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RESUMO  

Esta tese propõe contribuições para o processo de codificação de vídeos de múltiplas 

vistas. Uma análise dos padrões atuais de codificação de vídeos de múltiplas vistas é 

apresentado destacando os principais desafios destes codificadores considerando 

comunicação e processamento. Esta tese apresenta duas contribuições. Primeiramente, 

técnicas de controle de taxa e ajuste de fluxo de dados são propostos nos níveis de quadros 

e unidades básicas, objetivando melhor precisão na saíta do bitstream do codificado 

enquanto entregando uma determinada qualidade visual, ao considerar as restrições 

impostas pelo sistema de transmissão. Técnicas preditivas no nível de quadros associadas 

com um algoritmo de região de interesses no nível de unidades básicas gerando 

aprendizagem por reforço no modelo de controle geral apresentam significativa redução 

na variação da taxa de bits. O modelo proposto não excede 1% de variação nos dados de 

saída. Ademais, a qualidade visual sofre uma perda máxima de 1,5%. Segundo, um 

gerenciador de threads associado a um balanceador de carga de trabalho e controle de 

potência para processamento de vídeos de múltiplas vistas em plataformas de múltiplos 

núcleos. Esta técnica aplicada a um sistema de 32 núcleos atinge até 51% de economia 

no consumo de energia com uma degradação visual na qualidade do vídeo de até 2% se 

comparada ao software de referência. 

 

Palavras-chaves: Codificação de Vídeo Digital, Vídeos de Múltiplas Vistas, Controle de 

Taxa, Balanceamento de Workload, Gerenciamento de Threads.   
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ABSTRACT  

This thesis proposes contributions for the encoding process of multiview videos. 

Analysis of current multi-view video coding standards is presented, aiming to understand 

the key challenges of these encoders considering communication and processing. This 

thesis presents two contributions. Firstly, techniques of rate control and data flow 

adjustment are proposed in the frame and basic unit levels, targeting best accuracy in the 

output bitstream of the encoder while delivering the desired video quality, considering 

the restrictions imposed by the transmission system. The predictive techniques at frame 

level associated with the regions of interest algorithm at the basic unit level to generate a 

reinforcement of learning in the overall control model present a significant reduction in 

the bitrate variations. The proposed model does not exceed 1% of the variation in the 

output data. Also, the visual quality suffered a maximum loss of 1.5%. Second, a thread 

management associated with workload balancing and power control for multi-view video 

processing on multi-core platforms. The results obtained by the proposed techniques 

show that the thread management jointly with coding adjustments allows a significant 

reduction in complexity. This technique applied to a 32-core system reached up to 51% 

saving in energy consumption with up to 2% degradation in the visual quality of the video 

compared to the reference software. 

Keywords: Digital Video Coding, Multiview Videos, Rate Control, Workload Balance, 

Threads Management.   
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1 INTRODUCTION 

Multiview video processing has become the key point to the development of 3D-video 

technology. The new 3D-video technology became widely applied in cinema, television, 

games, smartphone, etc. To obtain the best coding rates on the new processing 

technologies and in turn to get a satisfactory final result the consumer expectations, multi-

view coding standards such as Multiview Video Coding (MVC) (JVT, 2008) and 3D High 

Efficiency Video Coding (3D-HEVC) (Müller, et al., 2013) have emerged. However, 

these new standards and their extensions have brought a high computational cost 

associated with a high energy demand. Adapting the new standards to new processing 

technologies is a key point to power constrained devices. The key challenges that arises 

are: How to provide high and smooth visual quality while considering restricted 

bandwidth? How to adapt new multiview video standards to multiple core platform and 

appropriately take advantage of its potential? To address these questions are the main 

objective of this thesis. 

This thesis proposes the development of techniques in algorithms to reach high and 

smooth visual quality using the multiview encoder that transmits its bitstream under a 

constrained bandwidth. Moreover, this thesis presents a workload balance scheme and 

thread management for multiview videos encoded over multiple core platform. This work 

targets the overall multiview process over multiple core system while the focus in the rate 

control algorithm-level since it operates to adjust the bit distribution over the levels in the 

multiview encoder. There is no work in the literature using thread management 

considering multiview video content by adapt to the multi-core platform. Considering the 

Rate Control perspective, there are different works for specific scenarios as well for 

specific levels. Considering multiview videos, the disparity estimation (DE) prediction 

tool complete changed the situation. Although the motion and disparity are conceptually 

similar, the disparity presents an entirely distinct behavior regarding average vector 

length, ideal search pattern shape, local minima and computational effort. Additionally, 

by considering both motion and disparity data, the amount of information and correlation 

in the different domains are much vast. 

The goal of this thesis is to address the above-discussed challenges through research 

and development of power-efficient algorithms and system level techniques for low-
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power multiview video processing, while at the same time avoiding a significant loss in 

the video quality. This thesis shows the previous results of investigating distributed, 

scalable, and adaptive resource and power management techniques at both algorithm and 

system level in multi-core systems while accounting for the knowledge of emerging 

multiview video processing algorithms and multiview video content to enable power-

/energy-efficient management of processor computational and memory resources. 

The Chapter 2 of this thesis presents the basic concepts of digital video coding, the 

novel standards for video coding and its Multiview component tools. It also describes the 

module of primary interest to this thesis, the rate control, followed by a revision of the 

related work. Moreover, Chapter 3 describes the detailed studies performed to 

characterize and quantify the possible correlation of the multiview video content. This 

evaluation is key for the development of an efficient algorithm for Rate Control and the 

thread management for multiview video processing in multiple core processors. Chapter 

4 describes the proposed algorithms and schemes for the Rate Control and presents two 

main topics: rate control techniques at the frame level and bit allocation at the basic unit 

level. Then it is shown the results and comparisons of multi-granularity Rate Control 

methods based on Model Predictive Control and Markov Decision Process. Chapter 5 

proposes thread management with workload adaptation for multiview video encoding 

over multiple core processing platform and its results. Finally, Chapter 6 presents the 

conclusions and plans for future works related to these topics. In the end, the list of 

bibliographic references. 
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2 BACKGROUND AND RELATED WORK 

In this chapter, the basic notions about digital video coding, multiview video and the 

evolution of Multiview Video standards are presented. Moreover, it is presented the basic 

of rate control module. The workload balance and thread management aspects for 

multiview videos are detailed since they are the main focus of this thesis. Finally, a brief 

introduction to the state-of-the-art of each topic is also presented and discussed. 

2.1 Basics of Video Coding 

A sequence of pictures (or frames) of a scene captured at a given time produces a basic 

single view video, denoting a frame rate providing to the viewer the sensation of motion. 

The frame rate can vary in frames per second (fps) depending on the predefined 

requirements. The picture is a compact by a given number of dots known as picture 

elements, i.e. pixels (Richardson, 2010). The video resolution, is the number of pixels in 

each frame, i.e. the number of horizontal and vertical pixel lines. The resolutions depend 

typically on the target application. Some examples of applications include mobile devices 

that handle with low resolution and low frame rate sequences (as 480p at 24 fps) while 

home cinema targets higher resolution and higher frame rates (as HD1080p at 60 fps) 

(Pourazad, et al., 2009).  

A different representation of color spaces is used to represent raw or encoded videos, 

while the most usual are the RGB (Red, Green, Blue) and YUV standard (Sullivan, et al., 

2005). The reason is that most of the regular computer monitors operate at the RGB space 

while most of video coding standards work over the YUV space. As the RGB, three 

channels composes the YUV space: one channel dedicated to luminance (Y) and two 

chrominance channels (U and V). The reason for adopting the YUV color space for video 

coding is its smaller correlation between color channels making it easier the coding of 

these channels independently. Considering that the Human Visual System (HVS) is more 

sensitive to luminance when compared to chrominance, so, it is possible to reduce the 

amount of information in the chroma channel with reduced effect on the overall 

perception. The reduction of chroma information is performed by using a technique of 

sub-sampling (also known as pixel decimation) (Sullivan, et al., 2005). The most popular 
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color sub-sampling in video encoding is the pattern YUV 4:2:0 that stores one U and one 

V sample for each four luminance samples, reducing in half the total amount of raw video 

data (Richardson, 2010). 

Block coding is the base of all of the current well-known video encoding standards. In 

other words, they just divide each frame into pixel blocks to encode the video in minor 

pieces (Zatt, et al., 2007). These blocks are named accordingly to the standard. In the 

H.264, macroblock (MB), while in the state-of-the-art HEVC it is called coding unit (CU). 

In this thesis, basic unit (BU). The H.264 standard uses MBs with blocks of 16x16 luma 

pixels and the associated chroma samples (see Figure 2.1). An encoded group of this 

block is called slice (Wiegand, et al., 2003). One or more MBs, contiguous or not, forms 

the slice. In the same way, one or more slice of the same type forms a frame. In turn, each 

slice can be classified mostly in one of three different types: Intra (I), Predictive (P) and 

Bi-predictive (B) slices. Figure 2.1 is composed of three slices being one contiguous 

(Slice 0) and two noncontiguous slices (Slices 1 and 2). Note that the terminology used 

here is based on the H.264 standard and is directly applicable to the Multiview Video 

Coding standard either (Richardson, 2010) (JVT, 2009). 

Frame

MB0 MB1 MB2

...

Slice 0

Slice 1

Slice 2

MB

1
6
 p

e
l

16 pel

 

Figure 2.1: Macroblocks and slices possible distribution in a frame.  

Source: (Zatt, et al., 2010) 

To understand the difference in the slice types it is necessary to consider the two 

primary prediction modes that were firstly defined in the H.264 standard and adopted by 

the state-of-the-art video encoder (HEVC). The intra-frame prediction only exploits the 

spatial redundancy by using neighboring pixels to predict the current MB (Wiegand, et 

al., 2003). The inter-frame prediction uses the similarity between different frames by 

using areas from other frames, called reference frames, to better predict the current MB. 

Intra (I) macroblocks use the intra-frames prediction information while predictive (P), 
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and bi-predictive (B) macroblocks use the inter-frame prediction. Particularly, while P 

macroblocks only use past frames as a reference (in the time of the video sequence), the 

B macroblocks can use frames from the past, future (due to IBP structure) or both as 

references. The intra slices are formed only by I MBs. Predictive slices support I and P 

macroblocks, and Bi-predictive slices support I and B macroblocks as observed by 

(Richardson, 2010) and (JVT, 2009).  

2.2 Multiview Video Coding Properties 

The multiview video sequence is composed of a finite number of single view video 

sequences captured from independent cameras in the same 3D scene (Merkle, et al., 

2007), even they are arranged in a particular set up, and this scheme information is 

required to provide the best encoding results. In this way, usually, these cameras are 

carefully calibrated, synchronized and positioned. Typically they are in a parallel array of 

one or two dimensions. However, there are systems where the cameras are placed in arch 

or cross shapes (Kauff, et al., 2007). The spacing between camera is typically 5cm, 10cm 

or 20cm for most of the available test sequences (Su, et al., 2006). In Figure 2.2 a 

multiview video with four views and the captured frames along the time axis are 

presented. 

...

...

...

...

TimeV
ie

w

 

Figure 2.2: Multiview video sequence 
Source: Modified from (Zatt, et al., 2010) 

Figure 2.3 presents a complete multiview system required to capture, encode, transmit, 

decode and display the multiview videos (Chen, et al., 2009). The sequence is first 

captured and encoded by an MVC encoder firstly encodes the obtained sequence to 

decrease the amount of data to be stored or transmitted. Then, the generated bitstream it 
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shall be forwarded by using broadcast, internet or can be stored in a media servers or local 

storage. At the decoder side, the bitstream, or part of it, is decoded and displayed 

according to the displaying technology available at the receiver end. If the target is a 

simple single view display, the decoder will consider only the base view that is decodable 

with a regular Advanced Video Coding (AVC) video decoder. If the application is a Free 

Viewpoint Television (FTV) system, the user selects the desired viewpoint within the 3D 

scene, and the video decoder selects which view to decoding. For multiview displays, all 

the views displayed are decoded added by the views used to reconstruct them. 

 

Figure 2.3: Multiview video capture, (de)coding, transmission and display system 
Source: (Chen, et al., 2009) 

The most important scenarios to display a multiview stream are the Three Dimensional 

Television (3DTV) and the FTV. Three Dimensional Television is the extension to the 

traditional 2D with the viewer depth sensation made possible (Smolic, et al., 2007). In 

this kind of application, multiple views are decoded and displayed simultaneously. The 

simplest 3D displays are stereoscopic that show two simultaneous views but usually 

require the use of a special glass to provide 3D sensation. In another hand, the evolution 

is the auto-stereoscopic displays that eliminate the need for glasses. Real multiview 

displays can decode and show a higher number of views at the same time increasing the 

observer freedom allowing head parallax (i.e. the viewpoint changes when the observer 

changes its position) (Pourazad, et al., 2009). This system provides more realism and 
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interactivity to the user. The display technology may vary from 2D televisions to 

multiview displays. 

The encoding process can use different techniques. The most primitive are the so-

called simulcast where a single view video coding standard is used to encode each view 

independently. Figure 2.4 shows the simulcast approach that considers the intra-frame 

prediction and inter-frame prediction (motion estimation - ME) exploiting the spatial and 

temporal redundancy, in the meantime, not considering the disparity redundancy (the 

redundancy between frames of different views). Multiview encoders as MVC uses the 

inter-view prediction (disparity estimation) to obtain an advantage of the similarities 

between these views from the same scene. The inter-view prediction represented by the 

red arrows in Figure 2.4 are responsible for a bitstream reduction of 20-50% for the same 

video quality (Müller, et al., 2013). More details on the multiview tools of the former 

state-of-the-art MVC, coding efficiency and complexity are discussed in the next section. 

...

...

...

...

Monoview

Multiview

 

Figure 2.4: Prediction comparison between monoview (Simulcast) and multiview 
Source: Modified from (Zatt, et al., 2010) 

2.3 Multiview Video Standardization 

Considering the first multiview standard, in a strict definition the Multiview Video 

Coding is not a coding standard but an extension to the H.264/AVC or MPEG-4 Part 10 

(JVT, 2003). The MVC was defined by the Joint Video Team (JVT) in March 2009 (JVT, 

2009). The JVT is the group of experts formed by the Motion Picture Experts Group 

(MPEG) from ISO/IEC and the Video Coding Experts Group (VCEG) from ITU-T. 
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The H.264 and the HEVC standard works over the YCbCr color space. The color 

spaces are also used in different subsampling patterns. Including 4:2:0 (four luminance 

samples for one sample of each chrominance channel), 4:2:2 (two luminance samples for 

one sample per chrominance channel) and 4:4:4 (one luminance channel for one sample 

in each chrominance channel). The supported combinations and a set of tools supported 

depend on the profile of video coding operation (JVT, 2009). 

The first published version of H.264 defines three profiles: Baseline, Main and 

Extended. The first one, the Baseline profile focus on video calls and video conferencing 

supporting only I and P slice and the CAVLC entropy coding method aiming simpler 

coding for power constrained devices. The most popular, the Main profile was developed 

to provide tools for the high definition displaying and video broadcasting. Besides the 

tools defined by the Baseline profile, it also includes the support of B slices, interlaced 

videos, and the most complex CABAC entropy coding. The Extended profile targets 

video that streaming on channels with high package loss and defines the SI (Switching I) 

and SP (Switching P) slices (Richardson, 2010). Finally, the Fidelity Range Extension 

(FRExt) set the High profiles: High, High 10 (in which, uses 10 bits per Y, Cb or Cr 

sample), High 4:2:2 and High 4:4:4 targeting high fidelity videos (JVT, 2009). The state-

of-the-art standard HEVC adopts these set of definitions with reviews. 

The extension of multiview video introduced to the H.264 standard a new set of SEI 

(Supplemental Enhancement Information) messages to simplify parallel decoding and the 

transmission of sequence parameters (JVT, 2009). Additionally, proposing the disparity 

estimation or inter-view prediction (Merkle, et al., 2007). The disparity estimation is the 

most important innovation in the MVC extension that allows the exploration of 

similarities between different views. The focus of this extension is to find the best 

matching for the current macroblock in a reference frame within the reference view. The 

search criteria, search patterns, and objective are similar to the motion estimation. 

However, the behavior of the disparity estimation differs significantly (depicted in 

Chapter 4). 

The bit rate required for coding multiview video with the MVC extension of 

H.264/AVC increases linearly with the number of encoded views. Therefore, MVC is not 

appropriate for delivering 3D content for autostereoscopic displays, due to a lack of depth 
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map processing. Hence, the HEVC standard applies depth maps to de new 3D-HEVC 

standard. 

2.3.1 Multiview Encoding Process in the HEVC 

The HEVC standard targets to process Ultra High Definition (UHD) 3840 × 2160 

pixels videos. 3D video encoding of ultrahigh resolution videos requires an enormous 

amount of computational power and memory. The raw video data of these 3D videos 

ranges from 1Gbps to 15Tbps. Besides this, higher pixel data representations from 8 to 

32 bits pixel to delivery high-dynamic range videos. Moreover, larger image or video 

frame rates are required for such different application areas like 30 to 60 fps for 

automotive and security while 60 to 120 fps for medical imaging. Finally, a higher 

number of views like 2 to 6 in automotive, 8 to 16 in medical teleoperation theaters, more 

than a hundred in football/Olympics stadium lead to a massive data processing 

requirement. 

Depending on the application scenario, video with many views and resolution, 3D 

video encoding requires a significant computational power of several thousand of Billion 

Instruction per Second (BIPS) up to a hundred of Tera Operations per Second (TOPS) 

from the underlying platform. This power/processing requirement was increased more 

than five times compared to the previous MVC standard (JVT, 2009). 
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Figure 2.5: 3D-HEVC encoder block diagram  

Figure 2.5 shows the high-level block diagram of the 3D-HEVC encoding process. 

Like all hybrid standards, three phases composes the coding process: prediction, 
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transforms, and entropy coding. The transform and entropy phases are similar to 

H.264/AVC, except for the new coding units (CU) to be encoded by the entropy encoder. 

The main difference from simulcast HEVC is the legacy from MVC where the prediction 

phase that incorporates the inter-view prediction. 

The base view, the first one to be encoded, is encoded in compliance to the HEVC 

standard. So, the prediction has two options, the intra-frame or the inter-frame prediction. 

The complete encoding process is described in this section considering the Main profile 

tools in YCbCr color space with 4:2:0 sub-sampling, while further extensions available 

in the High profiles omitted for simplicity. 

2.4 Rate Control Process 

Usually, multiview video sequences are captured using a high sample rate, over 30 fps, 

to improve the motion flow and give the observer a smoother motion sensation. The high 

frame rate applied implies in a high redundancy or similarity between neighbor frames in 

the time (and also disparity) axis. As noticed in Figure 2.6, frames S0T0 and S0T1 are 

very similar. Therefore, only the differences between them have to be transmitted.  

S0

S1

T0 T1

d1 d2

m1

m2

 

Figure 2.6: Temporal and disparity similarities 
Source: Modified from (Zatt, et al., 2010) 

The algorithm that exploits this inter-frame similarity is the motion estimation (ME). 

It searches in the temporal neighbor frames, known as a reference, the region that 

represents the best match for the current block or macroblock (Zatt, et al., 2010). Once 

the best matching block is found, a vector pointing to that position, the motion vector 
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(MV) is generated. Consider, for example, a background region (one of the yellow boxes 

in Figure 2.6); there is no motion between T0 and T1, so the motion vector m2 is zero. 

The dancers moving (woman’s face in the yellow box) present a displacement along the 

time, this movement is represented by m1. The set of motion vectors of a given frame is 

called motion field and represent valuable information to understand the motion of an 

object as time progresses. 

Despite the high coding efficiency provided by MVC, the transmission and storage of 

3D-videos remain a big challenge, especially for services operating over 

bandwidth/buffer-constrained infrastructures. It becomes even more challenging due to 

changing input video properties, run-time variations on video encoder state, battery level 

and user preferences. Thus, to provide high video quality while meeting channel 

bandwidth/buffering constraints, it is necessary to further optimize the bandwidth usage 

by intelligently regulating the bits allocation. Therefore, a Rate Control (RC) block is 

implemented to dynamically find a good compromise between the coding efficiency and 

video quality by adapting the Quantization Parameter (QP).  

The Rate Control regulates the output coded bitstream to produce high video quality 

at a given target bitrate (Li, et al., 2003). An efficient RC scheme must be able to provide 

increased video quality for a given target bitrate with smooth visual quality variation 

along the time, for different views and within the frames. Also, the RC should keep the 

bitrate as close as possible to the target bitrate (optimizing the bandwidth usage) while 

avoiding sudden bitrate variations. 

2.4.1 Rate Control Related Work 

There are several Rate Control schemes found in the current literature. Most of them 

developed targeting single-view encoders such as H.264 or HEVC. Recently, a few works 

peculiar to the multiview video have been proposed focusing on frame and BU level RC. 

In this section, it is present an overview of the state-of-the-art on Rate Control. 

2.4.1.1 Single-View 

Considering the single-view domain, the majority of proposals are extensions to the 

RC implemented in the H.264 reference software that employs a quadratic model for 

MAD (Mean Absolute Differences) distortion prediction (Li, et al., 2003). However, the 

quadratic model leads to limited control performance, as discussed in (Tian, et al., 2010). 

Aware of this limitation, the authors in (Jiang, et al., 2004) and (Merrit, et al., 2007) 
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propose improved MAD prediction techniques. The scheme presented in (Kwon, et al., 

2007) implements both distortion and rate prediction models while in (Ma, et al., 2005) 

the RC exploits rate-distortion optimization models. A RC based on a PID (proportional–

integral–derivative) feedback controller is presented in (Zhou, et al., 2011). A RC scheme 

for encoding H.264 traffic surveillance videos is proposed in (Wu, et al., 2009), which 

uses RoI to highlight regions containing significant information. In (Agrafiotis, et al., 

2006), the technique is used to highlight preset regions of interests (RoI) using priority 

levels. However, single-view approaches do not fully consider the correlation available 

in the spatial, temporal and view domains and, consequently, cannot effectively predict 

the bit allocation or distortion resulting in inefficient RC performance. Finally, in (Zhang, 

et al., 2017) a new R-D model is proposed by classifying blocks into different depth and 

ROI groups. Moreover, a machine learning approach is applied to enhance the accuracy 

of the distortion estimation. 

2.4.1.2 Multiview 

The majority of RC proposals targeting multiview video are based on a simple 

extension of single-view approaches (Li, et al., 2003) and are still unable to exploit 

multiview properties entirely. Novel solutions, however, have been proposed and most of 

them are limited to frame level. In (Yan, et al., 2009) and (Yan I, et al., 2009) the 

information from previously encoded frames is used to predict the current frame QP 

accurately. But these are clear solutions unable to adequately handle the complex 

Hierarchical Bi-Prediction (HBP) structure of the multiview video, limiting the number 

of input samples and the Rate Control learning. The scheme in (Xu, et al., 2011) considers 

a single fixed HBP structure and does not consider the inter-Group of Picture (GOP) 

correlation. These limitations at frame level are partially addressed in (Vizzotto, et al., 

2012) and extended to deal with any possible HBP structure in (Vizzotto, et al., 2013). 

In (Su, et al., 2014) it is proposed a dynamic adaptive rate control system and its 

associated rate-distortion model for the High-Efficiency Video Coding (HEVC) 

multiview video. The work presents evaluation in Rate of Quality of Experience model 

over a subjective test. The (Lie, et al., 2014) paper presents a new 3D video encoding 

system featuring 3D quality optimization and joint rate control between color and depth 

components. The Support Vector Regression (SVR) model presented in the paper show 

relevance with results considering specific "IPPP..." structures (Song, et al., 2016) 

proposes an improved Largest Coding Unit (LCU) level rate control algorithm for the 3D 
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video. The proposed algorithm includes bit allocation for extended views in combination 

with temporal and inter-view MAD predictions. Finally, (Tan, et al., 2017) presents an 

inter-view dependency-based rate control (RC) algorithm for 3D-HEVC. The authors 

present a complete scheme of rate control restricted for frame level, including bit 

allocation, quantization parameter, and depth level. 

As discussed, to deal with distinct image regions within a frame there is a need for a 

BU/CU-level Rate Control. Moreover, to find an optimal global solution a common 

frame- and BU-level Rate Control scheme must be designed. Recent works have proposed 

solutions for the BU-level RC in MVC and CU in 3D-HVC. In (Park, et al., 2009) another 

extension to the quadratic model (Li, et al., 2003) is proposed using the classic MAD 

prediction to set the QP value and, consequently, falling in the problem of not considering 

MVC/3D-HEVC view domain. The authors of (Lee, et al., 2011) use the concept of RoI, 

based on the Just-noticeable difference (Liu, et al., 2010), to determine relevant regions 

and allocate more bits to them. However, this solution does not employ feedback-based 

control and just considers the coding information from the reference frame. 

To cover the gap between frame-level and BU-level Rate Control and address the 

limitations inherent to the state-of-the-art solutions it is required a dynamically adaptive 

Rate Control Scheme able to jointly consider all Rate Control actuation levels to provide 

optimized bandwidth usage (bitrate allocation) and similar video quality in spatial, 

temporal and view domains. 

In this thesis, it is inherited the proposed Hierarchical Rate Control (HRC) for 

Multiview Video Coding (Vizzotto, et al., 2013) that employs a joint solution for the 

multiple levels of Rate Control. The proposed HRC uses a Model Predictive Control 

(MPC)-based Rate Control that jointly considers GOP-level and frame-level stimuli to 

accurately predict the bit allocation and define an optimal control action at coarse-grain. 

To further optimize the bit allocation within the frames the HRC implements a Markov 

Decision Process (MDP) to refine the control action at BU-level taking into consideration 

image properties to define and prioritize Regions of Interest (RoI). Finally, novel 

Reinforcement Learning techniques are used to feedback MPC and to update the MDP 

states transitions probabilities. 

• MPC-based frame-level Rate Control: It is responsible for predicting the bitrate 

allocation and defining an optimal QP value for the current frame while minimizing 
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a performance cost function. The proposed MPC-based RC deals with multiple 

stimuli superposition building the input horizon using previously encoded frames 

from temporal and view neighborhood. The proposed scheme also incorporates the 

GOP-phase for accurate bitrate prediction. 

• MDP-based Basic Unit-level Rate Control: The BU-level RC receives the QP 

defined at frame level and adjusts the QP for each BU. The proposed Markov 

Decision Process-based RC takes the decisions over a map of states based on a set of 

possible actions (QP adaptations) and the associated rewards. The map of states is 

linked to the texture-based map of Regions of Interest and provides the structure to 

make decisions. 

• Coupled Reinforcement Learning: It is responsible for adapting MPC and MDP 

models to the dynamic system behavior. After an action is taken at BU-level, the RL 

reads the system response and, updates the transition probabilities and the associated 

rewards in the MDP model. Once the frame is fully encoded, the resulting map of 

states is used to update the fame-level MPC. This strategy integrates frame-level and 

BU-level guaranteeing consistency and avoiding modeling mismatches.  

Summarizing, the available Rate Control techniques do not fully exploit the correlation 

potential available in the spatial, temporal and view domains of MVC and 3D-HEVC. 

Also, they are unable to adapt to multiple HBP structure and cannot employ the inter-

GOP periodic behavior for RC optimization. 

2.5 Workload Balance and Thread Management in HEVC 

 The reference software for 3D-HEVC video encoder (3D-HEVC-Software) adopted 

the wavefront based solution (Zhang, et al., 2014) developed to improve the parallelism 

in HEVC. However, this approach does not consider the disparity and the scalability of 

3D video content. 

2.5.1 Related Work for Workload Balance 

Recently, state-of-the-art works looked into the workload balancing and complexity 

management problems for single view video coding. In (Correa, et al., 2011), the authors 

propose a complexity control addressing power-constrained devices. In (Shafique, et al., 

2010) an adaptive complexity reduction scheme using mode exclusion is presented for 

earlier H264/AVC. Therefore, in (Khan, et al., 2013) the authors present a collaborative 

complexity reduction targeting the Intra-mode of HEVC. In (Sanchez, et al., 2014) the 
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authors present complexity reduction considering depth maps of Intra mode 3D-HEVC. 

Finally, in (Kang, et al., 2014) the authors present a low complexity scheme considering 

the disparity modes of 3D content by exploiting neighbor blocks. However, this work 

does not present any concern with thread allocation nor power efficiency. So, to fully 

utilize the underlying resources (for power-efficiency), the challenge is to balance the 

workload of 3D-HEVC among every core by intelligently regulating the allocation of 

processing jobs to the associated threads. Therefore, a thread manager is required, which 

should dynamically find a good tradeoff between the coding/power efficiency and the 

video quality by adapting the resource allocation. This problem has not yet been 

addressed by state-of-the-art works towards parallel 3D-HEVC systems. 

This work aims to reach high throughput using parallelized multiview video encoder 

on a multi-core framework while upgrading the power utilization of the framework. It is 

introduced a thread management plan to adaptively disseminate the workload of 3D-

HEVC as specific occupations among parallel threads. The objective is to adjust the 

workload and likewise tune the voltage-frequency of the cores, considering that the end 

goal of the power utilization of the multi-core framework is limited. Furthermore, it is 

employed application-aware with content-aware complexity management scheme that 

adaptively tunes the application’s parameters at runtime. In summary, it is proposed a 

Workload Balanced Thread Management that is a technique to workload balancing and 

dispatch encoding jobs to respective threads, such that the application’s throughput 

requirements are met. Moreover, a Run-time Power Manager works to optimize the 

voltage-frequency levels of each core individually in the multi-core system, this action it 

is enough to provide the workload allocated to an individual core.  

Moreover, an efficient resource allocation scheme for 3D-HEVC must be power-

efficient while delivering smooth visual quality. Since the workload of 3D-HEVC is 

considerable, this system must exploit the application-specific properties (e.g., tuning 

application’s configurations like quantization levels) to achieve maximum power 

efficiency while meeting given constraints (i.e. target bitrate). However, the challenge 

remains to find the application’s knobs which impact the power (or performance) of the 

3D-HEVC video encoder the most, appropriate configuration setting and addressing the 

workload variations associated with these knobs.  
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3 MULTIVIEW ENCODING ANALYSIS  

This chapter presents an overall analysis of the multiview encoding process while 

observe and evaluate the high related correlation available in the 3D-neighborhood of a 

multiview video sequence. The 3D-neighborhood is defined by the three following 

domains: spatial, temporal and disparity (or view). For each of the domain, it is evaluated 

the correlation of a set of macroblocks in relation to the current one.  

3.1 Multiview Video Characteristics and Observations 

In observations presented by (Zatt, et al., 2010) it was noticed that the same objects 

present in a 3D scene are typically spotted in different views (except for occlusions). 

Figure 3.1 presents different views in S0 to S7 of a multiview video sequence while T0 

to T8 are the temporal frames for each view and I, P and B are the types of each frame: 

intra, predictive and bi-predictive. Moreover, the motion sense spotted in one view is 

directly related to the motion perceived in the neighboring views (Deng, et al., 2009).  

Considering the pattern of 3D videos with parallel cameras, the motion field is similar 

in these views (Kim, et al., 2007). In the same way, the disparity of some object perceived 

in more than one camera remains the same for different time instances where motion 

occurs. Furthermore, for other kinds of motion the disparity is highly correlated. The same 

observation has been carried out by (Kim, et al., 2007) (Deng, et al., 2009) (Shen, et al., 

2010). The next sections discuss and detail the three correlation domains available in a 

multiview video sequence. 

3.1.1 Spatial Domain 

The spatial domain associated to Intra is a correlation that is related to the similarity 

within a frame/picture. The previous picture and video coding standards such as 

JPEG2000 and H.263 were able to exploit the pixel similarity between the neighbor 

blocks in the image. This kind of behavior is a consequence of the fact that neighbor MBs 

tends to belong to the same image object or regions and, consequently, present the same 

video properties. Some exception occurs, one of them happen in object borders were the 

image properties may change abruptly. Using the example in the previous Figure 3.1, all 

the MBs in the white background share the same video properties. The same happens for 



 

36 

the MBs within one of the objects. The discontinuity happens when an object border is 

found. 
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Figure 3.1: Multiview coding structure with detailed Motion and Disparity Vectors 

representation. 
Source: (Zatt, et al., 2010) 

In this evaluation, the interest is not to exploit the pixel-level correlation but the 

correlation of coding information as a coding mode, motion vectors, and disparity vectors. 

In the H.264 standard, some techniques try to exploit this kind of correlation, the 

differential coding of intra prediction modes inside a macroblock is a good example. 

These techniques corroborate to the observations that there is a high correlation between 

MBs in the neighborhood. It is important to note that for the focus of this analysis it is 

referred to the spatial correlation as one dimension, but it is composed of two dimensions, 

the width, and height of a picture. 

 

3.1.2 Temporal Domain 

The temporal correlation represents the similarities between different frames in the 

same view of a video sequence. Since the usual sample rate for standard and high 

definition videos is equal or higher than 30 frames per second, the objects of a given 
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frame are usually present in neighbor temporal frames with a displacement that depends 

on its motion. Consider the frames S6T3 (view 6, time 3) and S6T4 (view 6, time 4) in 

Figure 3.1; the same objects seem in both frames with a small displacement. Each object 

has the same image properties along the time. Thus the coding information should be 

similar. In other words, for the same object at the time, the same set of coding methods 

and motion intensity tend to be used. The correlation is lost when there is an occlusion, 

or the object moves out of the captured scene. 

In the same way to the spatial correlation, there are tools enabled to exploit the 

temporal correlation at the pixel level, i.e. the motion estimation. At the coding 

information level, an attempt to use this correlation was proposed in the H.264 standard 

by using the direct prediction for motion vectors. This prediction used the collocated MB 

motion vector to predict the current one.  

 

3.1.3 Disparity Domain 

The multiview video introduced the whole new domain: disparity. This domain refers 

to the similarities between frames in different views. The redundancies at the pixel level, 

are exploited by the disparity estimation tool. However, no tool can exploit this 

correlation at the coding information level. 

As shown in Figure 3.1 in the frames S6T4 (view 6, time 4) and S7T4 (view 7, time 

4), the same objects are present in the neighbor views displaced by the disparity vector. 

Since they are the same objects, the same image properties are shared, and the same 

coding information tends to be used in different views. Moreover, the disparity correlation 

in a neighborhood is lost when a given object is out of the area captured by a given 

camera, or there is an object occlusion for a given camera point of view. 

Aiming to obtain an accurate evaluation of the possible correlation for the primary 

purpose of this work, an extensive analysis of multiview videos were performed. For this 

analysis, it is used different multiview video sequences following the MVC test 

recommendation by JVT (Su, et al., 2006). These sequences have the coding structures 

similar to the one presented in Figure 3.1. In the next section, the multiview video 

encoding process analysis is performed for both Rate Control and Workload Distribution 

focus. 
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3.2 Multiview Video Encoding Process Analysis 

To analyze the complexity of multiview encoding, this work focus on the processing 

analysis, using the reference software for the well know standards. For efficient 

compression, the software offers multiple ways of encoding a macroblock. These include 

a choice of different macroblock partition sizes, prediction directions, reference frames 

and search window sizes. In the standard implementation, all the possible options are 

exhaustively checked, and the ones resulting in the lowest rate-distortion cost are finally 

selected. 

The large correlation space in the multiview to be evaluated and potentially used to 

improve the efficiency encoding process over multi-core platform and the smooth visual 

quality by using schemes in Rate Control, it is presented a detailed analysis of this 

correlation. 

A visual evaluation is performed to detect the typical coding behavior for the different 

block of coding units characteristics considering video properties, coding variables and 

neighborhood properties in the three correlation domains: spatial, temporal and disparity. 

This visual evaluation will be the input to the statistical analysis that quantifies the 

correlation within the neighborhood using video properties as additional information to 

smartly predict the coding properties of the current block of coding. The statistical 

analysis must consider different video sequences, quantization parameters (QPs) and 

encoder configuration scenarios to provide data for accurate decision-making at the 

algorithm design phase. 

3.2.1 Rate Control Analysis  

In this section, it is presented a detailed bitrate distribution analysis to provide a better 

understanding towards the bitrate distribution during the MVC encoding process and its 

correlation with spatial, temporal and view neighborhood. The analysis is presented in a 

top-down approach starting with the view-level related discussion, following to frame-

level and concluding with BU-level considerations. In this way, it is used eight views of 

the “flamenco2” VGA video sequence encoded at a fixed QP, that is, without Rate 

Control, for an IBP view coding order (0-2-1-4-3-6-5-7) and Hierarchical Bi-prediction 

(HBP) at the temporal domain, as depicted in Figure 3.1. One Basic Unit is equivalent to 

one Macroblock (MB). 
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Figure 3.2 shows the uneven bitrate distribution along different views. This 

distribution is highly related to the prediction hierarchy inside a Group of GOP (GGOP). 

The View 0 or Base View is encoded independently with no inter-view prediction. It leads 

to reduced possibilities of prediction and, consequently, worse prediction, more residues, 

and higher bitrate. B-Views (View 1, 3 and 5) fully exploit the inter-view correlation by 

performing disparity estimation (in addition to spatial and temporal predictions) to upper 

and bottom neighboring views. This increased prediction decision space results in 

improved prediction quality and tends to lead to reduced bitrates. P-Views (View 2, 4, 6, 

and 7) represent the intermediate case performing disparity estimation about a single 

neighboring view. P-Views typically present bitrate in the range between Base View and 

B-Views bitrates. Note, in Figure 3 the View 7 is a P-View, but its reference view is closer 

if compared to other P-Views. While View 2 is two views distant to its reference view 

(View 0), View 7 is just one view distant to View 6. Typically a reduced bitrate is required 

for View 7 due to a relatively better disparity estimation prediction. 

The bitrate relations associated to prediction hierarchy, however, are not always 

correct and vary with the video/image properties of each view. For instance, in the 

example provided in Figure 3.2, View 6 (P-View) present reduced bitrate to View 1 and 

View 3 (both B-Views). Thus, we can conclude that even employing Bi-prediction at 

disparity domain the View 1 and 3 are harder to predict to View 6 and produce higher 

bitrate. A similar observation is the increased bitrate generated by View 7 if compared to 

other P-Views. Reduced bitrate is expected for View 7, but increased bitrate is measured. 

These observations show that in addition to the dependence on the prediction structure 

(as discussed above), the bitrate distribution has a high dependence on the video content 

of each view. Hard-to-predict views typically present high texture and/or high 

motion/disparity objects and require more bits to reach similar video quality. 
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Figure 3.2. View-level bitrate distribution (Flamenco2, QP=34) 
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The bitrate distribution at frame level presented in Figure 3.3 shows that inside each 

GOP the frames that give higher bitrate are located at lower hierarchical prediction levels. 

This is related to error propagation and the distance of temporal references, the farther 

the reference, the harder to find a good prediction. Therefore, more error is inserted 

resulting in higher bitrates. In B-Views this effect is attenuated once these views are less 

dependent on the temporal references due to the higher availability of disparity references. 

Figure 3.3 illustrates that for neighboring GGOPs the frames at same relative position 

exhibit similar and periodic rate distribution pattern, the GOP-Phase. 
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Figure 3.3. Frame-level bitrate distribution for two GGOPs (Flamenco2, QP=34) 

Inside each frame, the number of bits generated for each BU is also related to the 

video content. Figure 3.4 shows that the similar and low motion/disparity background 

requires lower bitrate if compared to the dancer's region and the textured floor for similar 

quality. However, the Human Visual System (HVS) requires a higher level of details for 

texture and border regions to perceive good quality and, consequently, these areas deserve 

higher objective quality. Therefore, textured regions must be detected and receive further 

increased the number of bits during the encoding process through QP reduction. 
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 Figure 3.4. Basic Unit-Level bitrate distribution (Flamenco2, QP=34) 

 

Summarizing the Rate Control analysis conclusions: 

• The frame-level bitrate distribution depends on the prediction hierarchy and the 

video content of each frame. An effective Rate Control must consider the 

neighboring frames at temporal, view and GOP-phase domains.  

• The video properties have to be considered at BU-level in order to locate and 

prioritize regions that require higher quality. 

 

3.2.2 Workload Distribution Analysis 

The latest High-Efficiency Video Coding (HEVC) standard (Sullivan, et al., 2012), 

introduced in early 2013, aims at doubling the video compression ratio compared to its 

predecessor (i.e. H.264/AVC) (Bossen, et al., 2012). Several new coding tools like the 

recursive partitioning of the Coded Tree Blocks (CTB), additional filters and Intra 

prediction modes lead to improved compression efficiency. However, simulations in 

(Khan, et al., 2013) using reference software (HEVC-Software) show that these 

improvements come at the cost of an increased computational complexity of ~1.7× 

compared to H.264. The following analysis illustrates that this corresponds to an increase 

of 47% in energy consumption. These issues are amplified linearly for simultaneously 

encoding multiple videos/views like in 3D video encoding (see Figure 3.5). Not only the 

data-rate increases sharply, but now, the workload of encoding each video/view must be 

balanced. However, the workload of each independent view may differ by a large amount 

(see Figure 3.5), thus, making workload balancing particularly harder for encoding 

multiple videos/views simultaneously.  
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The 3D version of HEVC standard (3D-HEVC) (Müller, et al., 2013) aims at reducing 

the data rate by 50% compared to HEVC simulcast. It exploits correlations among images 

of the same scene from different views, and compression modes of these views, to 

partially address these issues. However, the increased compression comes at the cost of 

greater complexity (for instance, the complexity increases by 172% for a 2-view encoding 

sequence compared to a single view sequence encoding). 

 

• Target Research Problem and Preliminary Analysis 

Despite the high coding efficiency delivered by 3D-HEVC, the encoding of 3D videos 

while meeting timing deadlines imposes a huge challenge regarding complexity and 

power efficiency. Additionally, varying video properties, run-time encoder state (e.g., 

resources allocated to the encoder by OS), and user preferences, along with the throughput 

constraints of the encoder accumulate towards additional design issues. Besides keeping 

the high video quality needs to be high, the complexity of the encoder should not increase 

beyond reasonable limits, such that 3D-HEVC can be realized on real-world, multi-

camera systems.  
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Figure 3.5: Power and Time-Complexity for “Poznan Hall” sequence performed in 1, 2 

and 4 views for (a) 1 core and (b) 1 view per core. (c) Core usage Encoding time for 4 

views encoding for 1 view per core.  

Parallel processing of 3D-HEVC on a multi-core system can meet these design goals. 

The multi-threaded 3D-HEVC application can divide the workload and assign jobs to 

each thread, to execute in parallel. 
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Figure 3.5 (a) and (b) shows the power and time consumption to encode the 3D video 

sequence “Poznan Hall” in 1, 2 and 4 views using the reference software (3D-HEVC-

Software). Figure 3.5 (a) shows the case when only a single core is allocated to process 

all views, while Figure 3.5 (b) portrays the scenario whereby each view is assigned an 

independent core to realize parallel processing. Figure 3.5 (c) presents the time consumed 

to encode each view on independent cores. As noticed, the core utilization for views other 

than view 0 is less than 10%, denoting that the workload is extremely unbalanced among 

the cores, resulting in low throughput and high (leakage) power consumption. Thus, a 

naïve allocation of cores to each video/view will not solve workload balancing problem, 

and a sophisticated scheme is required.  

 

  



 

44 

  



 

 

45 

 

4 RATE CONTROL ALGORITHMS FOR MULTIVIEW 

VIDEOS 

This Section presents the approach of this work targeting rate control for Multiview 

Video in the Multiview Video Coding standard and the novel control techniques. The 

content of background and MPC controller presented in this chapter were presented in 

(Vizzotto, et al., 2012), the content of the master thesis. Besides the techniques that 

exploit the frame-level rate control distribution along different video sequences is 

fundamental to define an efficient and fast QP prediction, able to provide high precision 

distribution of bitrate at a negligible cost concerning efficiency (rate-distortion tradeoff). 

Additionally, at fine grain level rate control, a novel prediction algorithm is proposed to 

offer adaptivity to the changing scenarios.. 

 

4.1 Background Knowledge 

The next subsections presents the background concepts employed in the proposed 

scheme for rate control in multiview videos. At first, it is introduced an overview and basic 

of the Model Predictive Control, which provides the foundation for developing the frame-

level RC. In the following, it is shown the statistical supporting to the Markov Decision 

Process that is implemented at the fine grain level of RC. Finally, the concepts related to 

Reinforcement learning are introduced. 

4.1.1 Model Predictive Control 

The Model Predictive Control (MPC) present by (Garcia, et al., 1989) and (Morari, et 

al., 1997) has demonstrated to accurately predict the response of multiple stimuli dynamic 

systems such as multiview video encoders by employing the control-theory superposition 

principle (Tatjewski, 2010). It outperforms traditional feedback controllers by efficiently 

integrating input stimuli to state space constrains while providing dynamic flexibility by 

employing phase concept (periodic behavior) through rolling input and output horizons. 

The main goal of the MPC is to define the optimal sequence of actions to lead the 

system to a desired and safe state by considering the system’s feedback to previous states 

and previously taken actions (presented by the conceptual MPC behavior in Figure 4.1). 
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The actions are taken based on the prediction of the future system behavior associated to 

a set of predicted future actions, i.e., accurate prediction leads to better actions. Figure 4.1 

shows how MPC improves the prediction (predicted output) performance with respect to 

the actual system output (reference trajectory) using past knowledge (measured output and 

past control inputs) and predicted future control actions (predicted control inputs). To 

define this sequence of actions the MPC minimizes the performance function presented in 

Eq. 4.1. It minimizes the cost by defining a set of outputs y based on a set of inputs u, 

where u[k + i – 1|k], i = {1,... , m} denotes the set of process inputs with respect to which 

the optimization is performed; u is known as the control horizon or input horizon in the 

MPC theory. The input variation between two contiguous time instants is represented by  

Δu[k + i – 1|k], i.e. Δu[k + i – 1|k]= u[k + i – 1|k]- u[k + i – 2|k]. Similarly, y[k + i|k], i 

= {1,... , p} is the set of outputs, named prediction horizon or output horizon (see Figure 

4.1). The control horizon determines the number of actions to find. The prediction horizon 

determines how far the behavior of the system is predicted. m and p are the size of 

control/input and prediction/output horizons, respectively. m is the index of input horizon 

while p defines how many outputs are predicted, i.e. how many future actions are 

considered in the optimization processes. wi is a weighting coefficient that denotes the 

relative importance of a given output with respect to the future control interaction. ri is the 

reference variable, in other words, the value of the reference trajectory (ideal trajectory to 

be tracked) in instant i. k is the horizons index and represents the k-th input/output horizon. 

ySP defines the output set point that limits the prediction horizon. 

 
 

p m
sp 2 2

i i
u k|k u[k p 1|k]

i 1 i 1

min w (y k |k y ) u(r [k i 1| k] )i
  

 

        (4.1)
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Figure 4.1: Conceptual behavior of the Model Predictive Control (Behrendt, 2009) 
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4.1.2  Markov Decision Process 

The Markov Decision Process (MDP) is a mathematically-based optimization model of 

discrete state, sequential decision making in a stochastic environment that depends only 

on the current state and not on the previous states (Bellman, 1957). However, if a 

controlled MDP is considered the transition probabilities are affected by previous actions. 

In this scenario, applying Reinforcement Learning (RL) can solve MDP with no explicit 

probabilities definition.  

MDP is formally defined by 4-tuples (S,A,P(.,.),R(.,.)) composed by a finite set of states 

S={s0, s1,…}, actions A={a0, a1,…}, rewards R={r0, r1,…} and transition probabilities 

P={p0, p1,…}. The S includes all possible states assumed by the controlled system, actions 

A are the possible acts to be taken by the decision-maker in face of a given system state. 

P(S) is the probability distribution of transitions between system states and, finally, R(S) 

is the reward related to a given action for a given state. At each discrete time step t the 

process lays in a state sS and the decision maker may choose any action aA that will 

lead the process to a new state s’S providing a shared reward Rat(s,s'). The rewards are 

used by the decision maker in order to find an action that maximizes, for a given policy, 

the total accumulated reward, as shown in Eq. 4.2 (where 0≤ γ ≤1 denotes the discount 

factor). Eq. 4.3 defines the probability Pa that an action a in the state s at time t will lead 

to state s’ at time t+1. In a controlled Markov process, the probabilities are obtained 

through the state change rewards defining a Markov cyclic chain. 

a t t ts s
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t 0

( )R ,

 

(4.2)
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 4.1.3 Reinforcement Learning (RL) 

The reinforcement learning model is an agent to improve autonomous systems 

performance through trial and error by learning from previous experiences instead from 

specialists (Barto, 1994), that is, the agent learns from the consequences of actions. In 

reinforcement learning model the agent is linked to the system to observe its behavior and 

take actions. RL theory is based on the Law of Effect, that is, if an action leads to a 

satisfactory state the tendency to produce this action increases. For each discrete time step 

t the RL agent receives the system state sS and rewards R(S) to take an action aA that 

maximizes the reward Rat(s,s'). This action may lead the system to a new state s’S and 

produce a system output, in terms of a scalar reinforcement value, used to define the new 
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reward Ra(t+1)(s,s') according to Eq.4.4. The general representation of reinforcement 

learning value is given by RL in Eq.4.5, where U denotes the function that changes the 

system state from s to s’ and hR denotes the learning history. 

   ' '
a(t+1) ats s s s RL , RL , RL

 

(4.4)

 
 ' RRL U s s h ,

 

(4.5) 

 

4.2 Hierarchical Rate Control 

The Hierarchical Rate Control model is presented originally in (Vizzotto, et al., 2013), 

adapted to the current version of the encoder. The overall flow of the Hierarchical Rate 

Control (HRC) for multiview videos is presented in Figure 4.2. The HRC is responsible 

for controlling the encoder output bitrate, in accordance to the user preferences and/or 

channel limitations, by monitoring the multiview video encoder and actuating through 

Quantization Parameter (QP) adaptation. It can be conceptually divided in two actuation 

levels: frame-level (that encapsulates GOP and frame levels) at coarse grain and; at fine 

grain level (FG-Level). The contributions of this thesis it is majority in the FG-Level. 

The multiview encoder receives the video sequences as input along with all user 

preferences and configurations to start the encoding process. The Model Predictive 

Control-based frame-level RC models the system behavior considering the encoding 

hierarchy and predicts the bitrate allocation at frame-level considering temporal, view and 

GOP-phase (inter-GOP) correlation. It defines the optimal QP for the predicted frames, 

the base QP, and forward it to the Markov Decision Process-based Fine Grain level RC. 

At FG-level, a fine grained-decision is taken to define the QP variation considering the 

image properties in terms of Regions of Interest. The decision maker considers the 

previous knowledge, by implementing the Reinforcement Learning method, to increase or 

decrease the QP in relation to the base QP. To couple the frame- and FG-level in HRC, the 

Reinforcement Learning unit feedbacks both the MPC and the MDP to keep system 

consistency and avoid mismatches. The HRC employs an observer unit able to read, store 

and manage the multiview encoder feedback (generated bitrate) and variables that define 

the encoder system state (target bitrate, QP, input constraints, etc) in order to support the 

bitrate prediction and actions/decision taking. Also, an image properties extractor is 

employed to build the Regions of Interest map used for FG-level RC. 



 

 

49 

 

Multiview 
Video 

Encoder

Model

Optimizer

Observer
&

History Manager

Multiview 
Videos

QP= f(Tbr) GBR

Tbr

Frame-Level Rate Control

Reinforcement 
Learning 

Fine Grain Level Rate Control
Regions of 

Interest 
(Image Prop.
Extraction)

Markov Decision 
Process 

Model Predictive Control

QPBU

QPFL

Constraints
(Channel 

Bandwidth, 
Frame Rate, 

GOP Length…)

QP QPUFL

 

Figure 4.2: Hierarchical Rate Control system diagram  
Source: The Author 

The different components of the Hierarchical Rate Control scheme is discussed in the 

following subsections along with the model equations that describe the whole controller 

behavior. For simplicity it is provided in Table 4.1. 

4.2.1 Frame-Level Rate Control 

As discussed, the main goal of a Model Predictive Controller (MPC) is to predict the 

future behavior of a system state and/or output over a finite time horizon as well as 

compute the future input signals at each step. These actions occur by minimizing a cost 

function under inequality constraints on the manipulated control or the controlled variables 

(Zheng, 2010). In this work, the MPC operates at frame level predicting the bitrate and 

providing the quantization parameter (QP) for each frame to be encoded. The rate 

controller tries to define a sequence of actions and then induces the system to a desired 

state while the negative effects of this action are reduced respecting restrictions and taking 
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constraints into account. In other words, the RC defines a QP that optimizes the bandwidth 

or bit allocation while maximizing the visual quality and reducing bitrate/quality sudden 

variations. 

Table 4.1: Variables Definitions 

Variable Description 

Frame-Level Rate Control 

TBR Target bitrate for one frame (bits per frame) 

BW Channel bandwidth (bits per second) 

FR Frame rate (frames per second) 

BA Bit allocation (absolute) 

wI, wP, 

wB 
I, P and B weight respectively (absolute) 

GOP
w  Average w for the current GOP (absolute) 

LGOP GOP Length (# of frames) 

ω Frame weight (absolute) 

NA Number of anchor frames (# of frames) 

BR Bitrate (#bits) 

HQP QP History (absolute) 

QPFL Quantization Parameter at Frame-level RC (discrete) 

QPCLP Quantization Parameter in last process (discrete) 

QPst Initial Quantization Parameter (discrete) 

Q 
Quantization Parameter in the optimization loop 

(discrete) 

NFR Number of frames encoded in the GOP 

Fine Grain-Level Rate Control 

MS RoI- Normalized Variance Matrix (absolute 0 – 1) 

M(δ) MDP Reward Matrix (matrix of absolute RD) 

σ2 Variance of a given BU 

µ Average of BUi 

NBU Number of BUs 

QPUFL 
Updated Quantization Parameter at Frame-level RC 

(discrete) 

QPBU Quantization Parameter at BU-level RC (discrete) 

TBR Target bitrate for one frame (bits per frame) 

RS BU Reward “Shared” (absolute) 

RLearn Reinforcement Learning Value (vector of HR) 

f(s,δ) Probability of state transition 

PR 
Probability results from RL vector of “phase” actions. 

Actions of RL in a range of at least 2 horizons.  

Δ δ Variation between actual BU δ and the δ of anchor frame 
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Mf Variation of variance matrix values 

HR History of RL 

GBR Generated bitrate (bits per frame) 

U(s,s’) Function to update the matrix from s to s’ 

 

The bitrate prediction is performed considering the neighborhood correlation at 

temporal, view and inter-GOP domains. As discussed before, there is a high correlation in 

the temporal and view neighboring frames inside the same GOP. Moreover, there is also 

a periodic pattern that repeats at GOP level, the GOP-Phase. With the MPC-based rate 

control enabled, the scheme is able to exploit these correlations in order to accurately 

predict the future bitrate. Figure 4.3 represents the previously encoded frames used for 

prediction (control horizon) and the current frame to be predicted (prediction horizon) for 

a given multiview video encoder prediction structure. As depicted in Figure 4.3, the input 

horizon is composed of disparity and temporal neighbor frames in the same GOP plus 

frames belonging to the same temporal instant from the previous GOP. The output horizon 

is composed by the current frame to be encoded. This method extends the work proposed 

in (Vizzotto, et al., 2012) by employing a variable weighting factor for frames considering 

their positions in relation to the current frame. In (Vizzotto, et al., 2012) the weight of the 

feedback of each frame in the control horizon was defined based on its frame type (I, P or 

B) and its relative position inside a fixed GGOP structure.  

The variable weighting factor is calculated considering the number of references and 

their distance to the current frame. With this extension the fame-level RC may be directly 

implemented in any hierarchical bi-prediction structure (HBP) while still catching the 

GOP-phase correlation. 
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Figure 4.3: MPC-based RC Horizons.  
Source: The Author 
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Figure 4.4 shows the MPC optimization process and how the component functions 

interact with each other. The Rate Model generates, based on the neighborhood 

correlation, a bitrate prediction for the current frame, the target bitrate. Based on the 

prediction an optimal QP is defined and the internal model is updated. The system 

feedback and the actually used QP defined in the fine grain level RC are received through 

the observer. Figure 4.4 illustrates the connections of different components of the proposed 

control scheme, such that important model equations are mentioned in their corresponding 

boxes. This provides the inter-linkage of different equations.  

Figure 4.4 maps the real functions of the proposed model to the MPC conceptual model. 

The input horizon is the past TBR given by Eq. 4.6. The output horizon is represented by 

the matrix of bitrate variation (ΔTBR) in Eq. 4.12. 
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Figure 4.4: Frame-Level Rate Control Diagram.  
Source: The Author 
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4.2.1.1 Rate Model 

The MPC-based Rate Control defines the target bitrate (TBR(f)) considering the 

bandwidth (BW) and frame rate (FR) constrains along with the neighboring frames 

weights (w) and their frames bit-allocation (BA), as shown in Eq. 4.6. The term w*BA 

denotes the weighted bit allocation. 

BR fT   BA( )

BW

FR
w* 

 

(4.6)

 

The feedback and the correlation between frames vary with the type of each frame. The 

bitrate range of distinct frame types (I, P and B) lie in different ranges. Thus, the weighting 

factors for each frame type must be different. A weight (wI) is statically predefined for I 

frames (Li, et al., 2003) while P and B-frame weights (wP and wB) are calculated 

dynamically considering the weights of temporal neighboring frames. Note wP 

corresponds to the weight of the nearest P-frame in the GOP. Eq. 4.7 originally presented 

by (Li, et al., 2003) shows how the weights are calculated considering the HBP in order 

to respect the local linearity inside the current GOP; where GOPw  is the average of w 

computed over all previously-encoded frames in the current GOP, f represents the f-th 

frame of a given type (I, P or B) in the processing order, LGOP denotes the GOP length, 

u=1/(LGOP-1) is defined to provide a clearer representation for Eq. 4.7, and wf-1 denotes 

the weight of the previous frame of the same type. For a smooth weighting propagation, 

w is limited according to a statistically-defined range. 
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(4.7)

 

The target bit allocation (BA) is given by a history-based weighted model to optimize 

MPC for best target bit allocation, as shown in Eq.4.8. BA(f-1) represents the bit allocation 

for the last frame of the same type. The original MPC Rate Control proposed in (Vizzotto, 

et al., 2012) was designed to differentiate between anchor and non-anchor frames through 

implementing three weights for the BA definition: anchor ωA, non-anchor ωNA and P/B 

anchor frames ωPBA. However, this  thesis extends the model to capture the differences 

between all frames according to their hierarchical level in HBP and their number of 

references (0..2 temporal + 0..2 disparity reference frames). The goal is to calculate this 

weight considering the position of the current frame in the GOP and the number of 

reference frames used by this frame. Note, frames with different number of references 



 

54 

have a distinct interaction with the GOP bitrate allocation, i.e., the more references used 

by a frame, the lower the bitrate tend to be (because of more efficient prediction) and this 

behavior must be considered during bitrate prediction step.  

This extension allows the HRC to better respond to variations inside the GGOP and to 

become more flexible by adapting, without further extensions, to any HBP structure. The 

weights m ,n
i , j  (where i and j are the frame time instant and view; m and n denotes the number 

of references in the temporal and view domains, respectively) calculation is presented in 

Eq. 4.9. The term
X Y

m,n m,n
i , j

m 0 n 0

 
 

   represents the normalized weight of a specific frame with 

respect to the total accumulated weight. The term m,n
i , jBR  represents the bit number of the 

corresponding reference frame. The term  fQPm,n
i , j 1  represents the QP of the previously 

encoded frame within the GOP (i,j) with specific number of references (m,n) in temporal 

and disparity domains. 
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4.2.1.2 Quantization Parameter Definition 

Once the prediction is performed, the RC must define a proper action in terms of QP. 

The QP is determined by summation of all target bitrate (TBR(f)) in the prediction horizon, 

the summation of all generated bitstream in the control horizon (BR), and the history of 

QPs (HQP, harmonic mean of previously-used frame-level QPs within the GOP), as shown 

in Eq.4.10. p and m come directly from the MPC definition in Eq. 4.1 where p is the index 

associated to the output horizon (target BR for future frames) and m is the index 

associated to the input horizon (past frames BR output). Note, the QP defined in the 

frame-level (QPFL) RC is not directly used by the multiview encoder but forwarded to the 

BU-level RC to refine the QP selection. 

 p m

QP BR(i) (i)i iFL 1 1
QP H T BR

 
   

 

(4.10)

 

To maintain the performance of the proposed MPC controller there is a need to update 

the QP model. For that, the HRC implements an optimization loop with non-discrete steps 
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(k) where QCLP denotes the quantization parameter for the frame coded in the last process, 

i.e., the previous encoded frame. Eq. 4.11 and Eq. 4.12 describe the update process where 

the QP value is constrained to a variation range of ±2 QP points for smooth update. Note 

that unlike QFL, QCLP does not represent the actually used QP in the previous frame. 

Rather it is the QP representation inside the model optimization process of the MPC. 

QPmax and QPmin are the upper and lower bounds for QP values. These limits are defined 

by the application user in order to limit quality boundaries or assumed to be ±4 (for this 

specific implementation) with respect to the initial QP (Qst). In Eq. 4.12, M is the 

transposed matrix of ω multiplied by target bitrate variation (ΔTBR(f)=TBR(f)-TBR(f-1)) for the 

frames belonging to the control horizon. The ∑ operator represents the sum for all 

previously encoded frames from zero to the length (L) of the GOP. ΔQj
k denotes the 

frame-level QP variation between subsequent frames (ΔQj
k=Qj

k -Qj-1
k) while NFR is the 

number of frames already encoded belonging to the GOP. Qst is the initial QP. Note, the 

number of iterations to update is constrained between 1 and GOP/2+1. 
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4.2.2 Fine Grain-Level Rate Control 

As part of the HRC is proposed a FG-level Rate Control employing Markov Decision 

Process along with Reinforcement Learning able to consider the image properties through 

a texture-based Region of Interest (RoI) map, as detailed along this section. 

Figure 4.5 depicts the diagram of the proposed FG-level RC that works as an 

amendment or refinement of the frame-level RC. In order to refine the accuracy of bit 

allocation and provide smooth visual quality, FG-level RC incorporates the concept of 

Region of Interest (RoI) into a Markov Decision Process (MDP). In this case, MDP 

additionally employs Reinforcement Learning in order to adapt to dynamic encoder and 

input variations. At each decision step, the RC monitors the state of the system and 

determines the next action to take based on constraints observations and the control 

policy. Firstly, the HRC defines the RoIs for anchor frames generating a map of weights 

MS that will determine the importance of each BU inside the picture. Secondly, the 
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weights map is linked to a map of states M(δ) in the MDP that corresponds to the QP for 

each BU. The MDP fits to the MVC encoder behavior by providing the structure to make 

decisions partly randomly and partly under a control. Finally, to dynamically adjust the 

matrix of states for next decision, the RL is responsible to feedback the system response 

to the current state for both BU-level and frame-level control. 
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Figure 4.5: Fine Grain Level Rate Control Diagram.  
Source: The Author 

4.2.2.1 Regions of Interest Concepts 

As previously discussed in Chapter 2, frames are composed of regions with distinct 

image properties requiring a variable number of bits to be encoded. Regular video encoders 

use the same QP to encode all Basic Units within a frame leading to inefficient bitrate 

distribution and undesirable quality variations inside the frame. However, it is possible to 

define regions to receive special treatment, the Regions of Interest (RoI), as defined in 

(Lee, et al., 2011), (Agrafiotis, et al., 2006) and (Wu, et al., 2009). The BUs belonging to 

RoIs may be prioritized by the Rate Control unit to protect the quality of those regions. In 

this work, the whole frame is considered to have the same semantic relevance (this leave 

space for further application specific extensions (Wu, et al., 2009)) but regions that present 

a hard-to-predict content must be allowed to use more bits through QP reduction. 

According to the presented analysis, textured regions tend to generate more residue and, 

consequently, require higher bitrate. 
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In this solution, the RoI is determined through a normalized variance map for all anchor 

frames. Eq. 4.13 defines the variance σ2 where ρi denotes the luminance of pixel i and μ 

represents the average luminance of the pixels block. The normalized variance map is 

given by MS in Eq. 4.14, where σ2(BUi) represents the variance of the ith basic unit. N is 

the number of basic units in a frame. Figure 4.6 presents one example of variance map. 

Additionally, HRC also keeps a second matrix of states where each value represents a 

bitrate of a frame inside a GGOP encoding history to incorporate temporal and view 

neighborhood information to the MDP process. The matrixes data are used by the MDP 

and RL to define the rewards associated to each state and action taken by the control. For 

non-anchor frames, the HRC uses statistics of anchor-frames with reinforcement learning 

RLearn. 
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Figure 4.6: Variance-based Region of Interest map (Flamenco2).  
Source: The Author 

4.2.2.2 Markov Decision Process 

The original HRC presented by (Vizzotto, et al., 2013) implements the FG-level RC 

by employing the Markov Decision Process. Considering that other techniques besides 

dynamic programming can be used to handle the control problem and to simplify the RL 

step, MDP stage was restricted to a Partially Observable MDP approach (POMDP-a). 

This method includes restriction to avoid data-intensive computing without side effects 

observed in the final definition of the QP. Traditionally, the MDP works over a matrix of 

independent states Mf(s) representing the QPs of each BU within a frame; this is the same 

action taken in the POMDP-a. The states and transitions modeled are depicted in Figure 

4.7. Each BU has a set of possible actions A with associated rewards RS and transition 
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probabilities f(s,δ). In this model the possible actions are: (i) increment QP (if f(s,δ)≥1), 

(ii) decrement QP (if f(s,δ)≤ -1), and (iii) maintain the QP value defined at frame-level (if 

1<f(s,δ)< -1); see Eq.4.18. A matrix of coefficients M(δ) is used to define the reward for 

each action according to Eq. 4.15. In Eq.4.15, MaxQP represents the value of the maximum 

frame QP within the interval of one GOP length to the past. Note that this is different 

from QPmax, which is a user-provided parameter to restrict the maximum allowable QP 

for quality reasons. The parameter BS denotes the number of generated bits and is related 

to the basic unit in that specific matrix position. The rewards RS are calculated based on 

the RoI map MS, the matrix of coefficients M(δ) and the Reinforcement Learning RLearn, 

as shown in Eq. 4.16. Note that the parameter RLearn is different from RL of Eq. 4.5. For 

each action, there is a probability of transition f(s,δ) defined by Eq. 4.17. Note, f(s,δ) is 

same as Pa. However, Pa denotes the probability in the theoretical model while f(s,δ) 

denotes the probability in this algorithm. Therefore, f (s, δ) is the generic representation 

for any transition according to the MDP theoretical definition while f (si, sj) is this 

mathematical representation for a given transition from state i to state j. The parameter 

denotes the exceeded limit of variation used when a BU receives more than two on 

QP variation reward. The BU-level QP (QPBU) is derived using a process similar to the 

one given in JVT-G012, where the quantization step is incremented or decremented by 

one or left unchanged; see Eq. 4.18. 
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Figure 4.7: Partially Observable Markov Decision Process approach (POMDP-a).  
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4.2.2.3 Reinforcement Learning 

The Reinforcement Learning incorporates the knowledge of previous events in the 

decision-making process through monitoring the multiview video encoder system 

response and updating state transitions probabilities and rewards at both frame- and FG-

level. In this thesis, it was used a linear quadratic model approach based on (Sivan, et al., 

1972) and (Hager, et al., 1998), where the FG-level feedback occurs by an update at the 

history of reinforcement learning HR. So, in Eq. 4.20 it is computed HR
1 considering the 

variation of target bit rate (TBR), sum of all BU level QP values (∑QPBUL) of current 

encoding view (k), sum of generated bitrate at the BU level (∑GBRL) of current encoding 

view (k), and variation of QP at the frame level (QPFL). TBR and QPFL are defined as 

the difference between the two last encoded frames for target bitrate and QP at frame 

level, respectively. QPFL is the basis QP for the whole frame and must be considered when 

taking local (FG level) decision within that specific frame. In this way, this scheme 

accounts for the FG-level history knowledge to enable adaptation of BU-level QP, which 

leads to a reduced Mean Bit Estimation Error (MBEE).  

The main improvement of this thesis considering the technique adopted in (Vizzotto, 

et al., 2013) it is the temporal difference learning given by Bellman equation to solve the 

dynamic decision problem presented with the coupled solution in the Markov Decision 

Process. Eq. 4.21 denotes the state transition policy by giving the final MDP state matrix 

that is used as obtained knowledge for the upcoming frames. The term “1f s,1” 

occurs when we have a scenario without I-P or I-B transition and the result of Eq. 4.17 is 

near to zero. Note that  will be between 0 and 1 and the value of PR will lie between 

±2. It is important to note that although PR denotes a probability, it is represented in the -

2 and 2 range (for implementation reasons) and can be remapped to the (0..1) interval by 

a simple linear scaling where the interval (0..0.25) is mapped to the interval (-2..1), 

                                                 
1 Note, hR corresponds to the history of state changes between S and S’ considering the 

value of the states and state change probabilities. HR also incorporates the history of 
contexts of target bitrate, QPs at FG level and QPs at frame level. 
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interval (0.25..0.5) is mapped to the interval (-1..0) and so on. This is similar to Eq. 4.18 

and Eq. 4.21 where fs,represents a probability remapped to the interval (-10..10). The 

QP of the frame is updated using Eq. 4.21 and calculated according to Eq. 4.19. In Eq. 

4.19, trunc represents the truncation operator, ∑Mf(s) is the sum of all positions in the 

matrix of state transition probabilities and NBU is the number of basic units in the GOP. 

Mf (s, s’) denotes the probability of transition from state s to state s’. QPUFL provides 

feedback to the MPC at frame-level. 
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To find the policy of pi (π) that maximizes the FG-level Reinforcement Learning (given 

by Eq. 4.22) it is used backward solution technique – where E denotes the expected value 

– considering a GGOP as a finite horizon of action. The algorithm used is given by 

function U in Eq. 4.23, where t denotes one frame inside a GGOP, which is composed of 

a set of frames T (t ∈ T), a is the action in the set of actions A, s denotes the states and r 

is the reward while p denotes the probability of transition. 
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4.2.3 Results and Evaluation 

This section presents the experimental results for this work. In the following lines, it is 

described the simulation environment and the experimental setup. Finally, the detailed 

results considering control accuracy, coding efficiency, and video quality are presented 

with in-depth discussion for the view, frame and BU-level perspectives. 

4.2.3.1 Experimental Setup 

The simulation environment is based on the MVC reference software, the JMVC 8.5 

(JMVC-Software, 2012), with the required extensions to implement the HRC and state-

of-the-art solutions. As test sequences eight sequences with 8 views each are considered: 
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four VGA (640 x 480 pixels) sequences - “ballroom”, “exit”, “vassar” and “flamenco2” -

, two XGA (1024 x 768 pixels) - “Breakdancers” and “Uli”, and two HD1080p (1920 x 

1080 pixels) - “GT Fly” and “Poznan Hall2”. The view coding order follows the IBP [2] 

pattern, 0-2-1-4-3-6-5-7, to consider all possible view types (I, P and B-views). The GOP 

size was defined as 8 with temporal Hierarchical Bi-prediction Prediction (HBP) structure 

as recommended by VCEG-AA10 report (Tan, et al., 2005). The Basic Unit is defined as 

one macroblock. All sequences were encoded using four target bitrates along 13 GGOPs 

(105 frames per view); 256, 392, 512, 1024 kbps for VGA; 512, 768, 1024, 2048 kbps for 

XGA; and 1024, 1536, 2048, 4096 kbps for HD1080p. CABAC and FRExt were enabled. 

To provide representative results for a wide range of video content it is selected 

sequences with high (“flamenco2”) and low motion (“vassar”) and with high (“Uli”) and 

low disparity (“vassar”). Also, to guarantee a fair comparison to the state-of-the-art, the 

solutions proposed in the literature were implemented in the infrastructure and evaluated 

under the same settings applied for the HRC. For comparison, well known metrics were 

used to measure the RC accuracy (MBEE), coding efficiency, and objective video quality 

(Bjøntegaard Delta Bitrate and Bjøntegaard Delta PSNR). Additionally, encoded pictures 

are presented to attest the subjective video quality. 

Note that the JMVC has no RC defined or implemented. Therefore, it is not possible to 

set the JMVC encoder to output a given bitrate. However, it is possible (by using 

experimentation) to select the QP value that delivers a bitrate that best matches a given 

target. For this reason the MBEE provided by JMVC is the highest one. Regarding the 

comparison with state-of-the-art, comparisons with both frame-level (Yan I, et al., 2009), 

(Lee, et al., 2011), (Vizzotto, et al., 2012) and FG-level (Li, et al., 2003) rate control 

schemes are provided. For simulations and comparison with state-of-the-art, it is used the 

same configuration file provided by JMVC reference software. For this, it is extended the 

configuration file with an additional subsection Rate Control in the Section “Encoding”. 

4.2.3.2 Control Accuracy and Bitrate Precision 

As previously discussed, the RC is supposed to sustain the bitrate as close as possible 

to the target bitrate (optimizing the bandwidth usage) while avoiding sudden bitrate 

variations. To measure the RC accuracy, that is, how close the actual generated bitrate (Ra) 

is in relation to the target bitrate it is used the Mean Bit Estimation Error (MBEE), defined 

in Eq. 4.24. The mean is calculated over all Basic Units (NBU) along 8 views and 13 
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GGOPs for each video sequence. Table 4.2 presents the accuracy in terms of MBEE (less 

is better) for the HRC compared to the state-of-the-art solutions (Yan I, et al., 2009), (Lee, 

et al., 2011), (Vizzotto, et al., 2012) and (Li, et al., 2003) respectively [a], [b], [c] and [d]. 

On average, the Hierarchical Rate Control provides 0.95% MBEE while ranging from 

0.7%-1.37%. The competitors (Yan I, et al., 2009), (Lee, et al., 2011), (Vizzotto, et al., 

2012) and (Li, et al., 2003) present, on average, 2.55%, 1.78%, 2.03% and 1.18%, 

respectively. This illustrates that HRC scheme performs better than the MPC-only frame-

level RC (Vizzotto, et al., 2012). The superior accuracy is a result of the ability to adapt 

the QP jointly at frame and BU-levels considering the neighborhood correlation and the 

video content properties. 

BUN

t a

BU

i 0 t

R R
MBEE 100 N

R

  
  
 
  (4.24) 

Table 4.2: Control Accuracy comparison 

Target JMVC [a] [b] [c] [d] HRC JMVC [a] [b] [c] [d] HRC
256 268 263 260 262 259 258 4,64 2,63 1,48 2,43 1,17 0,75
392 408 402 397 401 396 395 4,06 2,61 1,32 2,21 1,07 0,78
512 529 523 520 521 518 516 3,33 2,16 1,59 1,83 1,13 0,78
1024 1058 1048 1041 1045 1032 1032 3,30 2,35 1,63 2,04 0,81 0,78
256 267 261 259 258 258 258 4,29 2,10 1,18 0,86 0,88 0,94
392 408 402 397 402 397 396 3,99 2,55 1,36 2,46 1,29 0,92
512 528 523 521 520 519 516 3,21 2,25 1,83 1,65 1,36 0,83
1024 1056 1048 1043 1043 1038 1031 3,14 2,34 1,85 1,90 1,38 0,72
256 268 263 259 263 258 258 4,79 2,91 1,30 2,89 0,84 0,71
392 409 402 400 398 397 395 4,34 2,56 2,01 1,60 1,25 0,71
512 530 526 522 524 519 516 3,56 2,68 1,96 2,36 1,36 0,84
1024 1059 1049 1044 1043 1040 1031 3,41 2,44 1,98 1,87 1,58 0,70
256 267 262 261 262 258 258 4,27 2,30 1,91 2,27 0,81 0,75
392 407 402 399 401 396 395 3,73 2,50 1,71 2,18 1,00 0,72
512 528 525 519 520 517 516 3,13 2,54 1,39 1,56 1,07 0,86
1024 1056 1049 1037 1038 1035 1033 3,15 2,46 1,28 1,38 1,10 0,86
512 525 524 521 522 519 518 2,47 2,41 1,82 1,98 1,37 1,23
768 801 788 782 784 778 776 4,33 2,54 1,88 2,09 1,26 1,08
1024 1052 1050 1044 1044 1036 1034 2,72 2,56 1,91 1,99 1,21 1,00
2048 2101 2109 2093 2094 2072 2070 2,58 2,99 2,19 2,24 1,15 1,06
512 525 525 521 522 519 519 2,46 2,54 1,84 2,03 1,29 1,37
768 801 789 783 784 777 776 4,28 2,72 1,90 2,14 1,20 1,08
1024 1052 1052 1043 1044 1036 1034 2,74 2,72 1,87 1,97 1,16 0,95
2048 2101 2101 2092 2095 2071 2069 2,59 2,60 2,17 2,28 1,13 1,05
1024 1050 1049 1043 1045 1038 1037 2,54 2,44 1,86 2,05 1,37 1,27
1536 1581 1575 1565 1568 1556 1553 2,93 2,54 1,89 2,08 1,30 1,11
2048 2104 2101 2087 2089 2073 2069 2,73 2,59 1,90 2,00 1,22 1,03
4096 4202 4219 4186 4188 4143 4140 2,59 3,00 2,20 2,25 1,15 1,07
1024 1049 1050 1043 1045 1037 1038 2,44 2,54 1,86 2,05 1,27 1,37
1536 1582 1578 1565 1569 1555 1553 2,99 2,73 1,89 2,15 1,24 1,11
2048 2104 2104 2086 2089 2072 2068 2,73 2,73 1,86 2,00 1,17 0,98
4096 4202 4203 4185 4190 4143 4139 2,59 2,61 2,17 2,29 1,15 1,05

3,31 2,55 1,78 2,03 1,18 0,95

Bit-Rate [kbps] MBEE [%]
Sequence

VGA

Vassar

Ballroom

Exit

Flamenco2

Total Average

Break 

dancers

Uli

XGA

HD

GT Fly

Poznan Hall2

 

Source: The Author. 

In Figure 4.8 the long term behavior of distinct Rate Control schemes in terms of 

accumulated bitrate. A more accurate RC maximizes the use of available bandwidth and, 

consequently, the accumulated bitrate are presented. After a few initial GGOPs (4-5) 

required for control stabilization, the HRC curve fits better to the target bitrate followed 

by (Vizzotto, et al., 2012), as shown in Figure 4.8. JMVC with no RC presents the worst 

bandwidth usage, as expected. 
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Figure 4.8: Accumulated number of bits for test video “flamenco2”.  
Source: The Author 

4.2.3.3 Video Quality 

Once the accuracy of the HRC is proven it is presented the rate-distortion (RD) results 

to show that overall video quality and quality smoothness are not compromised. Figure 

4.9 and Figure 4.10 summarize the objective rate-distortion in terms of BD-PSNR 

(Bjøntegaard Delta PSNR) and BD-BR (Bjøntegaard Delta Bitrate) (Tan, et al., 2005) in 

relation to JMVC with no RC. The HRC provides 1.86dB BD-PSNR increase or BD-BR 

reduction of 40.05%, on average. When compared to the scheme of (Lee, et al., 2011) that 

provides the best RD performance among all related works, the HRC provides 0.06dB 

increased BD-PSNR and 3.18% reduced BD-BR. Note, in addition to the superior RD 

performance, HRC also outperforms (Lee, et al., 2011) in terms of bit estimation accuracy 

(1.08% MBEE reduction).  
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Figure 4.9: BD-BR reduction compared to JMVC.  
Source: The Author 
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There are few cases in Figure 4.9 and Figure 4.10 (like comparison to (Li, et al., 2003) 

for ballroom sequence), where this proposed scheme does not achieve the best RD-

performance. Note that the first goal of an RC solution is to provide an accurate bitrate 

allocation respecting the available bandwidth. This is crucial to meet the bandwidth 

requirements and buffer design in order to avoid underflow and overflow case. For this, 

MBEE is typically employed for evaluation of rate controllers.  

Providing high rate-distortion efficiency is the second goal. It is noteworthy that for a 

few situations where the RD performance is inferior to the state-of-the-art (e.g., compared 

to (Li, et al., 2003) for ballroom sequence) the proposed scheme outperforms the scheme 

of (Li, et al., 2003) in terms of control accuracy, as demonstrated in Table 4.2. In summary, 

for a proper comparison it is important to keep in mind that RD and accuracy must be 

considered together where accuracy is the main goal of a RC. 
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Figure 4.10: BD-BR increase compared to JMVC.  
Source: The Author 

4.2.3.4 Detailed Results 

In this section it is presented the HRC detailed results for “flamenco2” sequence 

encoded at 1024kbps. For simplicity, it is analyzed only the first 4 views. Figure 4.11 

shows the target bitrate, the total accumulated bitrate and the accumulated bitrate for each 

view. The presented bitrate distribution is smooth also at view level without abrupt 

oscillations. As expected from the previous discussion, the base view (View 0, I-view) is 

more bitrate hungry followed by P-views (View 2) and B-views (View 1, 3). 
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Figure 4.11: View-level bitrate distribution (Flamenco2).  

Source: The Author 
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Figure 4.12: Rate-Distortion Results.  
Source: The Author 

Figure 4.12 shows the RD curves for four different video sequences considering high 

(Figure 4.12a) and low motion (Figure 4.12b), low (Figure 4.12c) and high disparity 

(Figure 4.12d) sequences and an intermediate case with moderate motion/disparity activity 

(Figure 4.12b). The HRC shows its superiority in relation to the state-of-the-art for most 

of the RD curves (except for the low motion/disparity sequence “vassar”). Decoded frames 

encoded using the HRC and (Lee, et al., 2011) are also presented in Figure 4.12 for 
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subjective quality considerations. Note that HRC does not insert visual artifacts such as 

blurring and blocking noise. Moreover, it does not compromise the borders sharpness 

typically lost in case of bad QP selection. 

In Figure 4.13 it is detailed the controller behavior along the time at frame level. Each 

point represents the average bitrate or PSNR for all frames in a given time instant. It is 

possible to note that the bitrate (Figure 4.13a) and PSNR (Figure 4.13b) oscillations tend 

to reduce along the time because of the RC stabilization. The HRC stabilization is clearly 

noticed by comparing the first GGOP (dotted box) with, for instance, the GGOP #8 

(dashed box). GGOP #8 delivers improved bandwidth utilization (actual bitrate closer to 

target), better video quality and reduced quality oscillation. 

To quantify the video quality smoothness is measured, for the experiment presented in 

Figure 4.13a, the PSNR variance for HRC and (Lee, et al., 2011). HRC provides 0.47dB 

PSNR variance while for (Lee, et al., 2011) the variance is 0.60dB, that is, the HRC 

delivers a video quality with reduced PSNR oscillation in comparison to the state-of-the-

art. Figure 4.13b highlights the superior HRC performance in terms of bandwidth usage 

(better accuracy, as discussed in Section VII.B) while delivering superior and smoother 

video quality (Figure 4.13a) compared to related work solutions.  
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Figure 4.13: Controller behavior results considering (a) quality and (b) accuracy.  
Source: The Author 
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The frame-level bitrate distribution is further detailed for the GGOP #8 (highlighted in 

Figure 4.13) in Figure 4.14. It shows, graphically, the smooth bitrate and PSNR variations 

delivered by the proposed solution considering frame-level. Note, the HRC surface 

presents no sudden variations for both bitrate and PSNR. Compared to the other solutions, 

it is clear that the bitrate and quality provided by HRC are significantly smoother even 

when compared to previous solution presented by (Vizzotto, et al., 2012) (this solution 

provides the lowest MBEE among all competitors).  
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Figure 4.14: Bitrate and PSNR distribution at frame level (GOP #8).  
Source: The Author 
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Analogous analysis was performed to demonstrate the behavior of the RC at BU level. 

Figure 4.15 shows the bitrate distribution for a frame region (zoomed image) in sequence 

“flamenco2”. Observe that for HRC the bitrate varies with the texture complexity due to 

RoI-aware (see texture map in Figure 4.15) MDP implementation. In case of the 

homogeneous background fewer bits are spent while in case of the textured objects and 

borders (dancer) more bits are allocated. Note that, in Figure 4.15, the HRC bitrate 

distribution surface plot fits the object shapes. This behavior prioritizes the regions where 

the HVS requires a higher level of details leading to superior overall quality. State-of-the-

art techniques are unable to accurately react to the image content. Among related works, 

(Yan, et al., 2009) adapts better to the image. In addition, the HRC also results in smoother 

variations within the same region (dancer’s body or background) if compared to the state-

of-the-art, as shown in Figure 4.15. It avoids sudden quality variations and coding artifacts 

inside those regions. 
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Figure 4.15: Bitrate distribution at BU level (GOP #8).  
Source: The Author 

4.2.3.5 Detailed Results for Showing the Effects of Different Features of the proposed 

Rate Control Scheme 

Table 4.4 illustrates the bit rate, MBEE, and PSNR results for different features of 

the rate control scheme. The following three cases are discussed: 

1)   MPC is the frame-level model predictive rate controller. This rate controller 

adapts the bit budgets at the frame level and can only handle the variations at a 

coarse-granularity. However, it cannot handle the bit variations at a fine-
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granularity, like Basic Unit (BU)-level due to different texture and motion 

properties of different objects present in the same video frame. 

2) MPC+MDP is the frame-level MPC with BU-level Markov Decision Process 

based rate controller. BU-level rate control handles the variations at the block level 

due to different objects with diverse motion and texture properties. However, a pure 

BU-level rate control may lead to long durations for controller stability. Therefore, 

typically a BU-level rate control is coupled with a frame-level rate control, which 

reaches to a stable state faster compared to the BU-level rate controller. The MPC 

rate controller thereby determines the control range for the MDP-based rate control, 

which can then refine the bit allocation decisions to reduce the MBEE. 

3) MPC+MDP+RL is similar to case 2 but additionally employs reinforcement 

learning for the MDP. In this case, the reinforcement learning enhances the 

decisions of the MDP based BU-level rate control to adapt to the run-time changing 

scenarios of different objects and image variations. The primary limitation of 

incorporating reinforcement learning is additional computational 

In the following, a discussion about the results of different features of the proposed 

hierarchical rate control scheme. 

MPC brings significant quality improvements both in terms of bit rate reduction and 

PSNR improvement compared to the JMVC at a given target bit rate. Though the Rate-

Distortion (RD) performance of MPC and MPC+MDP are similar, MDP provides 2% 

improved MBEE accuracy, which improves the buffer behavior. However, when 

employing the reinforcement learning of MDP, the joint solution may achieve an accuracy 

of approximately 23%. The employment of reinforcement learning also provides 

improved RD-performance compared to the MPC-only case. When jointly considering 

the Table 4.3 and Table 4.4, a breakdown of benefit can be observed, where MPC provides 

67% improvement in terms of MBEE reduction when compared to JMVC, MDP provides 

2%, and finally reinforcement learning provides 21% MBEE improvements. In absolute 

terms, the MPC-only solution incurs 1.18% MBEE. By employing MDP and 

reinforcement learning, the BU-level RC reduces the MBEE to 0.95%. 
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The PSNR results in Table 4.4 show that using coupled MPC, MDP and RL techniques, 

the proposed RC reaches ~ 1.7dB gain compared to reference software. MPC technique 

represents 55% of total visual quality gain, MPC + MDP provide 14% of this gain and 

finally MPC + MDP + RL provide 31%. Overall, it is noteworthy that reinforcement 

learning and MDP jointly provide improved RD-performance compared to MPC-only 

solution. Overall, the integrated solution provides significantly improved RD-performance 

compared to state-of-the-art (see Table 4.3). 

Table 4.3: Bit-Rate, MBEE, and PSNR results for different features of Rate Control 

Scheme 

Target MPC MPC+MDP MPC+MDP+RL MPC MPC+MDP MPC+MDP+RL JMVC MPC MPC+MDP MPC+MDP+RL
256 259 259 258 1,17 1,03 0,75 32,37 33,825 33,87 34,03
392 396 396 395 1,07 0,97 0,78 34,81 35,444 35,527 35,933
512 518 517 516 1,13 1,06 0,78 35,73 36,373 36,59 37,042

1024 1032 1032 1032 0,81 0,80 0,78 37,20 38,362 37,892 39,228
256 258 258 258 0,88 0,90 0,94 34,35 35,663 35,925 36,824
392 397 397 396 1,29 1,25 0,92 36,43 37,98 38,131 39,53
512 519 519 516 1,36 1,33 0,83 38,02 39,003 39,283 40,297

1024 1038 1038 1031 1,38 1,35 0,72 39,32 40,217 40,217 41,509
256 258 258 258 0,84 0,77 0,71 32,44 33,794 33,915 34,901
392 397 397 395 1,25 1,16 0,71 34,61 35,392 35,396 36,004
512 519 519 516 1,36 1,31 0,84 35,70 36,292 36,604 37,412

1024 1040 1040 1031 1,58 1,55 0,70 37,10 38,229 38,888 39,883
256 258 258 258 0,81 0,75 0,75 33,74 34,206 34,343 34,555
392 396 396 395 1,00 0,97 0,72 35,01 35,522 35,739 36,027
512 517 517 516 1,07 1,02 0,86 36,00 36,513 36,61 36,93

1024 1035 1035 1033 1,10 1,07 0,86 37,99 38,609 39,254 40,008
512 519 519 518 1,37 1,33 1,23 33,38 34,925 35,643 36,032
768 778 777 776 1,26 1,23 1,08 35,74 36,523 37,205 37,735

1024 1036 1036 1034 1,21 1,17 1,00 36,83 37,423 38,142 38,543
2048 2072 2071 2070 1,15 1,13 1,06 38,23 39,36 40,136 40,814
512 519 518 519 1,29 1,23 1,37 33,72 34,97 35,49 36,055
768 777 777 776 1,20 1,15 1,08 35,86 36,797 37,522 38,262

1024 1036 1035 1034 1,16 1,12 0,95 37,28 37,553 37,904 38,825
2048 2071 2071 2069 1,13 1,11 1,05 38,47 39,884 40,116 40,904
1024 1038 1038 1037 1,37 1,33 1,27 33,52 34,794 34,854 34,891
1536 1556 1556 1553 1,30 1,28 1,11 34,02 35,129 35,305 35,324
2048 2073 2073 2069 1,22 1,20 1,03 35,11 36,138 36,311 36,334
4096 4143 4142 4140 1,15 1,13 1,07 37,84 38,914 38,973 38,987
1024 1037 1037 1038 1,27 1,26 1,37 33,67 35,038 34,934 34,941
1536 1555 1554 1553 1,24 1,18 1,11 34,23 35,332 35,405 35,462
2048 2072 2071 2068 1,17 1,13 0,98 35,39 36,365 36,522 36,56
4096 4143 4143 4139 1,15 1,14 1,05 38,00 39,054 39,146 39,151

1,18 1,14 0,95 35,69 36,676 36,931 37,467

PSNR [dB]

Total Average

Bit-Rate [kbps] MBEE [%]
Sequence

VGA

Vassar

Ballroom

Exit

Flamenco2

Break 

dancers

Uli

XGA

HD

GT Fly

Poznan 

Hall2

 

Source: The Author. 

4.2.3.6 Complexity Results 

For the MPC (at frame level) the number of calls and the number of samples is reduced 

as it is proportional to the size of the GOP. Similarly the processing effort for MDP (at BU 

level) is proportional to the frame size. Compared to the MVC encoding case without a 

rate controller, the proposed hierarchical rate control scheme incurs an average encoding 

time increase of 2.25% (worst case: 3.11%). The detailed encoding time overhead is 

presented in the Table 4.4. It is worthy to note that, the overhead of the rate control scheme 

is still smaller than that of the reference (Lee, et al., 2011). Considering the quality 

improvement of the scheme, the overhead of 2.25% may be acceptable. 
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Table 4.4: Complexity results for the proposed Scheme 

[a] [b] [c] [d] Our

0,39% 0,70% 4,61% 1,00% 1,81%

0,20% 0,35% 4,11% 0,48% 1,95%

0,24% 0,31% 4,27% 0,53% 1,88%

0,22% 0,53% 4,21% 0,66% 1,82%

0,33% 0,59% 4,65% 1,11% 1,89%

0,20% 0,44% 4,40% 0,92% 1,64%

0,24% 0,42% 4,41% 0,92% 1,94%

0,42% 0,77% 4,44% 0,85% 1,88%

0,30% 0,30% 4,23% 0,74% 1,94%

0,28% 0,52% 4,37% 0,66% 2,12%

0,18% 0,55% 4,33% 0,53% 2,04%

0,15% 0,51% 4,27% 0,63% 2,04%

0,09% 0,31% 4,23% 0,90% 1,64%

0,04% 0,30% 4,44% 0,89% 1,60%

-0,06% 0,04% 4,19% 0,63% 1,34%

0,22% 0,33% 4,26% 0,61% 1,95%

0,37% 0,67% 2,68% 1,65% 2,68%

0,26% 0,49% 2,47% 1,41% 3,11%

0,23% 0,65% 2,44% 1,48% 3,05%

0,23% 0,55% 2,33% 1,49% 2,87%

0,14% 0,35% 2,33% 1,36% 2,37%

0,00% 0,26% 2,44% 1,24% 2,22%

0,05% 0,31% 2,35% 1,25% 2,46%

0,32% 0,31% 2,39% 1,22% 2,47%

0,37% 0,49% 2,56% 1,59% 3,01%

0,11% 0,16% 2,16% 1,18% 2,81%

0,18% 0,25% 2,24% 1,05% 2,78%

0,26% 0,18% 2,25% 1,17% 2,81%

0,33% 0,46% 2,37% 1,49% 2,45%

0,53% 0,39% 2,31% 1,48% 2,42%

0,25% 0,31% 2,09% 1,22% 2,15%

0,36% 0,28% 2,29% 1,20% 2,76%

0,23% 0,41% 3,35% 1,05% 2,25%

Encoding Time Overhead

Sequence

VGA

Ballroom

Exit

Flamenco

Vassar

Average

XGA

Break 

dancers

Uli

HD

GT_Fly

Poznan 

Hall

 
Source: The Author. 



 

74 

5 POWER EFFICIENT THREAD MANAGEMENT FOR 

MULTIVIEW VIDEO ENCODING 

To address the increased bandwidth due to multiple views, the Multiview Video 

Coding can provide up to 50% bit-rate reduction compared to simulcast by exploiting the 

inherent correlation between different views of a multiview video. However, this 

improved bit-rate reduction comes at the cost of significantly increased computational 

complexity due to inter-view prediction. 

To meet the throughput requirements of a parallelized 3D-HEVC video encoder on a 

multi-core system, while optimizing the power consumption of the system. In the next 

lines it is presented a thread management scheme to adaptively distribute the workload of 

3D-HEVC as individual jobs among parallel threads. The goal is to balance the workload 

and accordingly tune the voltage-frequency of the underlying cores, such that the power 

consumption of the multi-core system is minimized. Further, it is employed application- 

and content-aware complexity management scheme which adaptively tunes the 

application’s parameters at runtime. A reduced complexity results in a smaller operating 

frequency to meet the deadline, and thus, complexity management scheme results in 

higher power-efficiency. Summarizing: 

• Workload Balanced Thread Management, which employs workload balancing 

technique to pack encoding jobs and dispatch them to respective threads, such that the 

application’s throughput requirements are met. 

• Run-time Power Manager, which optimizes the voltage-frequency levels of each 

individual core in the multi-core system, that would be enough to sustain the workload 

allocated to a particular core.  

To the best of our knowledge, this is the first work in the direction of power-efficient 

parallelized 3D-video coding. Moreover, it is proposed an open-sourced 3D-HEVC video 

encoder with multi-threading capabilities as a service to the research community 

5.1 Complexity Analysis and Estimation 

The impact of disparity estimation on MV/3D-HEVC encoding is presented in Figure 

5.1 showing the relation between inter-frame prediction within a view defined by the 
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motion estimation and the inter-view modes in the disparity estimation for encoding 

process of “Poznan Hall” sequence. It can be noted that DE/ME modes relation grows 

with the increasing number of views. Moreover, can be demonstrated the percentage of 

correlated prediction mode for temporal and disparity in spatial neighbors CUs. Where 

correlated prediction refers to neighbors block that use the same mode in its prediction, 

like the same motion vector. Figure 5.1 (b) presents the time complexity distribution for 

6-views encoding considering I-B-P coding structure order. This distribution is highly 

correlated to the prediction hierarchy structure. The base view (View 0) is encoded only 

with intra- and inter-frame modes with no inter-view prediction leading to reduced 

possibilities of prediction. On the other hand, bi-predicted views fully exploit the inter-

view correlation by performing DE - in addition to spatial and temporal predictions - to 

upper and bottom neighboring views. Moreover, Figure 5.1 (a) shows that the most 

disparity modes used, the least the complexity. 
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Figure 5.1: (a) Comparison between number of Disparity/Motion modes for 1, 2, 4 

and 6 views in HD and FHD resolution. (b) Time for each of 6 view encoded “Poznan 

Hall” sequence (0-5-2-4-1-3 order) 

In order to achieve fast encoding at minimal video quality loss, it is proposed the use 

of complexity management at Coding Tree Unit (CTU) level. To evaluate this scenario, 

Figure 5.2 shows the histogram of percentage difference in complexity (number of cycles) 

and generated bitstream (number of output encoded Bytes) between spatial neighbor 

CTUs within a tile. These neighbors are considered in relative base views and consecutive 

frames in the encoding process. Moreover, in Figure 5.2 (a), the horizontal axis presents 

the percentage of generated byte difference, 𝜃 between neighbors CTU of consecutive 

video frames. 𝜃 is given by Eq. 5.1: 
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𝜃 =
𝐵0(𝑐,𝑖)−𝐵0(𝑐,𝑖−1)

𝐵0(𝑐,𝑖)
×100  (5.1) 

Here, 𝐵0(𝑐, 𝑖) represents the bytes generated to encode the first CTU of frame 𝑖. As seen, 

the generated bitstream for neighbor CTU is highly correlated. The same equation applies 

for Figure 5.2 where encoding time replaces the total of encoded bytes. Similarly, the 

generated bitstream per CTU, the time complexity by neighbor CTUs are correlated. 

Moreover, these curves can be estimated via a Gaussian distribution. Thus, the correlation 

between neighboring CTUs can be exploited to estimate the bitrate and time complexity 

of the current CTU, which can be translated to determine the workload. 
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Figure 5.2: Difference histogram of (a) Bytes and (b) Encoding time for neighbor 

CTU of “Poznan Hall” sequence (FHD) for 80 frames 

Summary of Observations: 

• Base view is the most complex view to encode due to the lack of disparity data. 

• The increase number of views decrease the average complexity. 

• Neighboring CTUs within a tile present more than 80% of correlated prediction 

modes. 

5.2 Initial Configuration 

Before starting the MV/3D-HEVC, the proposed scheme sets up the hardware, 

depending upon the throughput requirements (e.g., resolution, number of views and target 

bitrate) and hardware characteristics, a tile structure is generated by the offline setup. This 

setup predicts the number of cycles that a CTU will consume given the size of the frame 

and the throughput requirements. With this information the function can predict the 

number of CTUs in a tile for a nominal clock frequency of the cores. Thereafter, in the 

second interval, with the complexity prediction, it maps the CTU-assignment policy 
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considering its collocated base view CTUs complexity. There are several complexity 

adjustment knobs in MV/3D-HEVC which can be tuned to reduce the total workload at 

the cost of increased size of the compressed output (i.e., resulting Bits). 

5.2.1 Complexity Prediction 

The Complexity Prediction adjusts the number of performed predictions/tests per CTU 

(Intra, Inter-Frame, Inter-view and Skip, given by γ that denotes the average of neighbors 

complexity) to adjust the computational complexity. For example, HEVC tests 35 modes 

to determine the best Intra mode. However, the number of tests can be reduced at the 

expense of reduced video quality (i.e., more compressed bytes will be generated). For 

Intra, it is selected the γ most popular occurrences in the past encoded frame. For inter-

frames, the complexity is predicted by normalizing (1-35) the average complexity of 

collocated neighbors given statistically considering both spatial and disparity predictions. 

In this scheme, the selective reduction of candidate modes is performed by using 

statistics provided by the neighboring CUs that have highly related encoding process, 

sharing residual information at CTU level. Figure 5.3 presents the algorithm of the 

proposed scheme for the encoding process. First, the number of available CTU per core 

(h) is calculated by the spatial resolution and the number of views of a given 3D sequence. 

Initial Configuration and Complexity Estimation Algorithm 

1. function CTUcomp (Hres[], Wres[], Nview[], Ncore[], PDmode[], CTUwidth[], CUsize[], B[]) 
2. Nctu  (Hres x Wres x Nview)/(CTUwidth²); 
3. h = Nctu/Ncore; 
4. t  mod(h); 
5. if (freq < maxfreq) {t1; γPDmode[Intra]}  
6. else{  
7. foreach (tile) 
8.   foreach (CTU) 
9.     switch (mode_prediction) 
10.    case (skip): CTUc  1; break;   
11.    case (inter frame):  
12.    ACCc (m)  ∑𝐶𝑈𝑐 (m) x 2CTUwidth/𝐶𝑈𝑤; 
13.     CTUc (m) ACCc(m) x NF; break; 
14.   case (inter view):  
15.    ACCc (m)  𝑆𝑀𝑂(m) x 2CTUwidth/𝐶𝑈𝑤; 
16.    CTUc (m) ACCc(m) x NF; break; 
17.    case (intra): CTUc  SMO(m) x NF; break; 
18.    endloop 
19.  w  B x Nctu x CTUc;     //Equation (2)  
20. γ  PDmode [ CTUc];  
21. endloop 

Figure 5.3 Initial Configuration, Complexity Estimation for Workload Adaptation 

and Thread Management with selective approach. 
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Here, h represents the number of CTUs within a frame per views and hence in the 

number of tiles (line 4). Note that due to the MV/3D-HEVC standard targeting ultra-high-

resolution videos, it is not expected to have a higher number of cores than the number of 

CTUs being assigned. The total number of threads and γ for the CTU within tile T (line 

3). γ is given according to normalized complexity (line 13-15) and it is adjusted to proper 

compute the workload for the current CTU (line 19-20).  

5.3 Workload Adapter and Thread Management 

The proposed scheme for CTU-based workload balancing of MV/3D-HEVC is 

presented in Figure 5.4 that aims minimizing the power consumption of the system. The 

Workload Balancing and Thread Manager controls the computational complexity of 

processing CTUs, using online statistics and then adapting the encoding parameters. 

Moreover, it also adapts the number of threads and the number of CTUs assigned to a 

thread. Furthermore, the Power Manager is responsible for determining the number of 

cores used and to dynamic scale their voltage and frequencies.  

Monitor

Thread
Manager

Power 
Manager

Video 
Input

Core
0

Core
N-1

Core
1

Output Bitrate (B)

CTU Pool

Tile Pool A
rb

it
er Thread 

Dispatcher
v

f

v

f

v

fVoltage (v)

Frequency (f)

Constraints:
Max. Frequency

Target Bitrate

Exploits:
Temporal/Disparity 

correlations

..
.

Workload 
Adapter (w)

Offline 
Setup

Max. Frequency (maxfreq)

Initial Config.
Resolution

Number of Views

Complex. (γ)

 

Figure 5.4 Workload balancing scheme for 3D-HEVC on Multi-core. 

To reach high compression efficiency while minimizing the video quality degradation 

(qualified as rate-distortion, which is a well-adopted metric in the video community), it 

is dispatched the CTU and Tile threads to use all the available cores with maximum 

frequency. The algorithm ends when γ for all CTUs in a Tile are defined as well the thread 
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pool of tile level is complete. The workload 𝑤 of CTU 𝑐 in tile 𝑡, with the target bitrate 

constraints of 𝐵 is given by: 

𝑤𝑐(𝛾, 𝑄𝑃) =  𝐵𝛾×∑ 𝐶𝑇𝑈𝑡=1 ×𝐶(𝛾,𝑄𝑃,𝑇)  (5.2)) 

Where, 𝐶(𝛾,𝑄𝑃,𝑇) is the number of cycles consumed by a CTU of a frame with 𝑇 tiles, with 

the given γ and QP values. The summation pertains to the total number of CTU of tile 𝑇. 

Note that 𝑤 denotes the total number of cycles consumed per second for the given tile. 

For workload balancing, the hierarchical prediction structure of 3D-videos is used as 

adaptation interval 𝐼𝑁 (see Figure 5.5 (a)), whereby the number of Group of Pictures are 

adapted according to the statistics. The starting frame (Anchor) of this interval is always 

intra-frame and achieve the best rate-distortion compression. The anchor frame in base 

view is used as reference to the Non-Anchor Predicted (P) and Bi-Predicted (B) frames. 
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Figure 5.5: Interval in (a) I-B-P structure with (b) related complexity map for Inter 

frame and (c) complexity prediction error propagation. 

As show in Chapter 2, the inter-frame/view modes of spatial neighboring CTUs are 

highly correlated. Figure 5.5 (b) presents a map where γ is gradually adjusted to each 
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CTU by the complexity prediction and the workload balance for. Figure 5.5 (c) presents 

the error propagation in predicted complexity for each structure in an interval. It can be 

noted that CTU has the lowest probability of error compared to Tile and Frame. 

The thread manager uses the balanced workload as policy to selective map threads in 

two pools. One pool is CTU level and the other one is reserved for tiles. The thread 

manager uses the workload of each CTU within a tile to compare to complete tile 

workload and by using a Metropolis-Hasting distribution of CTUs in the last interval to 

choose witch what thread will be allocated as shown in Eq. 5.3. 

𝑖𝑓 (𝑤𝑡 >∑𝑤𝐶𝑇𝑈

𝑁

𝑖

) 𝑡ℎ𝑒𝑛 {𝑇𝑖𝑙𝑒 𝑃𝑜𝑜𝑙  𝑇ℎ𝑟𝑒𝑎𝑑 (𝑤𝑡) 

𝑒𝑙𝑠𝑒 { 𝐶𝑇𝑈 𝑃𝑜𝑜𝑙  𝑇ℎ𝑟𝑒𝑎𝑑 (𝑤𝐶𝑇𝑈)}   (5.3) 

Finally, in Eq 5.4 the arbiter selects between Tile and CTU pool to dispatch the thread 

by considering power manager information (available cores, frequency and voltage). 

𝑖𝑓 ((𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑜𝑟𝑒)𝑎𝑛𝑑 (𝑓𝑟𝑒𝑞 < 𝑚𝑎𝑥𝑓𝑟𝑒𝑞 ∗
𝑛𝑜𝑟𝑚[𝛾]

100
)) 

𝑡ℎ𝑒𝑛 {𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ (𝐶𝑇𝑈 𝑃𝑜𝑜𝑙)𝑒𝑙𝑠𝑒 { 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ (𝑇𝑖𝑙𝑒 𝑃𝑜𝑜𝑙)}  (5.4) 

5.4 Run-time Adaptive Power Control 

The Run-time Power Control scales the operating frequency and voltage of each core, 

depending upon the workload of the thread assigned. The frequency of each core is 

adjusted by an offset based on the predicted complexity of the CTU in the same tile of 

the hierarchical structure (disparity neighbor). The number of CTU in a tile determines 

the core operating frequency and voltage 𝑘(𝑓, 𝑣), and the 𝑜𝑓𝑓𝑠𝑒𝑡 to control the number 

of CTU in the neighbor views, 𝑜𝑓𝑓𝑠𝑒𝑡 (𝑘), are defined by Eq. 5.5 and Eq. 5.6. 

𝑘(𝑓, 𝑣) = 𝑚𝑎𝑥𝑓𝑟𝑒𝑞×(
𝐶𝑇𝑈𝑡𝑜𝑡𝑎𝑙

𝑁
+ 𝑜𝑓𝑓𝑠𝑒𝑡(𝑘))  (5.5) 

𝑜𝑓𝑓𝑠𝑒𝑡(𝑘) = 𝑜𝑓𝑓𝑠𝑒𝑡(𝑘 − 1) + (𝐶𝑇𝑈𝑐⏟  
𝑆𝑀𝑂

−
1

𝛾
)  (5.6) 

In these equations, 𝑘(𝑓, 𝑣) is the operating frequency and voltage of kth core, k is the 

core index. Also, N is the number of tiles in a frame (and neighbors view), and CTUtotal 

is the number of CTUs in the IN (interval). In Eq. 5.6, the frequency and voltage offset 
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for each core are set according to the time complexity of CTU. The proposed algorithm 

adopts an adaptive operating frequency and voltage method, considering the difference 

between the ideal complexity for each CTU or tile thread, and the predicted complexity, 

which leads to good tradeoff between power efficiency and RD.  

5.5 Results and Analysis 

5.5.2 Simulation Setup 

The 3D-HEVC reference software (latest version: HTM-14.1) is provided by 

Fraunhofer institute (3D-HEVC-Software). However, it does not have threading 

capabilities available. Moreover, it is very difficult to map the source code to include tile 

threading. Therefore, the time consumed by setup and irrelevant test conditions are too 

costly and needlessly intrude into the coding complexity. In this way, it was developed 

an in-house, functionally compliant 3D-HEVC encoder in C++ with multi-thread 

capability in our lab (in collaboration with the Chair of Embedded System of the 

Karlsruhe Institute of Technology). 

Hardware platform simulation is performed in the Sniper x86 multi/many-core 

simulator (Carlson, et al., 2011) with support to dynamic voltage and frequency scaling. 

The measurements of power efficiency are generated with McPAT (Li, et al., 2013). 

The experimental results were generated using the video sequences present in the 

Common Test Conditions by the Joint Collaborative Team on 3D Video Coding 

Extension Development JCT3V (Rusanovskyy, et al., 2013). It is used five video 

sequences with different spatial/disparity behavior in three different resolutions: Poznan 

Hall, Poznan Street, and GT_Fly in Full HD (1920x1080) and HD (1280x720); Kendo 

and Balloons in XGA (1024x768). The experiments were performed using 2, 4 and 6-

views sequences, QP={22,27,32,37}, GOP = 8 frames and TZ Search. 

5.5.3 McPAT Simulation Framework 

Figure 5.6 presents a block diagram of the McPAT framework (Li, et al., 2013). The 

McPAT software uses an XML-based interface with the performance simulator. The use 

of this interface allows both the passing of dynamic activity statistics and the specification 

of the microarchitecture configuration parameters generated by the performance 

simulator. Moreover, the software sends runtime power dissipation back to the 
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performance simulator through the interface, then the performance simulator can respond 

to power or temperature data. 

 

Figure 5.6: Block diagram of the McPAT framework (Li, et al., 2013). 

The components of McPAT are described as follows. Firstly, the hierarchical modeling 

of power, area, and timing. At second, the circuit-level implementations for optimization. 

Finally, the internal chip representation to present the analysis of power, area, and timing. 

The input parameters directly set the majority of the parameters in the internal chip 

representation, such as core issue width and cache capacity.  

The hierarchical structure of McPAT allows to model structures at a low level, as well 

as allows the developer to focus on the high-level configuration. The optimizer determines 

unspecified parameters in the internal chip representation, focusing on two major regular 

structures: interconnects and arrays. The developer can set the frequency and bisection 

bandwidth of the network-on-chip, the capacity and the characteristics of caches, or the 

number banks. In the same way, letting the tool to determine the implementation details 

such as the choice of metal planes, the effective signal wiring pitch for the interconnect. 

As stated by (Li, et al., 2013), these optimizations lessen the burden on the architect to 

figure out every detail, and significantly lowers the learning curve to use the tool. Users 

always have the flexibility to turn off these features and set the circuit-level 

implementation parameters by themselves.  

The focus of McPAT is to provide accurate power and area modeling, and a target 

clock rate is used as a design constraint. The software applies the optimization function 

to report the final power and area values to the developer configurations considering the 

power and area deviation.  The module power and timing models together with the final 

chip representation generated by the optimizer are used to compute the final peak power. 
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The peak power of individual units and the machine utilization statistics are used to 

calculate the final runtime power dissipation. 

5.5.4 Power Efficiency Results 

TABLE 5.1 shows the total power consumption of each sample for 1, 2, 4 and 6 views 

3D video in respectively 4, 8, 16 and 32 cores set up. For comparison, it is also shown 

power consumption on a baseline implementation without workload adaptation (without 

workload balance nor thread management). It is noticed that the workload adapter and 

power manager contribute significantly to power reduction. The power savings is given 

by a simple percentage difference between the power consumption by considering 

adaptive (dynamic voltage and frequency scaling) and non-adaptive workload balance. 

Table 5.1: Power Consumption and Rate-Distortion Comparisons 

Adaptive Non Adaptive Adaptive Non Adaptive

4 1 340.047 463.320 26.61% 37.93 38.12

8 2 323.120 470.151 31.27% 38.01 38.47

16 4 317.850 483.839 34.31% 37.54 38.09

32 6 312.874 482.928 35.21% 37.53 37.92

4 1 347.422 580.395 40.14% 36.93 37.78

8 2 338.901 583.881 41.96% 37.14 37.80

16 4 327.191 590.144 44.56% 37.16 38.01

32 6 324.865 595.593 45.46% 37.50 38.19

4 1 350.567 578.847 39.44% 37.09 37.33

8 2 349.488 580.993 39.85% 37.12 37.97

16 4 345.451 596.666 42.10% 37.09 37.74

32 6 340.629 593.454 42.60% 37.16 37.68

4 1 348.005 678.330 48.70% 37.14 37.96

8 2 347.594 682.035 49.04% 37.20 38.02

16 4 342.221 690.920 50.47% 37.23 38.12

24 6 340.109 697.726 51.25% 37.30 38.11

4 1 351.186 595.131 40.99% 37.67 38.26

8 2 349.931 613.943 43.00% 37.68 38.21

16 4 346.627 625.007 44.54% 38.01 38.67

32 6 340.440 640.066 46.81% 38.11 38.72

Poznan Street

GT_fly

Kendo

Ballons

PSNR [dB]Power [W]
Sequence Cores Views

Power 

Savings

Poznan Hall

 

 

5.5.5 Time Complexity and Rate-Distortion 

THE VIDEO QUALITY AND TIME COMPLEXITY FOR SELECTED SEQUENCES IS PRESENT IN  

 

 

 

Table 5.2. Moreover, the proposed scheme reaches lower bitrate than the non-adaptive 

solution. 



 

84 

 

 

 

 

Table 5.2: PSNR and Time Complexity comparison. 

PSNR [dB] Time [msec] PSNR [dB] Time (msec)

Kendo 38.46 80 38.62 102

Ballons 37.71 104 37.80 123

Poznan Hall 38.03 101 38.14 128

Poznan Street 38.16 106 38.25 122

GT_fly 38.11 110 38.22 135

Sequence
Adaptive Non Adaptive

 

AS SHOWN IN  

 

 

 
Table 5.2, the proposed scheme in CTU level minimizes the error propagation along 

the prediction structure, since the future ME/DE have the closest quality references from 

neighborhood. Regarding the frame level case, the proposed scheme causes negligible 

losses in rate-distortion efficiency.  
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Figure 5.7 Time Complexity and Rate-distortion comparison for 4 different target 

bitrates of “Poznan Hall” sequence. 

Figure 5.7 presents the comparison of time complexity and Rate-distortion for 

“Poznan Hall Sequence” encoded with 4 views in 16 cores by using adaptive workload 

balanced thread management and without using for four target bitrate. 

Figure 5.8 presents a detailed analysis of core frequencies and γ for the "Poznan Hall" 

sequence in for four different views associated with 32 cores. The thread manager 

balances the workload, while the power manager accurately regulates the frequency. 



 

 

85 

 

Moreover, Figure 5.8 (e) present the time per core to encode 80 frames of 4 views FullHD 

“Poznan Hall” sequence. 
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Figure 5.8 Bitrate, frequency and γ adaptation of CTUs in (a) base view (b) view 1 (c) 

view 2 and (d) view 3 of “Poznan Hall” Sequence encoded in 16 cores. (e) Time 

occupancy of 8 core encoding “Poznan Hall” with 4 views. 
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6 CONCLUSIONS 

This thesis presents two main contributions focusing on three-dimensional videos. 

This work presents the challenges for process and transmits multiview videos over a 

restricted bandwidth. A comprehensive proposal shows Rate Control solution at multiple 

levels of processing. Furthermore, a strategy for workload balancing generated by a multi-

view encoder processed on a multi-core platform, this solution includes a thread manager 

and a run-time power control. Both proposals based on an analysis of the execution flow 

of the multiview video coding standards.  

The related work discussion pointed the drawbacks of current literature in the lack of 

3D-oriented solutions, the incomplete exploration of 3D-neighborhood and the lack of 

joint consideration of algorithmic and system solution. Based on these points this work 

defines a clear statement about the need for a Rate Control scheme designed for the 

specific needs of multiview videos acting in fine and coarse grain level. Moreover, this 

proposal included an algorithm that takes into account the knowledge about the specific 

3D application. This approach seems to be an efficient way to make feasible the accurate 

bitstream transmission of high definition multiview video coding. The results 

demonstrate the accuracy of prediction and the smooth visual quality delivery by the 

proposed scheme.  

Along this thesis is presented a workload balancing mechanism with thread manager 

while using dynamic voltage and frequency scaling to deal with the complexity and power 

challenges of 3D video processing on multi-core platforms. This scheme exploits the 

spatial and disparity redundancy characteristics by using techniques to perform thread 

management that adapts to the video content. To reduce the power consumption while 

delivering high visual quality with minimizing rate-distortion, a strategy to dynamically 

scale core frequency and voltage considering the 3D video hierarchy is adopted. This 

scheme provides up to 51% power consumption savings along with less than 2% 

degradation in rate-distortion efficiency. The power consumption reduction along with 

minimal drops in the 3D encoding efficiency demonstrated the potential of the proposed 

scheme for the validation of dedicated hardware for 3D-video processing devices. 
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As future works, it is planned to include results of the Rate Control Scheme over the 

3D- and MV-HEVC and comparisons with the state-of-the-art. Additionally, it is intended 

to include results of the workload manager over actual multi-core architectures used in 

mobile devices. This approach can give support to the overall process of coding multiview 

video in dedicated hardware for multi-core platforms. 

This text summarizes the main results achieved along the Ph.D. in the Programa de 

Pós-Graduação em Ciência da Computação (PPGC) of the Federal University of Rio 

Grande do Sul (UFRGS), begun in 2012 (from 2010 Master extension), including the 

research developed during the internship at the Karlsruhe Institute of Technology (KIT - 

Germany), in 2015.  

 

6.1 Publications 

• Bruno Boessio Vizzotto, Bruno Zatt, Muhammad Shafique, Sergio Bampi, Jörg 

Henkel: Model Predictive Hierarchical Rate Control With Markov Decision 

Process for Multiview Video Coding. IEEE Trans. Circuits System Video 

Technology. 23(12): 2090-2104 (2013) 

 

• Bruno Boessio Vizzotto, Volnei Mazui, Sergio Bampi: Area efficient and high 

throughput CABAC encoder architecture for HEVC IEEE International 

Conference on Electronics, Circuits, and Systems (ICECS), Cairo, 2015, pp. 

572-575. doi: 10.1109/ICECS.2015.7440381 

 

• Muhammad Shafique; Semin Rehman; Florian Kriebel; Muhammad U. K. Khan; 

Bruno Zatt; Arun Subramaniyan; Bruno Boessio Vizzotto; Jörg Henkel; 

Application-Guided Power-Efficient Fault Tolerance for H.264 Context Adaptive 

Variable Length Coding. IEEE Trans. on Computers ISSN: 0018-9340 (2016) 



 

 

89 

 

REFERENCES 

3D-HEVC. 3D-HEVC Reference Software. 3D HEVC Extension, 2014. Disponivel em: 

<https://www.hhi.fraunhofer.de/en/departments/vca/research-groups/image-

video-coding/research-topics/3d-hevc-extension.html>. Acesso em: 11 set. 

2014. 

AGOSTINI, L. Desenvolvimento de Arquiteturas de Alto Desempenho Dedicadas à 

Compressão de Vídeo Segundo o Padrão H.264/AVC. [S.l.]: [s.n.], 2007. 

AGRAFIOTIS, D. et al. Multiple Priority Region of Interest Coding with H.264. IEEE 

International Conference on Image Processing (ICIP). Atlanta, GA, USA: 

IEEE. 2006. p. 4. 

BARTO, A. G. Reinforcement learning control. Current Opinion in Neurobiology, v. 

4, p. 6, 1994. 

BEHRENDT, M. A basic working principle of Model Predictive Control, 2009. 

Disponivel em: 

<http://en.wikipedia.org/wiki/File:MPC_scheme_basic.svg>. Acesso em: 22 

out. 2012. 

BELLMAN, R. A Markovian Decision Process. OTS The Rand, Santa Monica, CA, 

USA, p. 15, April 1957. 

BOSSEN, F. et al. HEVC Complexity and Implementation Analysis. IEEE Transactions 

on Circuits and Systems for Video Technology, v. 22, p. 12, December 

2012. 

BUGDAVI, M.; SZE, V.; MINHUA, Z. HEVC ALF decode complexity analisys and 

reduction. 18th International Conference on Image Processing (ICIP). 

Brussels: IEEE. 2011. p. 4. 

CARLSON, T. E.; HEIRMAN, W.; EECKHOUT, L. Sniper: exploring the level of 

abstraction for scalable and accurate parallel multi-core simulation. 

International Conference for High Performance Computing, Networking, 

Storage and Analysis. New York: ACM. 2011. p. 12. 

CHEN, Y. et al. The Emerging MVC Standard for 3D Video Services. EURASIP 

Journal on Advances in Signal Processing, v. 2009, n. 13, p. 13, 2009. 

CORREA, G. et al. Complexity control of high efficiency video encoders for power-

constrained devices. IEEE Transactions on Consumer Electronics, v. 57, 

p. 8, November 2011. 



 

90 

DENG, Z.-P. et al. A Fast View-Temporal Prediction Algorithm for Stereoscopic 

Video Coding. International Congress on Image and Signal Processing 

(CISP). Tiajin, China: IEEE. 2009. p. 5. 

GARCIA, C.; PRETT, D.; MORARI, M. Model predictive control: theory and practice - 

a survey, v. 25, 1989. 

HAGER, W.; PARDALOS, P. Optimal Control. 1. ed. [S.l.]: Springer, v. 15, 1998. 

HEVC-SOFTWARE. 3D-HEVC reference software. Disponivel em: 

<https://hevc.hhi.fraunhofer.de/3DHEVC>. Acesso em: 03 ago. 2015. 

JIANG, M.; YI, X.; LING, N. Improved frame-layer rate control for H.264 using 

MAD ratio. International Symposium on Circuits and Systems (ISCAS). 

Vancouver, BC, Canada: IEEE. 2004. p. 4. 

JMVC-SOFTWARE. Multiview Video Coding References, 2012. Disponivel em: 

<http://h264.hhi.fraunhofer.de/mvc>. Acesso em: 20 ago. 2012. 

JVT. JVT-G050 - Draft ITU-T Rec. and final draft international standard of joint 

video specification. Joint Video Team. [S.l.], p. 12. 2003. 

JVT. JVT-AB204 - Joint Draft 8.0 on Multiview video coding. Joint Video Team. 

[S.l.], p. 14. 2009. 

KANG, J.-W. et al. Low complexity Neighboring Block based Disparity Vector 

Derivation in 3D-HEVC. IEEE International Symposium on Circuits and 

Systems (ISCAS). Melbourne, VIC, Australia: IEEE. 2014. p. 4. 

KAUFF, P. et al. Depth map creation and image-based rendering for advanced 3DTV 

services providing interoperability and scalability. Signal Processing: Image 

Communication, v. 22, p. 18, February 2007. 

KHAN, M. U. K. et al. “Hardware-Software Collaborative Complexity Reduction 

Scheme for the Emerging HEVC Intra Encoder. Design, Automation & 

Test in Europe Conference & Exhibition (DATE). Grenoble, France: IEEE. 

2013. p. 4. 

KIM, Y.; KIM, J.; SOHN, K. Fast Disparity and Motion Estimation for Multi-view Video 

Coding. IEEE Transactions on Consumer Electronics, v. 53, n. 2, p. 8, July 

2007. 

KWON, D.-K.; SHEN, M.-Y.; JAY KUO, C.-C. Rate Control for H.264 Video With 

Enhanced Rate and Distortion Models. IEEE Transactions on Circuits and 

Systems for Video Technology, v. 17, p. 13, April 2007. 

LEE, P.-J.; LAI, Y.-C. Vision perceptual based rate control algorithm for multi-view 

video coding. International Conference on System Science and Engineering. 

Macao, China: IEEE. 2011. p. 4. 

LI, S. et al. McPAT: An Integrated Power, Area, and Timing Modeling Framework for 

Multicore and Manycore Architectures. 2009. MICRO-42. 42nd Annual 

IEEE/ACM International Symposium on Microarchitecture. New York, NY, 

USA: ACM Transactions on Architecture and Code Optimization. 2009. p. 

12. 

LI, Z.; PAN, K.; LIM, P. Adaptive basic unit layer rate control for JVT - JVT-G012. 

Thailand, p. 16. 2003. 



 

 

91 

 

LIE, W.-N.; LIAO, Y.-P. Rate control technique based on 3D quality optimization for 

3D video encoding. IEEE International Conference on Image Processing 

(ICIP). Paris, France: IEEE. 2014. p. 4. 

LIU, A. et al. Just Noticeable Difference for Images With Decomposition Model for 

Separating Edge and Textured Regions. IEEE Transactions on Circuits and 

Systems for Video Technology, v. 20, p. 5, October 2010. 

MA, S.; GAO, W.; LU, Y. Rate-distortion analysis for H.264/AVC video coding and its 

application to rate control. IEEE Transactions on Circuits and Systems for 

Video Technology, v. 15, p. 12, December 2005. 

MERKLE, P. et al. Efficient Prediction Structures for Multiview Video Coding. IEEE 

Transactions on Circuits and Systems for Video technology, v. 17, n. 11, 

p. 1461-1473, Novembro 2007. 

MERRIT, L.; VANAM, R. Improved Rate Control and Motion Estimation for H.264 

Encoder. IEEE International Conference on Image Processing (ICIP). San 

Antonio, TX, USA: IEEE. 2007. p. 4. 

MIANO, J. Compressed Image File Formats: Jpeg, Png, Gif, Xbm, Bmp. 1st. ed. 

Boston: ACM Press, v. I, 1999. 

MORARI, M.; LEE, H. Model Predictive Control: Past, Present and Future. Computers 

& Chemical Engineering, v. 23, n. Elsevier, p. 16, May 1997. 

MÜLLER, K. et al. 3D High-Efficiency Video Coding for Multi-View Video and Depth 

Data. IEEE Transactions on Image Processing, v. 22, p. 3366-3378, 

September 2013. 

PARK, S.; SIM, D. An efficienct rate-control algorithm for multi-view video coding. 

IEEE 13th International Symposium on Consumer Electronics, 2009. ISCE 

'09. Kyoto, Japan: IEEE. 2009. p. 115-118. 

POURAZAD, M.; NASIOPOULOS, P.; WARD, R. An Efficient Low Random-Access 

Delay Panorama-Based Multiview Video Coding Scheme. IEEE 

Conference on Image Processing. Cairo: IEEE. 2009. p. 2945-2948. 

POURAZAD, M.; NASIOPOULOS, P.; WARD, R. An Efficient Low Random-Access 

Delay Panorama-Based Multiview Video Coding Scheme. IEEE 

Conference on Image Processing. Cairo: IEEE. 2009. p. 2945-2948. 

RICHARDSON, I. The H. 264 advanced video compression standard. 2nd. ed. [S.l.]: 

John Wiley and Sons, 2010. 

RUSANOVSKYY, D.; MÜLLER, K.; VETRO, A. Common test conditions for 3DV 

Core Experiments - JCT3V-G1100. Geneva, Switzerland, p. 7. 2013. 

SANCHEZ, G. et al. Complexity reduction for 3D-HEVC depth maps intra-frame 

prediction using simplified edge detector algorithm. International 

Conference on Image Processing (ICIP). Paris, France: IEEE. 2014. p. 3209-

3213. 

SHAFIQUE, M.; MOLKENTHIN, B.; HENKEL, J. An HVS-based Adaptive 

Computational Complexity Reduction Scheme for H.264/AVC video 

encoder using Prognostic Early Mode Exclusion. Design, Automation & 



 

92 

Test in Europe Conference & Exhibition (DATE). Leuven, Belgium: ACM. 

2010. p. 1713-1718. 

SHEN, L. et al. View-Adaptive Motion Estimation and Disparity Estimation for Low 

Complexity Multiview Video Coding. IEEE Transactions on Circuits and 

Systems for Video Technology, v. 20, p. 925-930, March 2010. 

SIVAN, R.; KWAKERNAAK, H. Linear Optimal Control Systems. 1st. ed. [S.l.]: John 

Wiley & Sons, Inc, v. I, 1972. 

SMOLIC, A. et al. Coding Algorithms for 3DTV - A Survey. IEEE Transactions on 

Circuits and Systems for Video Technology, v. 17, n. 11, p. 1606-1621, 

Novembro 2007. 

SONG, Y.; JIA, K.; WEI, Z. Improved LCU Level Rate Control for 3D-HEVC. Visual 

Communications and Image Processing (VCIP). Changdu, China: IEEE. 

2016. 

STOYKOVA, E. et al. 3-D Time-Varying Scene Capture Technologies: A Survey. IEEE 

Transactions on Circuits and Systems for Video Technology , v. 17, n. 11, 

p. 1568-1586, October 2007. 

SU, T. et al. A DASH-based 3D multi-view video rate control system. 8th International 

Conference on Signal Processing and Communication Systems (ICSPCS). 

Gold Coast, QLD, Australia: IEEE. 2014. 

SU, Y.; VETRO, A.; SMOLIC, A. Common Test Conditions for Multiview Video 

Coding - JVT-T207. Klagenfurt, Austria. 2006. 

SULLIVAN, G. J. et al. Overview of the High Efficiency Video Coding (HEVC) 

Standard. IEEE Transactions on Circuits and Systems for Video 

Technology, v. 22, p. 1649-1668, December 2012. 

SULLIVAN, G. J.; WIEGAND, T. Video Compression - From Concepts to the 

H.264/AVC Standard. Proceedings of the IEEE, v. 93, n. 1, p. 18-31, 

January 2005. 

SULLIVAN, G.; WIEGAND, T. Rate-Distortion Optimizatoin for Video Compression. 

IEEE Signal Processing Magazine, v. 15, p. 74-90, November 1998. 

TAN, K. T.; SULLIVAN, G.; WEDI, T. Recommended Simulation Conditions for 

Coding Efficiency Experiments - VCEG-AE010. Marrakech, Morocco. 

2005. 

TAN, S. et al. Inter-View Dependency-Based Rate Control for 3D-HEVC. IEEE 

Transactions on Circuits and Systems for Video Technology, v. 27, n. 2, 

p. 337-351, February 2017. 

TATJEWSKI, P. Supervisory predictive control and on-line set-point optimization. 

International Journal of Applied Mathematics and Computer Science, v. 

20, p. 483-495, March 2010. 

TIAN, L.; SUN, Y.; ZHOU, Y. Analysis of quadratic R-D model in H.264/AVC video 

coding. 17th IEEE International Conference on Image Processing (ICIP). 

Hong Kong, China: IEEE. 2010. p. 2853-2856. 



 

 

93 

 

UGUR, K. et al. High Performance, Low Complexity Video Coding and the Emerging 

HEVC Standard. IEEE Transactions on Circuits and Systems for Video 

Technology, v. 20, p. 1688-1697, December 2010. 

VIZZOTTO, B. et al. A Model Predictive Controller for Frame-Level Rate Control 

in Multiview Video Coding. IEEE International Conference on Multimedia 

and Expo (ICME). Melbourne, Australia: IEEE. 2012. p. 485-490. 

VIZZOTTO, B. et al. Model Predictive Hierarchical Rate Control With Markov Decision 

Process for Multiview Video Coding. IEEE Transactions on Circuits and 

Systems for Video Technology, v. 23, p. 2090-2104, December 2013. 

WIEGAND, T. et al. Overview of the H.264/AVC Video Coding Standard. IEEE 

Transactions on Circuits and Systems for Video Technology, v. 13, n. 7, 

p. 560-576, Julho 2003. 

WU, C.-Y.; SU, P.-C. A Region of Interest Rate-Control Scheme for Encoding Traffic 

Surveillance Videos. International Conference on Intelligent Information 

Hiding and Multimedia Signal Processing (IIH-MSP). Kyoto, Japan: IEEE. 

2009. 

XU, L. et al. Priority pyramid based bit allocation for multiview video coding. IEEE 

Visual Communications and Image Processing (VCIP). Tainan, Taiwan: 

IEEE. 2011. 

YAN I, T. et al. Frame-layer rate control algorithm for multi-view video coding. 

ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC). 

New York, NY, USA: ACM. 2009. p. 1025-1028. 

YAN, T. et al. Rate Control Algorithm for Multi-View Video Coding Based on 

Correlation Analysis. Symposium on Photonics and Optoelectronics. 

Wuhan, China: IEEE. 2009. 

ZATT, B. et al. Memory Hierarchy Targeting Bi-Predictive Motion Compensation 

for H.264/AVC Decoder. IEEE Computer Society Annual Symposium on 

VLSI (ISVLSI). Porto Alegre, Brazil: IEEE. 2007. p. 445 - 446. 

ZATT, B. et al. A Multi-Level Dynamic Complexity Reduction Scheme for Multiview 

Video Coding using 3D-Neighborhood Correlation. Design, Automation 

and Test in Europe (DATE). Brussels, Belgium: IEEE. 2010. 

ZATT, B. et al. An Adaptive Early Skip Mode Decision Scheme for Multiview Video 

Coding. Picture Coding Symposium (PCS). Nagoya, Japan: IEEE. 2010. p. 

42-45. 

ZHANG, S.; ZHANG, X.; GAO, Z. Implementation and improvement of Wavefront 

Parallel Processing for HEVC encoding on many-core platform. 

International Conference Multimedia and Expo Workshops (ICMEW). 

Chengdu, China: IEEE. 2014. 

ZHANG, Z. et al. A New Rate Control Scheme For Video Coding Based On Region Of 

Interest. IEEE Access, v. PP, n. 99, March 2017. 

ZHENG, T. Multi-objective nonlinear model predictive control: Lexicographic 

method. Shanghai, China: SCIYO ISBN 978-953-307-102-2, 2010. 



 

94 

ZHOU, Y. et al. PID-Based Bit Allocation Strategy for H.264/AVC Rate Control. IEEE 

Transactions on Circuits and Systems II: Express Briefs, v. 58, p. 184-

188, March 2011. 

 

 



 




