

counts C gives the bound on the number of extra variables necessary to represent subsets

of C and each variable corresponding to operator o is bounded by the initial operator

counts C(o), since the operator counts of C can only decrease during search.

Using this extended state, OpSearch is able to distinguish between two states with

identical values assignment for the original task variables v ∈ V but with different op-

erator counts, i.e., different task operators budgets. Given the current operator counts C,

we extend the A∗ state representation with a variable vo for each o ∈ O if C(o) > 0 and

c(o) > 0. The domain of vo is D(vo) = {0, . . . , C(o)}.

This new state representation requires another modification in the behavior of A∗,
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which needs to consider the extra operator variables and limit the number of times an

operator o is applied. Effectively, if A∗ could generate s′ from s using operator o, it will

in fact generate s′ in two situations. First, if c(o) = 0, i.e., we generate states freely for

zero-cost operators. Second, if vo ∈ vars(s) and s(vo) > 0 then s′ is generated and the

value of variable vo in s′ is set to s′(vo) = s(vo)− 1.

OpSearch applies zero-cost operators independently of C and only generates bounds

literals for operators o with c(o) > 0. Zero-cost operators can be applied freely during

the search, even if they are absent from the current operator counts. This is motivated

by the observation that bounds literals for zero-cost operators do not directly force the

operator-counting objective function to increase.

To illustrate these modifications to A∗, we use a planning task Π1 as an example,

containing V = 〈v1〉 with D(v1) = {0, 1, 2}, O = {o1, o2, o3, o4} with o1 = 〈v1 =

1; v1 := 2〉, o2 = 〈v1 = 0; v1 := 2〉, o3 = 〈v1 = 1; v1 := 2〉, o4 = 〈v1 = 1; v1 := 3〉,

c(o1) = 2, c(o2) = c(o4) = 1 and c(o3) = 0. Note that, even though o1 and o3 have

identical preconditions and effects, they have distinct costs and therefore are different

operators. The initial state is s0 = {v1 = 1} and the goal is s∗ = {v1 = 2}. Suppose the

operator counts is C = {o1 7→ 1}.

In OpSearch, this task would be changed by including a variable vo1 for operator

o1 with domain D(vo1) = {0, 1} since C(o1) = 1, but no variables for o2, o3 or o4,

since o2 and o4 have counts equal to zero and o3 has zero cost. The value of vo in s0 is

C(o). Therefore, our final extended representation for state s0 would be {v1 = 0, vo1 =

1}. Extended states are used to test for equality and for successor generation. However,

for computing the heuristic function, only the original variables of the planning task are

considered.

During the execution of the modified A∗ in this task, OpSearch would generate

two states from s0: state s′ = {v1 = 2, vo1 = 0} by applying operator o1 and s′′ = {v1 =

2, vo1 = 1} by applying o3. No state is generated from the application of operator o4,

since it is not contained in vars(s).
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4.3 Constraint Generation Strategy

We now explore the situation when vo /∈ vars(s) ∧ c(o) > 0 and when s(vo) = 0

to derive some violated condition on the current operator counts C that is not sequenca-

ble. This condition is modeled as a GLC with bounds literals for operator o and can be

interpreted as follows: if we had one more instance of o, we could further generate a

state, that could possibly reach a goal state with optimal cost. Additionally, we can use

other information available during A∗ to strengthen the generated constraints, such as the

f -value of state s, since it is an estimate of the plan cost through s.

Next we present the strategy to generate violated constraints from non-sequencable

operator counts. It incrementally generates bounds literals during A∗ search to compose

the final learned GLC L, that includes at most one bounds literal for each operator. The

strategy returns bounds for operators that currently have count equal to zero but might

generate new states with f -value at most fmax. The fmax is the objective value of the relax-

ation of some node in the BC tree, that is found while solving operator-counting IP. This

node calls the sequencing subproblem informing fmax and the operator counts C. State s

denotes a state expanded by A∗ and s′ is a generated one.

L = { [Yo ≥ C(o) + 1] | ∃s o−→ s′ : f(s′) ≤ fmax ∧

((vo /∈ vars(s) ∧ c(o) > 0) ∨ s(vo) = 0)}.

Further, if the f -value of a state s′ found during search is greater than fmax, then we

directly bound the plan cost. To this end, we introduce an auxiliary variable Yf , which

represents the objective function value to the operator-counting model and is defined as:

Yf =
∑
o∈O

c(o)Yo.

Now let fmin = mins|f(s′)>fmax{f(s′)}, i.e., fmin is the minimum f -value for all states found

during A∗ that have f -value greater than fmax. Then, if some state s′ has f(s′) > fmax, we

add the bounds literal [Yf ≥ fmin] to L. Note that fmax is used during the A∗ sequencing

procedure and fmin is used after A∗ to construct the GLC when C is not sequencable.

To illustrate the solving process of OpSearch, we define another example planning

task Π2 with O = {o0, o0′ , o1, o2, o3, o4} and costs c(o0) = c(o0′) = 0, c(o1) = c(o2) =

c(o3) = 1 and c(o4) = 2. We assume that the initial operator-counting IPC contains
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the constraint Yo1 ≥ 1 since o1 is an action landmark for Π2. The primal solution for

this IPC provides the operator counts C = {o1 7→ 1} and the objective function value

gives the f -value bound fmax = 1. Figure 4.1 illustrates the state-space generated by A∗

with the perfect heuristic h∗, where vertices represent nodes and arcs the application of

operators. Solid vertices and edges represent nodes and operators that are generated or

applied according to C. Nodes and operators that cannot be generated or applied during

the search are dashed. Goals are indicated by double circled vertices.

Figure 4.1: State-space of example task Π2, first iteration.
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Since f(n0) > fmax, OpSearch generates the constraint [Yf ≥ 3] ≥ 1 informing

that the f -value bound fmax must increase to 3 in the next iteration. Assume now that

after adding this constraint the master returns C = {o1 7→ 3} and fmax = 3. The resulting

state-space is illustrated in Figure 4.2:

Figure 4.2: State-space of example task Π2, second iteration.
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Now OpSearch expands n0 and generates node n2 by applying o1. Since we apply

zero-cost operators freely during search OpSearch also generates n1 and n3 by applying
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o0 to n0 and n2. Note that n1 and n3 have the same variable assignment s1 but different

operator counts {o1 7→ 3} and {o1 7→ 2} and therefore are treated as different states.

From this state-space, OpSearch returns the constraint [Yo3 ≥ 1] + [Yf ≥ 4] ≥ 1. The

bound [Yo3 ≥ 1] comes from the transition n2
o3−→ n5 and [Yf ≥ 4] from n1

o2−→ n4, since

transition n2
o0−→ n3 would generate the bound [Yf ≥ 5]. Suppose that, after adding this

constraint, the IPC returns C = {o1 7→ 2, o3 7→ 1} and fmax = 3. The resulting state-space

is shown in Figure 4.3:

Figure 4.3: State-space of example task Π2, third iteration.
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From this state-space, OpSearch returns the constraint [Yo2 ≥ 1] + [Yf ≥ 4] ≥ 1.

The bound [Yo2 ≥ 1] comes from the transition n5
o2−→ n8 and [Yf ≥ 4] from n1

o2−→ n4.

After adding this constraint, OpSearch returns a sequencable operator counts C = {o1 7→

1, o2 7→ 1, o3 7→ 1} and fmax = 3, as illustrated in Figure 4.4.

Figure 4.4: State-space of example task Π2, fourth iteration.
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Theorem 1. For a solvable SAS+ planning task Π, an operator counts Cs with

an associated f -bound value fmax, such that OpSearch’s modified A∗ with an admissible

heuristic function h cannot sequence Cs, OpSearch always returns an admissible con-

straint to the master integer program.

Proof sketch. Consider an optimal plan π∗ = 〈o1, . . . , ok〉 with a corresponding

state sequence 〈s0, s1, . . . , s∗〉. Let L be a GLC generated by OpSearch with Cs and f -

bound fmax, and S be the set of (extended) states expanded by OpSearch. Now, extend

the state sequence 〈s0, s1, . . . , s∗〉 to an (extended) state sequence 〈s′0, s′1, . . . , s′∗〉 with

operator-counting variables, such that the operator count of s′0 is Cs, and that of the subse-

quent states is decreased according to π∗. Since OpSearch failed to sequence Cs and main-

tains an extended state, there must be a first state s′i /∈ S. If i = 0, then f(s0) > fmax and

the bounds literal [Yf ≥ fmin] must be satisfied since the heuristic h is admissible. Other-

wise, there is a predecessor state s′i−1 ∈ S with s′i−1
o−→ s′i, and OpSearch did not generate

s′i. The reason for this is either f(s′i) > fmax or s(o) = 0 or vo /∈ vars(s′i) ∧ c(o) > 0.

But in the first case f(s′i) ≥ fmin and by admissibility of h the bounds literal [Yf ≥ fmin]

is satisfied, and in the second case the bounds literal [Yo ≥ Cs(o) + 1] must be satisfied

by π∗.

4.4 Impact of Heuristic Functions in Generated Constraints

Using different heuristic functions to guide A∗ also plays an important role in the

generation of constraints, since we expect more informed heuristics to generate smaller

and stronger constraints by OpSearch. To illustrate this behaviour in more detail, we

reintroduce the simple gripper example from (DAVIES et al., 2015): there are two balls,

two rooms and a robot that can transport one ball at a time. The robot starts in the left

room and the goal is to move the balls from left to right. Operators pick_i_j and drop_i_j

causes the robot to hold or release ball i at room j and move_i_j causes the robot to

move from room i to j. All operators have unit-cost. An optimal plan with total cost

of 7 is 〈pick_1_l,move_l_r, drop_1_r,move_r_l, pick_2_l,move_l_r, drop_2_r〉. The

DTG for this example is illustrated in Figure 4.5. R represents the location of the robot

(in left or right room); Bi the location of ball i (in left or right room or in the gripper);

and G the state of the gripper (empty or non-empty). For each variable, the initial states

are marked by an incoming arrow and goal states are double circled.
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Figure 4.5: DTGs for the gripper example introduced by DAVIES et al. (2015).
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We assume that the initial f -bound is fmax = 5 and the initial operator counts is

C = {drop_1_r 7→ 1, drop_2_r 7→ 1,move_l_r 7→ 1, pick_1_l 7→ 1, pick_2_l 7→ 1}.

Since this operator counts is not sequencable, OpSearch learns some violated constraint.

Next we show examples to illustrate that OpSearch with different heuristics generates

different violated constraints, even if the base operator-counting master IPC initially con-

tains the same set of constraints. To generate these examples, we use an operator-counting

with initial constraints from disjunctive action landmarks hLMC (BONET; BRIEL, 2014),

state equation hSEQ (BONET, 2013), and the optimal delete relaxation h+ (IMAI; FUKU-

NAGA, 2014).

OpSeq generates a constraint with five bounds: [YT ≥ 6] + [Ydrop_1_l ≥ 1] +

[Ydrop_2_l ≥ 1] + [Ymove_r_l ≥ 1] + [Ypick_1_r ≥ 1] ≥ 1. OpSearch with the blind heuristic

hblind, that returns zero for goal states and one for others, also generates a constraint with

five bounds, but replaces the bound for YT by Ypick_2_r: [Ydrop_1_l ≥ 1] + [Ydrop_2_l ≥ 1] +

[Ymove_r_l ≥ 1]+[Ypick_1_r ≥ 1]+[Ypick_2_r ≥ 1] ≥ 1. OpSearch with the hLMCut heuristic

generates a stronger constraint with only one bound for the plan cost: [Yf ≥ 6] ≥ 1.

Finally, OpSearch with h∗ generates a perfect constraint that forces the IPC objective

value to directly increase up to the optimal plan cost: [Yf ≥ 7] ≥ 1.
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5 EXPERIMENTS

5.1 Overview

The goals of the experiments are: i) to evaluate the performance of OpSearch

compared to OpSeq in terms of the total number of sequencing subproblems and instances

solved; ii) to contrast the computational resources required by both approaches in terms

of total solving runtimes and memory consumption on average; and iii) to experimentally

validate the hypothesis that OpSearch can generate stronger constraints in terms of the

average number of operators included.

We use the same benchmarks from the International Planning Competition (IPC)

of 2011 used by DAVIES et al. (2015), totaling 11 domains with 20 instances each. All

experiments were conducted using an Intel Core i7 930 CPU (2.80 GHz) with a mem-

ory limit of 4 GB and a time limit of one hour for each planner execution. We imple-

mented OpSearch and OpSeq inside the Fast Downward planning system, version 19.06

(HELMERT, 2006). For solving the satisfiability subproblems we use the MiniSat 2.2

solver (EÉN; SÖRENSSON, 2003). We opted to use MiniSat to facilitate comparisons

with (DAVIES et al., 2015) but we could use any SAT solver with support to conflict anal-

ysis. We use CPLEX 12.8 to solve linear programs and implement the LBBD approach.

The initial operator-counting master IPC contains constraints from the disjunctive

action landmarks heuristic hLMC (BONET; BRIEL, 2014), the state equation hSEQ (BONET,

2013) and the optimal delete relaxation h+ base formulation without enhancements from

(IMAI; FUKUNAGA, 2014). We use hLMCut (HELMERT; DOMSHLAK, 2009) as the

primary heuristic function to guide the A∗ algorithm from OpSearch when sequencing

operator counts.

Since OpSeq’s source code is not publicly available, we re-implemented its SAT-

based approach strictly following the description presented in (DAVIES et al., 2015).

The source code for OpSearch and our version of OpSeq is available1 to facilitate further

development of operator counts sequencing procedures. The data and scripts used to

generate the tables and figures presented in this chapter are also publicly available2.

1Available at <https://github.com/kaizerw/PlanningLP>
2Available at <https://github.com/kaizerw/icaps20>

https://github.com/kaizerw/PlanningLP
https://github.com/kaizerw/icaps20
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5.2 The Benchmark Set

Table 5.1 presents information about the benchmark set, summarized by domain.

|V| denotes the mean number of variables; |O| is the mean number of operators; zco

indicates the presence of zero-cost operators; cmin is the mean minimum operator cost,

ignoring zero-cost operators; cmax is the mean maximum operator cost; lb is the mean best

lower bound on the optimal plan cost3; z0 is the mean initial relaxed operator-counting

solution of our initial operator-counting master problem; and r0 and c0 are the mean

number of rows and columns in the initial IPC program, respectively.

Table 5.1: Information about the benchmark set.
domain |V| |O| zco cmin cmax lb z0 r0 c0

barman 53.3 358.3 − 1 10 30.15 15.75 7408.2 3896.0
elevators 40.0 866.0 6 32 3.75 1.00 12810.3 6265.0
nomystery 34.0 185.0 − 1 1 8.85 3.92 3701.9 1772.0
openstacks 108.2 663.2 1 1 123.35 76.58 14456.3 6231.6
parcprinter 59.9 254.8 987 217007 1223929.00 1223929.00 4340.6 2167.9
pegsol 12.2 572.5 1 1 59.05 34.09 8201.0 4120.8
scanalyzer 9.7 1280.0 − 1 3 521.90 295.91 26130.9 12515.8
sokoban 7.1 1380.8 1 1 24.85 21.60 47324.4 25688.1
transport 38.6 176.0 − 1 95 41.80 40.78 2096.2 1406.5
visitall 15.5 1659.5 − 1 1 36.90 30.62 189001.6 91734.2
woodworking 74.5 908.8 − 5 44 329.50 296.40 17438.5 7980.7

We see that the domains elevators, parcprinter, openstacks, pegsol and sokoban

have zero-cost operators and the last three only have zero-cost and unit-cost operators.

Two domains have only unit-cost operators: nomystery and visitall. Ignoring zero-cost

operators, some domains have diverse operators costs such as barman, elevators, par-

cprinter, scanalyzer, transport and woodworking. Among these, parcprinter is notable

due to the wide cost range of its operators.

We observe that some domains have few operators and variables, such as nomys-

tery and transport and others have a large number of operators but few variables, such

as visitall, sokoban and scanalyzer. We can also note that z0 is very close to lb in par-

cprinter, sokoban, transport and visitall. Some domains have huge initial IPC such as vis-

itall and sokoban while others have very small ones, for instance, nomystery, parcprinter

and transport.

3Obtained from <http://editor.planning.domains>

http://editor.planning.domains
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5.3 IP Solver Settings

We noticed that settings for IP solvers can change the BC process and interfere

with the operator counts sequencing subproblem. In particular, some primal heuristics

executed by the IP solver to construct feasible solutions can generate very large operator

counts which are not useful to sequence, and which in OpSeq lead to memory prob-

lems when constructing the SAT models. We have turned off these heuristics in both

approaches. We used legacy callbacks of the C++ interface in CPLEX to add the learned

constraints through user cuts and lazy constraints.

Another relevant parameter is the IP emphasis. With the default setting of bal-

anced, the solver tries to balance progress on good feasible solutions and a proof of opti-

mality. When set to best bound, it prioritizes increasing the current best bound with low

effort in detecting feasible integer solutions. Considering the incremental lower bounding

technique used by OpSeq, we use the best bound setting in our experiments.

Figure 5.1 shows plots of the total number of sequence calls, comparing IP em-

phasis balanced to best bound. We can see that when the IP emphasis is set to best bound,

both OpSearch and OpSeq require fewer sequencing calls than with the balanced setting.

Figure 5.1: IP emphasis (log2-log2 scale).
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5.4 OpSeq and OpSearch

Tables 5.2 and 5.3 show results grouped by domain for OpSeq and OpSearch. Col-

umn C presents the coverage for that particular domain; S the total number of sequencing

calls; R the total number of restarts; T̄t the mean total solving time in seconds; M the

mean memory usage in megabytes; u the mean percentage of operators included in the

generated constraints; p the mean percentage of total sequencing times by total solving

time; and bb the best bound found by the IP solver. Best results are highlighted.

Table 5.2: OpSeq.
domain C S R T̄t M̄ ū p̄ bb

barman 0 40556 16 3417 857 20 0.1 2484
elevators 0 5922 0 3275 2931 17 0.8 690
nomystery 0 3660 0 1459 736 44 0.6 437
openstacks 0 24383 3 1709 433 29 0.1 20
parcprinter 20 21 0 1 126 0 74.0 8524162
pegsol 11 22998 15 1964 175 47 0.0 154
scanalyzer 0 3377 0 1305 955 18 0.0 585
sokoban 0 7907 0 3208 2385 9 0.8 319
transport 0 5800 0 1879 265 8 0.0 6251
visitall 15 5632 0 957 298 19 0.2 848
woodworking 17 946 0 437 355 4 0.5 6348
Total 63 121202 34 1783 865 20 0.4 8542298

Table 5.3: OpSearch.
domain C S R T̄t M̄ ū p̄ bb

barman 0 36565 1 3548 202 5 0.1 2496
elevators 0 10802 7 3555 254 4 0.2 865
nomystery 3 10383 4 1120 322 1 0.1 443
openstacks 13 266 14 966 968 0 23.6 67
parcprinter 16 21 0 271 377 0 55.9 8524162
pegsol 10 12906 2 1888 123 16 0.0 166
scanalyzer 1 700 5 1001 1046 2 0.0 592
sokoban 5 17695 51 2779 183 3 0.2 455
transport 0 910 11 1707 222 1 0.0 6235
visitall 14 9078 10 1112 119 29 0.0 839
woodworking 11 111 0 974 224 5 43.7 6258
Total 73 99437 105 1720 367 6 4.4 8542578
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We see that OpSearch has better coverage than OpSeq, solving 10 more plan-

ning tasks. OpSearch performs better on domains nomystery, openstacks, scanalyzer

and sokoban. OpSearch on openstacks and sokoban solves 13 and 5 tasks not solved

by OpSeq. We find that OpSearch uses 57% less memory and generates violated con-

straints that are on average 70% smaller than OpSeq. We also observe that OpSearch has

a smaller total number of sequencing calls, approximately 18%, more restarts, and that it

found higher best bounds than OpSeq in seven domains.

An important metric for comparing the solvers is the percentage of operators in

the learned constraints. On average, constraints generated by OpSeq have 20% of the

operators, while constraints generated by OpSearch have only 6% of the operators. Also,

OpSeq learns constraints with more than 10% of the operators on seven domains, while

OpSearch learns constraints with more than 10% of the operators on only two domains,

which confirms the potential of search-based methods to solve the operator counts se-

quencing subproblem, generating smaller and potentially more informed constraints.

Figures 5.2, 5.3, 5.4, 5.5 and 5.6 show plots comparing the total number of se-

quencing calls S, memory usage M , mean percentage of operators by learned constraints

ū, total sequence times St and total solving time Tt for OpSearch and OpSeq. Visually, we

can confirm the results presented before: i) OpSearch solved fewer sequencing subprob-

lems; ii) in most of the times OpSearch uses less memory than OpSeq; and iii) OpSearch

usually generates smaller constraints than OpSeq.

Figure 5.2: Sequencing subproblem calls S (log2-log2 scale).
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Figure 5.3: Memory usage M (log2-log2 scale).
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Figure 5.4: Mean constraint size ū (log2-log2 scale).
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Figure 5.5: Sequencing runtimes St (log2-log2 scale).
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Figure 5.6: Total solving time Tt (log2-log2 scale).
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Table 5.4 summarises the results only considering the 50 instances solved by both

OpSearch and OpSeq. This table shows that, when we compare OpSearch and OpSeq

using the same set of instances, OpSearch in fact solves fewer sequencing subproblems,

uses slightly less memory and generates smaller constraints than OpSeq, but spends more

time sequencing, as indicated by p̄, and has a higher total solving time, as indicated by T̄t.

Table 5.4: Summary for the 50 instances solved by both methods.

S R T̄t M̄ ū p̄

OpSearch 2169 1 191 118 9 46.4

OpSeq 2738 6 92 122 15 0.3

5.5 Impact of OpSearch’s heuristic function

Table 5.5 shows results for OpSearch using different heuristic functions in A∗.

We have tested the heuristics hblind, hLMCut and operator-counting hOC with constraints

from state-equation and action landmarks. We have chosen these functions because hOC

dominates hLMCut and hblind is the least informative. The table only shows results for the

49 instances solved by OpSeq and OpSearch using each one of the heuristics cited before,

except by the column C that considers all the 220 instances.

The table shows that using more informed heuristic functions in OpSearch results

in: i) fewer sequencing subproblems solved, as indicated by S; ii) greater mean total

solving times T̄t since computing the heuristics are more expensive; iii) less mean memory

usage, as indicated by M̄ ; and iv) smaller constraints are generated, as indicated by ū.
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Table 5.5: Summary for the 49 instances solved by all heuristics.
C S R T̄t M̄ ū p̄

hblind 79 3717 1 93 171 10 21.5
hLMCut 73 2161 1 183 116 9 22.9
hOC 70 1119 3 141 99 8 17.4
OpSeq 63 2725 6 90 121 16 23.4

Table 5.6 shows results for OpSearch using all the 282 instances from IPC-1998

to IPC-20144 in which h∗ can be computed by a full PDB using at most 4 GB of memory.

Similarly to the previous test, we used hblind, hLMCut, operator-counting hOC with con-

straints from state-equation and action landmarks, and h∗. The table only shows results

for the 154 instances solved by all methods, except by the column C that considers all the

282 instances.

We can observe that: i) the total number of sequencing subproblems solved de-

creases as the heuristic function is more informed (S); ii) the total solving times T̄t for

hOC is twice as much as for the other heuristics; iii) h∗ uses much more memory M̄

than the other heuristics due to the full PDB; and iv) on average, smaller constraints are

generated by more informed heuristics, as indicated by ū.

Table 5.6: Summary for the 154 instances solved by all heuristics.
C S R T̄t M̄ ū p̄

hblind 191 25059 57 10 82 18 11.2
hLMCut 195 13304 75 11 82 11 2.5
hOC 200 7215 40 39 81 10 13.3
h∗ 241 3214 19 13 234 8 1.3
OpSeq 169 29106 53 37 95 18 12.4

4Obtained from <https://bitbucket.org/aibasel/downward-benchmarks>

https://bitbucket.org/aibasel/downward-benchmarks
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6 CONCLUSION AND FUTURE WORK

In this thesis we introduced OpSearch, a technique inspired by LBBD that uses an

A∗-based algorithm to solve the problem of sequencing operator counts. We discussed

the inner workings of the approach to incrementally explicate during search why operator

counts are not sequencable.

As main results, we showed that heuristic search is able to sequence operator

counts or to generate admissible constraints in the form of generalized landmarks, and that

it can perform better than OpSeq, a SAT-based approach to sequencing, solving fewer sub-

problems and presenting a higher coverage. We analyzed the choice of heuristic functions

inside the A∗ procedure, showing that more informed heuristics can produce smaller and

more focused violated constraints. We also presented results indicating that an approach

based on A∗ can scale better than OpSeq in terms of overall memory usage. Finally, we

made the source code for OpSearch and our version of OpSeq publicly available.

Future work could address the development of specific heuristic functions to ex-

plore structural properties of the operator counts sequencing problem, possibly giving rise

to specialized and more efficient algorithms. Other directions would be to investigate im-

provements on the master integer program, studying strategies to generate operator counts

more likely to be sequencable earlier during the solving process; improving methods to

deal with zero-cost operators to increase the integer program lower bound faster; or eval-

uate pruning methods (WEHRLE; HELMERT, 2014) in the operator counts sequencing

context, that might help to derive smaller constraints.
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APPENDIX A — SEQUENCIAMENTO DE CONTAGENS DE OPERADORES

COM BUSCA EM ESPAÇO DE ESTADOS

Em Planejamento Clássico, uma solução para uma tarefa de planejamento é de-

nominada como plano, consistindo em uma sequência de operadores tal que sua aplicação

na sequência especificada pelo plano no estado inicial da tarefa de planejamento resulta

em um estado objetivo. Os estados descrevem condições que são válidas em determina-

dos momentos durante o processo de solução e são alterados de acordo com a aplicação

de operadores. Os operadores da tarefa de planejamento possuem custo associados às

suas aplicações e usualmente deseja-se resolver otimamente uma tarefa de planejamento,

isto é, obter um plano ótimo que minimiza o custo total da aplicação de seus operadores.

Uma abordagem de sucesso e amplamente empregada à solução do problema

de planejamento consiste na utilização de algoritmos de busca informados por funções

heurísticas, que estimam o custo de uma solução ótima a partir de um estado. Estes algo-

ritmos, comumente denominados algoritmos de busca heurística, garantem que a solução

encontrada é ótima, ou seja, que ela apresenta o menor custo possível dentre todas as

soluções factíveis, se uma função heurística admissível é empregada. Uma função heurís-

tica é admissível se ela sempre fornece limitantes inferiores sobre o custo da solução ótima

em todos os estados. A admissibilidade de funções heurísticas é um objeto de estudo de

interesse na área de Planejamento Clássico que já possibilitou progressos importantes na

área, como por exemplo o desenvolvimento de poderosas heurísticas capazes de resolver

difíceis tarefas de planejamento eficientemente.

A heurística de operator-counting é de particular interesse para o trabalho desen-

volvido nesta dissertação. Esta heurística viabiliza que informações provenientes de di-

versas heurísticas admissíveis sejam combinadas por meio da definição de um Programa

Linear, em que as condições que devem ser satisfeitas por todos os planos factíveis são

expressas em termos de restrições lineares. A heurística de operator-counting também

possilita o desenvolvimento de abordagens alternativas de solução para o problema de

planejamento, como por exemplo aquele apresentado por DAVIES et al. (2015).

Em DAVIES et al. (2015), os autores apresentam o resolvedor OpSeq que utiliza

uma Decomposição de Benders Baseada em Lógica: uma abordagem inédita na área de

planejamento. O resolvedor proposto divide o problema original de planejamento em

dois outros problemas relacionados: um problema principal, que é um programa inteiro

que utiliza a estrutura de operator-counting e gera contagens de operadores, isto é, uma
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atribuição de contagens inteiras para cada operador da tarefa, e um subproblema denomi-

nado como o problema de sequenciamento de contagens de operadores, que verifica se um

plano satisfazendo uma contagens de operadores gerada pelo problema principal existe,

ou gera uma restrição violada por essa contagem que é utilizada para fortificar o problema

principal. O resolvedor OpSeq resolve o subproblema de sequenciamento codificando-o

em uma fórmula na forma normal disjuntiva e utilizando um resolvedor SAT.

Nesta dissertação, propomos um algoritmo alternativo para a solução do prob-

lema de sequenciamento de contagens de operadores, que não utiliza uma formulação

SAT como OpSeq. A abordagem que apresentamos utiliza um algoritmo de busca em

espaço de estados guiado por uma função heurística e abre novas questões de pesquisa

relacionadas ao desenvolvimento de funções heurísticas específicas para o problema de

sequenciamento de contagens de operadores. Efetivamente, nosso resolvedor denomi-

nado OpSearch emprega um algoritmo A∗ modificado que encontra um plano ótimo, ou

usa a fronteira da busca, isto é, o conjunto de estados gerados mas ainda não expandidos,

para derivar uma restrição violada que informa ao problema principal que a contagem de

operadores não é sequenciável.

Os resultados obtidos por essa pesquisa mostram que problemas de planejamento,

ou especificamente o subproblema de sequenciamento de contagens de operadores, po-

dem ser melhor resolvidos utilizando uma abordagem baseada em busca heurística do

que empregando resolvedores SAT. Em geral, nossa abordagem apresenta melhor escal-

abilidade do que uma abordagem SAT, pode utilizar informações explícitas presentes na

fronteira de busca para derivar restrições mais informadas, e é diretamente beneficiada

pela utilização de funções heurísticas mais informadas. Os experimentos executados uti-

lizam o conhecido conjunto de instâncias da Competição Internacional de Planejamento,

e mostram a superioridade de OpSearch em relação à OpSeq, já que resolve mais tare-

fas de planejamento, utiliza menos memória, gera menores restrições e em geral resolve

menos problemas de sequenciamento de contagens de operadores.
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