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ABSTRACT 

 

Electrical behavior of microelectronic devices can be described by analyzing charge 

carrier transport. In this work, an Ensemble Monte Carlo code was adapted to simulate hole 

transport inside silicon, germanium and SiGe alloys. In this simulation, the movement of holes 

were modeled as free-flight periods that are terminated by scattering events. This simulation 

technique consists on randomly generating free-flight times for each hole and selecting - based 

on the hole energy - the scattering mechanism that ends the free-flight. To obtain computational 

efficiency, in the beginning of the simulation, the scattering rates of all considered processes 

are calculated and stored in a table as a function of hole energy. The scattering mechanism is 

randomly selected by comparing the scattering rate saved in the table with a random number, 

which is generated after the end of the free flight. The scattering processes included in the 

simulation of hole transport inside these semiconductors are caused by acoustic and nonpolar 

optical phonon. To simulate the transport of holes inside the SiGe alloys, besides the phonon 

related mechanisms, the alloy scattering was also incorporated into the code. In the simulator, 

the valence band of these semiconductors was described by using a three-band approach. Split-

off band was considered spherical and parabolic, whereas, both heavy hole and light hole band 

were described as nonparabolic and warped. The parameters of warping and nonparabolic 

functions were obtained by fitting the equations that describe each effect to the band structure 

data obtained by EPM calculations. The simulator was validated by comparing the simulation 

results with experimental data. The drift velocity of holes in Si at 300K is in excellent agreement 

with experimental results in a vast range of electric fields. The drift velocity of holes in Ge at 

220K successfully agrees with the experimental data. The mobility versus Ge content curve 

coincides with the experimental one. 

 

Keywords: Ensemble Monte Carlo. Charge carrier transport. Silicon. Germanium. SiGe alloys.   

  



RESUMO 

 

O comportamento elétrico de dispositivos microeletrônicos pode ser descrito pela 

análise do transporte dos portadores de carga. Nesse trabalho, um código Ensemble Monte 

Carlo foi adaptado para simular o transporte de lacunas em silício, germânio e em ligas SiGe. 

Nessas simulações, o movimento das lacunas foi modelado como períodos de caminho livre 

(free-flight) que são terminados por eventos de espalhamento. Essa técnica de simulação 

consiste em gerar randomicamente os tempos de caminho livre para cada lacuna e selecionar – 

baseado na energia da lacuna – o mecanismo de espalhamento que deve terminar o caminho 

livre. Para economizar tempo computacional, no início da simulação, as taxas de espalhamento 

de todos os processos considerados são armazenadas em uma tabela como função da energia da 

lacuna.  O mecanismo de espalhamento é randomicamente selecionado comparando as taxas de 

espalhamento salvas na tabela com um número aleatório que é gerado depois do fim do caminho 

livre. Os espalhamentos incluídos na simulação de transporte de lacunas nesses semicondutores 

são causados por fônons acústicos e ópticos não polares. Para simular o transporte de lacunas 

nas ligas SiGe, além dos espalhamentos relacionados a interações com fônons, o espalhamento 

de ligas também foi incorporado no código. No simulador, a banda de valência desses 

semicondutores foi descrita usando a aproximação de três-bandas. A banda split-off foi 

considerada esférica e parabólica, enquanto as bandas light hole e heavy hole foram descritas 

como não-parabólicas e warped. Os parâmetros das funções de não-parabolicidade e warping 

foram obtidos ajustando as equações que descrevem cada efeito aos dados da estrutura de banda 

calculados por EPM. O simulador foi validado através da comparação dos resultados de 

simulação com os experimentais. A velocidade de deriva das lacunas em Si a 300K está de 

acordo com os resultados experimentais para um vasto intervalo de campo elétrico. A 

velocidade de deriva das lacunas em Ge a 220K concorda altamente com dados experimentais. 

A curva mobilidade versus concentração de Ge coincide com a curva experimental. 

 

 

Palavras-chave: Ensemble Monte Carlo. Transporte de portadores de carga. Silício. Germânio. 

Ligas de SiGe. 
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1 INTRODUCTION 

 

Moore (1975) predicted the number of transistors in integrated circuits would duplicate 

every two years, in order to achieve this prediction, microelectronic industry has been scaling 

down transistor dimensions. Moore’s law guided the improvements performed on transistors; 

however, it is expected to be a limit on scaling (THEIS; WONG, 2016). Therefore, instead of 

miniaturizing CMOS transistor, changing transistor structure, implementing new devices and 

employing new materials could bring advances in microelectronic industry.  

Therefore, employing new materials is an approach to enhance CMOS transistors. In 

band engineering methods, the silicon band structure is changed to acquire a material in which 

holes or electrons have mobility higher than they have in silicon (VASILESKA; GOODNICK; 

KLIMECK, 2010). The addition of germanium in silicon crystalline creates random alloys that 

have a band structure different from pure silicon. It was showed that the improvement in hole 

mobility is achieved in SiGe alloys (KASAP; CAPPER 2006; SHIMA, 2003), because of that, 

this alloy has been studied to be employed in the channel of p-MOSFET. Besides that, it was 

revealed that the effect of Negative Bias Temperature Instability (NBTI) on SiGe p-MOSFET 

is smaller than on silicon (FRANCO, J. et al, 2011; WALTL, M. et al, 2017). 

To verify whether employing new materials such as SiGe could bring improvements 

using trial-and-error methodology is highly expensive, because the effect of the concentration 

of germanium on reliability, on power consumption, would have to be exhaustively tested. To 

overcome this issue, computational electronics, which simulates charge carrier transport within 

a semiconductor in order to obtain the electrical behavior of the material, can be an alternative 

methodology to electrically characterize transistors when a new material is employed. 

In this work, a simulation tool to study the transport of holes in SiGe alloys was 

developed adapting the simulator that was developed by Camargo (2016) in which the transport 

of hole in pure silicon is simulated. In this method, Boltzmann Transport Equation is solved by 

Monte Carlo technique where charge carrier transport is modeled as periods of free flight that 

are interrupted by collision which can change the carrier energy and are responsible to deviate 

the trajectory of charge carrier. The free-flight time and the scattering mechanism are randomly 

selected, thus the scattering events that occurs during charge carrier motion inside a 

semiconductor are described stochastically. Although BTE classically describes the charge 

carrier transport, the scattering rates are calculated following Fermi’s Golden rule.  
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1.1 Outline 

This master thesis is organized into 5 chapters. Chapter 2 starts by discussing the theory 

of semiclassical transport and the application of the Monte Carlo technique to simulate the 

transport of charge carrier inside semiconductors. Secondly, the band structure theory and the 

methodologies employed to calculate it are showed. Finally, the scattering mechanisms 

responsible for deviating the charge carrier trajectory and the general expression used to 

calculate the scattering probabilities are depicted. 

In Chapter 3, the Ensemble Monte Carlo method used to simulate the transport of holes 

in silicon, germanium and silicon-germanium alloys is presented in the following sections. 

Firstly, the methods used to model the band structure of silicon, germanium and SiGe alloys 

are described. Secondly, the scattering rates of the scattering mechanisms needed to simulate 

the transport of holes in these materials are presented. Finally, the structure of the code used to 

simulate the transport of holes in these materials are explained. 

In Chapter 4, the results achieved by simulating the transport of holes in silicon, 

germanium and SiGe alloys are presented. The results obtained in this work are compared with 

simulation and experimental results, confirming that the proposed simulator is adequate to 

simulate the transport of holes in these materials. Chapter 5 presents the conclusions of this 

work and futures perspectives. 
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2 CHARGE CARRIER TRANSPORT IN SEMICONDUCTORS 

 

Electrical conduction is the transport of charge carrier through a material. In 

semiconductors, only electrons in conduction band and holes in valence band are free to move 

through the material, hence, only those particles contribute to the conduction of electrical 

current (KANO, 1998). The behavior of a semiconductor device can be modeled by tracking 

the state of each charge carrier and its motion (VASILESKA; GOODNICK; KLIMECK, 2010). 

Therefore, the carrier transport is essential to specify the operation of any microelectronic 

device. Although charge carrier transport is described in terms of quantum mechanics, quantum 

effects only become important when the length scale of the semiconductor device is shorter 

than the electron phase coherence length (VASILESKA; GOODNICK; KLIMECK, 2010). 

Otherwise, a semiclassical approach can be used to describe the carrier transport. 

In the semiclassical theory of charge carrier transport, electromagnetic fields are driving 

forces to charge transport (VASILESKA; GOODNICK, 2006). When an external 

electromagnetic field is applied on the semiconductors, the charge carriers are accelerated in 

the same direction of the field. While moving in the semiconductor, the charge carriers will 

interact with phonons, other carriers and crystal defects. These interactions are referred as 

scattering and when they occur, the trajectory of the charge carrier is deviated, and the energy 

of the charge carrier may change. Hence, the charge carrier state can be changed by 

electromagnetic field and by scattering events.  

2.1 Transport Equation 

Within  the semiclassical approach, the probability of finding a charge carrier at time t, 

with a crystal wavevector 𝐤, located at the position r is calculated instead of determining the 

charge carrier state (VASILESKA; GOODNICK; KLIMECK, 2010; LUNDSTROM, 2000).  

This probability is given by the distribution function of the charge carrier f(k, r, t) (REIF, 1985) 

which for electrons in equilibrium is the Fermi-Dirac distribution. The distribution function of 

the charge carrier defines the average state of the carriers in the device (LUNDSTROM, 2000), 

therefore, when the distribution function is determined during an interval of time, macroscopic 

properties such as the carrier drift velocity, current and energy can be achieved (JACOBONI; 

LUGLI, 1989; VASILESKA; GOODNICK; KLIMECK, 2010).  

The Boltzmann Transport Equation (BTE) describes the semiclassical transport of the 

charge carrier. The BTE considers that the variation of the distribution function is caused by 



17 

 

scattering events and by external forces. The BTE can be considered a continuity equation for 

charge carrier; however, it describes the flow of charge carrier in the reciprocal and real space 

(LUNDSTROM, 2000). The Boltzmann Transport Equation is shown in equation (2.1) 

(JACOBONI; LUGLI, 1989).  

 
𝜕𝑓

𝜕𝑡
+ 𝐯 ∙ ∇𝑟𝑓 + �̇�∇𝑘𝑓 =  

𝜕𝑓

𝜕𝑡
|

𝑠𝑐𝑎𝑡
 (2.1) 

 

The first term in the left side of equation (2.1) describes the temporal variation of the 

distribution function. This term must be zero in steady-state conditions, because in this situation 

the variations promoted by scattering must be equal to the ones promoted by electromagnetic 

fields (HAMAGUCHI, 2001). 

The second term in the left side of equation (2.1) 𝐯 ∙ ∇𝑟𝑓 is called diffusion term of BTE. 

This term comes from the variation of the distribution in the real space and is caused by 

temperature or by concentration gradients. If these gradients are present, there is a diffusion of 

the carrier in the coordinate space. 

The third term in the left side of equation (2.1) is the drift term of BTE. This variation 

in the distribution function is a result of the change of charge carrier in momentum space �̇�∇𝑘𝑓 

caused by an external electromagnetic field (VASILESKA; GOODNICK; KLIMECK, 2010). 

The term in the right side of equation (2.1) is the scattering term of BTE. The scattering 

term can be defined as the difference between carriers scattered in and out of the state 𝐤 and is 

given by (JACOBONI, 2010) 

 
𝜕𝑓

𝜕𝑡
|

𝑠𝑐𝑎𝑡
=

𝑉

(2𝜋)3
∫[𝑓(𝐤′)𝑆(𝐤’, 𝐤)(1 − 𝑓(𝐤)) − 𝑓(𝐤)𝑆(𝐤, 𝐤’)(1 − 𝑓(𝐤′))] 𝑑𝐤′ (2.2) 

 

Where 𝑆(𝐤, 𝐤’) represents the transition rate, which is the probability per unit of time 

that a carrier in state 𝐤 transits to state 𝐤′ due to a scattering event, while 𝑆(𝐤’, 𝐤) represents 

the transition rate out of 𝐤′to state 𝐤. 

The three processes responsible for the variations of the distribution function are 

illustrated in Figure 2.1. Showing that the charge carrier flow in the real space due to diffusion 

of the carrier and flow in the reciprocal space due to scattering and drift processes.  
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Figure 2.1- The processes (drift, diffusion, and scattering) that affect the evolution of the 

distribution function 𝑓(𝑘, 𝑟, 𝑡). The y-axis shows the change of 𝑓(𝑘, 𝑟, 𝑡) due a charge carrier variation 

in k, while x-axis shows a change of 𝑓(𝑘, 𝑟, 𝑡) due a charge carrier variation in r. 

 

Source: Obtained from Vasileska, Goodnick and Klimeck (2010). 

 

An integral-differential equation is obtained by substituting equation (2.2) into equation 

(2.1) (JACOBONI; LUGLI, 1989). To solve the BTE in order to determine the distribution 

function, approximations must be made. Even though using approaches to analytically solve 

the BTE facilitates the problem, the BTE can be solved directly by applying analytical 

techniques that simulate the charge carrier movement. The Monte Carlo method is the most 

popular numerical technique to study the transport of charge carrier inside semiconductors 

(JACOBONI; LUGLI, 1989). 

It is important to notice that in the semiclassical theory of charge carrier transport, the 

movement of charge carriers between two successive scattering events is described by classical 

mechanics. However, the scattering rate of each mechanism is derived from quantum theory of 

scattering (JACOBONI; LUGLI, 1989). 

2.2 Monte Carlo Simulation of Charge Transport 

Monte Carlo is a numerical technique used to estimate integrals that are complex to be 

solved analytically (DUNN; SHULTIS, 2012). Monte Carlo can be implemented as a 

simulation, where quantities can be estimated by directly simulating the process (DUNN; 

SHULTIS, 2012). Therefore, the transport of charge carrier inside a semiconductor can be 

simulated by the Monte Carlo method rather than numerically solve the BTE to determine the 

distribution function (JACOBONI; LUGLI, 1989). In terms of simulating the transport of the 
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charge carriers inside semiconductors, this numerical technique simulates the motion of the 

charge carriers subject to external electromagnetic field and to scattering events.   

The Monte Carlo method describes the dynamics of the charge carrier as periods of free 

motion – where the carriers are accelerated by the electromagnetic field, also referred as free-

flight time –  and instantaneous scattering events, which are responsible for interrupt the free-

flight of charge carriers. During the free-flight time, the charge carrier wavevector is only 

modified by the electromagnetic field, whereas, after the free-flight ends, a scattering event is 

responsible for changing 𝐤. The duration of the free-flight time and the scattering mechanism 

responsible for ending the free-flight are stochastically selected in the Monte Carlo code in 

accordance with the scattering rates. 

The Monte Carlo simulation is discretized in time by time steps – also called observation 

time – where the carrier properties such energy, band, velocity, wavevector are updated. The 

time step must be on the order of 10fs to guarantee resolution in the time domain (CAMARGO, 

2016). The total time simulated depends on the time needed to reach a steady state; however, 

the simulated time tends to be of the order of 5-10ps. At the end of the simulation, mean values 

of interest can be estimated, in addition, the distribution function can be determined. 

When tracking the movement of a unique charge carrier inside the semiconductor during 

a reasonable amount of time, only steady-state properties, such as single particle distribution 

and average drift velocity, can be statistically estimated. On the other hand, simulating the 

movement of several carriers allows to estimate the time-dependent evolution of the charge 

carrier distributions function under the influence of a time-dependent driving force 

(VASILESKA; GOODNICK, 2006). When the simulation tracks the motion of several charge 

carriers, it is called an Ensemble Monte Carlo (EMC).  

In an EMC algorithm, firstly, some variables that describe the ensemble are defined, 

such as the temperature, electrical field, number of carrier, the number of bands (holes) or the 

number of valleys (electrons), the total time of the simulation and the length of the time step. 

Secondly, the scattering rates as a function of the carrier energy are calculated and stored for 

each band or valley. After, the EMC algorithm initiates the carrier, which means distributing 

the carriers in the available bands and attributing them a value of energy based on Boltzmann 

distribution. The code generates an initial free-flight time (𝑡𝑟) for each carrier based on the total 

scattering rate. 

After the initialization process, the time loop starts where the free-flight and scattering 

process may occur. Figure 2.2 represents the time evolution of an EMC simulation. Where the 

carrier of the simulation is arranged in the vertical axis, the time evolution of each carrier is 
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showed from the left to the right in the horizontal axis and the red squares represents a scattering 

event. The time evolution is split in small intervals of time, which is the observation time, where 

the ensemble movement is synchronized. As can be seen in Figure 2.2, the scattering event may 

coincide with an observation time, may occur before an observation time, may not occur 

between two consecutives observation time, besides, more than one scattering may occur during 

a unique observation time. 

 

Figure 2.2 - Ensemble Monte Carlo simulation in which an observation time, Δt, is 

introduced over which the motion of particles. The red squares represent random scattering events. 

 

Source: Obtained from Vasileska and Goodnick (2006). 

 

To simulate all these possibilities, in the code, the variables ∆𝑡  (the observation time) 

and 𝑑𝑡𝑒 (the time until the next scattering event) are defined. At the beginning of the time loop, 

the time until the next scattering event (𝑑𝑡𝑒) is compared with the observation time. There are 

two possibilities, 𝑑𝑡𝑒 may be greater than ∆𝑡 or smaller than ∆𝑡. 

If 𝑑𝑡𝑒 is larger than ∆𝑡: no scattering will occur during ∆𝑡, then the carrier will be 

accelerated by the electric field, changing the wavevector of the carrier. The ∆𝑘 is calculated 

and the energy of the charge carrier is calculated based on the new value of k and the code 

tracks the next carrier. 

If 𝑑𝑡𝑒 is smaller than ∆𝑡: it means that a scattering event will occur before the next 

observation time. The carrier will be accelerated by the electric field in an interval of time equal 

to 𝑑𝑡𝑒 and then will be scattered by the chosen mechanism. The type of scattering that will 

deviate the trajectory of the ith carrier is chosen based on the ith carrier energy at 𝑑𝑡𝑒. Based 

on the scattering mechanism chosen, the energy and the wavevector of the charge carrier are 
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updated and a new free-flight time is assigned to the carrier. The new free-flight time is 

compared with the time left until the next observation time. 

If the new free-flight time is greater than the time left until the next observation time: 

no scattering event will occur until the next observation time, the carrier is accelerated by the 

electric field during the time left until the next ∆𝑡, and its wavevector and energy are updated 

and the code tracks the next carrier. 

If the new free-flight time is smaller than the time left until the next observation time: 

another scattering event will occur before the next observation time. The carrier is accelerated 

by the electric field in an interval of time equal to new free-flight time, the energy and 

wavevector are updated. Then all the procedure mentioned above is repeated, the carrier is 

scattered by the chosen mechanism, then energy and the wavevector of the charge carrier are 

updated and a new free-flight time is assigned to the carrier. 

If all the N carriers were updated, the code calculates the velocity of each carrier in each 

band and then computes the energy, the velocity and the band population of each band. Next, it 

advances one time-step in time. The loop time goes until the simulation reaches the final time 

specified in the beginning of the simulation (VASILESKA; GOODNICK; KLIMECK, 2010). 

To calculate the change in the charge carrier wavevector caused by the external electric 

field, the equation (2.3) which relates the time variation of the carrier wavevector (�̇�) as a 

function of the external electric field (ε) must be included into the code. Employing that 

equation, the wavevector of the charge carrier can be computed.  

 

ℏ�̇� = 𝑞휀 (2.3) 

 

In addition, the energy of an accelerated charge carrier must be changed after a period 

of free flight, the relation between the energy of the charge carrier and its wavevector is given 

by the dispersion relation, which is obtained from the material band structure. In the transport 

simulation of electrons, the dispersion relation of conduction band is necessary, whereas, when 

simulating the transport of holes, the dispersion relation of valence band is needed. Besides the 

dispersion relation, it is also needed to calculate the scattering rates as a function of the charge 

carrier energy and to calculate the charge carrier velocity at each observation time. 

2.3 Band Structure 

In particle-based simulations, the electrical field is responsible for accelerating the 

particles between two successive scattering events. However, to extract the velocity and energy 
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of charge carrier and to calculate the scattering rate for each energy level, band structure 

information is needed. This section demonstrates that the concept of band structure emerges 

from the periodic arrangement of the atoms in a crystal and explains its importance to describe 

the transport of charge carrier inside the semiconductor. The following subsections will present 

the methods used to calculate the band structure and the approach that will be used in this work 

to include this information in the Monte Carlo code.  

In a crystal, atoms are periodically distributed in space. In such structure, electrons can 

be classified as valence electrons and core electrons (YU; CARDONA, 2010). Valence 

electrons are the ones far from the nuclei. Whereas, core electrons are tightly bound to the 

nuclei, because of that they can be treated as a single particle. The total Hamiltonian of the 

system is showed in equation (2.4) (COHEN; LOUIE, 2016).  
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(2.4) 

Where the first and second term are, respectively, the kinetic energy of the valence 

electrons and of the core. The third term is the Coulomb interaction between valence electrons, 

the fourth is the Coulomb interaction between cores and the fifth represents the interaction 

between cores and valence electrons 

In equation (2.4), e is the elementary charge, 휀0 is the permittivity of vacuum, 𝑚𝑖, 𝑝𝑖 

and  𝑟𝑖 are, respectively, the mass, momentum operator and position of ith valence electron. 

While 𝑀𝑗, 𝑃𝑗, 𝑅𝑗 and 𝑍𝑗 are, respectively, the mass, momentum operator, position and charge 

of the jth core. The primed summation means the sum is equal to zero when i=i’ and j=j’. 

A direct solution to equation (2.4) would involve approximately 1023 quantum numbers 

(COHEN; LOUIE, 2016). Because of that, the many-body Hamiltonian cannot be solved 

without applying simplifications. Besides separating electrons into those two groups, another 

simplification is the Born-Oppenheimer or adiabatic approximation (COHEN; LOUIE, 2016). 

In that simplification, the motion of core and valence electrons are treated separately. This 

assumption is acceptable because the core electrons are heavier than the valence electrons, thus 

they can be considered static, while valence electrons are lighter, thus they move faster. 

Therefore, the total Hamiltonian can be split into the core part and the electronic part. In the 

electronic part, the one that matters to electronic properties, the cores are considered fixed. 
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The independent electron approximation is another simplification to solve the electronic 

Hamiltonian, where the electron-electron interactions and the interaction between electrons and 

core and are represented by an effective one-electron potential, which is a periodic function 

with periodicity of the crystal lattice (ASCHROFT, 1976). The independent electrons are 

known as Bloch electrons and each of them is described by a one-electron Schrodinger 

equation, showed in equation (2.5), where the interaction potential U is the effective one-

electron potential. Applying this approach, the one-electron equation can be solved rather than 

solving the many-body equation (ASCHROFT, 1976). 

 

Η𝜓 = (−
ℏ2

2𝑚
∇2 + 𝑈(𝑟)) 𝜓 = 𝐸𝜓 (2.5) 

 

Due to the periodicity of the potential, the crystal wavefunction can be described by 

Bloch wavefunction, equation (2.6), which is chosen to have a form of a plane wave 𝑒𝑖𝒌∙𝒓, where 

k is the Bloch wavevector, times a function that has the periodicity of the crystal lattice 𝑢𝑛𝒌(𝒓) 

(ASCHROFT, 1976).  

 

𝜓𝑛,𝒌 = 𝑒𝑖𝒌∙𝒓𝑢𝑛𝒌(𝒓) (2.6) 

 

Substituting the effective potential and the Bloch wave function in the one-electron 

Schrodinger equation, it is observed that the energy is a continuous function of 𝐤 with 

periodicity equal to the reciprocal lattice, 𝐸𝑛(𝐤). The n index – which represents the energy 

level – occurs because there are many solutions for the Schrodinger equation for a given k 

(ASCHROFT, 1976). For each n, the set of 𝐸𝑛(𝐤) is called energy band. The diagram where 

all the energy bands are displayed forms the band structure. 

The band structure of a material presents all the available states of an electron as well 

as the forbidden states. Regarding electrical conductivity of semiconductors, valence and 

conduction are the most important bands. Between those two bands there is a range of energy 

called energy gap where electrons are prohibited from occupying. Valence band is the highest 

fully occupied band, while the conduction band is the lowest empty one. In semiconductors, 

charge carriers are electrons in the conduction band and holes in valence band.  Although 

electron is a particle that has negative charge, hole represents the absence of an electron in the 

valence band (JACOBONI; LUGLI, 1989), hence, it is defined as a quasi particle that has a 

positive charge.  
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In semiconductors at 0K there is no vacancy in the valence band nor electron in the 

conduction band. Therefore, the electrical conduction is negligible. Nevertheless, energy can 

be transferred to electrons in order to promote electrons in conduction band, creating holes in 

valence band. Increasing the semiconductor temperature is a method to provide energy to 

electrons, allowing transition between valence to conduction band. Besides, atomic impurities 

can be added into semiconductor, using ion implantation technique, to increase the density of 

one of the two charge carrier (KANO, 1998). 

2.3.1 Methods to Calculate Band Structure 

All the modern methods used to calculate the band structure are based on finding the 

effective potential that correctly describes the interactions in equation (2.5) (FERRY, 2013). 

To determine the band structure of solids, several methods can be employed – which can be 

classified as ab initio or empirical (GONZALEZ, 2001). Ab initio methods (Hartree-Fock, 

Density Functional Theory) make use of approximation to solve the many body Hamiltonian 

without employing empirical parameters, therefore, no empirical parameters are used to acquire 

the band structure (VASILESKA; GOODNICK; KLIMECK, 2010). In contrast, there are 

empirical methods (Empirical Pseudopotential Method, k.p) where the parameters used to 

describe the interaction potential are obtained by fitting the pseudo-potential to agree with 

experimental measurements, such as band gap (GONZALEZ, 2001).   

These ab initio methods use self-consistent procedures in order to get the correct 

wavefunction, potential and energy levels. While Hartree-Fock method directly calculates the 

wavefunction and its eigenvalues (MARTIN; REINING; CEPERLEY, 2016), in Density 

Functional Theory (DFT) all the terms in the Hamiltonian, kinetic energy and the potential, are 

functionals of the electron density (SÓLYOM, 2010). DFT is based on the Hohenberg–Kohn 

theorems, which the first one states that electron density determines the ground-state 

wavefunction and consequently the ground-state expectation value of any observable physical 

quantity (SÓLYOM, 2010). The ground energy can be obtained using the second theorem, 

which states that when the energy is a functional of the density, it takes its minimum value at 

the true ground-state density. These first principle methods are hardly employed to calculate 

the band structure of crystals or large molecules, because a long time is needed to solve the 

Hamiltonian (GONZALEZ, 2001). 

Since ab initio calculations require a long computational time, when it comes to 

calculate the band structure of crystals, empirical methods are usually employed (GONZALEZ, 

2001). Examples of empirical methods widely used are k.p and Empirical Pseudopotential. In 
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the k.p method, the Hamiltonian is formed by the kinetic energy and the effective potential and 

two other terms, which one is expressed as the dot product between the wavevector and the 

momentum (YU; CARDONA, 2010). The energy and the wavefunction at a point ko - usually 

𝑘0 is (000) - is calculated, then the terms proportional to 𝑘 are treated as perturbations (YU; 

CARDONA, 2010). The band dispersion near any point 𝑘0 can be calculated by expanding the 

Hamiltonian around 𝑘0. Since the perturbation is proportional to the wavevector, this method 

is better employed to describe the band structure for small values of the wavevector. The k.p 

parameters needed to calculate the band structure are inferred from experimental data, usually 

energy gaps data are used (YU; CARDONA, 2010). Besides calculating the band structure, this 

method can also provide analytic expressions for effective masses and energy-wavevector 

dispersion. 

In the Empirical Pseudopotential method, the wavefunction is described applying the 

orthogonalized plane wave (OPW) method, proposed by Herring (1940), where the crystal 

wavefunction is formulated to be orthogonal to the core wavefunctions. From this approach, 

the result potential – the pseudopotential - is the sum of the core attractive potential and a short-

range non-Hermitian repulsion potential. A methodology to solve the Hamiltonian is expanding 

the periodic part of the wavefunction and the pseudopotential into Fourier series over the 

reciprocal lattice, which results in an eigenstate and eigenvalue problem. The size of the matrix 

and the accuracy of the calculation is determined by the number of reciprocal lattice vectors 

used to expand the pseudopotential and crystal wavefunction (GONZALEZ, 2001). Usually, 

these calculations consider the reciprocal lattice vectors up to 10th-nearest neighbor from the 

origin, which yields into 137 plane waves for a crystal with diamond lattice. In addition, the 

Spin-orbit interaction can be computed by the EPM method, thus degenerate states can be split. 

The dispersion relation (E-k) is highly important when it comes to transport of charge 

carrier, because the particle kinematics can be determined from the band structure 

(GONZALEZ, 2001). The next section presents the methods employed to include the band 

structure information into codes that simulates the transport of charge carrier using the 

semiclassical approach. 

2.3.2 Band Structure Modeling in Monte Carlo Simulation 

When it comes to simulate the transport of charge carrier using the semiclassical model, 

the dispersion relation of conduction band (electrons transport) or valence band (hole transport) 

is needed to calculate velocity, energy and the scattering probabilities of the charge carrier. 
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There are two methodologies to describe the band structure in these transport simulations: one 

is using analytical expressions that describes the dispersion relation based on the effective mass 

concept and the other is applying full band calculations.  

For free electrons, the dispersion relation is given by equation (2.7), where 𝑚0 is the 

mass of the free charge.  

 

𝐸𝑘 =
ℏ2𝑘2

2𝑚0
 (2.7) 

 

Charge carriers that move inside a crystal behave slightly different from free charges 

carriers because crystal lattice interacts with them. The concept of effective mass was created 

to consider the effect of the lattice on charge carrier interaction. Due to the crystal lattice 

interaction, the mass of an electron in vacuum is different from the mass of an electron in 

conduction band and from the mass of a hole in valence band (KANO, 1998).  

In the effective mass approach, the relation between energy and wavevector of a charge 

carrier inside a semiconductor can be characterized employing an expression similar to equation 

(2.7), however, in terms of the effective mass instead of the free-electron mass (JACOBONI; 

LUGLI, 1989). Therefore, the goal of this approach is finding a value or an expression for the 

effective mass of valence band (holes) or the effective mass of the conduction band (electrons) 

that correctly relates the energy and wavevector of these bands.  

Following this approach, in the region around valleys of the conduction band or around 

the maximum of the valence band, E(k) can be described as a parabolic or as a non-parabolic 

function of k. When the energy is not correctly described by a quadratic dependence of k, the 

nonparabolicity occurs (JACOBONI, 2010). In such cases, the nonparabolicity must be 

included in the effective mass expression by a nonparabolic factor.  

In terms of the constant energy surfaces, the band can be classified as spherical, 

ellipsoidal or warped. The dispersion relation of spherical bands is described in terms of a single 

effective mass, while the ellipsoidal band must be described by a transverse and longitudinal 

effective mass. The constant energy surface of a warped band is referred as a spherical 

“warped”, where the warping effect occurs along the [100] and [111] directions (YU; 

CARDONA, 2010), because of that, the effective mass of warped band is more complex to 

describe.  

In cases where more than one conduction band minimum/valence band maxima are 

important to describe electrons/holes transport, these other bands are modeled as well, 
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describing the band structure as a multi-valley or multi-band (VASILESKA; GOODNICK; 

KLIMECK, 2010). In this approach, the total scattering rates for all mechanisms are written as 

function of the charge carrier energy.  

The second approach incorporates the band structure calculation into the transport 

simulation in both particle dynamics and scattering routines, because of that, transport 

simulation that use this method to describe band structure are called full band Monte Carlo 

simulation. Usually the Empirical Pseudopotential method is employed to perform these 

calculations. In this approach, the total scattering rates for all mechanisms are written as 

function of the initial 𝐤 and final 𝐤′ and stored in a table, because of that, a huge amount of 

memory is necessary (VASILESKA; GOODNICK; KLIMECK, 2010). Furthermore, this type 

of simulation is very time consuming.  

Therefore, modelling the band structure in terms of the effective mass is usually more 

efficient, since it is less time and memory consuming. It has been shown that when the effective 

mass is correctly modeled, the transport simulation results agree with experimental ones 

(RODRÍGUEZ-BOLÍVAR, 2005; DEWEY;OSMAN, 1993).  

2.4 Carrier Scattering Mechanisms 

Charge carrier transport is randomly interrupted by scattering events that can modify 

the energy and momentum of the carrier, deviating its trajectory. When the energy of a charge 

carrier changes after a scattering event, a state transition occurs, and the scattering is said to be 

inelastic. Nevertheless, when the energy remains the same, the scattering is said to be elastic.  

Charge carrier scattering can be classified in terms of the mechanisms that cause it.  A 

scattering event is caused by the interaction of charge carriers with other charge carrier, defects, 

and lattice vibrations (phonons). Those mechanism can also be divided into intraband and 

interband. When the first occurs, initial and final state are in the same band, nevertheless, in an 

interband transitions the initial and final state are in different bands (VASILESKA; 

GOODNICK; KLIMECK, 2010).  

Charge carrier scattering is due to electrostatic interaction between two charge carriers. 

This mechanism, that is important when the charge carrier density is high, can be binary, where 

a charge carrier interacts with another one, or collective, where a charge carrier interacts with 

the plasma formed by the carriers. The first is understood as a collision between two charge 

particles and the second regards the influence of all charge carrier in the material on a charge 

carrier velocity (VASILESKA; GOODNICK; KLIMECK, 2010).  
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Defect scattering is caused by charged and neutral impurities and by the disorder in the 

lattice of the alloy material. Ionized impurity scattering occurs when charged impurities, such 

as dopants, interact with charge carriers by electrostatic potential, because of that, it is also 

known as Coulomb scattering. On the other hand, neutral impurity scattering occurs when 

charge carrier interacts with a neutral impurity during its motion, polarizing it; thus, this 

interaction is an electron–dipole type. This kind of scattering is less effective than the ionized 

impurity scattering. Its importance is relevant when the semiconductor is very pure or when it 

operates in low temperature (VASILESKA; GOODNICK; KLIMECK, 2010). Finally, alloy 

scattering only takes place on alloy semiconductor, such GaAs and SiGe. This type of 

mechanism is due to fluctuation of the material composition in the crystal lattice. 

The phonon scattering occurs due to the displacement of atoms from their equilibrium 

position, which cause variations in the periodic potential felt by electrons on conduction band 

and by holes in valence band. Atoms in crystal lattice are not static, they vibrate around their 

equilibrium position. This vibration is propagated through the crystal, and the quantum particles 

that transport the vibrational energy are called phonons (HAMAGUCHI, 2001). In terms of 

their vibrational mode, phonons can be classified as acoustic when atoms move in phase or as 

optical when two adjacent atoms move out of phase (ASCHROFT, 1976). The displacement of 

each neighboring atom caused by optical phonon contributes directly to the lattice distortion 

since they move in opposite directions. However, in the acoustic phonon, neighboring atoms 

dislocate from their equilibrium position in the same directions; therefore, the strain created by 

acoustic mode cause the distortion on crystal lattice (VASILESKA; GOODNICK; KLIMECK, 

2010; LUNDSTROM, 2000). In addition, phonons can interact electrostatically with charge 

carriers in a polar semiconductor, where an induced electrical field is created by the distortions 

caused by phonons (HAMAGUCHI, 2001). 

2.4.1 General Expression to Scattering Rates 

The scattering events responsible for ending the free flight of a charge carrier are 

described by quantum mechanics. In the scattering theory, when the charge carrier transit from 

a Bloch state to another one, the total Hamiltonian is split into the charge carrier Hamiltonian, 

the crystal Hamiltonian and the perturbation Hamiltonian 𝐻’, which describes the interaction 

between the charge carrier and the particle that induces the scattering. The first two are the 

unperturbed Hamiltonian, which eigenstates are 𝐤 and 𝐜.  
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For each scattering mechanism there is a transition rate, which is the probability per unit 

of time that a charge carrier in  state |𝐤, c⟩ in a band 𝑛 transits to an empty state |𝐤′, c′⟩ in a band 

𝑚 due to the 𝑗th scattering process. Using Fermi’s Golden rule, where the scattering event is 

described by the time-dependent perturbation theory of quantum mechanics, the transition rate 

from a state |𝐤, c⟩ in a band 𝑛 to a final state |𝐤′, c′⟩  in band 𝑚 can be expressed by equation 

(2.8) (VASILESKA; GOODNICK; KLIMECK, 2010; JACOBONI, 2010). 

 

Γ𝑗[𝐤, c; 𝐤′, c′] =
2𝜋

ℏ
|⟨𝐤′, 𝑐′|𝐻𝑗

′|𝐤, 𝑐⟩|
2

𝛿(𝐸(𝐤′, 𝑐′) − 𝐸(𝐤, 𝑐)) (2.8) 

 

In the equation (2.8), 𝐸(𝐤, 𝑐) is the energy of the unperturbed state |𝐤, c⟩ and  𝐸(𝐤′, 𝑐′) is 

the energy of the perturbed state |𝐤′, c′⟩. The delta function in equation (2.8) describes the 

energy conservation. 𝐻𝑗
′ is the perturbation Hamiltonian of the 𝑗th scattering mechanism, which 

generally acts on the real space coordinate of the charge carrier (r), on the real space coordinate 

of other charge carrier (r’) and on variables that describe the state of the crystal, such as the 

atom displacement with respect to their equilibrium position (y).   

In order to calculate the scattering rate of a mechanism, it is convenient to expand the 

perturbation Hamiltonian of the mechanism into Fourier series, as it is showed in equation (2.9).  

 

𝐻′(𝐫, 𝐲, 𝐫′) =
1

√𝑉
∑ ℋ′(𝒒, 𝒚, 𝒓′)exp (𝑖𝐪 ∙ 𝐫)

𝑞

 
(2.9) 

 

Where ℋ′(𝒒, 𝒚, 𝒓′) are the coefficients of Fourier Series and 𝑉 is the crystal volume. 

Replacing the above expression of 𝐻’ into the matrix element ⟨𝐤′, 𝑐′|𝐻′|𝐤, 𝑐⟩ present in equation 

(2.8), yields  

 

⟨𝐤′, 𝑐′|𝐻𝑗
′|𝐤, 𝑐⟩ =

1

√𝑉
∑⟨𝑐′|ℋ′(𝒒, 𝒚, 𝒓′)|𝑐⟩

𝐪

∫ 𝑑𝐫𝜓𝒌
∗(𝐫)exp (𝑖𝐪 ∙ 𝐫)𝜓𝒌(𝐫) 

(2.10) 

 

The integral in equation (2.10) comes from the matrix elements ⟨𝐤′|𝐻𝑗
′|𝐤⟩. 𝜓𝒌(𝐫) is the 

charge carrier eigenstate, which is describe by a Bloch wavefunction, given by equation (2.11). 

 

𝜓𝒌(𝐫) = 𝑁−1 2⁄ 𝑢𝒌(𝐫)exp (𝑖𝐤 ∙ 𝐫) (2.11) 

Where 𝑁 is the number of unit cell in the crystal, and the term 𝑁−1 2⁄  is included to 

normalize the Bloch wavefunction.  
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The integral in equation (2.10) can be substituted by a sum of integrals over the crystal 

cells, which are labelled as j and its position is Rj. Then a change in the variable 𝑟′ = 𝑟 − 𝑅 

must be made to result in equation (2.12). 

 

𝐼 =  ∑ 𝑒𝑖(𝒌−𝒌′+𝒒)∙𝑹𝑗
1

𝑁
∫ 𝑢𝒌′

∗ (𝑟)𝑢𝒌(𝑟)𝑒𝑖(𝒌−𝒌′+𝒒)∙𝒓𝑑𝑟
𝑐𝑒𝑙𝑙𝑗

 
(2.12) 

 

It can be shown that the sum over 𝑗 is equal to 𝑁 when 𝐤 − 𝐤′ + 𝐪 = 𝐆, where G is a 

vector of the reciprocal lattice, otherwise the sum is equal to zero (JACOBONI, 2010).  

Using the results obtained above, the transition rate of the jth process from a state |𝐤, c⟩ 

to a state |𝐤′, c′⟩  expressed in equation (2.8) can be rewritten as  

 

Γ𝑗[𝐤, 𝐜; 𝐤′, 𝐜′] =
2𝜋

ℏ
|∑⟨𝑐′|ℋ𝑗

′(𝐪, 𝐲)|𝑐⟩

𝑞

|

2

ℊ𝛿(𝐸(𝐤′, 𝑐′) − 𝐸(𝐤, 𝑐)) (2.13) 

 

Where ℊ - which is called overlap equation – is given by 

 

ℊ = |∫ 𝑢𝒌′
∗ (𝐫)𝑢𝒌(𝐫)𝑒𝑖𝑮∙𝒓𝑑𝐫

𝑐𝑒𝑙𝑙

|

2

 (2.14) 

 

The expression that calculates the total scattering rate of the 𝑗th scattering mechanism 

is achieved by integrating equation (2.13) over all available states 𝐤′. The total scattering rate 

describes the probability of a charge carrier that is in a state 𝐤 in a band 𝑛 transits to any 

available state 𝐤′ due a scattering event caused by the 𝑗th mechanism and is given by equation 

(2.15) (XIAOJIANG, 2000).   

 

Γ𝑗(𝑘) =
𝑉

(2𝜋)3
∫ 𝑑𝜙 ∫ 𝑠𝑖𝑛𝜃𝑑𝜃 ∫ Γ𝑗[𝐤, 𝐜; 𝐤′, 𝐜′]𝑘′2𝑑𝑘′

∞

0

𝜋

0

2𝜋

0

 (2.15) 

 

It is important to notice that the Fermi’s Golden rule has limitations. This rule is valid 

when the interactions are weak, which means, the scattering is infrequent, and the collision 

broadening can be neglected (VASILESKA; GOODNICK; KLIMECK, 2010).  
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3 ENSEMBLE MONTE CARLO SI, GE AND SIGE 

3.1 Materials: Si, Ge and SiGe alloys 

Silicon and germanium are completely miscible, which means they fully dissolve in 

each other at any concentration (CALLISTER, 2001). Thus, Si and Ge can form binary alloys 

of the type Si1-xGex where the germanium content can vary from x equal to 0 up to x equal to 

1. The SiGe alloys are also semiconductor materials. The addition of germanium in silicon 

generates a material with lower band gap and lower resistivity (GILLESPIE, 2009). Besides, 

the carrier mobility in these alloys is higher than in pure silicon.  

SiGe has been studied to be used as the channel material of p-MOSFETs, where a hole-

mobility enhancement in comparison with Si p-MOSFET has been found. This remark enables 

the use of these alloys when a device of high speed is expected (WHALL, 1998). Besides the 

higher mobility of holes, it has been shown that including SiGe layers between the insulator 

and the silicon substrate of a p-MOSFET results in a transistor that has superior reliability with 

respect to Negative Bias Temperature Instability. 

Both silicon and germanium crystallize in a diamond lattice, however, the lattice 

parameter of silicon is 5.43Å while the lattice parameter of germanium is 5.65Å. In SiGe alloys, 

the atoms of Ge replace the Si atoms in the lattice, keeping the diamond lattice. In a random 

alloy such SiGe, the atoms are randomly distributed on the lattice. To describe the properties 

of random alloys, the Virtual Crystal Approach (VCA) is usually used. In this method, instead 

of considering that the constituent atoms of the alloy are randomly distributed, the crystal of 

the alloy is considered as the crystal of a “hybrid” atom, which is a combination of the 

constituent atoms. Figure 3.1 shows how the alloy lattice is depicted in the VCA, a hybrid atom 

represents the alloy instead of a crystal with Si and Ge atoms randomly distributed. 

Figure 3.1 - Description of the virtual crystal approximation. 

 

 
Source: Adapted from Gonzalez (2002). 
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Employing the VCA approach, the properties of SiGe alloy can be specified by linearly 

interpolating the properties of each atom in proportion to the respective content (GONZALEZ, 

2001). Therefore, VCA model a crystal with physical parameters that vary between the physical 

parameters of the two pure crystals. 

Since the interest of this work is simulating the transport of holes in Si, Ge and SiGe 

alloy, the band of interest is the valence band. Silicon and Germanium crystals - and their alloy 

- have similar valence structure, which is better described when heavy-hole, light-hole and split-

off band are considered. The energy maxima of these three bands occur at gamma point. At this 

symmetry point, the heavy-hole and light-hole are degenerated, while the split-off band has a 

lower energy. The difference between the top of split-off band and the top of heavy and light 

hole band is caused by the spin-orbit interaction, it is called spin-orbit splitting energy and can 

be referred as ∆. The spin-orbit splitting energy of semiconductors is proportional to the fourth 

power of the atomic number of the element (KRISHNAN, 2005). For Silicon, ∆ is equal to 

0.044 eV, for germanium is 0.29 eV.  

In the simulation of hole transport in the pure Si and Ge bulk, the most important 

scattering mechanism are caused by phonons. Nevertheless, when it comes to simulate the 

transport of holes in the SiGe alloys, the alloy scattering must also be included. To describe the 

phonon spectrum of the alloy, two approaches have been adopted, one considers an averaged 

spectrum and the other take into account the coexistence of both Si and Ge modes (BRIGGS; 

WALKER; HERBERT, 1998; FISCHETTI; LAUX, 1996). Using the same assumptions made 

by Briggs, Walker and Herbert (1998) and Fischetti and Laux (1996), in the simulation of hole 

transport in SiGe, the optical modes of pure Si and Ge coexist in the alloy and the acoustic 

branch is considered an average of the modes of pure Si and Ge.  

3.2 Band Structure Model 

To simulate the transport of hole in silicon, germanium and SiGe alloys, the valence 

band of these materials must be described in the transport code. The effective mass approach 

was used rather than employing a full band Monte Carlo simulation. The choice was made 

considering that if the full band structure methodology was used, the time of each transport 

simulation would increase due to the long time necessary to calculate the band structure and a 

large memory would be consumed due to the storage of the full k-dependent scattering rates. 

 Besides, it has been shown that satisfactory results are achieved when the effective mass 

approach - considering the nonparabolicity and warping effects- is employed to simulate hole 

transport in silicon (CAMARGO, 2016; DEWEY; OSMAN, 1993; RODRÍGUEZ-BOLÍVAR, 
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2005) and germanium (RODRÍGUEZ-BOLÍVAR, 2005). Therefore, including the 

nonparabolicity and warping effect to model the dispersion relation of light hole and heavy hole 

bands of silicon, germanium and SiGe alloys is adequate to simulate the transport of holes in 

these materials. 

The split-off band is plausibly described as a spherical parabolic band; thus, its 

dispersion relation is given by equation (3.1) 

 

𝐸 =
ℏ2𝑘2

2𝑚𝑠𝑜
 (3.1) 

 

Where 𝑚𝑠𝑜 is the effective mass of split-off band. 

 However, heavy hole and light hole bands of both silicon and germanium are known 

for being warped and nonparabolic. Therefore, instead of poorly describe the effective mass 

using a unique value through all the Brillouin Zone, the nonparabolicity and warping effect 

must be taken into account. The methodologies to find an analytical expression that consider 

the impact of the warping and nonparabolicity on the dispersion relation are presented in the 

following sections.  

3.2.1 Warping 

The energy surface of a warped band is not spherically symmetric along the [100] and 

[111] directions. To describe the warping effect in the analytical equation of the dispersion 

relation, quadratic cross terms were considered by Dresselhaus (FERRY, 2013), which removes 

the spherical symmetry of the dispersion relation. The equation proposed by Dresselhaus, Kip 

and Kittel (1955) to take into account the warping effect in the heavy and light hole band is 

describe by  

 

𝐸(𝑘) =
ℏ2

2𝑚0
[A𝑘2 ∓ [B2𝑘4 + C2(𝑘𝑥

2𝑘𝑦
2 + 𝑘𝑦

2𝑘𝑧
2 + 𝑘𝑧

2𝑘𝑥
2)]1 2⁄  (3.2) 

 

In equation (3.2), A, B and C are Dresselhaus parameters, 𝑚0 is the mass of a free 

electron and the upper signal correspond to the expression of heavy hole and the lower signal 

correspond to light hole. The expression above can be rewritten in terms of the orientation of 

the wavevector: 
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𝐸(𝑘) =
ℏ2𝑘2

2𝑚0
 |A|(1 ∓ 𝑔(𝜃, 𝜙)) (3.3) 

Where 𝑔(𝜃, 𝜙) is equal to 

𝑔(𝜃, 𝜙) = [(
B

A
)

2

+ (
C

A
)

2

(𝑠𝑖𝑛4𝜃𝑐𝑜𝑠2𝜙𝑠𝑖𝑛2𝜙 + 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃)]

1 2⁄

 (3.4) 

 

The A, B and C parameters of Silicon and Germanium are well known. However, to 

describe the warping effect in heavy hole and light hole bands of SiGe alloys, these parameters 

must be determined for each alloy. The methodology used to achieve these parameters is based 

on calculating the band structure of each alloy and then extracting Dresselhaus parameters by 

a curve fitting process.  

Firstly, the Empirical Pseudopotential Method code that was developed by Gonzalez 

(2001) was used to calculate the band structure of SiGe alloys from the gamma point, where 

the heavy and light hole band have their maxima, to both the directions [100] and [111] near 

the edge, where the nonparabolicity can be neglected. Next, the Dresselhaus parameters were 

extracted by fitting equation (3.3) to the values of energy and wavevector of heavy hole and 

light hole band calculated by EPM. Noticing that the constraint of the curve fitting process is 

that the best set of A, B and C parameters is the one that efficiently describe the warping of 

both heavy and light hole in both directions.  

 

Figure 3.2 - Fit of the Dresselhaus, Kip and Kittel (1955) curve to the EPM band structure 

near the top of the heavy hole and light hole bands. 

 
Source: author. 
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Figure 3.2 shows the heavy hole and light hole of the Si0.2Ge0.8 calculated by EPM and 

the fit of Dresselhaus, Kip and Kittel (1955) - equation (3.3) - to the EPM band structure. The 

left side of the graphic is band structure calculated in the [111] direction while the right side is 

the band structure calculated in the [100] direction. The blue curves are the light hole band and 

the black ones are the heavy hole band. Comparing the fitted curves with the EPM curves, it is 

possible to note a good level of agreement between them around the top of both bands. 

3.2.2 Nonparabolicity 

When the dispersion relation is expanded into Taylor series usually only the quadratic 

term is used to express the relation between energy and wavevector. However, sometimes the 

energy is badly described as a quadratic function of the wavevector. The nonparabolicity comes 

from the higher order terms of Taylor series expansion (MECHOLSKY et al., 2016).  

Instead of expanding the dispersion relation into higher order terms, the nonparabolicity 

is taken into account by including a nonparabolicity factor into the expression of the dispersion 

relation. A nonparabolic band structure can be described by equation (3.5). 

 

𝐸(1 + 𝛽𝐸) =
ℏ2𝑘2

2𝑚∗
 (3.5) 

 

Where 𝑚∗ is the effective mass and β is the nonparabolicity factor. For silicon 

conduction band, the value of β is around 0.47, nevertheless, the nonparabolicity of the valence 

band of silicon, germanium and SiGe alloy is badly described by a constant.  

Because of that, the nonparabolicity of the light hole and heavy hole band are usually 

described as a function of the energy (DEWEY; OSMAN, 1993; RODRÍGUEZ-BOLÍVAR; 

GÓMEZ-CAMPOS; CARCELLER, 2004). Dewey and Osman (1993) proposed that the 

nonparabolicity should be described as a quadratic function of the energy. Distinct parameters 

of the quadratic function were obtained for different ranges of energy for both light hole and 

heavy hole. His results show that the drift velocity for a large range of electric field coincides 

with the experimental data. However, the densities of states of both light hole and heavy hole 

band described by Dewey and Osman (1993) method have discontinuities, which is not 

physically accurate.   

To overcome this issue, Rodríguez-Bolívar, Gómez-Campos e Carceller (2004) 

proposed describing the nonparabolicity factor of silicon and germanium using the analytical 

expression showed in equation (3.6).  
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𝜒(𝐸) =  
𝑎𝐸2 + 𝑏𝐸 + 𝑐

𝑑𝐸 + 1
 (3.6) 

 

In Rodríguez-Bolívar, Gómez-Campos e Carceller (2004) work, the band structure was 

estimated from gamma point to directions [111] and [100] using Kane method, then the 

nonparabolicity of the valence band was reached by fitting equation (3.6) to band structure data. 

To fit the equation (3.6) to band structure data, Rodríguez-Bolívar, Gómez-Campos e 

Carceller (2004) divided the energy into small intervals in order to get the best set of parameters 

for each energy range. Rodríguez-Bolívar, Gómez-Campos e Carceller (2004) used this 

methodology to consider the nonparabolicity of both silicon and germanium, then simulated the 

drift velocity of both materials, obtaining results in good agreement with the experimental ones. 

In this work, the nonparabolicity was considered by employing a similar methodology 

used by Rodríguez-Bolívar, Gómez-Campos e Carceller (2004). The new expression to 

dispersion relation of heavy hole and light hole band when both warping and nonparabolicity 

functions are included, are given in equation (3.7) and (3.8), respectively 

 

𝐸𝐻(𝑘) =
ℏ2𝑘2

2𝑚0
 |𝐴|(1 − 𝑔(𝜃, 𝜙))𝜒𝐻(𝐸) (3.7) 

 

𝐸𝐿(𝑘) =
ℏ2𝑘2

2𝑚0
 |𝐴|(1 + 𝑔(𝜃, 𝜙))𝜒𝐿(𝐸) (3.8) 

 

Where 𝑔(𝜃, 𝜙) is given in equation (3.4) and 𝜒𝐻(𝐸) and 𝜒𝐿(𝐸) are the nonparabolicity 

functions of heavy hole and light hole, respectively. It is important to notice that each band has 

its own nonparabolicity function. 

To find the nonparabolicity function 𝜒(𝐸) of each band of the material of interest, 

firstly, the Dresselhaus parameters were determined using the methodology described in the 

previous section. Secondly, the heavy hole and light hole bands were calculated again by the 

EPM method (GONZALEZ, 2001), however, in this case the entire bands were considered. The 

energy of the heavy hole and the light hole band are direction-depended, as the valence band of 

silicon shows in Figure 3.3. Therefore, the nonparabolicity is also direction dependent. To take 

it into account, the heavy and light band were calculated from gamma point to both [111] and 

[100] directions. To include all the valence band in the calculation, the top of the valence band 

up to -1eV was divided into a thousand of points for both directions. 
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Figure 3.3 – Silicon heavy and light hole band. In the left side of the graphic, these 

bands were calculated in the [111] direction and in the right side these bands were calculated 

in the [100] direction. 

 

Source: Author 

Having Dresselhaus parameters and the band structure data of heavy and light band in 

both directions, the nonparabolicity of both bands was calculated for each point in both 

directions by using equations (3.9) e (3.10). 

 

𝜒𝐻(𝐸) =  
2𝑚0𝐸(𝑘)

ℏ2𝑘2|A|(1 − 𝑔(𝜃, 𝜙))
 (3.9) 

 

𝜒𝐿(𝐸) =  
2𝑚0𝐸(𝑘)

ℏ2𝑘2|A|(1 + 𝑔(𝜃, 𝜙))
 (3.10) 

 

Which resulted in a set of 𝜒100(𝐸100(𝜃100, 𝜙100)) and 𝜒111(𝐸111(𝜃111, 𝜙111)) for each 

band. Instead of having a nonparabolic function for each direction – which would increase the 

code complexity –, an average value of both energy and nonparabolicity was calculated at each 

point. Therefore, the direction dependency of the dispersion relation is concentrated only on the 

warping function. An averaged nonparabolic function was also employed by Rodríguez 

Bolívar, Gómez-Campos e Carceller (2004) in order to remove the direction dependence from 

it. 
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The analytical expression showed in equation (3.6) was fitted to the result data of 𝐸𝑎𝑣  

and 𝜒𝑎𝑣, in order to obtain the parameters a, b, c and d of heavy hole and light hole band. To 

achieve plausible results, the energy range was divided into small intervals, then each interval 

has a set of parameters that best fit the nonparabolicity function. The parameters obtained by 

fitting were tested in two ways: First, when substituted in equations (3.7) and (3.8), these curves 

were compared with the band structure calculated using EPM code (GONZALEZ, 2001). 

Second, the result density of states must be physically acceptable. When one of those tests 

failed, the parameter was changed in order to accomplish both requirements. The constants a, 

b, c and d of light hole and heavy hole band of each material are given in the APPENDIX A of 

this work.  

After employing this method, it was established - for each band - the analytical 

expression of nonparabolicity function. Substituting equation (3.6) into  equation  (3.7) and into 

equation (3.8), the final expression for the dispersion relation of heavy hole and light hole bands 

are given, respectively, by 

 

𝐸𝐻 =
(−𝑏𝑓𝐻𝑘2 + 1) − √(𝑏𝑓𝐻𝑘2 − 1)2 − 4(𝑎𝑓𝐻𝑘2 − 𝑑)𝑐𝑓𝐻𝑘2

2(𝑎𝑓𝐻𝑘2 − 𝑑)
 (3.11) 

 

 

𝐸𝐿 =
(−𝑏𝑓𝐿𝑘2 + 1) − √(𝑏𝑓𝐿𝑘2 − 1)2 − 4(𝑎𝑓𝐿𝑘2 − 𝑑)𝑐𝑓𝐿𝑘2

2(𝑎𝑓𝐿𝑘2 − 𝑑)
 (3.12) 

 

Where 𝑓𝐻 and 𝑓𝐿 is the angular part of the dispersion relation of heavy hole and light 

hole band and are given by 

 

𝑓𝐻 =
ℏ2

2𝑚0
 |𝐴|(1 − 𝑔(𝜃, 𝜙)) (3.13) 

 

𝑓𝐿 =
ℏ2

2𝑚0
 |𝐴|(1 + 𝑔(𝜃, 𝜙)) (3.14) 

 

In order to understand the importance of including the nonparabolic effect into the 

valence band of these material, the heavy hole band curve calculated by the analytical 

expression of equation (3.11) was compared with heavy hole band expression proposed by 

Dresselhaus, Kip and Kittel (1955). The heavy hole band of Si0.2Ge0.8 was calculated in both 

[111] and [100] directions employing these two methods. Figure 3.4 depicts these two curves 
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and the heavy hole dispersion relation calculated by EPM. Since the heavy hole band calculated 

by the EPM method can be considered the most accurate one, it is possible to note that the 

warped band overestimates the curvature of the heavy hole band in both directions, however 

this effect is more significant at [111] direction. The heavy hole band given by the analytical 

expression of equation (3.11) deviates less from the EPM band. This observation evinces the 

importance of including the nonparabolicity in the description of the valence bands of Si, Ge 

and SiGe alloys. 

 

Figure 3.4 – Comparison between the heavy hole band of Si0.2Ge0.8 calculated by EPM, by the 

Dresselhaus, Kip and Kittel (1955) expression and by the analytical expression proposed by 

Rodríguez-Bolívar, Gómez-Campos e Carceller (2004) 

 

Source: Author 

3.3 Scattering Rates 

When simulating the transport of holes inside silicon and germanium bulk, the scattering 

mechanisms that play an important role are caused by acoustic and optical phonons. Since 

neither silicon nor germanium are polar materials, only nonpolar optical phonon scattering is 

present. When it comes to SiGe alloys, besides the ones already mentioned, a disorder scattering 

mechanism – called alloy scattering –, which is originated due to the random distribution of the 

silicon and germanium in the lattice, is also considered. 
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The interaction of each of those mechanisms with the charge carrier is described by a 

scattering potential, which represents the perturbation caused by the scattering process. For 

each scattering mechanism there is a transition rate, which describes the charge carrier transit 

probability from its 𝐤 state in a band 𝑛 to an empty state 𝐤’ in a band 𝑚 due the interaction. In 

the Ensemble Monte Carlo code, the scattering rates are stored as a function of the hole energy. 

The next sections present the scattering rate expressions as a function of the hole energy that 

are implemented in the simulation. 

3.3.1 Acoustic Phonon Scattering Rate 

Since the aim of this work is simulating the transport of holes in silicon, germanium and 

SiGe alloys materials, the approach presented here is used to calculate the hole scattering rate 

of acoustic phonons. In these materials, holes interact with phonons due to the deformation of 

the lattice which is generated by thermal vibrations (JACOBONI, 2010). In the deformation 

potential theory, the change in the energy of the charge carrier is related to the variation of the 

crystal volume (HAMAGUCHI, 2001). In the acoustic phonon scattering, the volume change 

is proportional the divergence of the displacement operator, 𝐲(𝐫). Considering that, the 

perturbed Hamiltonian of acoustic phonon scattering is expressed as 

 

𝐻′ = ∑ 𝐸𝑖𝑗

𝜕𝑦𝑖

𝜕𝑟𝑗
𝑖𝑗

 
(3.15) 

 

Where the i and j index correspond to the 3D axis of cartesian coordinate system. 𝐸𝑖𝑗 is 

the deformation-potential tensor and ∂y ∂r⁄  is divergence of the displacement operator, which 

express the deformation of the lattice caused by acoustic phonons. The displacement operator 

y(r) is given by equation (3.16) (JACOBONI, 2010). 

 

𝐲(𝐫) = ∑ 𝐞𝒒 (
ℏ

2𝜌𝑉𝜔(𝒒)
)

𝟏 𝟐⁄

{a𝒒 + a_𝒒
† }

𝒒

𝑒𝑖𝒒𝒓 (3.16) 

 

In this equation, q is the phonon wavevector, which is equal to k – k’, 𝐞𝒒 is the 

polarization vector of the acoustic phonon, 𝑉 is the crystal volume and 𝜔(𝒒) is the angular 

frequency of the acoustic phonon, which is a function of the wavevector. In the equation (3.16), 

a𝒒 and a_𝒒
†

 are, respectively, the annihilation and creation phonon operators and 𝜌 is the material 
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density. Substituting the expression of the displacement equation (3.16) into equation (3.15), 

the perturbed Hamiltonian becomes 

𝐻′ = ∑ 𝐸𝑖𝑗

𝑖𝑗

∑[𝐞𝒒]i𝐪 (
ℏ

2𝜌𝑉𝜔(𝒒)
)

𝟏 𝟐⁄

{a𝒒 + a_𝒒
† }

𝒒

𝑒𝑖𝒒𝒓 (3.17) 

 

Since the expression of transition rate is given by  

Γ[𝐤, 𝐜; 𝐤′, 𝐜′] =
2𝜋

ℏ
|∑⟨𝑐′|ℋ′(𝐪, 𝐲)|𝑐⟩

𝑞

|

2

ℊ𝛿(𝐸(𝐤′, 𝑐′) − 𝐸(𝐤, 𝑐)) (3.18) 

 

To calculate the acoustic phonon transition rate, the matrix element ⟨𝑐′|ℋ′(𝐪, 𝐲)|𝑐⟩ 

must be obtained. Comparing equation (3.17) with equation (2.9), it is possible to conclude that 

both are Fourier series expansions, therefore, ℋ′(𝐪, 𝐲) of the acoustic scattering is given by 

 

ℋ′(𝐪, 𝐲) = ∑ 𝐸𝑖𝑗

𝑖𝑗

∑[𝐞𝒒]i𝐪 (
ℏ

2𝜌𝑉𝜔(𝒒)
)

𝟏 𝟐⁄

{a𝒒 + a_𝒒
† }

𝒒

 (3.19) 

 

After substituting equation (3.19) into equation (3.18), the presence of the annihilation 

and creation operators in  ℋ𝑗
′(𝐪, 𝐲) establishes that the sum over q in equation (3.18) is only 

different from zero when 𝐪 =  𝐤’ −  𝐤 +  𝐆 and 𝐪 =  𝐤 –  𝐤’ +  𝐆. They correspond to the 

emission and absorption, respectively, of a phonon with wavevector equal to q. Therefore, the 

sum of matrix element is constituted by these two terms. For these two cases, the action of the 

creation and annihilation operators on the crystal eigenstate is given by equation (3.20) and 

equation (3.21), respectively.  

 

|⟨𝑐′|a𝒒|𝑐⟩|
2

= 𝑁𝑞 (3.20) 

 

|⟨𝑐′|a_𝒒
† |𝑐⟩|

2
= 𝑁𝑞 + 1 (3.21) 

 

Where 𝑁𝑞 is the phonon number in the |c⟩ state. 

After substituting the terms of the matrix element in the transition rate equation, it 

becomes 

 

Γ[𝐤; 𝐤′] =
𝜋

𝑉

1

𝜌𝜔(𝐪)
[

𝑁𝑞

𝑁𝑞 + 1
] |∑ 𝑬𝒊𝒋

𝒊𝒋

[𝐞𝒒]𝐪|

2

ℊ𝛿(𝐸𝐤′ − 𝐸𝐤 ∓ ℏ𝜔(𝐪)) (3.22) 
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Where the upper terms correspond to the transition rate due to the absorption of an 

acoustic phonon and the down terms correspond to the transition rate due to the emission of and 

acoustic phonon.  

Since the polarization vector in equation (3.22) has the same direction as the 

deformation, the product between 𝐞𝒒 and q is equal to q for longitudinal acoustic phonons and 

zero for transverse modes (JACOBONI, 1989). To obtain a simplified expression to the acoustic 

transition rate, some approximations are made.  

Firstly, due to the symmetry of cubic crystal, the deformation-potential – which is a 

second-rank tensor – can be considered a scalar value (JACOBONI, 1989). In addition, the 

overlap function ℊ can be incorporated into the deformation potential (JACOBONI, 1989), 

resulting in the acoustic coupling constant Eac.  

Secondly, the acoustic scattering can be considered elastic, this means the scattered hole 

maintains its energy after the scattering event. In the elastic approach the acoustic phonon 

scattering causes only intraband transition. In this case, the wavevector of acoustic phonons are 

small, therefore, the linear part of the acoustic dispersion relation - the equation that express 

phonon frequency as a function of the phonon wavevector - can be used. Thus, the energy of 

the phonon is equal to ℏqvs, being vs the sound velocity of the material. During the scattering, 

both crystal-momentum and kinetic energy are conserved, the expression of crystal-momentum 

and energy conservations of a system composed by a hole whose effective mass is m* and an 

acoustic phonon whose wavevector is 𝐪 is given by  

 

{
ℏ

2
k'

2

2m*
=

ℏ
2
k

2

2m*
±ℏqvs

k' = k±q

 (3.23) 

 

The module of phonon wavevector, for absorption and emission, are obtained after 

combining these equations showed in equation (3.23). The absorption and emission phonon 

wavevector are, respectively, given by equation (3.24) and equation (3.25). 

 

q = 2𝑘(−𝑐𝑜𝑠𝜃 + vs/v) (3.24) 

 

q = 2k(𝑐𝑜𝑠𝜃 − vs/v) (3.25) 

 

Where v is the hole velocity. The maximum value of q occurs when the acoustic phonon 

is absorbed, and the hole is backward scattered. Since the velocity of holes are greater than the 
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sound velocity, the term vs v⁄  is almost zero, thus, the maximum value of q is approximately 

2k (JACOBONI, 2010). The corresponding maximum energy transferred to phonon is 

 

ℏqmaxvs≈2ℏkvs=2m*vvs (3.26) 

 

Which is lower than hole kinetic energy. Therefore, Considering the acoustic scattering 

as elastic scattering is a reasonable approach when the transport simulation is made at room 

temperature (JACOBONI, 2010).  

The third assumption concerns the phonon population. The phonon population in a state 

𝐪 is given by the Bose-Einstein distribution, demonstrated on equation (3.27).  

 

Nq =
1

e
ℏqvs
KBT − 1

 
(3.27) 

 

The phonon population expression can be approximated to equation (3.28) when the 

thermal energy is much higher than the phonon energy, which is reasonable for room 

temperatures. 

  

Nq =
𝑘BT

ℏqvs
−

1

2
 (3.28) 

 

Employing these three approximations above, the acoustic transition rate becomes 

 

Γ[𝐤; 𝐤′] =
𝜋

𝑉

𝐸𝑎𝑐
2𝑞

𝜌v𝑠
[

𝐾𝐵𝑇

ℏ𝑞v𝑠
∓

1

2
] 𝛿(𝐸𝐤′ − 𝐸𝐤) (3.29) 

 

Where the upper and lower signs refer to absorption and emission of an acoustic phonon. 

Since in the elastic approximation there is no difference between the final state achieved by 

emission and by absorption processes, the transition rate of acoustic phonon can be rewritten 

as the sum of the transition rates of emission and absorption (JACOBONI, 2010). Equation 

(3.30) express the acoustic transition rate as a sum of acoustic transition rate due to phonon 

emission and absorption. 

 

Γ[𝐤; 𝐤′] =
2𝜋𝐸𝑎𝑐

2𝐾𝐵𝑇

ℏ𝑉𝜌v𝑠
2

𝛿(𝐸𝐤′ − 𝐸𝐤) (3.30) 
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To achieve the total scattering rate out of a state 𝐤, an integration over all states k’ must 

be made in equation (3.30), which yields in equation (3.31). 

 

Γ(𝐤) =
𝑉

(2𝜋)3
∫

2𝜋𝐸𝑎𝑐
2𝐾𝐵𝑇

ℏ𝑉𝜌𝑣𝑠
2

𝛿(𝐸𝐤′ − 𝐸𝐤)𝑑𝐤′ (3.31) 

 

Where 𝑑𝐤′ = 𝑘′2
𝑠𝑖𝑛𝜃𝑑𝑘′𝑑𝜃𝑑𝜙. 

Since the scattering rate must be calculated as a function of hole energy, it is useful to 

change the variable from 𝐤′ to E'. The relation between theses variables is obtained from the 

dispersion relation of the final band. Since the acoustic phonon is an intraband scattering, the 

initial band and the final band is the same after the scattering. In the previous section, the 

dispersion relation of heavy and light hole was described in terms of an effective mass that 

consider both nonparabolicity and warping effect, whereas the dispersion relation of split-off 

band was described as a spherical parabolic band. 𝑘′2
𝑑𝑘′ for heavy hole, is given by equation 

(3.32), for light hole band is given by equation (3.33) and for split-off band is given by equation 

(3.34). 

 

(𝑘′2
𝑑𝑘′)𝐻 =

(2𝑚0)3 2⁄

2ℏ3|A|3 2⁄ (1 − 𝑔(𝜃, 𝜙))
3 2⁄

 
(𝑑𝑏𝐸′2 + 2𝑑𝑐𝐸′ − 𝑎𝐸′2 + 𝑐)𝐸′1 2⁄ (𝑑𝐸′ + 1)1 2⁄

(𝑎𝐸′2 + 𝑏𝐸′ + 𝑐)5 2⁄
𝑑𝐸′ (3.32) 

 

(𝑘′2
𝑑𝑘′)𝐿 =

(2𝑚0)3 2⁄

2ℏ3|A|3 2⁄ (1 + 𝑔(𝜃, 𝜙))
3 2⁄

 
(𝑑𝑏𝐸′2 + 2𝑑𝑐𝐸′ − 𝑎𝐸′2 + 𝑐)𝐸′1 2⁄ (𝑑𝐸′ + 1)1 2⁄

(𝑎𝐸′2 + 𝑏𝐸′ + 𝑐)5 2⁄
𝑑𝐸′ (3.33) 

 

(𝑘′2
𝑑𝑘′)𝑆𝑂 =  

(2𝑚𝑠𝑜)3 2⁄

2ℏ3
√𝐸′𝑑𝐸′ (3.34) 

 

The total acoustic scattering rate for holes in heavy hole is obtained by substituting 

equation (3.32) in equation (3.31) and integrating over all energy levels, which results in 

 

Γ(𝐸) =
√2𝐸𝑎𝑐

2 𝑘𝐵𝑇(𝑚0)3 2⁄

4𝜋2𝜌𝑣𝑠
2ℏ4|𝐴|3 2⁄

 
(𝑑𝑏𝐸2 + 2𝑑𝑐𝐸 − 𝑎𝐸2 + 𝑐)𝐸1 2⁄ (𝑑𝐸 + 1)1 2⁄

(𝑎𝐸2 + 𝑏𝐸 + 𝑐)5 2⁄
I𝐻 (3.35) 

 

Where E is the hole energy and I𝐻 is the heavy hole angular integral given by 

 

I𝐻 = ∫ 𝑑𝜙 ∫
1

(1 − 𝑔(𝜃, 𝜙))
3 2⁄

𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0

2𝜋

0

 
(3.36) 
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The total acoustic scattering rate for holes in light hole is obtained by substituting 

equation (3.33) in equation (3.31) and integrating over all energy levels, which is given by  

 

Γ(𝐸) =
√2𝐸𝑎𝑐

2 𝑘𝐵𝑇(𝑚0)3 2⁄

4𝜋2𝜌𝑣𝑠
2ℏ4|𝐴|3 2⁄

 
(𝑑𝑏𝐸2 + 2𝑑𝑐𝐸 − 𝑎𝐸2 + 𝑐)𝐸1 2⁄ (𝑑𝐸 + 1)1 2⁄

(𝑎𝐸2 + 𝑏𝐸 + 𝑐)5 2⁄
I𝐿 (3.37) 

 

Where I𝐿 is the light hole angular integral given by 

 

I𝐿 = ∫ 𝑑𝜙 ∫
1

(1 + 𝑔(𝜃, 𝜙))
3 2⁄

𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0

2𝜋

0

 
(3.38) 

 

The total acoustic scattering rate for holes in split-off band is obtained by substituting 

equation (3.34) in equation (3.34) and integrating over all energy levels, which results in 

equation (3.39). 

 

Γ(𝐸) =
√2𝐸𝑎𝑐

2 𝑘𝐵𝑇(𝑚𝑠𝑜)3 2⁄

𝜋𝜌𝑣𝑠
2ℏ4

 √𝐸 (3.39) 

 

The acoustic deformation potential can be obtained experimentally, however, in 

transport simulation, a common procedure is adjusting the acoustic coupling constant value 

until achieving a drift velocity that agrees with experimental results (RODRÍGUEZ-BOLÍVAR 

et al., 2005). 

3.3.2 Optical Phonon Scattering Rate 

A similar methodology is used to calculate the nonpolar optical scattering rate. The 

interaction between holes and nonpolar optical phonons occurs because the energy felt by the 

hole is changed as a result of the displacement of atoms with respect their equilibrium position 

caused by optical phonons. Although acoustic and optical phonons generate a displacement of 

the atoms in the lattice, changing the volume of the crystal, the expression of the volume 

variation caused by acoustic and nonpolar optical are different, therefore, they present distinct 

perturbed Hamiltonian (HATHWAR, 2011).  

 Acoustic phonons are caused by the oscillation of atoms in the same direction; 

therefore, the volume change is proportional to the divergence of the displacement operator. On 

the other hand, the optical phonons are caused by the oscillation of atoms in opposite directions, 

(SÓLYOM, 2007); therefore, the variation of volume is proportional to the displacement 
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operator. Thus, the perturbed Hamiltonian of the nonpolar optical phonon scattering, which is 

shown in equation (3.40), is proportional to displacement operator.  

 

𝐻′ = 𝐷𝑜𝑝𝐲(r) =  Dop ∑ eq (
ℏ

2ρVω(𝐪)
)

1 2⁄

{aq + a_q
† }

q

eiqr (3.40) 

 

Where Dop is the optical deformation potential, which is second rank tensor, but can be 

considered a constant and 𝐲(r) is the displacement operator, given by equation (3.16). The 

Fourier coefficients of the nonpolar optical phonons, ℋ𝑗
′(𝐪, 𝐲), is given by 

 

ℋ′(𝐪, 𝐲) = 𝐷𝑜𝑝 ∑ 𝐞𝒒 (
ℏ

2ρVω(𝐪)
)

𝟏 𝟐⁄

{a𝐪 + a_𝐪
† }

𝒒

 (3.41) 

 

Again, the presence of the annihilation and creation operators in  ℋ𝑗
′(𝐪, 𝐲) impose that 

the sum over q in the matrix element in the expression of  the transition rate, given by equation 

(3.18) is only different from zero when 𝐪 =  𝐤’ −  𝐤 +  𝐆 and 𝐪 =  𝐤 –  𝐤’ +  𝐆. Where G is 

a vector of the reciprocal lattice. First case corresponds to emission of a nonpolar optical phonon 

with wavevector equal to q and the second case corresponds to absorption of a nonpolar optical 

phonon with wavevector equal to q. 

In these two cases, the matrix element results in 𝑁𝑞 (absorption) and 𝑁𝑞 + 1 (emission), 

where 𝑁𝑞 is the optical phonon population. Since the dispersion relation of optical phonons are 

not dependent on the phonon wavevector (SÓLYOM, 2007), 𝜔(𝐪) is in fact a constant 𝜔𝑜𝑝 that 

assumes a different value for each material. In this case 𝑁𝑞 is given by 

 

𝑁𝑞 =
1

𝑒
ℏ𝜔

𝑘𝐵𝑇 − 1

 
(3.42) 

 

Inserting the result of the matrix element into equation (3.18) and considering that both 

intraband and interband transitions can occur, the transition rate out of state 𝐤 to any available 

state 𝐤’ is given by 

 

Γ[𝐤; 𝐤′] =
𝜋

𝑉

1

𝜌𝜔𝑜𝑝

[
𝑁𝑞

𝑁𝑞 + 1
] |𝐷𝑜𝑝|

2
ℊ𝛿(𝐸𝐤′ − 𝐸𝐤 ∓ ℏ𝜔𝑜𝑝 + Δ) (3.43) 
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Where the upper terms correspond to the transition rate due to the absorption of an 

optical phonon and the down terms correspond to the transition rate due to the emission of and 

optical phonon. In the delta function in equation (3.43), ℏ𝜔𝑞 is the energy of the phonon and ∆ 

is the difference between the energies of the top of the final band and initial band.  

The optical deformation potential constant 𝐷𝑜𝑝 and the overlap integral ℊ can be 

coupled to form the optical coupling constant, resulting in equation (3.44). 

Γ[𝐤; 𝐤′] =
𝜋

𝑉

1

𝜌𝜔𝑜𝑝

[
𝑁𝑞

𝑁𝑞 + 1
] 𝐷𝑜𝑝

2 𝛿(𝐸𝐤′ − 𝐸𝐤 ∓ ℏ𝜔 + Δ) (3.44) 

 

To find the total scattering rate out of a state 𝐤, an integration over all states k’ must be 

made in equation (3.44), which becomes 

 

Γ(𝐤) =
𝑉

(2𝜋)3
∫

𝜋

𝑉

1

𝜌𝜔𝑜𝑝

[
𝑁𝑞

𝑁𝑞 + 1
] 𝐷𝑜𝑝

2 𝛿(𝐸𝐤′ − 𝐸𝐤 ∓ ℏ𝜔 + Δ)𝑑𝐤′ (3.45) 

 

Where 𝑑𝐤′ = 𝑘′2
𝑠𝑖𝑛𝜃𝑑𝑘′𝑑𝜃𝑑𝜙. To obtain the total scattering rate as a function of the 

energy, a variable change from 𝐤’ to 𝐸’ must be made in equation (3.45). Since the optical 

scattering assumes both intraband and interband transitions, it is important to notice that 𝐸’(𝐤) 

is the dispersion relation of the final band. If the final band is heavy hole, 𝑘′2
𝑑𝑘′ is given by 

equation (3.32),  if the final band is the light hole, 𝑘′2
𝑑𝑘′ is given by equation (3.33),  if the 

final band is split-off then equation (3.34) must be used. 

To find the total nonpolar optical scattering rate out of heavy hole, light hole and split-

off band to heavy hole, equation (3.32) is substituted into equation (3.45). After making the 

variable change and integrating over all the energy levels available, the expression for the total 

optical scattering is given by 

 

Γ(𝐸) =
√2𝐷𝑜𝑝

2 (𝑚0)3 2⁄ 𝑁𝑜𝑝

8𝜋2ℏ3𝜔𝑜𝑝|𝐴|3 2⁄
 
(𝑑𝑏𝐸′2 + 2𝑑𝑐 ∓ ℏ𝜔(𝐸′ − 𝑎𝐸′2 + 𝑐)𝐸′1 2⁄ (𝐸′𝑑 + 1)1 2⁄

(𝑎𝐸′2 + 𝑏𝐸′ + 𝑐)5 2⁄
IH (3.46) 

 

In equation (3.46), IH is the heavy hole integral and is given by equation (3.36).  

In equation (3.46), 𝑁𝑜𝑝 is the phonon population and 𝐸′ is the hole final energy. It is 

important to notice that the expressions of the hole final energy and the phonon population due 

to emission of an optical phonon are different from the ones due to absorption of an optical 

phonon. Therefore, the scattering rates are calculated separately by substituting these 

expressions for each case. The phonon population, referred in equation as 𝑁𝑜𝑝, is equal to 𝑁𝑜𝑝 =
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𝑁𝑞 when a phonon is absorbed and is equal to 𝑁𝑜𝑝 = 𝑁𝑞 + 1 when a phonon is emitted. The 

energy of the hole after absorption is given by  𝐸′ = 𝐸 + ℏ𝜔𝑞 − ∆, where 𝐸 is the energy of the 

hole before the scattering, and the energy of the hole after emission is given by  𝐸′ = 𝐸 −

ℏ𝜔𝑞 − ∆. 

The total nonpolar optical scattering rate out of heavy hole, light hole and split of band 

to light hole band, is given by 

 

Γ(𝐸) =
√2𝐷𝑜𝑝

2 (𝑚0)3 2⁄ 𝑁𝑜𝑝

8𝜋2ℏ3𝜔𝑜𝑝|𝐴|3 2⁄
 
(𝑑𝑏𝐸′2 + 2𝑑𝑐𝐸′ − 𝑎𝐸′2 + 𝑐)𝐸′1 2⁄ (𝐸′𝑑 + 1)1 2⁄

(𝑎𝐸′2 + 𝑏𝐸′ + 𝑐)5 2⁄
IL (3.47) 

 

In equation (3.47), IL is the light hole integral and is given by equation (3.38).  

The total nonpolar optical scattering rate out of heavy hole, light hole and split-off band 

to split-off band, is given by 

 

Γ(𝐸) =
√2𝐷𝑜𝑝

2 (𝑚𝑠𝑜)3 2⁄ 𝑁𝑜𝑝

2𝜋ℏ3𝜔𝑜𝑝

 √𝐸′ (3.48) 

 

𝐷𝑜𝑝 is adjusted in order to obtain drift velocity data that agree with experimental results. 

3.3.3 Alloy Scattering Rate 

Although the Virtual Crystal Approach models the alloy crystal as a homogenous 

structure, in the real alloy there is a variation in the composition of the alloy related with the 

random distribution of the atoms. The random distribution of the atoms that constitute the alloy 

cause a disorder in the lattice, which generates a perturbation felt by the charge carrier while 

moving inside the alloy. Therefore, the perturbation comes from the disorder of the lattice and 

causes a variation in the potential felt by the charge carrier while moving.  

The average potential felt by the charge carrier is given by equation (3.49) 

(HAMAGUCHI, 2001). Where 𝑉𝑎 and 𝑉𝑏 are the potential of the constituent atoms of the alloy 

AxB1-x. 

 

𝑉0 = 𝑉𝑎𝑥 + 𝑉𝑏(1 − 𝑥) (3.49) 

 

Since the real alloy is not homogenous, there is a perturbation potential 𝑉′ caused by the 

variation of the content, 𝑥′, of the atoms in the lattice due to the random distribution of the 

atoms. The perturbed potential is given by (HAMAGUCHI, 2001) 
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𝑉′ = 𝑉𝑎𝑥′ + 𝑉𝑏(1 − 𝑥′) (3.50) 

 

The alloy scattering potential can be expanded into a Fourier series, as shown in 

equation (3.51) (HAMAGUCHI, 2001). 

𝑉𝑎𝑙𝑙𝑜𝑦(𝐫) = ∑ 𝑉𝑎𝑙𝑙𝑜𝑦(𝐪)𝑒𝑖𝐪∙𝐫

𝑞

 
(3.51) 

Where the Fourier coefficient of the scattering potential 𝑉𝑎𝑙𝑙𝑜𝑦(𝐪)  is independent of q 

and is given by the root-mean square of the difference between 𝑉′ and 𝑉0 (HAMAGUCHI, 

2001), as equation (3.52) shows. 

|〈𝑉′ − 𝑉0〉| = |𝑉𝑎 − 𝑉𝑏| (
𝑥(1 − 𝑥)

𝑁
)

1 2⁄

 (3.52) 

 

 In equation (3.52), 𝑁 is the number of lattices. Substituting the scattering potential into 

the matrix element of the alloy scattering (HAMAGUCHI, 2001). 

 

⟨𝐤′|𝐻′|𝐤⟩  = |𝑉𝑎 − 𝑉𝑏| (
𝑥(1 − 𝑥)

𝑁
)

1 2⁄

𝛿(𝑘′ − 𝑘) (3.53) 

 

The transition rate expression for a transition from a state 𝐤 to a state 𝐤’  is obtained by 

substituting the matrix element into equation (3.18), which results in  

 

Γ[𝐤; 𝐤′] =
2𝜋

ℏ
|𝑉𝑎 − 𝑉𝑏|2 (

𝑥(1 − 𝑥)

𝑁
) 𝛿(𝐸𝐤′ − 𝐸𝐤) (3.54) 

 

To obtain the total scattering rate, equation (3.54) must be integrated over all k’, 

resulting in equation (3.55). 

 

Γ(𝐤) =
𝑉

(2𝜋)3
∫

2𝜋

ℏ
|𝑉𝑎 − 𝑉𝑏|2 (

𝑥(1 − 𝑥)

𝑁
) 𝛿(𝐸𝐤′ − 𝐸𝐤)𝑑𝐤′ (3.55) 

 

In equation (3.55), 𝑉/𝑁 is the unit cell volume Ω0.   

The total alloy scattering rate is given by changing the variable of equation (3.55) the 

from 𝐤′ to 𝐸′, which was described in the previously sections, and integrating over all the energy 

levels. The total scattering rate for heavy hole, light hole and split-off band is given, 

respectively, by equations (3.56), (3.57) and (3.58). 
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Γ𝐻(𝐸) =
Ω0(2𝑚0)3 2⁄

8𝜋2ℏ4
Δ𝑈2𝑥(1 − 𝑥) 

(𝑑𝑏𝐸′2 + 2𝑑𝑐𝐸′ − 𝑎𝐸′2 + 𝑐)𝐸′1 2⁄ (𝐸′𝑑 + 1)1 2⁄

(𝑎𝐸′2 + 𝑏𝐸′ + 𝑐)5 2⁄
IH (3.56) 

 

Γ𝐿(𝐸) =
Ω0(2𝑚0)3 2⁄

8𝜋2ℏ4
Δ𝑈2𝑥(1 − 𝑥) 

(𝑑𝑏𝐸′2 + 2𝑑𝑐𝐸′ − 𝑎𝐸′2 + 𝑐)𝐸′1 2⁄ (𝐸′𝑑 + 1)1 2⁄

(𝑎𝐸′2 + 𝑏𝐸′ + 𝑐)5 2⁄
I𝐿 (3.57) 

 

Γ(𝐸) =
Ω0(2𝑚𝑠𝑜)3 2⁄

2𝜋ℏ4
Δ𝑈2𝑥(1 − 𝑥) √𝐸′ (3.58) 

 

Where 𝐸′ is the hole energy after the scattering event. 

The alloy potential scattering can be calculated or obtained experimentally. However, a 

common approach used in the simulation of charge carrier transport is finding a value for the 

potential scattering where the calculated mobility agrees with the experimental mobility. 

3.4 Ensemble Monte Carlo code 

To simulate the transport of charge carrier the Ensemble Monte Carlo method was 

chosen. The dispersion relation of valence band and the scattering rates are incorporated into 

the code. The heavy hole and light hole band are modeled as nonparabolic and warped, whereas 

the split-off band is described as parabolic and spherical. Only the phonon scattering rates 

described in the previously sections are included into the Si and Ge simulator. In the SiGe 

simulators, the alloy scattering plays an important role in the transport of holes in these alloys, 

considering that, besides the phonon scattering rates, the alloy scattering rate is also included.  

 The flowchart of the Ensemble Monte Carlo algorithm used in this work to simulate 

hole transport in silicon, germanium and SiGe alloys is depicted in Figure 3.5. In the following 

sections, each stage of the Monte Carlo algorithm presented in Figure 3.5 is described.  

Firstly, the initialization process, which is composed by the routines “parameter 

initialization”, “scattering tables”, “carrier initialization” and “histograms”, is described. Here, 

the method employed to generate the free-flight times of each particle is demonstrated and the 

concept of scattering table is explained. In addition, how the algorithm uses these tables to 

select which scattering mechanism responsible for scattering the holes is explained. 

Secondly, the routine that simulates the free-flight and the scattering events is specified.  

This section explains how the holes properties – velocity and energy – are updated in time, then 

describes the processes that involves the scattering event, which are choosing the scattering 

mechanism and updating energy and crystal wavevector of the scattered carrier. 
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Finally, the process used to acquire the data from the simulations, which in the flowchart 

showed in Figure 3.5 is called “writing data”, is explained. 

Figure 3.5 - Flowchart of the main program for EMC simulation. 

 

Source: Adapted from Vasileska, Goodnick and Klimeck, 2010. 

 

3.4.1 Parameter Initialization 

The flowchart in Figure 3.5 is initiated by the execution of the main routine. In the 

beginning of the simulation, before the time loop starts, it is necessary to assign values for 

external parameters which influence the charge carrier transport and parameters that describe 

the semiconductor. The main routine calls the readin subroutine where parameters such as 

number of carriers, temperature, electrical field, total time, observation time and effective mass 

are defined. In this routine the angular integrals of both heavy and light hole are calculated. In 
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the beginning of the simulation, besides assigning values to each parameter, scattering tables 

for each available band must be calculated. 

3.4.2 Creating Scattering Tables 

In the Monte Carlo simulation, after the free-flight time ends, a scattering even must 

occur. For each scattering mechanism, the total scattering rate of the hole should be evaluated 

in order to define which mechanism is more likely to scatter the particle. Calculating the 

scattering rate for each of the 𝑁 mechanisms at all final free-flight period would highly spend 

computational time (VASILESKA; GOODNICK; KLIMECK, 2010). To avoid this, in the 

beginning of the simulation, for each available band, the scattering rate of each mechanism is 

calculated as a function of the carrier energy. This information is stored in a table, called 

scattering table, where the scattering rate is calculated for a large range of energy, so no carrier 

will reach an energy beyond the energy range covered by the table (CAMARGO, 2016). The 

equations that describe the scattering rate of each mechanism, which were demonstrated in the 

last section, are solved analytically in the code, in order to create the scattering table for all the 

three valence bands. 

The process of creating a scattering table for each band is executed by the 

scattering_table subroutine. The first column of the scattering table contains the charge carrier 

energy, the second column contains the scattering rate of the 1st scattering mechanism for the 

entire energy range, the third column contains the sum of the scattering rate of the 1st and 2nd 

mechanism, the fourth column contains the sum of the scattering rate of the 1st, 2nd and 3rd 

mechanism, it goes on until the 𝑁 + 1 column, which contains the summation of the scattering 

rates of all mechanism. Thus, a band that has 𝑁 possible scattering mechanism has a table with 

𝑁 + 1 column. In the end, the scattering table of each band is normalized by its largest value, 

which is called Γ0. The value of Γ0 is used again in the generation of free-flight times described 

in section 3.4.5. 

3.4.3 Carrier Initialization and Histograms Calculation 

After the scattering tables are constructed, the carrier initialization is performed. Calling 

the init routine, each charge carrier is initialized with an energy, wavevector and with an initial 

free-flight time. The method utilized to generate free-flight time is depicted in section 3.4.4. In 

addition, in this stage, the code defines that initially all holes occupy the heavy hole band. 
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The initial energy of the ensemble is given by the Boltzmann distribution. In order to 

randomize the initial energy of the charge carrier, the initial energy is calculated by 

 

𝐸 = −
3

2
𝑘𝐵𝑇ln(𝑟𝑎𝑛𝑑1) (3.59) 

 

Where rand1 is a random number uniformly distributed between 0 and 1. 

The magnitude of the initial wavevector is related to the initial energy assigned to the 

hole, thus it is calculated using the dispersion relation of the hole band. The orientation of the 

wavevector is randomly assigned to the carrier, following the equations. 

 

𝜙 = 2𝜋𝑟𝑎𝑛𝑑2 (3.60) 

 

𝑐𝑜𝑠𝜃 = 1 − 2𝑟𝑎𝑛𝑑3 (3.61) 

 

In the equation (3.60), rand2 is a random number uniformly distributed between 0 and 

1 and 𝜙 is the azimuthal angle which can vary from 0 to 2𝜋. In the equation (3.61), rand3 is 

also a random number uniformly distributed between 0 and 1 and 𝜃 is the polar angle which 

can vary from 0 to 𝜋. After calculating the magnitude and the orientation of the wavevector, its 

components 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 can be calculated. 

In order to ensure that energy and wavevector of charge carriers follow a Maxwell-

Boltzmann distribution the histogram of energy and wavevector are calculated by calling the 

histogram subroutine. During the simulation, it is possible to call the histogram subroutine at 

each observation time in order to acquire energy and wavevector distribution in the entire 

simulation.  

3.4.4 Generating Free Flight Time  

In the Monte Carlo simulation, the charge carrier is said to have a free flight during the 

time between two successive scatterings (𝑡𝑟). In order to simulate this process, the free-flight 

time – which is a random variable since the scattering events are stochastics – should be known. 

The free-flight time can be described in terms of the probability density, 𝑃(𝑡), where 𝑃(𝑡)𝑑𝑡 is 

the probability that a charge carrier, after being scattered at time 𝑡 = 0, will not be scattered at 

the interval of time 𝑡 and then will suffer a scattering in time 𝑑𝑡 around 𝑡 (VASILESKA; 

GOODNICK; KLIMECK, 2010).  
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The probability that a charge carrier will be scattered from a state 𝐤 to a state 𝐤’ at the 

time 𝑑𝑡 after having a free-flight period equal to 𝑡 can be described in terms of the total 

scattering rate, Γ[𝐤(𝑡)] which is the sum of the contributions from each scattering mechanism. 

Being Γ[𝐤(𝑡)]𝑑𝑡 the probability that a charge carrier will be scattered at time 𝑑𝑡, then 

exp (− ∫ Γ[𝐤(𝑡′)]𝑑𝑡′)
𝑡

0
 is the probability that a charge carrier will not suffer a scattering until 

time 𝑡 (VASILESKA; GOODNICK; KLIMECK, 2010). Therefore, the probability that a 

charge carrier will scatter between 𝑡 and 𝑡 + 𝑑𝑡, after having a free-flight equal to 𝑡, is given 

by the equation (3.62). 

 

𝑃(𝑡)𝑑𝑡 = Γ[𝐤(𝑡)]ex p [− ∫ Γ[𝐤(𝑡′)]𝑑𝑡′
𝑡

0

] 𝑑𝑡 (3.62) 

 

To determine the free-flight time, (𝑡𝑟), a methodology to obtain 𝑃(𝑡) in equation (3.62) 

is required. Thus, a random number generator which generates a uniformly distributed number 

r between 0 to 1 must be used. The equation (3.63) shows how r and 𝑃(𝑡) are related 

(LUNDSTROM, 2000).  

 

𝑟 = ∫ 𝑃(𝑡)𝑑𝑡
𝑡𝑟

0

 (3.63) 

 

Integrating equation (3.63) after substituting the value of 𝑃(𝑡) given by equation (3.62) 

on equation (3.63) yields equation (3.64) 

 

𝑟 = 1 − 𝑒𝑥𝑝 [− ∫ Γ[𝐤(𝑡′)]𝑑𝑡′
𝑡𝑟

0

] (3.64) 

 

Equation (3.64) can be rewritten substituting the term 1 − 𝑟 for 𝑟, since they are 

statistically the same, in order to achieve equation (3.65).  

 

ln(𝑟) = ∫ Γ[𝐤(𝑡′)]𝑑𝑡′
𝑡𝑟

0

 (3.65) 

 

Solving the equation (3.65) to generate free-flight times for each charge carrier would 

spend a substantial amount of computational time (JACOBONI; LUGLI, 1989). Thus, to avoid 

the complexity of equation (3.65), an approach that makes the time dependence of the scattering 

rate vanish is required. This simplification is obtained by introducing the so-called self-
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scattering method, which inserts a fictitious scattering process whose scattering rate is always 

adjusting itself in order to make the total scattering rate constant with respect to time 

(VASILESKA; GOODNICK; KLIMECK, 2010; JACOBONI; LUGLI, 1989). Thus, the 

scattering rate is defined as a sum of the real scattering rate and the self-scattering rate, as 

depicted in equation (3.66). 

Γ0 = Γ[𝐤(𝑡)] + Γ𝑠𝑒𝑙𝑓[𝐤(𝑡)] (3.66) 

This fabricated scattering process is defined as the scattering that provoke no changes 

in the charge carrier state nor on its trajectory. Thus, when this mechanism is selected to 

terminate the free flight, it has no effect on the free flight. 

Employing this approach, the free-flight time can be written as  

 

𝑡𝑟 = −
1

Γ0
ln(𝑟𝑎𝑛𝑑4) (3.67) 

Where the Γ0 in equation (3.67) is defined in the beginning of the simulation and 𝑟𝑎𝑛𝑑4 

is a random number generated in the simulation. 

3.4.5 Free-flight and Scattering 

In the free-flight-scatter routine the charge carrier transport is simulated. The time in 

the simulation is discretized in time steps, ∆𝑡, where the motion of each charge carrier is 

independently simulated. To simulate the free flight, the drift subroutine is called, where charge 

carriers are freely accelerated by the electrical field. Whereas, when the free flight is terminated, 

a scattering event is simulated by the scatter_carrier subroutine. 

The flowchart of the free-flight-scatter routine used to perform the hole movement 

during a time step, ∆𝑡, is depicted in Figure 3.6. The free-flight time, 𝑑𝑡𝑒, of each particle must 

be evaluated at each observation time to decide whether the particle will keep the free flight or 

will be scattered. If 𝑑𝑡𝑒 is greater than ∆𝑡, no scattering happens in that time step; therefore, 

the particle freely moves during all the observation time and its free-flight time is decreased by 

∆𝑡. On the other hand, if 𝑑𝑡𝑒 is smaller than ∆𝑡, it means the free flight must occur until 𝑑𝑡𝑒, 

and then a scattering event must take place. The the mechanism that will scatter the particle at 

𝑑𝑡𝑒 is defined at the scatter_carrier subroutine.  

After the scattering mechanism is chosen, a new free-flight time 𝑑𝑡3 is generated, for 

the recently scattered particle, in accordance with the method presented in section 4.2.1; if the 

free-flight time 𝑑𝑡3 is smaller than the time left until the next observation time, 𝑑𝑡𝑝, the particle 

will freely move until the end of 𝑑𝑡3.  
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On the other hand, if 𝑑𝑡3 is greater than 𝑑𝑡𝑝 the particle will freely move during 𝑑𝑡𝑝. 

Then, the free-flight time in this observation time is updated by summing 𝑑𝑡𝑒 and the new free-

flight time 𝑑𝑡3. If this sum is smaller than ∆𝑡, another scattering must occur before the next 

time step; therefore, another scattering mechanism must be selected, and a new free-flight time 

have to be randomly chosen. If this sum is greater than ∆𝑡, then the remainder free-flight time 

left is calculated by decreasing ∆𝑡. 

 

Figure 3.6 - Flowchart of free_flight_scatter routine. 

 

Source: Adapted from Vasileska, Goodnick and Klimeck, 2010. 
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In the subroutine drift, where the free-flight motion is performed, the crystal wavevector 

of every charge carrier is updated at each time step, according to the equation (2.3). During the 

time of free movement, the charge crystal wavevector of each carrier is changed only by the 

effect of electromagnetic field. Since the wavevector is changed due the drift movement, a new 

energy of the hole must be calculated based on the band the hole is occupying. If the hole is in 

the split-off band, equation (3.1) is employed to calculate the current energy, if the hole is in 

the heavy hole band, the equation (3.11) is used and if the hole is in the light hole band, equation 

(3.12) must be employed. 

The velocity of the charge carrier is also related with the wavevector and is calculated 

in accordance with equation (3.68) (VASILESKA; GOODNICK; KLIMECK, 2010). 

 

𝐯 =
1

ℏ
∇𝐤𝐸𝐤 (3.68) 

 

The scattering event is simulated in the scatter_carrier subroutine. The role of this code 

is, firstly, selecting the mechanism responsible for scattering the charge carrier as depicted in 

section 3.4.6, then performing the changes on the wavevector and on the energy of the charge 

carrier.  When the acoustic scattering mechanism is chosen, the hole energy remains the same 

since this is an elastic scattering in this simulator. When the nonpolar phonon process is 

selected, the hole will change its energy. The new energy depends on the initial and final band 

and whether an optical phonon will be absorbed or emitted.  

When it comes to update the hole wavevector of a hole that transits to split-off band, the 

module of this vector is calculated using the dispersion relation of the final band. In this band, 

all scattering processes considered in this model – acoustic phonon scattering, nonpolar optical 

phonon scattering and alloy scattering - are considered isotropic, which means the wavevector 

after the scattering event is equally likely to assume any orientation. Considering that, both 

polar and azimuthal are generated using random numbers.  

In the heavy and light hole band, the final wavevector is randomly determined, which 

means both polar and azimuthal angles are also generated using random numbers, nevertheless, 

to assure the new wavevector respect the relation with the energy defined in equation (3.11) for 

the heavy and in equation (3.12) for light hole bands, the rejection technique is used to accept 

the new wavevector or reject it. 
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3.4.6 Choosing the Scattering Mechanism  

When the free-flight period ends, a scattering must happen. Since there are several 

mechanisms and each of them has a different impact on charge carrier energy and wavevector 

(LUNDSTROM, 2000), the process responsible for scattering the charge carrier should be 

selected before calculating the final state of the particle. The scattering mechanism will be 

chosen based on the charge carrier band and energy after the free-flight time.  

Using a uniformly distributed random number 𝑟𝑎𝑛𝑑5 which varies between 0 and 1, the 

mechanism that will scatter the charge carrier in the band m with energy 𝐸𝑚 can be 

stochastically chosen by comparing 𝑟𝑎𝑛𝑑5 with the values on the scattering table of the band 

𝑚 for that specific charge carrier energy, 𝐸𝑚. Since the first column on the scattering table 

contains the energy, selecting process consists on finding the value on the first column that 

coincide with the charge carrier energy, then, comparing 𝑟𝑎𝑛𝑑5 with the value on second 

column; if 𝑟𝑎𝑛𝑑5  is smaller than it, the first mechanism is chosen. If 𝑟𝑎𝑛𝑑5 is greater than 

that, then, 𝑟𝑎𝑛𝑑5 is compared with the value on third column; if 𝑟𝑎𝑛𝑑5 is smaller than the third 

column value, the second mechanism is chosen. If 𝑟𝑎𝑛𝑑5 is greater than the third column value, 

the analysis goes on until a mechanism is selected. However, if 𝑟𝑎𝑛𝑑5 is greater than the value 

on last column, the self-scattering is chosen. In the code, the self-scattering mechanism is 

always verified first, because this mechanism is the most probable to occur for low-energy 

particles (CAMARGO, 2016). 

3.4.7 Writing Data 

At each time step, the quantities relate to the charge carrier transport are calculated.  The 

velocity, in the three dimensions, and the energy of each charge carrier is calculated. Then, for 

each band the average energy and the average velocity are estimated. Thus, the progress of 

those averages can be evaluated with respect to time. Furthermore, the band population is 

measured at each observation time by calculating the number of charge carrier in each band. 

The ensemble averages of the quantity 𝐴 at a time 𝑡 can be obtained by summing the 

𝐴𝑖(𝑡) over all the 𝑁 charge carrier considered in the simulation – 𝐴𝑖(𝑡) is the value that the 

quantity 𝐴 assumes for the 𝑖th charge carrier at the time 𝑡. The expression to calculate the 

ensemble average of 𝐴 is given in equation (3.69) (JACOBONI; LUGLI, 1989). 

〈𝐴〉 =
1

𝑁
∑ 𝐴𝑖(𝑡)

𝑁

𝑖=1

 (3.69) 
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4 RESULTS 

4.1 Silicon Transport Simulations 

A set of simulations was performed to determine the value of each deformation potential 

constant. To select these constants, the condition was achieving the steady-state hole velocities 

that agree with experimental results for a range of the electric field (JACOBONI, 1977). Since 

the elastic approximation is not valid at low temperatures, the simulations were performed at 

300K. In the experiments and in the simulation, the electric field was applied parallel to the 

[100] direction and it was varied from 103 to 105V/cm. The total time of the simulation was 

equal to 10ps for low fields (smaller than 104 V/cm) and 5ps for higher fields. The time of 

simulation was higher for low fields due to the fluctuation observed in the hole velocity and 

energy. In each of these simulations, 20000 holes were considered in the ensemble. 

 
Figure 4.1 – Comparison between the simulated drift velocity of holes in silicon with experimental data. 

Electric field applied parallel to [100] direction.  

 
Source: author. 

 

Figure 4.1 shows the results of the steady-state hole drift velocity as a function of the 

electric field obtained using the described simulator and experimentally (JACOBONI, 1977). 

As it is shown in the Figure 4.1, the simulated hole velocity is overestimated for low electric 
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fields in comparison with the experimental data, while is well described for electric fields higher 

than 1500V/cm. Good level of agreement between experimental and simulation data is 

observed.  

Figure 4.2 shows the mean energy of holes for those simulations. For electric fields 

smaller than 104V/cm, the mean energy slowly rises with the increase of the electric field. As 

can be seen in Figure 4.2, electric fields from 104 to 105V/cm expressively increase the hole 

mean energy in silicon. 

 
Figure 4.2 - Mean energy of the holes versus electric field for silicon bulk at 300K. 

 
Source: author. 

 

The graphic on Figure 4.3 shows the band occupancy as a function of the applied electric 

field. In the code, initially, all the holes are in the heavy hole band. Light hole and split off band 

eventually become occupied due to interband scattering process, which, in this model, are only 

caused by nonpolar optical phonon. Increasing the electric field generates a rise in the light hole 

population, which is accompanied by a decrease in heavy hole band population.  
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Figure 4.3 – Occupation of the valence bands vs electric field for Si at 300K. 

 
Source: Author 

 

Other simulations of hole transport inside silicon bulk were performed at 300K to 

describe the time evolution of the drift velocity and of the energy of holes in silicon bulk. To 

obtain this relation, distinct simulations were performed where distinct electrical fields were 

applied only in the y-direction. Again, in each simulation, 20,000 holes were considered.  

The time evolution of the energy of holes for electric fields of 15, 25, 50, 75 e 100 

kV/cm is depicted in Figure 4.4.  Those curves show that the charge carrier energy increases 

due to the external electrical field. The ensemble reaches a steady state when the increase in 

energy due to the electrical field is compensated by the loss of energy due to scattering events. 

The calculation of the energy, velocity and population at different values of electric field 

presented in  Figure 4.2, Figure 4.1 and Figure 4.3 is only performed when the ensemble reaches 

the steady state. 

 Figure 4.5 shows the time evolution of the drift velocity of holes for electric fields of 

15, 25, 50, 75 e 100 kV/cm. The velocity overshoot effect can be observed at the beginning of 

the simulation. The holes achieve a velocity higher than the expected because when the electric 

field is applied, it highly increases the charge carrier velocity. As the time goes, the scattering 

events decrease the charge carrier velocity and they also change the band population. 
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Figure 4.4 - Energy of holes in silicon for applied fields of 15, 25, 50, 75 and 100kV/cm 

 

Source: author. 

 
Figure 4.5 – Time evolution of drift velocity of holes in silicon for applied fields of 15, 25, 50, 75 and 

100kV/cm. It is possible to observe the velocity overshoot and the steady state. 

 

Source: Author 

Figure 4.6 shows the intraband acoustic scattering rates for the three valence bands of 

silicon at 300K.  
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Figure 4.6 - Acoustic phonon scattering rates for holes in the heavy hole, light hole and split-off bands 

in Si. This scattering process is intra-band, which means the initial and the final bands are the same. 

 
Source: Author 

Figure 4.7 - Nonpolar optical phonon scattering rates for holes scattered from the heavy hole band in 

Si. 

 
Source: Author 

Figure 4.7 shows the optical scattering rates for holes that transit from heavy hole to 

heavy hole, light hole and split-off band. In silicon heavy hole band, the acoustic scattering rate 
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at 300K is greater than the nonpolar optical scattering, as can be seen comparing the blue curves 

in Figure 4.6 and in Figure 4.7. Therefore, the mobility of hole in this band is mainly restrained 

by the interaction of holes with acoustic phonons. As Figure 4.7 shows, the absorption of an 

optical phonon can occur at any energy, however, it is less likely to happen than the acoustic 

scattering. The emission of an optical phonon, when the hole is kept in heavy hole band or 

transit to light hole is only possible to happen when the hole has an energy higher than the 

optical phonon energy, which for silicon is equal to 0.063eV. Whereas, the transition to split-

off band followed by the emission of an optical phonon is only possible when the hole energy 

is higher than 0.107eV, which is the sum of the optical phonon energy and the spin-orbit 

splitting energy. 

 

Figure 4.8 - Nonpolar optical phonon scattering rates for holes scattered from the light hole 

band in Si. 

 
Source: Author 

 

Figure 4.8 shows the optical scattering rates for holes that transit from the light hole band 

to the light hole, heavy hole and split-off band. In light hole band, the acoustic scattering and 

both intraband and interband scattering due the absorption of optical phonon can occur at any 

energy. A hole in this band can only emit an optical phonon and transit to heavy hole or stay in 

light hole if its energy is higher than 0.063eV. To transit to split-off and emit an optical phonon, 

the hole must have an energy higher than 0.107eV. The absorption of an optical phonon 
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followed by a transition to heavy hole band is the scattering mechanism that has the highest 

probability to happen when the hole energy is smaller than 0.009eV. Acoustic scattering is the 

most probable one when the hole has an energy between 0.01 and 0.09eV. The emission of an 

optical phonon followed by a transition to heavy hole band is more likely to happen with holes 

that have energy higher than 0.1eV. 

 

Figure 4.9 - Nonpolar optical phonon scattering rates for holes scattered from the split-off 

band in Si. 

 
Source: Author 

 

Figure 4.9 shows the optical scattering rates for holes that transit from split-off band to 

the heavy hole, light hole and split-off band. In the split-off band, the acoustic scattering and 

both intraband and interband scattering due the absorption of optical phonon can occur at any 

energy. 

A hole in this band can only emit an optical phonon and transit to heavy hole or light 

hole if its energy is higher than 0.019eV. An intraband optical scattering followed by the 

emission of an optical phonon only occur to holes with energy higher than 0.063eV. When the 

hole energy is smaller than 0.02eV, the absorption of an optical phonon followed by a transition 

to heavy hole band is the most probable scattering mechanism. For holes with energy higher 

than that, the emission of an optical phonon followed by a transition to heavy hole band is the 

most probable one. 
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At low electric field, the mean energy of the hole is around 0.04eV, and the acoustic 

scattering is more likely to happen than the intraband and interband nonpolar optical scattering 

in both heavy hole and light hole bands.  The acoustic scattering rate may be underestimated 

when the acoustic scattering is considered an elastic mechanism and the adiabatic 

approximation is employed to describe the phonon population. Since this scattering mechanism 

is more important at low energy, the impact of the simplified acoustic scattering is more 

pronounced, explaining why the drift velocity obtained by the EMC simulation is higher than 

experimental results in low fields. 

The hole velocity at low fields were in better agreement with the experimental results 

when the acoustic deformation potential constant was increased, however, the velocity in higher 

fields was also diminished. To overcome this issue, two different values of the acoustic 

deformation constant could be used, or a more complex description of the acoustic phonon 

could be employed. Since the interest is simulating the transport of holes in SiGe alloys – where 

their acoustic branch is described as a combination of the acoustic branch of pure Si and Ge 

and their optical branch is composed by the Si-Si and Ge-Ge modes –  the deformation constants 

that were used to obtain the results shown in Figure 4.1 are reasonable to evaluate the scattering 

rates due the presence of silicon in the alloy. In addition, in SiGe alloys, the alloy scattering is 

more probable to happen than the phonon scattering, diminishing the importance of the acoustic 

scattering in the transport of holes in SiGe.   

Table 4.1 presents the parameters employed in the simulation of transport of holes in 

silicon. Those constants are related with the description of the physical properties, band 

structure and the optical and acoustic scattering rates of silicon. 

 

Table 4.1 - Parameters used in Silicon simulations. 

Density (kg/m3) 2329 

Sound longitudinal velocity (m/s) 9000 

|A| 4.22 

|B| 0.78 

|C| 4.80 

Split-off hole effective mass 0.15m0 

Optical phonon energy (eV) 0.063 

Eac (eV) 6.9231 

𝐷𝑜𝑝 (eV/m) 5.2x1010 

Source: Author. 
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4.2 Germanium Transport Simulation 

To find the value of the acoustic potential deformation constant and optical potential 

deformation constant of germanium, a set of simulations was performed, using the same 

methodology employed to determine silicon constants. After substituting the chosen constants 

in the simulation code, the hole velocities achieved by simulations should agree with 

experimental results. The simulations were performed at 220K, because this was the maximum 

temperature where experimental data was available for hole drift velocity in germanium. The 

electrical field in experimental results varied from 102 to 104V/cm, then the same range of 

electric field was used in the simulations. Both experiments and simulations were performed 

applying an electric field parallel to [100] direction. The total time of the simulations was set 

to 10ps. 

Figure 4.10 shows the results of hole drift velocity in germanium obtained using the 

described simulator and experimentally (REGGIANI et. al., 1977) versus the electric field. In 

the simulation, 20,000 holes were considered. As it is shown in Figure 4.10, the hole velocity 

is well described in the whole range of electric field. The mean energy of holes was evaluated 

in these simulations. Figure 4.11 shows the hole energy versus the electric field.  

  

Figure 4.10 - Comparison between the simulated drift velocity of holes in germanium 

with experimental data. 

 

Source: Author 
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Figure 4.11 – Mean energy of the holes versus electric field for germanium bulk 

 

Source: Author 

Figure 4.12 - Occupation of the valence bands vs electric field for Ge at 220K. 

 
Source: Author 
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The graphic depicted in Figure 4.12 shows the band occupancy of germanium as a 

function of the applied electric field. Initially, all the holes are in the heavy hole band. Light 

hole band eventually become occupied due to nonpolar optical phonon scattering events, 

nevertheless, more than 90% of the holes stay in the heavy hole band, even for the highest 

electric field. The split-off band is empty in almost the entire electric field range due to the high 

spin-orbit splitting energy of germanium, which is 0.29eV. The split-off band becomes slightly 

occupied at electric fields around 104V/cm. 

Simulations were performed to obtain the profile of the transient velocity of holes in 

germanium. These simulations were made at 220K to describe the time evolution of drift 

velocity and energy of holes in Ge bulk. The time evolution of the energy of holes for electric 

fields of 15, 25, 50, 75 kV/cm is depicted in Figure 4.13.  Those curves show the increase of 

charge carrier energy due to the external electrical field and until a steady state is reached. 

 

Figure 4.13 - Energy of holes in germanium for applied fields of 15, 25, 50, 75kV/cm. 

 

Source: author. 

 

Figure 4.14 shows the time evolution of the drift velocity of holes for electric fields of 

15, 25, 50, 75kV/cm. For germanium, the velocity overshoot effect can also be observed at the 

beginning of the simulation. 
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Figure 4.14 - Time evolution of drift velocity of holes in silicon for applied fields of 15, 25, 

50, 75kV/cm. 

 
Source: author. 

Figure 4.15 shows the acoustic scattering rates for the three valence bands of germanium 

at 220K.  Since the acoustic scattering is modeled as an intraband mechanism, the final band is 

the same as the initial band. 

 
Figure 4.15 - Acoustic phonon scattering rates for holes in the heavy hole, light hole and split-off 

bands in Ge. 

 
Source: Author 
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Figure 4.16 - Nonpolar optical phonon scattering rates for holes scattered from the heavy hole band in 

Ge. 

 
Source: Author 

 

Figure 4.17 - Nonpolar optical phonon scattering rates for holes scattered from the light hole band in 

Ge. 

 
Source: Author 
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Figure 4.16 shows the optical scattering rates for holes that transit from heavy hole to 

light hole, split-off and heavy hole band. Figure 4.17 presents the optical scattering rates for 

holes that transit from light hole to light hole, split-off band and heavy hole band. For heavy 

hole and light hole band, the optical scattering due absorption and the acoustic scattering can 

occur at any energy. However, to transit to light hole or heavy hole band due the emission of 

an optical phonon, the hole must have energy higher than the phonon energy, which for 

germanium is equal to 0.037eV. To transit to split-off band by emitting an optical phonon, the 

hole must have an energy higher than 0.327eV. 

For holes in heavy hole band with energy lower than 0.008eV, the most likely scattering 

mechanism is the absorption of an optical phonon due an intraband scattering. Holes with 

energy between 0.008 and 0.04 are most probable to suffer an acoustic scattering, while holes 

with energy higher than that are most likely to emit an optical phonon due to an optical phonon 

intraband scattering. 

Holes in light hole band with energy lower than 0.04eV are most likely to transit to 

heavy hole band due the absorption of an optical phonon, while holes with energy higher than 

that, are most likely to emit an optical phonon followed by a transition to heavy hole band. 

 

Figure 4.18 - Nonpolar optical phonon scattering rates for holes scattered from the split-off band in 

Ge. 

 
Source: Author 
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Figure 4.18 shows the optical scattering rates for holes that transit from split-off band 

to heavy-hole, light-hole and split-off band. The optical scattering due to absorption and the 

acoustic scattering can occur at any energy, as well as in heavy hole and light hole. For holes 

in split-off band, for the entire range of energy, the most likely scattering is the emission of an 

optical phonon followed by a transition to the heavy hole band. Table 4.2 presents the 

parameters employed in the simulation of transport of holes in germanium. Those parameters 

are physical constants, band structure related constants and the constants used to calculate the 

acoustic scattering rate and the nonpolar scattering rates. 

 
Table 4.2 - Parameters used in germanium simulations. 

 

Density (kg/m3) 5320 

Sound longitudinal velocity (m/s) 5400 

|A| 13.38 

|B| 8.48 

|C| 13.14 

Split-off hole effective mass 0.075m0 

Optical phonon energy (eV) 0.037 

Eac (eV) 5.1508 

𝐷𝑜𝑝 (eV/m) 1.18x1011 

Source: Author. 

4.3 SiGe Transport Simulations 

The mobility of holes in SiGe alloys at 300K when exposed to low fields has been 

studied experimentally (BUSCH; VOGT, 1960) and by simulations (FISCHETTI; LAUX, 

1996; MEHROTRA; PAUL; KLIMECK, 2011). In order to study the transport of holes in SiGe 

alloys and to validate the proposed model, the mobility of holes in these alloys was calculated 

at 300K and at low fields (103V/cm) where the ohmic behavior is still valid. The alloys studied 

have germanium content equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. 

The split-off band of these alloys was modeled as a parabolic and spherical band. The 

effective mass of the split-off band of each alloy was estimated by fitting a parabolic function 

– equation  (3.1) – to the EPM split-off band data (GONZALEZ, 2001). The splitting energy of 

each alloy was obtained from the EPM curve. Both the effective mass of split-off band ant the 

splitting energy are shown in Table 4.3. Both heavy hole and light hole bands of each alloy was 
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modeled as a nonparabolic and warped band. The dispersion relation of heavy hole and light 

hole bands are given, respectively, by equations (3.11) and (3.12) . The Dresselhaus parameters 

– A, B and C - of each studied alloy are showed in Table 4.3, while the nonparabolicity 

parameters are demonstrated in the APPENDIX A. 

 
Table 4.3 – Band structure constants of SiGe alloys used in the simulation of hole transport. In the 

alloys studied, the Ge content varied from 0.1 to 0.9. 

Ge content A B C mso (m0) ∆ (eV) 

0.1 0.85 4.4 4.99 0.1408 0.05879 

0.2 0.95 4.65 5.15 0.1402 0.08067 

0.3 1.15 4.95 5.3 0.1356 0.1037 

0.4 1.3 5.28 5.65 0.1282 0.1283 

0.5 1.65 5.55 5.95 0.1189 0.1546 

0.6 1.9 6.15 6.9 0.1086 0.1827 

0.7 2.8 6.82 7.3 0.0982 0.2121 

0.8 4.4 8.35 8.5 0.0889 0.2426 

0.9 4.57 8.72 9.25 0.0812 0.2737 

Source: Author. 

The description of SiGe alloy spectrum can be made by considering an averaged 

spectrum or by taking into account the coexistence of both Si and Ge modes. In this model, to 

calculate the acoustic scattering rate, an average acoustic spectrum was considered. The 

potential deformation, the sound velocity and the density of SiGe alloy was given by linear 

interpolation between the Si and Ge values, which values are showed in Table 4.1 and Table 

4.2, respectively. In the SiGe alloy optical spectrum, both Si-like and Ge-like modes are 

considered to coexist, thus nonpolar optical scattering rate was calculated for each mode, and 

the phonon population of each type was weighted according to the appropriate mole fraction, 

which is 1 – x for the Si phonons and x for Ge. 

Besides having its trajectory deviated by phonon scattering, holes moving inside these 

alloys may also be scattered by the lattice defects due to the fluctuation of the alloy 

concentration. The alloy scattering potential has been reported to be 0.7 (MEHROTRA; PAUL; 

KLIMECK, 2011), 0.8, 1 (FISCHETTI; LAUX, 1996) and 1.4 (BRIGGS; WALKER; 

HERBERT, 1998). In this work, the alloy scattering was changed around these values until the 

profile of the curve mobility versus germanium content had a reasonable agreement with 

experimental results. The mobility of these alloys was calculated by simulating the transport of 
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holes exposed to an electric field equal to 103 V/cm at 300K and the total time of the simulation 

was equal to 10ps. The drift velocity of holes was calculated after a steady state was reached. 

Then, the mobility µ was calculated employing the equation (4.1), which is only valid for the 

ohmic behavior.  

𝜇 =
〈𝑣𝑑〉

𝐸
 (4.1) 

In this simulator, the curve mobility versus Ge content that had the best agreement with 

experimental results was obtained when the alloy scattering potential was equal to 1.5. 

Nevertheless, a good level of agreement was also obtained for an alloy scattering potential equal 

to 1.2.  Figure 4.19 compares the mobility results obtained by the simulator proposed in this 

work – when the alloy scattering potential is equal to 1.2 –  with experimental results and with 

the simulation results obtained by Fischetti and Laux (1996), when they used an alloy scattering 

potential equal to 0.8. In Figure 4.19, the green squares are the results of this work, they agree 

with the results of Fischetti and Laux (1996) in the entire range of germanium content. 

However, the mobility of Si0.7Ge0.3, Si0.6Ge0.4 and Si0.5Ge05 deviate from the experimental 

results. It is observed that the mobility of these alloys is overestimated in comparison to 

experimental results. 

 

Figure 4.19 – Comparison of the curve hole mobility in Si1-xGex alloys versus germanium content. The 

scattering potential used in the simulator proposed in this work is equal to 1.2. 

 
Source: author. 
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Figure 4.20 compares the mobility results obtained by the simulator proposed in this 

work - when the alloy scattering potential is equal to 1.5 - with experimental results and with 

the results obtained by Fischetti and Laux (1996), when they used an alloy scattering potential 

equal to 1. In Figure 4.20, the green squares are the results of this work, they agree with the 

results of Fischetti and Laux (1996) in the entire range of germanium content. Besides, it is 

observed that the mobility of these alloys is in a great agreement to experimental results. 

 

Figure 4.20 - Comparison of the curve hole mobility in Si1-xGex alloys versus germanium 

content. The scattering potential used in the simulator proposed in this work is equal to 1.5. 

 
Source: Author. 

 

The proposed simulator of holes transport in SiGe alloys was validated by comparing 

the results obtained by the simulator with experimental data. Since the hole mobility calculated 

agrees with the experimental data, a future work is developing from the SiGe bulk simulator a 

device simulator by adding the Poisson’s equation into the bulk code to calculate the electrical 

potential to which charge carrier are exposed due to the charge distribution in the device. 
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5 CONCLUSION 

 

This work proposed an Ensemble Monte Carlo simulator to study the hole transport in 

silicon, germanium and SiGe alloys. To simulate the hole transport, the valence band structure 

of these materials was modeled using a three-band approach where the light hole and heavy 

hole band are considered warped and nonparabolic bands, whereas the split-off band is 

considered spherical and parabolic band. To generate an expression for the dispersion relation 

of heavy hole and light hole, the warping effect was taken into account by the Dresselhaus, Kip 

and Kittel (1955) expression, while the nonparabolicity effect was considered by using the 

analytical function proposed by Rodríguez-Bolívar, Gómez-Campos e Carceller (2004). Both 

Dresselhaus parameters and nonparabolic constants were determined by fitting the respective 

expressions to the EPM band structure.  

Acoustic phonon scattering and nonpolar optical phonon scattering are the only 

scattering mechanisms included in the bulk simulator of the pure materials. Acoustic phonon 

scattering is modeled as an intraband and elastic process, whereas the nonpolar optical 

scattering is an inelastic process that can be intraband and interband. For silicon and 

germanium, the deformation potential constants were thoroughly adjusted in order to achieve 

drift velocity results that agree with the experimental data. In this method, the transport of holes 

was simulated in a wide range of electric fields where the drift velocity of holes in these 

materials were estimated, then they were compared with experimental results.  

The alloy properties were estimated by using the Virtual Crystal Approach, where the 

properties of alloys are defined by linearly interpolating the pure properties in accordance with 

the content of the constituent atoms. In the SiGe alloy simulator, the alloy acoustic phonon 

spectrum is considered an average of Si and Ge spectrums. Following this approach, the 

acoustic deformation potential of each alloy is determined by VCA. Whereas, in the optical 

spectrum of the alloy, both Si-like and Ge-like modes are considered to coexist, thus nonpolar 

optical scattering rate is calculated for each mode, and the phonon population of each type is 

weighted according to the appropriate mole fraction, which is 1 – x for the Si phonons and x for 

Ge. Besides the phonon scattering there is also the alloy scattering, whose potential was 

obtained by estimating the low field hole mobility in SiGe alloys with distinct Ge content 

The curves that presents the time evolution of velocity and energy of holes inside silicon 

for different electric fields, in section 4.1, reveals that the simulator is working properly. The 

drift velocities achieved by the simulator at 300K highly agree with experimental results for 

electric fields higher than 1.5kV/cm. However, the velocity is overestimated by the simulator 
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at lower fields. This effect may be generated by the simplifications made when calculating the 

acoustic scattering rate. This issue is observed only at low fields because this mechanism is 

highly significant in silicon at 300K at low fields. Considering the results of hole transport in 

silicon, it is possible to acknowledge that this model adequately simulates the hole transport in 

silicon at 300K when the electric field is greater than 1.5kV/cm. When it comes to lower fields, 

the model of acoustic phonon scattering can be enhanced to improve the drift velocity results.  

The time evolution curves of velocity and energy for different electric fields at 220K 

exhibited in section 4.2 guarantee that the simulator of hole transport in Ge is functionable. The 

results of drift velocity at 220K achieved by the simulator agree with experimental results in 

the entire range of electric field. By comparing the simulation results to experimental data, it is 

possible to affirm that the simulator successfully simulates the transport of holes in germanium 

at 220K. 

The SiGe alloy simulator was validated by calculating the low field mobility of holes in 

these alloys at 300K. The mobility achieved in this simulator was compared with previous 

simulation results and with experimental results, demonstrating that the results obtained by the 

simulator is in great agreement with both simulation and experimental results in the whole range 

of germanium content. Therefore, it is possible to assume the SiGe alloy simulator proposed in 

this work is suitable to simulate the transport of holes in low electric fields and at 300K. 

Since the bulk simulator of SiGe is already functionable, a device simulator SiGe 

transistors can be developed from the bulk simulator adding the Poisson’s equation into the 

code in order to calculate the potential to which charge carrier are exposed due to charge 

distribution in the device. In this approach, BTE and Poisson’s equation are solved in a self-

consistently way. 

This device simulator can be employed to estimate the effect of Random Dopant 

Fluctuation (RDF) and Random Trapping on SiGe transistors (ROSSETTO, 2018). Random 

Dopant Fluctuation (RDF) is the source of variability that comes from the random distribution 

of dopant atoms in the channel of a transistor. While traps are charge trapping states randomly 

distributed in the oxide and in the surface between oxide and gate material. Traps can either 

emit or capture charge carriers and both events are stochastic processes. These two effects 

impact the transistor electrical properties such threshold voltage and drain current.  
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APPENDIX A 

The analytical expression that describes the nonparabolicity of heavy-hole and light-

hole bands as a function of the energy is given by (RODRÍGUEZ-BOLÍVAR; GÓMEZ-

CAMPOS; CARCELLER, 2004):  

𝜒(𝐸) =  
𝑎𝐸2 + 𝑏𝐸 + 𝑐

𝑑𝐸 + 1
 (A.1) 

The parameters a, b, c and d of the nonparabolicity function of the heavy-hole and light-

hole band of silicon, of the SiGe alloys and of germanium are shown in Table A. 1 - Table A. 

22. They were obtained by the fitting process explained in section 3.2.2. 

 

Table A. 1 - Si heavy hole band. 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.01 -19.3 2.4 0.9 50 

0.01-0.0365 55.14 5.73 0.7 20 

0.0365-0.11 10.574 17.96 0.8 37.8 

0.11-1.0 0.0629 20.8347 0.75 39.5 

Table A. 2 - Si light hole band. 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.04 -54.11 8.79 1.034 22.38 

0.04-0.14 8.2 29.8 1.518 72 

0.14-1.0 -0.06032 13.16 0.77 28.1 

Table A. 3 - Si0.9Ge0.1 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 9.866 5 1 12 

0.05-0.1 5.185 2.4 0.92 6 

0.1-1.0 -0.15 5.21 0.98 8.968 

Table A. 4 - Si0.9Ge0.1 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.03 0.005 9.82 0.75 20 

0.03-0.07 0.02 13.2 0.78 25.48 

0.07-1.0 -0.00388 4.157 0.95 12.83 

Table A. 5 - Si0.8Ge0.2 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 5.1 2.06 1.09 6.842 

0.05-0.1 -0.0069 3.475 1.05 6.58 

0.1-1.0 -0.1544 9.584 1.2 15.4815 
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Table A. 6 - Si0.8Ge0.2 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.03 -207.8 20.9 1 26.2 

0.03-0.1 -8.792 28.91 1.663 60.87 

0.1-1.0 0.063 4.397 0.9931 12.46 

Table A. 7 - Si0.7Ge0.3 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 2.8 2.05 0.98 5.502 

0.05-0.1 5.7968 5.5 1 10.1 

0.1-1.0 -0.1544 9.5 1.07 14.8 

Table A.8 - Si0.7Ge0.3 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -90.03 9.788 1.1 12.98 

0.05-0.1 -12.92 20.42 1.524 39.6 

0.1-1.0 -0.0179 4.222 1.15 11.7 

Table A. 9 - Si0.6Ge0.4 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 0.107 3.01 0.95 5.2 

0.05-0.1 -13.82 22.41 1.048 28.14 

0.1-1.0 -0.1065 2.95 0.95 4.8 

Table A. 10 - Si0.6Ge0.4 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -47.42 3.642 1.083 4.857 

0.05-0.1 0.66 1.231 1.2 7.314 

0.1-1.0 -0.0129 3.78 1.18 9.98 

 

Table A.11 - Si0.5Ge0.5 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 5.2070 10.573 1.065 15.211 

0.05-0.1 5.122 10 1.1 15 

0.1-1.0 -0.11 3.587 1 5.717 

 

Table A. 12 - Si0.5Ge0.5 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -48.42 4 0.98 3.6 

0.05-0.1 0.7 1.4 1.18 7.38 

0.1-1.0 -0.095 3.15 1.02 7.29 

 

Table A. 13 - Si0.4Ge0.6 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 2.99 2.425 1.01 4.45 

0.05-0.1 -0.4044 1.78 0.99 3.09 

0.1-1.0 -0.1207 2.461 0.98 3.6747 
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Table A. 14 - Si0.4Ge0.6 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -13.03 -1.973 1.05 1.376 

0.05-0.1 1.44 1.79 1.07 6.79 

0.1-1.0 -0.0098 4.395 1.09 10.16 

 

Table A. 15 - Si0.3Ge0.7 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -9.4 6.5 1.02 7.43 

0.05-0.1 0.6696 2.35 1.01 3.406 

0.1-1.0 -0.13 2.45 1.04 3.58 

Table A. 16 - Si0.3Ge0.7 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -9.799 2.9 0.95 4.5953 

0.05-0.1 2.5 5.5 1.15 11.9 

0.1-1.0 -0.0469 3.367 1.1 8.03 

Table A. 17 - Si0.2Ge0.8 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -10.64 15.61 1.12 16.03 

0.05-0.1 -0.1682 2.1793 1.142 3.5961 

0.1-1.0 -0.1339 3.2 1.15 4.67 

Table A. 18 - Si0.2Ge0.8 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.1 -5.363 2.8 1.08 6.3 

0.1-0.3 -1.711 4.8 1.2 10.74 

0.3-1.0 -0.027 4.1 1.27 10.7 

Table A. 19 - Si0.1Ge0.9 heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 -10.4 14.71 1.14 15.09 

0.05-0.1 -0.17 2.18 1.14 3.6 

0.1-1.0 -0.217 3.9 1.1 4.732 

Table A. 20 - Si0.1Ge0.9 light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.1 -160.1 53.52 1.181 47.79 

0.1-0.3 -1.333 3.715 1.446 10.562 

0.3-1.0 -0.0031 3.05 0.96 7.2 

Table A. 21 - Ge heavy hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.05 3.054 -5.396 0.8859 -5.473 

0.05-0.14 -0.6163 0.819 0.886 1.652 

0.14-0.4 -0.00196 0.9628 0.8864 1.936 

0.4-1.0 -0.00119 1.3 0.8864 2.353 
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Table A. 22 - Ge light hole band 

Energy range (eV) a (eV−2) b (eV−1) c d (eV−1) 

0-0.15 -28.67 7.377 0.879 10.89 

0.15-0.3 4.166 -2.99 1.159 3.819 

0.3-0.5 1.82 0.15 1.55 16.4 

0.5-1.0 0.82 8.24 1.08 45.2 

 


