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“Above all, don’t lie to yourself.

The man who lies to himself and listens to his own lie comes to a point

that he cannot distinguish the truth within him,

or around him, and so loses all respect for himself and for others.

And having no respect he ceases to love.”

— FYODOR DOSTOEVSKY, THE BROTHERS KARAMAZOV
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ABSTRACT

Deep learning (DL) has consistently pushed the state-of-the-art in many fields over the

last years. Still there is, however, a lack of understanding on how symbolic and relational

problems can benefit from DL architectures. The most promising path towards this long-

desired integration comprises deep learning architectures whose parameter sharing strategy

is based over graphs and thus can be trained to learn complex properties of relational

data. Several NP -Complete problems, such as the boolean satisfiability problem and the

traveling salesperson problem, present such properties. In both cases, a meta-model called

Graph Neural Network (GNN) can be directly fed with the graph representation of the

problem and learn to produce a binary answer at hand. In this dissertation, we are specifi-

cally concerned with the application of a GNN model to tackle the graph coloring problem:

our proposed model leverages the specific features of such problem by adding internal

representations of vertices and colors to the GNN kernel and by performing message-

passing iterations over such representations. In this sense, our model’s architecture is able

to reflect the relational structure of the original problem, with no need of polynomial time

reductions, while it still employs parameter sharing over the graph vertices and colors. We

also show how to train such model upon very hard instances, which were generated in an

adversarial fashion: we generate pairs of instances comprising graphs that are on the verge

of satisfiability – a positive and a negative-labeled instance that only differ by a single

edge, such edge makes the second instance unsatisfiable given a fixed number of colors

C. We were able to obtain 83% accuracy during training and to show that such model

is able to generalize, to some extent, its performance to unseen instances coming from

different distributions and sizes. We show that such performance defeats two heuristics

and an allegedly generalist neural-symbolic approach. Finally, we explore the internal

memory of our model and find evidence of how its reasoning is built upon its internal

states (vertex and color representations). In summary, our results strongly suggests that

GNNs are, indeed, powerful to tackle combinatorial problems but their performance can

be largely enhanced when all problem’s features are integrated within the GNN neural

architecture and no problem translation is required.

Keywords: Deep neural networks. recurrent neural networks. graph neural networks.

graphs. graph coloring. neural-symbolic computation.



Resolvendo a versão de decisão do problema de coloração de grafos: uma

abordagem neuro-simbólica usando redes grafo-neurais.

RESUMO

Técnicas baseadas em aprendizado profundo têm recorrentemente atingido desempenho

de estado-da-arte em diversas áreas ao longo dos últimos anos. Ainda há, no entanto,

uma certa falta de compreensão em como problemas simbólicos e relacionais podem se

beneficiar de modelos cuja arquitetura é baseada em aprendizado profundo. O caminho

mais promissor para essa tão desejada integração consiste em arquiteturas neurais cuja

propriedade de compartilhamento de parâmetros baseia-se em grafos e, dessa forma,

podem ser treinadas para aprender características complexas de dados relacionais. Diversos

problemas NP -Completos, tais como satisfatibilidade booleana e problema do caixeiro

viajante, apresentam esse tipo de característica. Em ambos casos, um metamodelo chamado

Graph Neural Network (GNN) pode trabalhar diretamente com entradas em formato de

grafos, que representam uma instância do problema, e aprender a produzir uma resposta

binária para o problema em questão. Nessa dissertação, estamos particularmente focados

em aplicar um modelo de GNN ao problema da coloração de grafos: o modelo que

propomos se aproveita de propriedades específicas desse problema ao contemplar tanto

vértices quanto cores com representações internas na sua arquitetura e ao fazer com que

tais representações passem por diversas etapas de troca de mensagens. Nesse sentido, a

arquitetura que propomos é capaz de refletir a estrutura relacional do problema original,

sem necessidade de uma redução em tempos polinomial para outro problema, enquanto

ainda emprega uma estratégia de compartilhamento de parâmetros em função de vértices e

cores. Nós também demonstramos como treinar tal modelo com instâncias muito difíceis,

geradas de uma maneira adversarial: nós geramos pares de instâncias que são grafos no

limite da satisfatibilidade – uma instância positiva e outra negativa que diferem apenas por

uma única aresta, tal aresta faz com que a segunda instância não seja colorável por um dado

número de cores C, enquanto a primeira permanece sendo minimamente colorável com C.

Obtivemos uma acurácia de 83% durante treinamento e verificamos que nosso modelo é

capaz de generalizar, até certo ponto, esse desempenho para instâncias de teste – não-vistas

durante treinamento e que foram amostradas de diferentes distribuições. Nós mostramos

que esse desempenho superou o desempenho de duas heurísticas e o desempenho de uma

suposta abordagem neuro-simbólica generalista. Por fim, nós exploramos a memória



interna do nosso modelos e encontramos evidências de como o seu raciocínio é construído

em volta dos valores de representação de vértices e cores. Em suma, nossos resultados

sugerem fortemente que GNNs são, de fato, ferramentas poderosas para resolver problemas

combinatoriais mas que seu aprendizado pode ser amplamente melhorado quando as

propriedades de um problema são totalmente agregadas à arquitetura neural e nenhuma

conversão de problema é feita.

Palavras-chave: redes neurais profundas, redes neurais recorrentes, redes grafo-neurais,

grafos, coloração de grafos, computação neuro-simbólica.
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1 INTRODUCTION

Recently, after all the state-of-the-art performances achieved by deep learning (DL)

models in a wide range of tasks, there has been a prominent discussion on what is the

future for machine learning (ML) and artificial intelligence (AI) in general. While many

researchers exposed their fear about an imminent new AI winter (NIELD, 2019; SHEAD,

2020), several others (both from academia and industries) shed light on a paradigm which

has the potential to drive new AI breakthroughs and has not yet been fully explored in

the last years: neural-symbolic computing (GARCEZ et al., 2019; RAGHAVAN, 2019;

SMOLENSKY, 2019).

Traditional DL techniques and architectures such as Multi-Layer Perceptrons

(MLPs), Convolutional Networks (CNNs), Recurrent Neural Networks (RNNs) and so on

have been consistently used to overcome computer vision (KRIZHEVSKY; SUTSKEVER;

HINTON, 2012; LI et al., 2015) and natural language processing (CHO et al., 2014a;

BAHDANAU; CHO; BENGIO, 2014) tasks. Also, in the last years, there have been

substantial research efforts to alleviate some of the difficulties faced by these seminal

models: Residual Networks (ResNets) (HE et al., 2016) ease the training of very deep con-

volutional networks, Capsule Networks (CapsNets) (HINTON; SABOUR; FROSST, 2018)

enables spatial hierarchy in image classification (an important drawback of traditional

CNNs) and Long Short-Term Memories (LSTMs) (HOCHREITER; SCHMIDHUBER,

1997) and Gated Recurrent Units (GRUs) (CHO et al., 2014b) avoid long-term dependency

problem and vanishing gradient on RNNs, not to mention the recent successes on machine

translation and language models achieved by attention-based mechanisms such as Trans-

formers (VASWANI et al., 2017; DEVLIN et al., 2019; RADFORD et al., 2019). Yet, there

is also a growing interest on explainability capabilities which are usually not provided by

such black-box DL techniques. However, while DL techniques are particularly efficient for

"fast thinking" (despite being highly data-driven), symbolic AI can in turn provide reliable

and explainable solutions via "slow thinking" (despite usually relying on hard-coded rules).

On top of these arguments, one may also understand that an intelligent machine should not

only be capable of recognizing patterns but also reasoning about what was learned, as put

forward by Turing Award Leslie Valiant.

In a nutshell, combining connectionist and symbolic techniques has the potential to

tackle some of the challenges faced by these paradigms when they are used alone, such

as lack of reasoning and hard-coded knowledge, respectively (BADER; HITZLER, 2005;
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GARCEZ; LAMB; GABBAY, 2009; KHARDON; ROTH, 1999). One way of integrating

DL and symbolic reasoning is to apply DL models to combinatorial problems: this set of

problems tend to have a complex mathematical structure – usually represented by a graph –

but, in most cases, there are exact solvers available for them, allowing one to produce a

huge amount of labeled instances. When jointly using combinatorial optimization and DL

techniques, one may expect two main enhancements to the learning process: (1) divide-

and-conquer; as the model would be able to dissect the symbolic problem into smaller

learning tasks and (2) generalized curve-fitting; as the model would explore the space

of decisions searching for the best performing behavior (BENGIO; LODI; PROUVOST,

2018). While (1) is due to the natural combinatorial optimization structure, (2) is the main

principle of all machine learning strategies. In this sense, the neural-symbolic computing

paradigm arises as a promising framework towards reasoning and explainability and as a

key path forward for AI research from now on (BATTAGLIA et al., 2018).

One way of incorporating the relational structure of a combinatorial problem into a

neural model is to ensure permutation invariance by letting adjacent elements of the prob-

lem communicate with themselves through neural modules subject to parameter sharing.

That is, the problem prints its graph representation onto the configuration of the neural

modules. These neural modules are primarily accountable for computing the messages

sent among the problem’s elements and for updating the internal representation of each of

these elements. Moreover, one may define not only edge and vertex-level attributes/rep-

resentations but also global-level attributes. The family of models that makes use of this

message-passing algorithm includes message-passing neural networks (GILMER et al.,

2017), recurrent relational networks (PALM; PAQUET; WINTHER, 2017), graph networks

(BATTAGLIA et al., 2018) and the pioneer model: graph neural network (GNN) (GORI;

MONFARDINI; SCARSELLI, 2005).

GNNs have been proven useful to tackle other combinatorial problems such as

the NP -Complete boolean satisfiability problem (SAT) (SELSAM et al., 2019) and the

decision version of the Traveling Salesperson Problem (TSP) (PRATES et al., 2019a). In

the first case, Selsam et al. (2019) translated randomly generated formulas in conjunctive

normal form (CNF) into a graph structure: literals are connected to clauses to which they

pertain, clauses are connected to literals they contain and literals are also connected to their

complementary variants. Using just one bit as a supervision (the satisfiability of the given

CNF), the NeuroSAT model proposed by them is able not only to achieve a high accuracy

(85%) upon testing but it also demonstrates two well-desired reasoning characteristics
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for a ML model: NeuroSAT architecture is able to generalize its performance for a

increasing number of timesteps (or number of iterations of message-passing), suggesting

that the model learned an algorithm in order to solve the problem; moreover, even though

NeuroSAT was trained only as a binary predictor, the authors were able to decode valid

assignments from its memory. Selsam et al. (2019) also demonstrated that NeuroSAT was

able to decode valid assignments for several other combinatorial problems reduced to

SAT, such as vertex coloring, clique detection, dominating set and vertex cover. Further

experiments conducted by Prates et al. (2019a) also verified the possibility of incorporating

numeric information to the combinatorial problem tackled by the GNN: the edges of a

TSP instance/graph are framed as nodes and embedded with their weights, then the GNN

kernel allows them to communicate with their neighboring nodes and vice-versa.

In this work, we introduce a GNN-based model1 to tackle the decision version of

the graph coloring problem (GCP), with no need of prior reductions. Our model mainly

relies on GNN’s power of coping with several types of edges as we approached the GCP

problem by using two different types of vertices. By designing a GNN model to solve

an important combinatorial problem (with applications on flow management (BARNIER;

BRISSET, 2004), job scheduling (THEVENIN; ZUFFEREY; POTVIN, 2018), register

allocation (CHEN et al., 2018) and others), we hope we can foster the adoption and further

research on GNN-like models which in turn integrate deep learning and combinatorial

optimization. We believe that, from an AI perspective, our work provides useful insights

on how neural modules reason over symbolic problems, and also on how their hidden

states or embeddings can be further interpreted.

1.1 Research Questions and Hypotheses

Bridging the gap between symbolic reasoning and DL is still a sparsely explored

research field (BATTAGLIA et al., 2018). GNNs, end-to-end differentiable neural networks

with a distinguished ability to cope with relational data, are definitely the most promising

framework to accomplish this integration of two long-departed AI branches. Selsam et

al. (2019) have already shown that GNNs are able to tackle a very general NP -Complete

problem (boolean satisfiability) and Prates et al. (2019a) have shown that a GNN model is

also able to cope with numeric information. However, following the experiments conducted

1Our implementation of such model is available at: <https://machine-reasoning-ufrgs.github.io/
GNN-GCP/>

https://machine-reasoning-ufrgs.github.io/GNN-GCP/
https://machine-reasoning-ufrgs.github.io/GNN-GCP/
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in the NeuroSAT paper, one may argue that the NeuroSAT is the ultimate GNN model, as

every other problem in NP can be reduced to SAT in polynomial time and thus solved

by the NeuroSAT itself. Our main hypotheses is that, by reducing some other problem

(such as the GCP) to SAT and feeding it to the NeuroSAT, one may not leverage the full

capabilities of symbolic reasoning presented by a GNN-like model. In this sense, we

would like to answer the following questions during this dissertation:

1. Can a Graph Neural Network solve the decision version of the Graph Coloring

problem only from the network structure and a number of colors which is close to

the chromatic number?

2. Does such GNN generalize its performance to larger/smaller number of colors?

3. Does the strategy employed by NeuroSAT to decode assignments from GNN internal

states work under this new architecture?

4. Can this specialized GNN learn meaningful and interpretable internal states?

Given the related literature, it was hypothesized that the Research Question 1 may

be answered positively, at least to some extent, which may be not yet comparable to

state-of-the-art solvers, as NeuroSAT’s performance also was not. The answer to Research

Question 2 was thought to be positive as well as we believe that training a GNN architecture

in the verge of satisfiability also improves its performance on easier instances, as shown

by (PRATES et al., 2019a) w.r.t. TSP and route costs. Also following NeuroSAT, we

would expect Research Question 3 and 4 to be answered positively as the GNN refines

their internal embeddings in a fashion that allows for an algorithm to be executed upon

them, which indicates that such model is capable of reasoning over a symbolic structure in

order to produce an answer to the problem at hand.

1.2 Contributions

During the Master’s programme duration the author participated in several research

endeavors, some of which are part of this dissertation. The abstracts of the scientific

papers produced during these researches are listed below along with a brief description of

contributions.
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1.2.1 Multitask Learning on Graph Neural Networks – Learning Multiple Graph

Centrality Measures with a Unified Network

The application of deep learning to symbolic domains remains an active re-
search endeavour. Graph neural networks (GNN), consisting of trained neural
modules which can be arranged in different topologies at run time, are sound
alternatives to tackle relational problems which lend themselves to graph repre-
sentations. In this paper, we show that GNNs are capable of multitask learning,
which can be naturally enforced by training the model to refine a single set of
multidimensional embeddings ∈ Rd and decode them into multiple outputs
by connecting MLPs at the end of the pipeline. We demonstrate the multitask
learning capability of the model in the relevant relational problem of estimat-
ing network centrality measures, i.e. is vertex v1 more central than vertex v2
given centrality c?. We then show that a GNN can be trained to develop a
lingua franca of vertex embeddings from which all relevant information about
any of the trained centrality measures can be decoded. The proposed model
achieves 89% accuracy on a test dataset of random instances with up to 128
vertices and is shown to generalise to larger problem sizes. The model is also
shown to obtain reasonable accuracy on a dataset of real world instances with
up to 4k vertices, vastly surpassing the sizes of the largest instances with which
the model was trained (n = 128). Finally, we believe that our contributions at-
test to the potential of GNNs in symbolic domains in general and in relational
learning in particular.

Joint first author, with Pedro Henrique da Costa Avelar and Marcelo de Oliveira

Rosa Prates, on the submission to the 28th International Conference on Artificial Neural

Networks (Qualis B1, 2013-2016), accepted as poster, presented by Pedro Henrique da

Costa Avelar. Pre-print available (AVELAR et al., 2018).

The author’s contribution on this paper consisted in redesigning the approximation

model, which provided the initial positive results, gathering and parsing some of the real

instances, elaborating the theoretical review on the centrality measures as well as on the

graph distributions, generating and plotting the PCA visualizations for the embeddings

and writing part of the paper.

1.2.2 Learning to Solve NP-Complete Problems: A Graph Neural Network for the

Decision TSP

Graph Neural Networks (GNN) are a promising technique for bridging dif-
ferential programming and combinatorial domains. GNNs employ trainable
modules which can be assembled in different configurations that reflect the re-
lational structure of each problem instance. In this paper, we show that GNNs
can learn to solve, with very little supervision, the decision variant of the Trav-
eling Salesperson Problem (TSP), a highly relevant NP -Complete problem.
Our model is trained to function as an effective message-passing algorithm in
which edges (embedded with their weights) communicate with vertices for a
number of iterations after which the model is asked to decide whether a route
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with cost < C exists. We show that such a network can be trained with sets
of dual examples: given the optimal tour cost C∗, we produce one decision
instance with target cost x% smaller and one with target cost x% larger than
C∗. We were able to obtain 80% accuracy training with −2%,+2% devia-
tions, and the same trained model can generalize for more relaxed deviations
with increasing performance. We also show that the model is capable of gen-
eralizing for larger problem sizes. Finally, we provide a method for predicting
the optimal route cost within 2% deviation from the ground truth. In summary,
our work shows that Graph Neural Networks are powerful enough to solve
NP -Complete problems which combine symbolic and numeric data.

Joint first author, with Marcelo de Oliveira Rosa Prates and Pedro Henrique da

Costa Avelar, on the submission to the 23rd AAAI Conference on Artificial Intelligence

(Qualis A1, 2016), accepted for oral presentation, presented by Marcelo de Oliveira Rosa

Prates (PRATES et al., 2019a).

The author’s contribution to this paper was implementing and calibrating the base-

line models (Greedy heuristic and Simulated Annealing), discussing some of the model’s

features as well as some of the problem’s properties (metric and euclidean properties),

writing a small part of the paper and revising it.

1.2.3 Typed Graph Networks

Recently, the deep learning community has given growing attention to neural
architectures engineered to learn problems in relational domains. Convolu-
tional Neural Networks employ parameter sharing over the image domain, ty-
ing the weights of neural connections on a grid topology and thus enforcing the
learning of a number of convolutional kernels. By instantiating trainable neu-
ral modules and assembling them in varied configurations (apart from grids),
one can enforce parameter sharing over graphs, yielding models which can ef-
fectively be fed with relational data. In this context, vertices in a graph can
be projected into a hyperdimensional real space and iteratively refined over
many message-passing iterations in an end-to-end differentiable architecture.
Architectures of this family have been referred to with several definitions in
the literature, such as Graph Neural Networks, Message-passing Neural Net-
works, Relational Networks and Graph Networks. In this paper, we revisit the
original Graph Neural Network model and show that it generalises many of the
recent models, which in turn benefit from the insight of thinking about vertex
types. To illustrate the generality of the original model, we present a Graph
Neural Network formalisation, which partitions the vertices of a graph into a
number of types. Each type represents an entity in the ontology of the prob-
lem one wants to learn. This allows - for instance - one to assign embeddings
to edges, hyperedges, and any number of global attributes of the graph. As a
companion to this paper we provide a Python/Tensorflow library to facilitate
the development of such architectures, with which we instantiate the formali-
sation to reproduce a number of models proposed in the current literature.

Joint first author, with Marcelo de Oliveira Rosa Prates and Pedro Henrique da

Costa Avelar. on the submission to the IEEE Access journal (Qualis B3, 2016) Pre-print
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available (PRATES et al., 2019b).

The author’s contribution was writing part of the paper, revising it and providing

preliminary discussions and results regarding the Graph Coloring problem.

1.2.4 Graph Colouring Meets Deep Learning: Effective Graph Neural Network Mod-

els for Combinatorial Problems

Deep learning has consistently defied state-of-the-art techniques in many fields
over the last decade. However, we are just beginning to understand the capa-
bilities of neural learning in symbolic domains. Deep learning architectures
that employ parameter sharing over graphs can produce models which can be
trained on complex properties of relational data. These include highly relevant
NP-Complete problems, such as SAT and TSP. In this work, we showcase how
Graph Neural Networks (GNN) can be engineered – with a very simple archi-
tecture – to solve the fundamental combinatorial problem of graph colouring.
Our results show that the model, which achieves high accuracy upon training
on random instances, is able to generalise to graph distributions different from
those seen at training time. Further, it performs better than the NeuroSAT,
Tabucol and greedy baselines for some distributions. In addition, we show
how vertex embeddings can be clustered in multidimensional spaces to yield
constructive solutions even though our model is only trained as a binary classi-
fier. In summary, our results contribute to shorten the gap in our understanding
of the algorithms learned by GNNs, as well as hoarding empirical evidence for
their capability on hard combinatorial problems. Our results thus contribute to
the standing challenge of integrating robust learning and symbolic reasoning
in Deep Learning systems.

Joint first author, with Marcelo de Oliveira Rosa Prates and Pedro Henrique da Costa

Avelar, on the submission to the 31st International Conference on Tools with Artificial

Intelligence (Qualis B1, 2016), accepted for oral presentation. Pre-print available (LEMOS

et al., 2019).

The author’s contribution to this paper was implementing and calibrating the base-

line models (Greedy heuristic and Tabucol), designing the GNN-based model, producing

the train and test instances and conducting the backbone of the experiments, as well as

writing most of the paper.

1.2.5 Neural-Symbolic Relational Reasoning on Graphs Models: Effective Link In-

ference and Computation from Knowledge Bases

The recent developments and growing interest in neural-symbolic models has
shown that hybrid approaches can offer richer models for Artificial Intelli-
gence. The integration of effective relational learning and reasoning methods
is one of the key challenges in this direction, as neural learning and symbolic
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inference offer complementary characteristics that can benefit the development
of AI systems. Relational labelling or link prediction on knowledge graphs has
become one of the foremost problems in deep learning-based natural language
processing research. Moreover, other fields which make use of such neural-
symbolic techniques also benefit from such research endeavours. There have
been several efforts towards the identification of missing facts from existent
ones in knowledge graphs. Two lines of research try and predict knowledge
relations between two entities by considering all known facts connecting them
or several paths of facts connecting them. We propose a neural-symbolic graph
neural network based model, which naturally applies learning over all the paths
by feeding the model with the embedding of the minimal subset of the knowl-
edge graph containing such paths. By learning to produce representations for
entities and facts corresponding to word embeddings, we show how one trains
the proposed model to decode these representations and infer relations between
entities in a multitask approach. Our contribution is two-fold: we show how a
neural-symbolic methodology leverages the resolution of relational inference
in large graphs, and we also demonstrate that such neural-symbolic model is
shown more effective than path-based approaches.

Joint first author, with Marcelo de Oliveira Rosa Prates and Pedro Henrique da Costa

Avelar, on the submission to the International Joint Conference on Artificial Intelligence

2020 (Qualis A1, 2013-2016), submitted.

The author’s contribution was gathering and parsing the main dataset, designing

the GNN model as well as the evaluation setup, writing most of the paper and revising it.

1.3 Related Work

1.3.1 Tackling the Graph Coloring problem with Neural Networks

The first endeavor to solve the GCP problem by means of a connectionist archi-

tecture dates back to the 80’s when Ballard, Gardner and Srinivas (1987) transformed the

GCP into a maximum-weight independent set problem and then mapped the optimization

problem into the task of minimizing an energy function, where each vertex is associated to

one binary neuron in a Hopfield network (HOPFIELD, 1982). Philipsen and Stok (1991)

noticed that the update rule used by Ballard, Gardner and Srinivas (1987) had no guar-

antees to converge to a valid local minimum: usually clusters of neurons/vertices had no

neuron activated, or more than one neuron activated, thus producing inconsistent color

assignments. Instead, they proposed the use of Potts neurons to each cluster of vertices,

whose solution space guarantees, in the high temperature limit, that there will be exactly

one neuron on per cluster. These two seminal approaches, although lacking of exhaustive

experiments and reasoning features, provided a sneak-peek of how connectionist archi-

tectures could be engineered to solve combinatorial problems such as the GCP. More
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recently, on (TOENSHOFF et al., 2019), the authors tackled two versions of the GCP

(3-COL and MAX-3-COL), translated into Constraint Satisfaction problems (CSPs), with

a message-passing network trained in an unsupervised fashion: their model simply returns

the best solution it can find, given an unlabeled instance of the problem. When it comes to

architectural aspects, their model is composed of a simple linear transformation, which

creates messages from internal representations of the variables, a LSTM to aggregate all

incoming messages and produce a new internal representation, and a softmax function

applied over the internal representations in order to compute a valid assignment. The main

difference to our work, besides the unsupervised training, is that their model does not verify

the unsatisfiability of a given instance, instead it returns an incorrect assignment. Also, Das,

Ahmad and Venkataramanan (2019) proposed a hybrid approach to solve the GCP in a

context of register allocation (where no invalid assignment is acceptable): an LSTM is fed

with the adjacency vector of each vertex and produces an output sequence with the same

size of the number of vertices, this sequence is then decoded by a dense layer+ReLU into

a final color value for a given node. As there are no constraints hard-coded in this neural

module, the authors also propose a greedy algorithm to correct invalid color assignments,

which works independently of the LSTM and needs to be used in almost 85% of the cases.

1.3.2 Graph Neural Networks

Graph Neural Networks have drawn a lot of attention lately and their usefulness

has spread to several fields of research, from computer vision (CV) to natural language pro-

cesssing (NLP). For a thorough and historical review of GNNs one may refer to Battaglia et

al. (2018), Zhang, Cui and Zhu (2018) and Wu et al. (2019). GNNs first set of applications,

however, was far simpler than CV or NLP tasks, as Gori, Monfardini and Scarselli (2005)

benchmarked their GNN model on three types of problems: connection-based problems –

clique problem and neighborhood size counting; label-based problem – classifying the par-

ity of a boolean-valued vector assigned to each vertex and a general problem of identifying

subgraphs. GNNs potential to calculate centrality measures was also explored by (Scarselli

et al., 2005) and (AVELAR et al., 2018). There was also GNN-based models proposed

to learn how to generate graphs following a certain distribution, specifically related to

mimetizing chemical molecules (YOU et al., 2018a; YOU et al., 2018b). GNNs are also a

promising technique for image classification tasks, as demonstrated on the work of (QUEK

et al., 2011), where the authors used local scale-invariant region detectors to transform
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the original image into a graph which is then fed to a GNN able to maintain topological

hierarchy and process undirected connections, and on the work of (SHEN et al., 2018)

which specifically focused on the person re-identification problem. Another fertile ground

for GNNs are NLP tasks based on knowledge graphs, such as entity classification and

link prediction. In this context, one may highlight the R-GCN (SCHLICHTKRULL et al.,

2018), which acts like a vertex encoder by applying a graph convolution operator which

accumulates transformed feature vectors of neighboring vertices through a normalized sum,

and the KBGAT (NATHANI et al., 2019) which adds up attention layers to a GNN-like

model, enabling the network to pay different attention (or to assign distinct weights) to

each vertex in a given neighborhood. These two models were hand-engineered to solve

both entity classification and link prediction tasks, achieving outstanding results and in-

sights on how a neural-symbolic model can foster explainable reasoning over a knowledge

graph. Finally, Selsam et al. (2019) were able to uncover meaningful behavior on the

internal embeddings of a GNN model designed to solve the decision version of the boolean

satisfiability problem. They do so by clustering the final literals embeddings and reducing

their dimensionality (Principal Component Analysis (PCA)) to create valid assignments, a

strategy which we also followed during this work.

1.4 Dissertation Structure

The remainder of this dissertation has the following structure:

• Chapters 2 and 3 are designed to provide most of the necessary technical background

needed for reading this dissertation. More specifically, Chapter 2 formally defines

the graph coloring problem along with some insights on its characteristics and com-

putational complexity and Chapter 3 contains a set of Deep Learning basic concepts

and techniques which served as foundations for this work, specially highlighting a

full description of our base model, the Graph Neural Network.

• Chapter 4 details the conducted experiments in regards to generating instances,

chosen baselines and evaluation setup, together with the results of our method.

• Finally, Chapter 5 concludes this dissertation and envisions avenues for future

research.
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2 THE GRAPH COLORING PROBLEM

The Graph Coloring Problem (GCP) may be understood as an umbrella-term for

any problem concerned with assigning colors to certain elements of a graph subject to

certain constraints. Usually these elements are the vertices of the graph and the constraints

are related to the adjacency information. In a historical perspective, the term “coloring”

came from a student of University College London who, in 1852, was coloring a map

of counties in England and noticed that only 4 colors were enough to ensure that all

neighboring counties were assigned to different colors. Actually, several years later (1976)

it was proven, by Kenneth Appel and Wolfgang Haken, that 4 colors are sufficient to color

any map (or any planar1 graph). Still a very important and studied problem in optimization

and theoretical computer science due to its applications to many other areas, the GCP may

be divided into three main versions:

1. Decision: “Does graph G admit a proper vertex coloring with c colors so that no

adjacent vertices have the same color?”. Proven to be NP -Complete by Karp (1972).

2. Optimization: “What is the smallest number of colors (chromatic number – χ)

needed to color the vertices of G so that no adjacent vertices share the same color?”.

NP -Hard problem.

3. Counting: “How many different valid color assignments does the graph G accept

given c different colors available?”. Also known as chromatic polynomial.

It is worth mentioning that graph coloring problems are solved in polynomial time

if G is 2-colorable, i.e. bipartite graphs without an odd cycle (ASRATIAN; DENLEY;

HÄGGKVIST, 1998). Moreover, there are polynomial-time algorithms (GRÖTSCHEL;

LOVÁSZ; SCHRIJVER, 1984) to efficiently solve graph coloring problems if G is a perfect

graph, i.e. for every induced subgraph H ⊆i G, the chromatic number of H – χ(H) –

equals its clique number2 (GOLOVACH et al., 2014).

The aforementioned variations of GCP and many others are extensively studied in

the context of register allocation (CHAITIN et al., 1981), circuit board testing (GAREY;

JOHNSON; SO, 1975), mobile radio frequency assignment (GAMST, 1986) and other

applications that can be seen as scheduling or resource allocation problems. To show the

1A planar graph is a graph that can be drawn with no crossing edges.
2Maximum size of a subset of vertices of an undirected graph such that every two distinct vertices in the

subset are adjacent.
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Figure 2.1: Pictorial representation of four vertex coloring problems applied to different
graph distributions. Clockwise: random, power-law tree, power-law cluster, small-world).
All graphs are colored with their chromatic number. Source: author.

generality of the GCP definition, we may suppose that several tasks need to be scheduled,

each task will demand some resource and we need to ensure that no resource is being

used during the same time slot. Such problem can be framed as a vertex coloring problem,

where the tasks are defined as the vertices and two tasks demanding the same resource are

connected with an edge. In this sense, the minimum number of colors needed corresponds

to the minimum number of time slots required to complete all tasks.

2.1 Formulation: Vertex Coloring and Chromatic Number

In this work, we are particularly concerned with a mix of two versions of the

GCP: the decision and the optimization ones. Although our model is intended to answer

a decision question (yes or no), our training procedure, which will be later described,

leverages the definition of chromatic number in order to produce very hard instances of

GCP. Also, our evaluation setup emulates the optimization problem: we repeatedly fed our

model with a given instance and increasing number of colors, until the first positive answer

is reached – which indicates the chromatic number. In this sense, the next paragraphs will

provide general and formal definitions for both versions of GCP.

Given a graph G = (V , E), a structure consisting of a finite set V of vertices and a

finite edge set E ⊆ V × V , the GCP can be generally defined as the problem of assigning a

color c to each vertex such that adjacent vertices – v ∈ V and u ∈ V are adjacent if and

only if e = (u, v) ∈ E – are not assigned to the same color. Traditionally, GCP is applied

to undirected graphs, i.e. if e = (u, v) ∈ E then e = (v, u) ∈ E . The decision version of

GCP, however, only intends to give a binary answer to the described problem, with no prior
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need to build up a valid color assignment: given a graph G = (V , E) and a set of colors C,

is it possible to create a mapping function F : V → C such that no adjacent vertices are

mapped into the same color c ∈ C?

As aforementioned, if one is interested in finding the smallest number of colors

which yield a valid assignment, then the GCP becomes an optimization problem concerned

with minimizing the size of C and that can be formulated as an Integer Linear Programming

(ILP) as in Definition

1, for a graph G where n = |V| and m = |E|.
This ILP formulation, proposed by (LIMA; CARMO, 2018), makes the natural

assumption that n colors are enough to properly build an assignment for any given graph.

The minimizing function is applied to the sum of the binary variables xj , which indicate

whether color j is part of a solution. Each variable yvj indicates whether vertex v is colored

with j. The first set of constraints enforces that each vertex can have just one color assigned

to it. The second set of constraints is the one responsible for avoiding two neighboring

vertices to have the same color.

Definition 1 (GCP Chromatic Number ILP Formulation).

min
n∑
j=1

xj

subject to:
n∑
j=1

yvj = 1 ∀v ∈ V

yvj + yuj ≤ xj ∀(v, u) ∈ E , j ∈ 1 . . . n

yvj ∈ {0, 1} ∀v ∈ V , j ∈ 1 . . . n

xj ∈ {0, 1} j ∈ 1 . . . n

(2.1)

2.2 Computational Complexity

We already had a glimpse on the fact that GCP is NP -Complete in its decision

version – where a graph and a number of colors is informed to the solver – and that its

optimization version (minimizing number of colors needed) is NP -Hard. In the field of

computational complexity, problems are usually posed as decision problems, requiring the

algorithm only to output “yes” or “no”. Decision problems for which there is an algorithm
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whose execution time can be expressed via polynomials, i.e. not prone to combinatorial

explosion, belong to the class P , which stands for polynomial-time problems.

On the other hand, NP problems, i.e. non-deterministic polynomial time, are

the ones that can have a candidate answer evaluated in polynomial time. For instance,

assuming the decision version of GCP “Does the graph G admit a proper vertex coloring

with c colors so that no adjacent vertex has the same color?” it is quite straightforward

to verify if a given assignment of colors is valid or not. Obviously, any problem in P is

also in NP – we can solve a problem in P by using its polynomial-time algorithm to build

a proper solution. That basically means that P ⊆ NP , however it is still not known if

P = NP 3. Another class of problems is the NP -Complete one, whose problems can have

their candidate solutions verified in polynomial time (NP -Complete ⊆ NP ) but there

are no known algorithm available to give a binary answer in polynomial time – that is, an

algorithm for identifying a “yes” solution to NP -Complete problems would have to resort

to enumerating and checking a significant portion of the solution space, whose size grows

exponentially compared with the problem size.

Regarding GCP and many other intractable computational problems, it is common

to see a version of them referred to as NP -Hard problems. NP -Hard problems are at least

as difficult as NP -Complete problems but they are not required to be in NP , i.e. they are

not required to be stated as decision problems. This implies that an NP -Complete problem

can be transformed into a NP -Hard by changing its goal, instead of asking “Does the

graph G admit a proper vertex coloring with c colors so that no adjacent vertex has the same

color?”, we ask “What is the smallest number of colors (chromatic number – χ) needed to

color the vertices of G so that no adjacent vertices share the same color?” (LEWIS, 2016).

But up to this point, we have not yet shown how the decision version of GCP fits into

these classes of problems. Cook (1971) introduced the concept of NP -Completeness and

polynomial time reduction, and also proved that the boolean satisfiability problem (SAT)

is NP -Complete: Cook showed that there is no known algorithm to efficiently solve all

instances of SAT, specially due to the UNSAT instances which requires the algorithm to test

all possible assignments – leading to combinatorial explosion – before giving a negative

answer. The decision GCP is NP -Complete because it can generalize to the 3-SAT (a

special case of SAT where each clause has strictly three literals), in other words, a 3-SAT

problem can be reduced to a graph coloring problem. And 3-SAT itself can generalize to

SAT, which is known to be NP -Complete (COOK, 1971). Seminal work of (KARP, 1972)

3This is actually one of the Millenium Prize Problems stated by the Clay Mathematics Institute. It remains
an unsolved problem, together with Riemann Hypothesis, Hodge Conjecture, among others.
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demonstrated these two polynomial time reductions and others between 3-SAT and several

combinatorial problems.

2.3 Phase Transition on Graph Coloring

As in any other combinatorial problem, GCP also undergoes a phase transition phe-

nomenon: when some graph parameter reaches a specific threshold, no c-color assignment

can be found anymore. For GCP, this parameter is usually related to the vertex connectivity

(degree), but in principle it could be any parameter related to the amount of edges in the

graph. Particularly, as the average vertex degree increases, a threshold phenomenon is

observed: the graph accepts less valid c-coloring solutions, until no solution can be found.

Zdeborová and Krzakala (2007) defined five transitions of connectivity which cause

the space of solutions to be gradually more sparse until it becomes completely empty. The

last transition, called COL/UNCOL transition, can also be used to build very hard instances

of the GCP, since it is empirically known that deciding the feasibility of a c-coloring

becomes much harder near to the coloring threshold COL/UNCOL than far away from it,

where the average vertex degree is lower (CHEESEMAN; KANEFSKY; TAYLOR, 1991).

In this work, we explore this property in order to create both training and test instances, as

it will be described later on Section 4.2.
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3 MACHINE LEARNING, DEEP LEARNING AND GRAPH NEURAL NETWORKS

This chapter introduces the underlying concepts of the neural-symbolic method-

ology used throughout this research along with a brief explanation of the basic neural

models that constitute the core of our work: a Graph Neural Network. We assume a basic

knowledge of linear algebra and calculus, specifically with regards to vectors, matrices

and their basic operations. For a more rigorous explanation of Machine Learning (ML)

and Deep Learning (DL) in general, the reader may refer to (WITTEN; FRANK; HALL,

2011), (GOODFELLOW; BENGIO; COURVILLE, 2016)1 or (NIELSEN, 2015)2.

3.1 An Overview of Machine Learning Goals, Methods and Pitfalls

Machine Learning in general deals with the approximation and generalization

of some function given a limited observation range of it. This process can be seen as

a curve-fitting model whose objective is to minimize the distance between the limited

observation range and the learned function. Note that learning the function is a key-aspect

to accomplish in Machine Learning, since if the ML model can only memorize what it has

seen, then it will not be able to extrapolate its knowledge to unseen instances – in fact, one

may argue that there would be no knowledge at all in this case. During the learning phase,

usually called training, an ML model is fed with N examples of the function it needs to

learn, in the form of (xi, yi), · · · , (xN , yN) such that xi stands for the feature vector of the

i-th example and yi stands for its target value. The model is supposed to learn a function

g : X → Y , which can be seen as a part of the hypothesis space, or space of possible

functions, G. In this sense, ML models employ the concept of a loss function, a measure

of how far away are g(xi) and yi. One of the most basic loss functions is the mean average

error, given by MAE =
∑n

i=1 |g(xi)−yi|
n

. This is the basic definition for supervised learning,

where each input feature vector has a correspondent target value and whose container

models may range from linear regression (see Figure 3.1), logistic regression, support

vector machines and even graph neural networks. Supervised learning is well-suited for

both classification and regression problems: the former deals with categorical data (yi is

a discrete target value) and the latter has its targets in a continuous domain. As there are

many ML algorithms, one way of distinguishing between them is the form taken by g,

1Available online at <www.deeplearningbook.org> as of 15/01/2020
2Available online at <www.neuralnetworksanddeeplearning.com> as of 15/01/2020

www.deeplearningbook.org
www.neuralnetworksanddeeplearning.com
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Figure 3.1: Linear regression algorithm applied to approximate a non-linear one-
dimensional function (dots). Source: author.
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for instance, Naive Bayes classifiers learn g = P (x, y) (joint probability) while a logistic

regression model learns g = P (y|x) (conditional probability).

The presence of labeled data is not, however, a premise for an ML algorithm to learn

a desired behavior or function. There are successful examples of ML algorithms applied to

partially labeled data (Semi-supervised learning) to build generative models (KINGMA

et al., 2014) and also to identify biomolecules (KÄLL et al., 2007), for instance. It is also

feasible to perform some kind of learning over completely unlabeled data – unsupervised

learning. In this case, the ML algorithm may either attempt to cluster the unlabeled data

according to some inferred pattern/similarity, to find frequent co-occurrences of items

(association rules), to identify outliers in the input distribution or to project the original

datapoints into some latent space, which may summarize some of the input’s properties.

Instead of a label, one may also envision a concept of reward. In this case, a ML

model, usually renamed to agent, participates in a decision-making process, in which the

agent’s outputs, or decisions, yield a reward or a penalty depending on the environment’s

nature. This is particularly useful when the entire learning environment can not be exactly

modeled. This learning paradigm is known as Reinforcement learning and one of its

most traditional algorithms is Q-Learning, which rewards or penalizes the agent based not

only on its action but also on its current state. The Q-Learning agent defined by (MNIH

et al., 2013), for instance, is required to learn how to play an Atari game by pressing

some button and observing the related reward / penalty. The state definition is given by
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the configuration of pixels in the screen – yielding a huge state space (≈ 103533), and

thus requiring the Q-Learning table associated with states and actions to be modeled as a

convolutional neural network fed directly with the screenshot image of the current state.

In this dissertation, our experiments solely rely on supervised learning techniques,

although we also apply unsupervised learning methods to explore the meaningfulness

of the representations produced by our model. In this sense, it is paramount to state

that supervised learning is always divided into two stages: the training, where a loss

function is computed and used to adjust internal parameters, and the test, where an error

function defines some accuracy-like metric. The training and the test set of instances must

be disjoint, so that the error function reflects the model’s capability of generalizing its

performance to unseen instances, but the test data must – or, at least, should - come from

the same distribution as the training data, to prevent a problem known as covariate shift,

which decreases the model’s performance during test. Moreover, an ML algorithm can also

fit the training dataset too tightly, yielding a very low loss metric but potentially a very low

accuracy as well, a problem known as overfitting and that can be tackled by adjusting a

parameter called learning rate or even by applying some regularization strategy, which try

to balance the amount of parameters used within the model. The opposite pitfall is known

as underfitting – when the model fails to fit both training and test data. These two ML

pitfalls are shown in Figure 3.2.
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Figure 3.2: An overfitted regression model during training in Subfigure (a) and its impact
during the test in Subfigure (b). An underfitted model during training in Subfigure (c) and
its impact during the test in Subfigure (d). Source: Author.
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3.2 Deep Learning Preliminaries

Essentially, Deep Learning refers to any learning algorithm whose most basic block

consists in (some form of) an artificial neuron and whose architecture is defined by many

layers of connected artificial neurons. As its name suggests, the artificial neuron mechanics

is inspired by the mechanics of biological neurons, or nerve cells. Basically, a biological

neuron (see Figure 3.3) receives inputs through its dendrites, processes them in its body

and sends them outside via its axon terminal. This last stage is in fact governed by the

all-or-none law: the output of a neuron is a binary value caused by the input stimulus

being either below or above a threshold potential, i.e. the strength of the input signal is not

perfectly reflected in the output but rather indicates if the output is on or off.
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Figure 3.3: Structure of a biological neuron.
The dendrites capture the input signal, which
is then processed by the cell body and ex-
pelled out via axon terminals. Source: Wiki-
media Commons.

A single artificial neuron (see Fig-

ure 3.4 can be modeled as an activation

function applied to a weighted sum. The

weighted sum is obtained by multiplying

each of the inputs xn with a correspon-

dent weight wn and adding them up with

a special parameter called bias, which sim-

ply permits the output of the function to

be shifted up or down, thus precisely fit-

ting a desired output function. Then, the

weighted sum is fed to an activation func-

tion σ which produces the predicted output

Figure 3.4: Pictorial representation of a single artificial neuron, also known as perceptron.
Source: author.
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In this sense, a single artificial neuron outputs a function given by:

g(x) = σ(b+ w1x1 + w2x2 + · · ·+ wnxn) (3.1)

where w1, w2, · · · , wn are the neural weights which are learned during training.

As biological neurons can be connected to other biological neurons to perform

more complex tasks, artificial neurons can also be arranged in a network to produce

answers to difficult tasks (Artificial Neural Network – ANN). This network configuration

can be achieved by connecting the output of a neuron to the input of another neuron

in the next layer, or, mathematically, by iterating a composition of activation functions

applied over weighted sums. In order to learn a desired function, ANNs need to update

their internal weights according to their contribution to the final output. This process is

usually done by backpropagating (RUMELHART; HINTON; WILLIAMS, 1986) the loss

during training, which requires that all activation functions are differentiable or, at least,

differentiable almost everywhere. It is also important that the activation function presents

non-linear properties so the neural network can learn nonlinear relationships in the data.
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Figure 3.5: Graph of the sigmoid function and its derivative, while the first one is often
used as an activation function in ANNs, the second one is computed in regards to the
internal weights in order to update them during the backpropagation stage. Source: author.
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All in all, choosing an appropriate activation function is essentially what determines the

expressiveness of an ANN. For instance, one of the most common activation functions

is the sigmoid function – or logistic function (Figure 3.5) – whose original formula and

derivative corresponds to:

σ(z) =
1

1 + e−z

σ(z)′ = σ(z)(1− σ(z))
(3.2)

Note that the sigmoid function reflects the all-or-none law we previously described, except

for a narrow margin around 0. But this property is not always required, and we may forgo

it in exchange for computational efficiency and select an unbounded function such as the

rectified linear unit – ReLU(z) = max(0, z). Choosing an appropriate activation function

is particularly important at the output layer, since this last function determines the form

of the output: a sigmoid activation at the last layer means that the ANN will be a binary

classifier, whereas an identity function implies that the ANN will be a regressor.

Deep Learning major premise is that increasing the depth of an ANN yields better

expressiveness and results than increasing its width. In an ANN, width corresponds to the

number of single neurons in a given layer whereas depth is equal to the total number of

layers, including the input one, the hidden ones and the final output layer. For instance,

the ANN depicted on Figure 3.6 is a 4-layered neural network whose input and hidden

layers have a width equals to 3. This is also an example of a feedforward artificial neural

network, since there are no connections between neurons at the same layer, no connections
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between an n+1-th layer and an n-th layer and no self-loops, thus no cycle can be formed.

Moreover, a feedforward artificial neural network with at least 3 layers (input, hidden and

output) is also known as Multilayer Perceptron (MLP).

Figure 3.6: 4-layered ANN with two hidden layers indicated by their activation functions
σ1, σ2, · · · , σ6, we do not show neural weights and biases to enhance readability. Source:
Author.
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The forward pass of an ANN can be understood as a series of matrix multiplications,

one multiplication per layer, without violating the differentiability constraint. For instance,

the inputs of the first hidden layer of the ANN depicted in Figure 3.6 are given by:


w1,1x1 + w1,2x2 + w1,3x3 + b1

w2,1x1 + w2,2x2 + w2,3x3 + b2

w3,1x1 + w3,2x2 + w3,3x3 + b3

 =


w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3




x1

x2

x3

+


b1

b2

b3


(3.3)

where w1,1 corresponds to the neural weight associated with the hidden neuron 1

and x1, whereas w2,1 corresponds to the weight associated with hidden neuron 2 and x2,

and so on. The second hidden layer, however, deals with the input provided by the first

hidden layer, thus its input operation can be formulated as:


w4,1g1 + w4,2g2 + w1,3g3 + b4

w5,1g1 + w5,2g2 + w5,3g3 + b5

w6,1g1 + w6,2g2 + w6,3g3 + b6

 =


w4,1 w4,2 w4,3

w5,1 w5,2 w5,3

w6,1 w6,2 w6,3




g1

g2

g3

+


b4

b5

b6


(3.4)

where g1 stands for the activated output of first neuron in the first hidden layer, or

g1 = σ1(w1,1x1 + w1,2x2 + w1,3x3 + b1). In a nutshell, each of the i layers of an ANN is
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responsible for computing:

gi(~x) = σ(Wi ⊗ ~x⊕ ~bi) (3.5)

where ~x stands for the input tensor fed to the given layer, Wi corresponds to the

matrix of weights of that layer (each row associated to a neuron) and ~bi stands for its bias

vector.

It is easy to verify that increasing the depth of an ANN implies that more matrix

multiplications will be required, while increasing the size of the layers (width) results

in larger matrices to be multiplied. Fortunately, both drawbacks are easily handled by

modern Graphics Processing Units (GPUs), which are mainly designed to accelerate

matrix multiplications. Such GPUs allowed, for instance, the feasibility of training a

convolutional neural network such as the ResNet (HE et al., 2016) with 152 layers and

∼4M parameters to achieve state-of-the-art performance in image classification tasks and

such as the FaceNet (SCHROFF; KALENICHENKO; PHILBIN, 2015) with 22 layers and

∼140M parameters, a current state-of-the-art architecture to tackle the face recognition

problem. Treating each layer of an ANN as matrix multiplications is usually called

vectorization and not only enables speeding up training but also saves a huge amount

of time for any programmer designing a neural architecture, as several for-loops can be

replaced by a single matrix multiplication operation. Here, it is also worth defining that

an n-dimensional array can be generalized to a tensor of rank n. For instance, the weight

matrix of the right side of Equation 3.4 is a tensor of rank 2 whose shape is (3, 3) – size

in each dimension. While the bias vector is a tensor of rank 1 and shape 3. We will not

expand on a mathematical definition of a tensor but it is quite important to shed light on

this basic terminology as we will describe further neural modules in terms of tensorial

operations.

3.3 On Training an Artificial Neural Network

In the last section, we briefly mentioned that it is important to have only differ-

entiable functions along the pipeline of an ANN. This is due to the fact that we need to

compute the contribution of each variable inside our model (weights and biases) to the

resulting loss and a faster way of doing so is to partially derive the loss w.r.t. each set of

variables.
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Figure 3.7: The result of applying gradient descent on a surface produced by a loss function
with 2 parameters. Source: (SHARMA, 2018)

Formally, after one forward pass, we have a nx-dimensional input datapoint x, a

target ny-dimensional label y and a model M , which is essentially a composition of matrix

multiplications and activation functions, which operate over a set of m updatable variables

W = w1, w2, . . . wm. The output of our model is represented by g(x,W) = M(x,W).

We formally define a general loss function, for instance an MAE loss:

L(W) = |g(x,W)− y| (3.6)

As g(x) is parameterized byW , we can compute a partial derivative of L for each

variable w ∈ W , yielding the following gradient:

5L =


∂L
∂w1

∂L
∂w2

...
∂L
∂wm

 (3.7)

Graphically this gradient would be the slope of the tangent line to the loss function

given the current W . An example of gradient produced by a loss (or cost) function

parameterized by 2 weights is shown in Figure 3.7. The mathematical purpose of the

gradient vector is to provide us the direction on which the loss function increases, thus we

need to adjust our variables towards the opposite direction pointed by5L.

In practice, the backpropagation algorithm (RUMELHART; HINTON; WILLIAMS,

1986) computes each layer’s partial derivative individually, starting from the last layer

until reaching the first layer, based on the chain rule of composite functions. Once the full

gradient vector5L is obtained, each of our variables wn is subtracted by its correspondent

gradient value ∂L
∂wn

and multiplied by a learning rate which allows one to adjust the size
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of the step taken towards a smaller loss – this is particularly important as higher learning

rates will deteriorate the convergence of the model when dealing with complex or not

regularly-shaped losses.

It is not feasible, however, to individually apply the above algorithm for each

instance of a problem, as DL models usually need thousands of instances and several

epochs3 to converge. To overcome this issue, only the forward pass is computed for any

number b of instances, effectively producing b values of L(W) – note thatW does not

change during this forward pass. These losses are then aggregated, via sum or mean

for instance, and the resulting gradients can be computed. Ideally, one would fit the

entire dataset into this technique called Batch Gradient Descent, as it leverages data

parallelism and parameter sharing to their maximum. However, due to computational

constraints, the most common strategy is to decrease the b number of instances (Minibatch

Gradient Descent) prior to applying the forward and the backward passes. Particularly,

when b is of any size lesser than the entire dataset size, most of the researchers call

this learning technique Stochastic Gradient Descent. Several other learning algorithms

based on stochastic gradient descent exist and one may highlight three of them, which are

consistently used in several DL well-established models: Adam (KINGMA; BA, 2014),

Adagrad (DUCHI; HAZAN; SINGER, 2011) and Adadelta (ZEILER, 2012).

3.4 Convolutional Neural Networks

Although MLPs can be very powerful performing classification or regression tasks

over an input vector, there are some drawbacks when one needs to process spatial data,

such as images, with them. For instance, an MLP connects a neuron of the input layer to

every input datapoint, which is, considering an RGB image, a pixel multiplied by three –

thus a 640× 480 image would require around 920k weights, for just one neuron. Another

problem is that MLPs are not translation invariant, i.e. an MLP could output a different

prediction for a given image and its shifted version. This translation problem happens

because when one flattens an image prior to feed it to the MLP, all spatial information is

lost and pixels that were originally close to each other will be considered as single and

independent units of information. Convolutional Neural Networks (CNNs) were designed

to tackle these issues related to n-dimensional inputs.

3One epoch means that the whole dataset was passed both forward and backward through the neural
network.
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CNNs biological inspiration is the visual cortex – a portion of the brain filled with

specialized clusters of cells. Neuroscience research, back in the 1960s, showed that some

neuronal cells in the visual cortex fired only when exposed to horizontal edges, a different

group of cells, however, fired only when exposed to vertical edges, and so on (HUBEL;

WIESEL, 1962). When considered all together, these specialized cells produce what we

call visual perception – the capability of distinguish what is being framed in a given image.

To emulate such property in a DL model, we basically need to tie together all the weights

of such specialized cells – or sliding them over different regions of an image while still

sharing the same neural weights.

Concretely, the CNN block designed to perform the operation described in the last

paragraph is called convolutional layer, and it is always placed as the first layer of any

CNN-based architecture. The main component of the convolutional layer is its kernel,

sometimes also known as filter, which is essentially a n-rank tensor of weights, i.e. a

structure analogous to our previous definition of a neuron but with no activation defined.

Convolving the filter with the image basically consists in a weighted sum of the filter

weights by respective image pixels. The amount of scalar values produced by a filter is

dependent on how we slide it throughout the entire image, or on the size of each sliding

step (stride). Figure 3.8 shows a convolutional layer whose 3-dimensional filter (stride=1)

has shape (8, 8, 3) and produces a (25, 25, 3)-shaped feature map. Note that the size of the

last dimension of the filter must match its analogous value in the image in order to enable

the correct multiplications. Usually, a convolutional layer j has a set of i independent

filters, i.e., in our case, each filter would be independently convolved with the image,

producing i feature maps of shape (25, 25, 1) or a single volume shaped as (25, 25, i).
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Figure 3.8: The operation performed by a convolutional layer over an image (blue volume):
a filter (red volume) slides over all unique grid of pixels (stride=1) and produces a single
scalar value v, which is inserted into a resulting 2-dimensional array (green)– also called
feature map. Source: author.
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In a high level perspective, each filter can be seen as a feature identifier, such

as curves, straight edges and so on. Mathematically, each filter Wji learns to adjust its

weights in order to operate a linear transformation on the pixels it has seen. Some sets of

values for the elements of Wji are already well-known in image processing, since their

operations are quite fundamental. For instance, the Laplacian filter in Equation 3.8 is used

to detect edges.

W =
1

9


0 1 0

1 −4 1

0 1 0

 (3.8)

After a convolutional layer, it is useful to apply a non-linear activation – such

as ReLU – in order to enhance the expressiveness of the learned transformation, as the

convolutional layer itself only performs a linear transformation (element-wise multipli-

cations and sum). In a nutshell, a ReLU applied to a given feature map only changes its

negative values to 0. Also, researchers already verified that ReLU activations speed up

the training of CNNs in image classification tasks as well as alleviates the problem of

vanishing/exploding gradient4.

It is also common to apply some kind of downsampling to the resulting feature

maps, particularly because once a specific feature is uncovered, we do not need its exact

location but rather a relative location to other uncovered features. Naturally, the number of
4Due to the chain rule applied to a huge number of functions, at lower layers the gradient may become so

small/big that no significant/a drastic update is made in the weights of those layers
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parameters of the next layer can also be reduced when the previous layer is a downsampling

one. Another obvious benefit of downsampling is that we reduce the chances of overfitting

our model. In such context, the most common pooling method is max-pooling, which

essentially returns the max value of a (n, n) region of a feature map.

As the CNN architecture goes deeper, filters become more and more specialized

since they are able to associate all simpler feature maps from the previous layer. For

instance, the 4 feature maps produced by the first conv. layer in Figure 3.9 would highlight

low-level features, such as edges, straight lines and so on, whereas the 6 next feature maps

would identify higher-level features, such as the presence of a triangle or another polygon.

Identification actually means that a feature map will present a certain configuration of

values to indicate whether a feature is found in the input. But so far no classification or

detection has been properly made. To accomplish that, the output of the last convolu-

tional layer (highest-level feature maps) is usually fed into a fully-connected MLP whose

loss function enables some of the tasks we mentioned – for instance, one may apply the

sigmoid σ loss to a binary task (“Is there a person in the original image?”) or more so-

phisticated losses to categorical tasks. Moreover, despite CNNs’ very pronounced success

in computer vision tasks such as image classification (KRIZHEVSKY; SUTSKEVER;

HINTON, 2012), pose estimation (YANG et al., 2019) and semantic segmentation (CHOY;

GWAK; SAVARESE, 2019), their mechanics can be applied also to analogous tasks on

1-dimensional data, such as speech recognition on audio files (ABDEL-HAMID et al.,

2014) and relation prediction over entities embeddings in a knowledge graph (NGUYEN

et al., 2018).

Figure 3.9: Part of a convolutional neural network architecture. The original image (blue)
is convolved into 4 low-level feature maps, which are then convolved into 6 high-level
feature maps. Source: author.
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Although we do not use a proper CNN in our work, it is quite important to highlight

some of its basic insights, as they will be revisited when we discuss the graph neural
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network model. First of all, the CNN filters, or kernels, are all prone to gradient descent

algorithm thus leveraging the already mentioned data parallelism (Section3.3) – many

filters are learned at once and at different consecutive levels. Second, CNNs enable

parameter sharing across the spatial relationships of the input volume: by using the

same weights, or filter, Wjn over all parts of an input, CNNs present properties such as

equivariance and invariance to some transformations (translation, rotation, etc.) at some

level (LENC; VEDALDI, 2015; KAUDERER-ABRAMS, 2018) – these properties are

particularly useful to image processing tasks since important features arise locally (and

not globally). Third, also due to parameter sharing over space, we refrain from having

a fully-connected neural structure5, which would require different groups of weights for

each pixel. Numerically, we can exemplify such drawback with a black-and-white image

of 640×480 ≈ 307k pixels: in the first hidden layer of an MLP with width equals to 5, our

model would span 5× 307k ≈ 1.5M parameters (weights and biases); on the other hand,

the first convolutional layer of a CNN composed also by 5 filters (e.g. (100, 100)-shaped)

would yield a total of 1002 × 5 = 50k parameters. The basic assumption is that filters

whose shapes are much lesser than the original image are sufficient to detect any kind of

feature, as long as they are correctly slid along the entire image, leveraging neighborhood

relationships. For instance, a filter which identifies vertical edges matches the left border

of an image but will also match the right border. Ultimately, this huge decrease in the

parameter space size allows one to train a CNN very fast in comparison to an analogous

fully-connected network (less matrix multiplications and partial derivatives during gradient

descent). Note, however, that the parameter sharing provided by a CNN architecture relies

on grid-shaped data, such as images or a simple 1-dimensional input, and to enable such

advantage on non-regularly shaped inputs, as an arbitrary graph, one may have to design a

different neural architecture – this is the case of a Graph Neural Network, whose parameter

sharing property is based on a different domain.

3.5 Recurrent Neural Networks

When dealing with sequential data, it is a key-feature to have persistence over time,

that is, once the model receives a new instance, it must consider all, or at least a part of,

5Note that a convolutional kernel with the same size of the input image is equivalent to a fully-connected
neural network. The main insight of a CNN is to define a fully-connected kernel with a smaller size and to
slide it over the image.
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the previous inputs it has already seen. In other words, the full meaning of an instance is

closely related to its neighboring instances in the time domain. Such property calls for

a model which is not only able to store knowledge gathered from previously-seen data

but also to take into account the ordering of its inputs. The Recurrent Neural Networks

(RNNs) are a subfamily of ANNs whose main principle relies on the reuse of a single

neural cell across time to process sequential data. Note that RNNs can be classified by

what they effectively reuse and how they reuse it, for instance, an RNN cell can reuse

only its previous output, or both its previous output and an internal state, in any case this

property can also be seen as a case of parameter sharing, much like the one presented by

CNNs but in the temporal domain.

The most basic example of an RNN is depicted in Figure 3.10. Intuitively, one may

think that, at timestep t, the RNN cell must learn a tensor of neural weights W and biases

B such that its output is given by:

ht = a((ht−1 _ xt)⊗W ⊕B) (3.9)

where a stands for an activation function (usually the hyperbolic tangent) and _

denotes the concatenation of the previous output with the current input. Note that we

deliberately do not assign timestep subscripts to both W and B. As we stack more and

more cells (right side of Figure 3.10), we still rely on the same tensors of weights W and

biases B to compute an output ht (parameter sharing).

Allegedly there could be no stacked cells – one could implement a full RNN as a

single cell with feedback which runs throughout any t number of inputs. Nevertheless,

from an architectural perspective it is useful to unroll an RNN into a series of repeated

and connected cells, thus allowing the backpropagation algorithm (Section 3.3) to perform

gradient descent in the same fashion as it does to feed-forward ANNs.
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Figure 3.10: Basic cell of a simple RNN (left of the equation) and its unrolled version
over t timesteps. Note that, in the single cell, the self-loop corresponds to the output of the
block in a previous timestep and ht to its current output. Also, at t = 0 the second input is
usually a vector of 0s. Source: author.
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Unfortunately, in practice, a simple RNN model as described so far has shown

several drawbacks in regards to learning long-term dependencies (BENGIO; SIMARD;

FRASCONI, 1994) or, large temporal gaps between relevant information and where it is

needed. To overcome such drawback, Hochreiter and Schmidhuber (1997) proposed a

modified RNN called Long Short-Term Memory (LSTM) whose cell’s structure is far more

complex than a single activation function, weights and biases, such as the one presented by

the original RNN.

An LSTM cell (Figure 3.11) has not only an input xt and an output ht but also an

internal state ct, whose information can be deleted, augmented or even remain unchanged

throughout the timesteps. Inside an LSTM cell, there are four neural layers, usually called

gates, each one is accountable for the following operations:

• In the F gate (forget) the LSTM decides what will be removed from its internal state

ct, given the input xt and its previous output ht−1.

• In the I gate (input) the LSTM decides which parts of the input xt will be written to

its internal state ct.

• In the C̄ gate (transform) the LSTM transforms the current input xt prior effectively

writing it to the internal state ct.

• Finally, in the O gate (output) the LSTM decides which parts of its hidden state will

be sent to the next timestep or to the final output.

Each of these gates is an independent fully-connected layer with its own weights

and biases and an appropriate activation function. Precisely, the ability of turning off any
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changes to its internal state is what allows LSTMs to learn long-term dependencies, this is

accomplished by a correct composition of tanh and σ-activated layers.

Figure 3.11: An LSTM cell at timestep t composed by neural layers (green), element-wise
operations (yellow) and inputs and outputs (circles). Source: author.
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We do employ LSTMs as building blocks of our GNN architecture, as it will

be shown later, but the main take-away of this section is that parameter sharing can

also enhance learning over sequential data, when the model has to learn both temporal

dependency and the abstract concept of ordering – RNNs present invariance properties

related to the temporal domain, such as invariance to time rescaling or to any kind of time

warping (MATCOVSCHI; PASTRAVANU, 2009; TALLEC; OLLIVIER, 2018; WANG,

2018). Such properties are particularly useful for Natural Language Processing (NLP),

the research area where RNNs achieved their most prominent successes, as in (MELIS;

KOCISKÝ; BLUNSOM, 2019) for language modeling, (NALLAPATI; ZHAI; ZHOU,

2017) for summarization and (FOLAND; MARTIN, 2017) for semantic parsing. All in all,

by reusing its weights sequentially, RNNs in general leverage a parameter sharing property

analogous to that of CNNs, but in a different domain.

3.6 Graph Neural Networks

We have described neural modules whose parameter sharing strategies enable

spatial and temporal invariance, CNNs and RNNs, respectively. In other words, while

RNNs leverage on neighboring information along the 1-dimensional time domain, CNNs

take advantage of local neighboring information along n-dimensional grid-shaped data.
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Under these assumptions, still there is a lack of understanding on how symbolic/relational

problems would fit into an ANN model, such as MLPs, CNNs or RNNs. First of all, such

problems are prone to permutation invariance: the order of their variables is meaningless –

for instance, the following two CNF SAT problems are equivalent: (x1∨x3)∧(x2∨¬x5) ≡
(x2 ∨¬x5)∧ (x3 ∨ x1). Second, due to its relational structure, these problems are naturally

mapped onto graphs whose structure may be not as regular as grid-shaped data – traditional

approaches deal with graphs by flattening them in some form prior to feeding them to an

ANN, potentially losing topological information (GORI; MONFARDINI; SCARSELLI,

2005). Joining these two properties, we may envision a neural model whose input is

indeed a graph and one of its capabilities is to identify isomorphic6 graphs as well as

the Weisfeiler-Lehman test does (WEISFEILER; LEHMAN, 1968) – this is particularly

important because it is not desirable to encode a single problem into all of its equivalent

representations. We already discussed that parameter sharing enables invariance over some

domains. In this graph domain, we need the neural kernels of the model to be repeatedly

applied over the entire graph representation of a problem (as a CNN kernel does over an

image). Such model is the Graph Neural Network, which is able to fulfill both of these

requirements (XU et al., 2019).

Besides having a kernel with tied weights across the computation for each vertex,

there are three other requirements a general GNN must satisfy:

1. The information accumulated for each vertex must come from its neighborhood

– this indicates some kind of message-passing algorithm enriched with adjacency

information.

2. The prior requirement also imposes that an internal memory or state7 for vertices is

needed.

3. To enforce that the communication flow along the graph, such algorithm must

execute over t timesteps, where ideally t is equal to the diameter of the graph.

Then, given an undirected graph G = (V , E)8 where |V| = n and |E| = m, this

basic GNN architecture would have a time-labeled d-dimensional state for each vertex

6Two graphs G = (VG , EG) andH = (VH, EH) are isomorphic if there is a bijection f : VG → VH such
that (u, v) ∈ EG ⇐⇒ (f(u), f(v)) ∈ EH.

7Henceforth we will use state, embedding and projection interchangeably, and all of them can be seen as
a real-valued vector V ∈ Rd.

8This definition can be easily generalized to a directed graph, but we keep it as simple as possible since
GCP instances are usually defined over undirected graphs.
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(also called vertex embedding):

Vi
t ∈ Rd ∀i ∈ 1, · · · , n (3.10)

and a function φ that takes a vertex current state and its neighbors states to produce

the vertex next state:

Vi
t+1 = φ

(
Vi

t,
{
Vj

t
∣∣ (i, j) ∈ E}) ∀i, j ∈ 1, · · · , n (3.11)

Note that instead of simply using the states of each neighbor, we may need to

translate each neighbor state into a “message” via any desired function µ. That is, a vertex

state Vi
t is translated to Mi

t by µ, then Mi
t is sent to all its neighbors. Another issue

is related to the accumulated set of messages that arrive to each vertex at each timestep

(second argument of φ in Equation 3.11). To be used as an input for a DL module, this set

of messages must be summarized in a way that its size is fixed regardless the amount of

neighbors of each vertex. Thus, a simple concatenation is not allowed. Instead, we may

use sum or even average operations, but the second option is known to fail at capturing

structures of unlabeled graphs (XU et al., 2019). Finally, we modify Equation 3.11 to:

Vi
t+1 = φ

Vi
t,
∑

(i,j)∈E
µ
(
Vj

t
) ∀i, j ∈ 1, · · · , n (3.12)

Each of these functions, φ and µ, is applied to each vertex Vi ∈ V , over tmax

timesteps. This GNN basic skeleton will henceforth be referred to as GNN-Basic and can

be seen in its complete version in Algorithm 1. Moreover, both φ and µ functions could

be learned and thus designed as Multilayer Perceptrons (MLPs), but as φ is assigned with

performing a computation over sequential data (sequence of messages over time), it is

appropriate to implement it as an RNN, where the RNN’s hidden state corresponds to Vi
t.
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Algorithm 1 GNN-Basic

1: procedure GNN(G = (V , E))
2: Initialize vertex embeddings Vi ∈ Rd ∀vi ∈ V
3: // Over tmax iterations, do:

4: for t = 1 . . . tmax do

5: // For each vertex vi ∈ V
6: for i = 1 . . . n do
7: // Update vertex embedding given its state and aggregated received messages

8: Vi
(t+1) ← φ(Vi

(t),
∑

vj | (i,j)∈E
µ(Vj))

9: end for

10: end for

11: // Return refined vertex embeddings

12: return {Vi
(tmax)}i=1...n

13: end procedure

So far, the GNN-Basic we introduced can be seen as a message-passing algorithm

(see Figure 3.12) whose ultimate goal is to refine projections/embeddings of vertices (see

Figure 3.13). There are two main issues yet to be addressed. Refining embeddings is

not enough to solve any combinatorial problem: we still need to decode the embeddings

into a proper solution. If their values hold any useful knowledge for a given problem,

we can assume that a learnable function γ, applied to each resulting embedding or to an

aggregation of them, is able to decode a valid solution, either in a categorical or in a binary

format. Usually, γ can be designed as an MLP, although more complex tasks would require

different DL models.

Figure 3.12: Seen as a message-passing algorithm, a basic GNN must, at each timestep,
compute messages from the incoming neighborhood of a vertex and use them to update the
given vertex for the next timestep. N (v) stands for the neighborhood of vertex v. Source:
author based on a similar picture proposed by Pedro Avelar.
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Table 3.1: Relational inductive biases raised by different neural network architectures.
Source: (BATTAGLIA et al., 2018)

Component Elements Relations Rel. inductive bias Domain of invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial

Recurrent Timesteps Sequential Sequentiality Time
Graph network Vertices Edges Arbitrary Vertex, edge

Figure 3.13: Considering 2-dimensional vertex embeddings, initially gathered from a
distribution P , a GNN should be able to refine them over tmax timesteps. Their final
position ideally represents some property of the original problem, such as the 2-clustering
depicted in this picture. Source: (PRATES et al., 2019b)

The second issue is a bit more entangled and sparked several research endeavors

since the appearance of the first GNN model. A full-fledged GNN should be able to

generalize its computation to any element in a graph, and even to perform specialized

computation over types of elements. Such issue was already partially tackled by the first

authors whom described the pioneer GNN model (GORI; MONFARDINI; SCARSELLI,

2005; Scarselli et al., 2005; SCARSELLI et al., 2009): in their work, each vertex is updated

according to its own state, the states of its neighbors and the different types of relations

connecting them. Particularly, Scarselli et al. (2009) explicitly stated that each “kind” k of

vertex must have its own transition function φk, a function to update a vertex state given

its own kind and neighbors’ messages, and its own message-computing function µk, a

function to compute the message sent by vertices of type k to their respective neighbors.

However, recent work of Battaglia et al. (2018) shed light on a new definition
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for GNN-based algorithms: the Graph Network model. The authors claim that their

formalization can “generalize and extend various approaches for neural networks which

operate on graphs”. They compare the parameter sharing properties of CNNs and RNNs to

the one presented by GNNs, which raises the idea of relational inductive bias – the input’s

topology forces constraints on the message-passing algorithm – and the discussion on how

such bias can be used in an end-to-end differentiable model with gradient descent-based

learning (see Table 3.1). In regards to their model, the underlying idea is to define vertices,

edges and graph states, thus augmenting the GNN-Basic architecture by promoting edges

and the entire graph to elements in the GNN pipeline, giving them the same treatment

vertices received in the original GNN (GORI; MONFARDINI; SCARSELLI, 2005). The

Graph Network’s mechanics can be divided into three main procedures, one for each

element:

ek
(t+1) ← φe(e

(t)
k ,v

(t)
vk
,v(t)

uk
,u(t)) ∀k ∈ 1, ...,m (3.13)

which stands for the update on edge embeddings, considering their current state,

their two endpoints embeddings and the current global state.

v
(t+1)
i ← φv(v

(t)
i , µ({e(t+1)

k | ek = (i, j)}),u(t)) ∀i ∈ 1, ..., n (3.14)

where the vertices embeddings updates are computed given their current state, the

output of a function µ which aggregates all messages sent by its edges9 and the global

state.

u(t+1) ← φu(u, {v(t+1)
i }∀i∈1...n, {e(t+1)

k }∀k∈1...m) (3.15)

which finally computes the updated global state, considering all edges and all

vertices embeddings inside the graph.

This generalization is quite powerful but it is still lacking expressiveness: it is

powerful due to its flexibility – with it, one may approach a combinatorial problem

from a vertex, edge or even a global perspective, this is useful for problems whose

edges are labeled, such as the Traveling Salesperson Problem, or problems assigned

with computing some global property of a given graph, for instance its global clustering

9Please note that we are considering an undirected graph, where, given that ek = (i, j) exists, then
ek = (j, i) also exists. But any equation can be easily adapted to a directed graph.
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coefficient. However, besides the criticism about its mandatory presence of edges and

global states (even when the problem does not require them), the Graph Network model

lacks expressiveness for two main reasons: it is unable to process hypergraph structures,

since its edge definition only allows two endpoints, and has no direct translation to problems

demanding more than one global feature. The first issue refrains one from using the Graph

Network model to solve SAT problems with more than 2 literals per clause10. The second

issue is related to the global graph state – a state which is connected to every other element

in the graph, and prevents the decision version of GCP to be tackled by a Graph Network

as there is no way to define k color/global states for any k > 1.

To define a full-fledged GNN formalization, Prates et al. (2019b) expand on the

idea of types of vertices. We propose a Typed Graph Network (TGN) model whose em-

beddings are separately defined for each type τN of vertex and each type K of connection.

In practice, in a TGN model each element in the graph is framed as a vertex of a given

type: for instance, the Graph Network (BATTAGLIA et al., 2018) can be seen as a TGN

with a set vertices of type edge, a set of vertices of type vertex and an 1-sized set of vertices

of type global. Note that the authors also expand on the definition of edge, in this sense,

K stands for the number of types of connections (not to be misled with the vertex of type

edge) between the vertices – or the amount of message functions µ (see Equation 3.12)

needed to enable inter-vertex communication.

A simple TGN model to perform over N types of vertices using K message-

functions can be defined by the following sets:

1. A set of N embedding sizes n1, n2 . . . nN (one embedding size per type of vertex).

2. A set of N vertex types T = {τi ∈ Rni | ∀i ∈ 1 . . . N}.

3. A set of K message functionsM = {µk : τ1 → τ2 | 1 ≤ k ≤ K, τ1, τ2 ∈ T }. Each

combination of types (τ1, τ2) may have many message-functions assigned to.

4. And a set of N update functions U = {φi : Rni+Dacc(i) → Rni | ∀i ∈ {1 . . . N}},
where Dacc(i) =

∑
µ:τj→τi∈M

ni

where the message functions µk ∈M and the update functions φi ∈ U are the only

trainable modules of the TGN architecture. Note that each different type of vertex can be

projected into a different hyperspace, as there are no constraints regarding n1, n2, · · · , nN .

10Note that each clause in a k-SAT problem can be mapped to a hyperedge connecting k literals.
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Algorithm 2 Typed Graph Network Model defined by (PRATES et al., 2019b)

1: procedure TGN(G = (V =
N⋃
i=1
Vi, E =

K⋃
k=1

Ek)) . TGN input is a graph whose vertices are

partitioned into N types, and edges into K types
2: for k = 1 . . .K do
3: Mk[a, b] = 1{(va, vb) ∈ Ek} . Compute an adjacency matrix between types #i and #j
4: end for
5: for i = 1 . . . N do
6: Init vertex embeddings Vi

(1)[a] ∈ τi | ∀va ∈ Vi
7: end for
8: for t = 1 . . . tmax do . Run for tmax message-passing iterations
9: for i = 1 . . . N do . For each receiving type #i

10: for µk ∈M | µk : τi → τj do . For each message sent from type #j

11: µk ←Mk × µk(Vj
(t)) . Accumulate messages sent to vertices of type #i by vertices

of type #j
12: end for
13: Vi

(t+1) ← φi(Vi
(t), {µk | µk ∈M, µk : τi → τj}) . Compute updated embeddings for

type #i
14: end for
15: end for
16: return {Vi

(tmax) | i = 1 . . . n} . Return set of refined embeddings over tmax iterations
17: end procedure

To translate from a τi hyperspace to τj hyperspace, TGN kernel may have any number of

message functions µk : τi → τj .

Algorithm 2 defines the TGN full procedure in terms of two types of vertices, #i

and #j, but its mechanics can be generalized to any pair of types ∈ T . First of all, we

need to define the relevant adjacency information between any communicating types (Line

3). We also need to initialize all vertex embeddings (Line 6), this can be done in a plethora

of forms, either by a simple random initialization or by enriching the initial embedding

with some relevant information (e.g. for a vertex of type “edge” in a TSP problem, we

may insert its cost as an initial embedding value). Finally, the TGN runs for tmax message-

passing iterations: for each type i, all messages sent from vertices vb ∈ Vj to vertices

va ∈ Vi are accumulated via matrix-multiplication of the adjacency information Mk and

its correspondent message-function µk. The core operation of a matrix-multiplication is a

sum, thus this is a sum-aggregation of messages from neighboring vertices of type j (Line

11). Then all vertices of type i have their embeddings updated (Line 13) by φi, which takes

into account their current embeddings and the sum of all messages sent to them by vertices

of all types.

We provided this somewhat in-depth explanation of TGN not only because we

chose to frame the GCP in a TGN model but mainly to show that TGN has all components

a combinatorial problem may require. TGN is able to generalize not only the Graph

Networks (BATTAGLIA et al., 2018), but also several others (ad-hoc and general) GNN
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architectures, such as Message Passing Neural Networks (GILMER et al., 2017), Relational

Networks (RAPOSO et al., 2017; SANTORO et al., 2017), Deep Sets (ZAHEER et al.,

2017), Non-Local Neural Networks (WANG et al., 2018) and Independent Recurrent

Blocks (SANCHEZ-GONZALEZ et al., 2018).

It is also important to mention that, even though we have described the GNN

general algorithm as a message-passing one, where each vertex can be seen as a stateful

element which exchanges information with neighboring elements, such as envisioned

by (GILMER et al., 2017), there is also a convolutional perspective (DUVENAUD et al.,

2015; KIPF; WELLING, 2017) upon which a GNN operates a convolutional kernel along

the entire graph, identifying features according to local neighborhood and accumulating

them over time.

Finally, although other DL models have been applied to combinatorics in recent

years, they are usually engineered as an ancillary module to a proper combinatorial

algorithm, such as a local search procedure, that in fact produces the output. In this

perspective, one may highlight the well-known algorithm AlphaGo (SILVER et al., 2018),

which defeated Go’s World Champion by coupling a deep neural network with a Monte

Carlo tree search – while the former evaluates the current state of a Go’s board, the latter

is fed with the evaluation and determines the best move available. Strategies such as the

one employed by Alpha Go are not end-to-end differentiable – gradient descent learning

is not feasible to the whole pipeline – and thus are prone to human bias. On the other

hand, end-to-end learning over combinatorics – powered by GNN-based models – are free

from biases, as there are no algorithms hard-coded, and also very promising given that

the feasibility of “printing” a graph structure into a connectionist architecture may enable

several groundbreaking insights on how machines reason over given inputs to produce

a desired solution. As of now, besides GNN models designed to solve NP -Complete

problems (SELSAM et al., 2019; PRATES et al., 2019a), which are very related to this

dissertation, there have been several state-of-the-art pushes achieved by GNNs in other

areas, namely language modeling (SANTORO et al., 2017), link prediction (NATHANI et

al., 2019), human-object interaction (QI et al., 2018), program verification (LI et al., 2016),

explainable recommender systems (MONTI; BRONSTEIN; BRESSON, 2017) and many

others.
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3.6.1 NeuroSAT

We mentioned earlier that GNN models may foster novel ways of understanding

and solving combinatorial problems. Perhaps the first glimpse of such potential was

achieved by the NeuroSAT (SELSAM et al., 2019). The satisfiability problem (SAT)

consists in evaluating if any truth-values assignments to variables in an expression E leads

to its satisfiability (E is true). Usually the expression is represented by a conjunctive

normal formula – a set of clauses connected by disjunctions, such that each clause contains

literals connected by conjunctions. SAT plays a fundamental role in theoretical computer

science, it was the first problem proved to be NP -Complete (COOK, 1971) and it is often

used to verify the NP -Completeness of a different problem P: we basically need to verify

that P is in NP and that SAT can be reduced to P. Moreover, the opposite reduction (P to

SAT) allowed SAT exact solvers to be of paramount importance in regards to a broad range

of problems, going from automated theorem proving to model checking and circuit design.

In regards to their usability in DL models, SAT problems can be encoded in a

one-hot vector and used as input in a RNN-based model, for instance. However, several

properties of propositional logic would be lost, particularly related to invariances of

permutation and negation. NeuroSAT’s underlying idea is to represent a CNF expression

as a graph: one node per literal, one node per clause, an edge connecting a literal to every

clause containing it and another edge connecting a literal and its negated version. In its

GNN-based architecture, NeuroSAT assigns embeddings to literals and to clauses and

refines them over t timesteps of message-passing, where each clause receives an update

based on the messages sent by its literals and each literal receives an update based on the

messages sent by its clauses as well as by its negated variants.

Bringing this idea to a TGN definition, there are two types of nodes, C for clauses

and L for literals, and each type is projected into a different hyperspace, thus leading to

the necessity of two update functions, φC and φL. Moreover, according to the adjacency

information we described in the last paragraph, NeuroSAT requires two message-functions,

µLC which translates literals embeddings into messages to their respective clauses, and

µCL that translates clauses embeddings into messages to their literals. Note that each

literal also receives information from its negated variant, which yields the following update
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equations (analogous to Lines 11 and 13 of Algorithm 2):

VL
(t+1) ← φL(VL

(t),MCL × µCL(VL
(t)),MLL ×VL

(t))

VC
(t+1) ← φC(VC

(t),MCL
ᵀ × µLC(VL

(t)))
(3.16)

Equation 3.16 can be separately interpreted as: 1) to update literal embeddings VL,

φL takes into account the current literal embeddings, a tensor of accumulated messages

computed by µCL multiplied by the adjacency information between clauses and literals

MCL and a tensor of unchanged11 literal embeddings multiplied by the adjacency infor-

mation between literals and negated literals MCL. These matrix multiplications between

messages/unchanged embeddings and adjacency information are needed to correctly mask

the input to the update function. In other terms, µCL, for instance, computes the message

from all clauses to all vertices, but not all of them are effectively connected, thus it is

paramount to mask these resulting computations; 2) φC updates clause embeddings given

their current values and the aggregated messages sent by literals – note that here again a

adjacency information is multiplied by those messages to enforce neighboring constraints.

NeuroSAT implements µCL and µLC as MLPs and φC and φL as LSTMs12

NeuroSAT was trained upon batches containing pairs of SAT/UNSAT instances

whose only difference was the polarity of a single literal in a single clause, thus leading

to almost indistinguishable instances. These pairs of instances were generated by pro-

gressively adding clauses (with k literals whose polarity probability was 50%) to a CNF

formula until it becomes unsatisfiable. Moreover, NeuroSAT was trained in a supervised

single-bit fashion: each instance was associated to a label yi ∈ B = {0, 1}. NeuroSAT was

able to achieve around 85% of accuracy during test but its most impressive feature is related

to the knowledge encoded by its internal embeddings. Although having been trained only

to solve a decision problem – NeuroSAT’s output is effectively a binary answer decoded by

an MLP at the end of its pipeline – Selsam et al. (2019) were able decode valid assignments

to 70% of their test instances by 2-clustering literal final embeddings VL
(tmax). As any

problem in NP can be reduced to SAT, the authors also sampled instances from other

combinatorial problems, including k-coloring k ∈ {3, 4, 5}, reduced them to SAT and

trained NeuroSAT upon them. Particularly regarding the k-coloring problems, NeuroSAT

was able to decode valid assignments for 64%, 69% and 54% of the satisfiable instances,

for k ∈ {3, 4, 5}, respectively.

11Unchanged means that these embeddings do not undergo any message-function
12Note that we omit LSTMs hidden states in the Equation to improve readability.
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4 TYPED GRAPH NETWORKS FOR THE GRAPH K-COLORING PROBLEM

In this chapter we will present and provide an in-depth discussion of the main sub-

ject of this dissertation: a graph neural network designed to solve the k-coloring problem

on graphs. As seen in Section 3.6, GNN-based models assign multidimensional repre-

sentations, or embeddings ∈ Rd, to vertices and edges. These embeddings communicate

between themselves according to some adjacency information throughout a given number

of message-passing iterations. Such meta-architecture is quite appropriate to symbolic

domains as its neural modules can be engineered in various configurations, each one

reflecting a graph representation of a given instance of the problem (SCARSELLI et al.,

2009).

One of the most successful GNN research endeavors in symbolic domains is

the NeuroSAT (SELSAM et al., 2019), which solved SAT problems with a very good

accuracy and decoded valid assignments from its internal states. This could suggest that the

NeuroSAT architecture is the ultimate GNN-based architecture for combinatorial problems

in NP , but in this dissertation we investigate if an architecture specifically designed to

the GCP itself, with no need of prior polynomial-time reductions, can at least have the

same performance NeuroSAT achieved when it was fed with GCP instances (reduced to

SAT). It is also worth mentioning that the original NeuroSAT was trained and tested with

k-coloring (k ∈ {3, 4, 5}) instances whose number of vertices was equal to 10, thus its

usability and generalizing features are not yet well-established.

The next section will provide the details of our model (GNN-GCP), while Sections

4.2 and 4.3 will describe the training methodology and provide a brief description of the

baselines, respectively. Finally, in Section 4.4 we will show the GNN-GCP performance

on several scenarios and details on how it may be reasoning over the graph coloring

problem.

4.1 Our Model

GNN-based models can be defined by which graph elements they allow to commu-

nicate and how such communication is performed. In general, graph neural network models

assign multidimensional embeddings ∈ Rd to vertices. These embeddings are then refined

according to some adjacency information throughout a given number of message-passing

iterations. The adjacency information controls which are the valid incoming messages
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for a given vertex, these filtered messages undergo an aggregating function and finally an

update function receives the aggregated messages and computes the embedding update for

the given vertex. The Graph Network model (BATTAGLIA et al., 2018) also allows the

instantiation of global graph attributes which seems useful to the k-colorability problem.

In our case, however, we choose to treat each possible color as a global attribute, thus

there must be multiple global graph attributes, i.e. each color has its own embedding –

which essentially means that we “promote” colors to a vertex level. Because of that, we

chose to model the k-colorability problem in the Typed Graph Network (TGN) frame-

work (PRATES et al., 2019b) (Section 3.6, Algorithm 2), a formalization that leverages

the capability of coping with several types of nodes and that was built upon the seminal

GNN model (GORI; MONFARDINI; SCARSELLI, 2005).

Given a GCP instance I = (G, C) composed of a graph G = (V , E) and a number

of colors C ∈ N | C > 2, each color is associated with a random initial embedding ∈ Rdc

over an uniform distribution Ct=0[i] ∼ U(0, 1) | ∀i ∈ C and each vertex is assigned

to the same embedding ∈ Rdv which is initially sampled from a normal distribution

Vt=0[i] ∼ N (0, 1) | ∀i ∈ V . Following the procedure of Prates et al. (2019a), we make

this randomly initialized common vertex embedding a trained parameter learned by the

model. To enable the communication among neighboring vertices and among vertices

and colors, besides the vertex-to-vertex adjacency matrix MVV ∈ {0, 1}|V|×|V|, our model

also requires a vertex-to-color adjacency matrix MVC ∈ {1}|V|×|C|, that connects each

color to all vertices – this means that no prior information is given to the model and any

vertex can be assigned to any color. After this initialization, adjacent vertices and colors

communicate and update their embeddings throughout tmax rounds of message-passing.

Then the resulting vertex embeddings are decoded by a Multilayer Perceptron (MLP)

which computes a logit probability corresponding to the model’s prediction of the answer

to the decision problem: “does the graph G accept a C-coloration?”. This procedure

is summarized in Algorithm 3 and the overall view of our architecture can be seen in

Figure 4.1.

In a nutshell, our proposed neural-symbolic model learns the following seven tasks:

• To generate a single Rdv vector, used to initialize all vertex embeddings.

• A function Cmsg : Rdc → Rdv that computes a message to a vertex given a color

embedding. Implemented by an MLP.

• A function Vmsg : Rdv → Rdc that computes a message to a color given a vertex
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Algorithm 3 Graph Neural Network Model for GCP
1: procedure GNN-GCP(G = (V , E), C)
2:
3: // Compute binary vertex-to-vertex adjacency matrix
4: MVV [i, j]←1 iff (∃e ∈ E|e=(vi, vj))| ∀vi∈V , vj∈V
5:
6: // Compute all-ones vertices-to-colors adjacency matrix
7: MVC[i, j]←1∀vi∈V , cj∈C
8:
9: // Compute initial vertex embeddings

10:
(1)

V[i] ∼ N (0, 1) | ∀i ∈ V
11:
12: // Compute initial color embeddings

13:
(1)

C[i] ∼ U(0, 1) | ∀i ∈ C
14:
15: // Run tmax message-passing iterations
16: for t = 1 . . . tmax do
17: // Refine each vertex embedding with messages received from its neighbors and

candidate colors

18:
(t+1)

Vh ,
(t+1)

V ←Vu(
(t)

Vh,MVV×
(t)

V,MVC × C
msg

(
(t)

C))

19: // Refine each color embedding with messages received from all vertices

20:
(t+1)

Ch ,
(t+1)

C ←Cu(
(t)

Ch,MVC
T× V

msg
(
(t)

V))

21: end for
22: // Translate vertex embeddings into logit probabilities

23: Vlogits ← Vvote

(
tmax

V

)
24: // Average logits and translate to probability (the operator 〈〉 indicates arithmetic mean)
25: prediction← sigmoid(〈Vlogits〉)
26: end procedure

embedding. Implemented by an MLP.

• A function Vu : R3dv → Rdv to compute an updated vertex embedding and an

updated RNN hidden state given the current RNN hidden state, the embeddings of

neighboring vertices and a message sent by neighboring colors. Implemented by an

LSTM.

• A function Cu : R2dc → Rdc to compute an updated color embedding and an updated

RNN hidden state given the current RNN hidden state and a message sent by all

vertices. Implemented by an LSTM.

• And finally, a function Vvote : Rdv → R1 to compute logit probabilities given each

vertex embedding. Implemented by an MLP. We transform this unbounded value
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into a proper probability by applying a sigmoid function to the outputs of the MLP

Vvote.

We chose to design such neural-symbolic model under the Typed Graph Network

framework, in the sense that we leverage TGN’s vertex typing features to insert the

colors into the graph and to allow them to communicate with “real” vertices. The TGN

framework1 requires definitions of four main elements: which graph elements will have

embeddings (in our case, vertices and colors), the adjacency matrices between each type

of vertex, the message-functions and the update-functions. We provide a Python dictionary

containing such definitions in Appendix A.

Lastly, our model updates vertex and color embeddings, along with their respective

hidden states, according to the following equations:

V(t+1),V
(t+1)
h ← Vu(V(t)

h ,MVV × (V(t)),

MVC × C
msg

(C(t)))
(4.1)

C(t+1),C
(t+1)
h ← Cu(C(t)

h ,MVC
ᵀ × V

msg
(V(t))) (4.2)

Note that, following NeuroSAT (SELSAM et al., 2019), to update vertex embed-

dings we use computed messages from a different type of vertex (colors) and the raw

embeddings of vertex of the same type (vertices) – we do not employ a function to produce

a message sent by a vertex to another vertex. For a given vertex, the second argument of

Vu is simply a sum-aggregated embedding of all its vertex neighbors, whereas the third ar-

gument is a sum-aggregated message computed over its color neighbors. As we implement

Vu as an RNN (specifically an LSTM), its own hidden state acts as a memory of its current

embedding (first argument). On the other hand, to update color embeddings Cu (also an

LSTM) only uses its hidden state (current embedding of a color) and sum-aggregated

messages from adjacent vertices.

4.2 Training Methodology

To train these message computing and updating modules, MLPs and RNNs respec-

tively, we used a Stochastic Gradient Descent algorithm implemented via TensorFlow’s

1Available at: <https://github.com/machine-reasoning-ufrgs/typed-graph-network>

https://github.com/machine-reasoning-ufrgs/typed-graph-network
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Adam optimizer (KINGMA; BA, 2014). We defined as loss the binary/sigmoid cross

entropy between our model final prediction and the ground-truth for a given GCP instance

– a boolean value indicating that the graph accepts (or not) a target C number of colors.

The MLPs Cmsg and Vmsg are three-layered (64, 64, 64) with ReLU nonlinearities as the

activations for all layers except for the linear activation on the output layer. And the RNN

cells Cu and Vu are basic LSTM cells with layer normalization and ReLU activation. We

trained our model using a learning rate of 2× 10−5, 32 iterations of message-passing, i.e.

tmax = 32, and dc = dv = 64 for the size of embeddings.

When it comes to the GCP instances, following (SELSAM et al., 2019) and (PRATES

et al., 2019a) we intended to train our model with very hard graph coloring problems. To

produce such instances, we leverage the phase transition phenomenon briefly described

in Section 2.3. In this sense, the most obvious procedure to generate GCP instances

would consist in gradually adding edges to an initial empty graph until it becomes un-

satisfiable for a given number of colors. We found such procedure to be very slow and

added a preprocessing stage to define initial parameters for generating GCP graphs. First,

we set the candidate number of colors c ∼ U{3, 4, · · · , 7} and the number of vertices

n ∼ U{40, 41, · · · , 60}, for each value of n we generated 500 graphs whose edge proba-

bility p ∼ U{10, 20, · · · , 90}. Then, each graph was fed to a CSP-Solver2 together with

each value of c. With that we were able to identify which ranges of p and n yielded, in

average, a balanced number of satisfiable and unsatisfiable instances, that is, when the

CSP-Solver only solved around 50% of the instances for a given n and a given p. We

used such combinations of n and p as our initial parameters to produce training and test

instances.

With regards to training instances, besides being very difficult to solve, we also

wanted them to be fed to our model in an adversarial fashion, i.e. two very similar instances

with opposite labels are fed to the model in the same batch. Formally, we may define such

procedure in the following way: let χ be the chromatic number, i. e. the smallest value to

obtain a valid coloring, then for each positive instance I = (G = (V , E), C), there is also

an adversarial negative instance I = (G′ = (V , E ′), C) such that E 6= E ′ only for a single

edge (vi, vj), thus C = χ(G) = χ(G′)− 1. This edge is usually called frozen edge since

for every valid coloring C of G, then C[vi] = C[vj], which implies that this edge cannot

belong to any C-colorable graph containing G as a subgraph (CULBERSON; GENT,

2001). To produce a pair of these instances, we randomly chose a target chromatic number

2<https://developers.google.com/optimization/cp/cp_solver>

https://developers.google.com/optimization/cp/cp_solver
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χ between 3 and 7 and n ∼ U{40, 41, · · · , 60}, then we populate the adjacency matrix

MVV with a probability p adjusted to the selected chromatic number and n combination,

as described before. Finally, a CSP-Solver is used to ensure that the undirected graph

represented by the initial matrix MVV has a chromatic number χ: if it has, then we proceed

adding edges3 to the graph until the CSP-Solver is no longer able to solve the GCP for χ.

The last two generated instances were added to the dataset (both having C = χ), ensuring

that the dataset is not only composed by hard instances but also perfectly balanced: 50%

of the instances do not accept a C-coloring while the remaining 50% do accept. A total of

2× 215 such instances were produced.

These instances were randomly joined into a larger graph during training to produce

a batch-graph containing 2 × 8 instances. This was done with a disjoint union so that

the resulting MVV and the MVC of a batch do not allow communication between vertices

and colors of different subgraphs. Therefore, we ensure that despite being on the same

batch-graph, there is no inter-graph communication. The logit probabilities computed for

each vertex within the batch are separated and averaged according to which instance the

vertex belongs to. Finally, we calculated the binary cross entropy between these predictions

and their instances labels.

Figure 4.1 also depicts how a toy problem of graph coloring (left side) would be

processed within our proposed model. Such toy problem has MVC with shape (3, 2) and

MVV with shape (3, 3). We will assume dc = dv = d for simplicity and to perfectly

emulate the model we trained. In this sense, initially the GNN instantiates two internal

memories: V with shape (3, d) and C with shape (2, d). The first message-passing iteration

then begins by each of the MLPs Vmsg and Cmsg computing, in parallel, messages from

each vertex to all colors and from each color to all vertices, respectively. Thus, the output

of Vmsg has shape (3, d) – each vertex send a message of size d to colors – and the output

of Cmsg has shape (2, d) to perform the analogous operation. Then, the model needs to

leverage its adjacency information: the transpose of MVC is multiplied by the output of

Vmsg ((2, 3)× (3, d)) yielding a tensor of shape (2, d) which we will call Cvagg (orange

arrow inside the GNN) as it is the aggregated vertex messages for each color; on the bottom

level of our pipeline, we multiply MVC by the output of Cmsg, and the result is a tensor of

shape (3, d), which we will refer to as V cagg (blue arrow) – also in the bottom, we use the

vertex-to-vertex adjacency matrix MVV (3, 3) by multiplying it with raw embeddings of

vertices V (3, d), yielding a tensor with shape (3, d) with aggregated vertex embeddings

3Here we found that adding edges to vertices whose degree is already high speeds up the procedure.
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of neighbors V vagg (red arrow). These 3 aggregations are all that our model needs to

update vertex and color embeddings. To update color embeddings, the LSTM Cu uses its

hidden state (2, d) (not shown in the figure) and Cvagg, producing a color updated tensor of

shape (2, d) and another hidden state to be used in the next iteration. And to update vertex

embeddings, Vu is fed with its hidden state (3, d) and a concatenation of V cagg with V vagg

(resulting shape is (3, 2d)), its output has shape (3, d)4 and corresponds to the updated

vertex embeddings.

Finally, outside of the GNN scope, MLP Vvote computes a single logit probability

for each vertex, whose average is fed to a sigmoid cross-entropy function to produce a

loss value. Neural weights of Vvote, Vu, Cu, Vmsg and Cmsg are then updated via gradient

descent. Note that the above description considers only one timestep of iteration. Thus,

only direct neighbors were able to communicate. Larger information flows are enabled by

increasing the number of timesteps.

4Note that both LSTMs receive a concatenation of its hidden state and the input. For instance, Vu actually
receives a tensor of shape (3, 3d) and produces (besides the next hidden state) an output of shape (3, d). This
change of shape is due to the shape of W in Equation 3.9
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Figure 4.1: Overall view of our architecture. Initially, each color is mapped into a GNN
internal memory ∈ C and each vertex is mapped into an internal state ∈ V (initial value for
vertex is learned). Then, in parallel, messages are computed from all vertices to all colors
and vice-versa. Messages from colors to vertices are concatenated with raw embeddings
from neighboring vertices (operation_). Two LSTMs (Vu and Cu) update vertex and color
embeddings, respectively. All matrix multiplications are required to enforce that adjacency
information is respected prior to update a vertex or color embedding. At tmax we gather all
vertex embeddings and feed it to an MLP, whose output is one logit probability per vertex.
These probabilities are then averaged into a final answer. To produce a proper loss value,
we compute the sigmoid cross-entropy between the final answer and the problem’s label.
We omit the LSTMs hidden and cell states to improve readability. Colored arrows inside
the GNN corresponds to aggregated embeddings and messages. Source: author.
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We stopped the training procedure when our model achieved around 82% of ac-

curacy and 0.35 of Sigmoid Cross Entropy loss averaged over 128 batches containing 16

instances at the end of 5300 epochs. Figure 4.2 shows the learning evolution of our model

during training.

4.3 Baselines

We compared our model against 3 other methods: two heuristics and one neural-

symbolic approach. The first heuristic we chose is a greedy algorithm which simply

assigns the first available color to a given node. Our greedy procedure to the GCP is fully
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Figure 4.2: Evolution of the sigmoid cross entropy loss (red curve) and accuracy (green
curve) throughout 5300 training epochs on a dataset of 2× 215 graphs. Note that after an
epoch our model only sees 128× 16 instances and the accuracy is computed regarding this
number. We refrained from having an epoch containing 2× 215 instances due to memory
constraints. Source: author.

described in Algorithm 4, its output is the minimum number of colors that yielded a valid

assignment.

The second heuristic approach is Tabucol (HERTZ; WERRA, 1987), an algorithm

based on tabu search. A tabu search, in general, can be seen as an enhancement of a local

search: in a local search, an initial illegal coloring is provided and the algorithm reaches

a neighboring coloring by making local changes, there is also some criterion on which

neighbor will be selected – however, a simple local search tends to be stuck in sub-optimal

solutions when no neighboring coloring presents a better outcome. Tabu search (GLOVER,

1989; GLOVER, 1990) improves on such strategy by keeping a record of recently visited

solutions, these solutions are added to a tabu list so the algorithm will not explore them

in the near future. Tabucol basically assumes that a solution/coloring c is evaluated w.r.t.

internal conflicts – adjacent vertices with the same color – by a function f . For a given

pivot coloring, the neighbor coloring c′ whose f(c′) is lesser than f(c) is chosen and c is

added to the tabu list. There are several versions of Tabucol, the one we used is described

by Algorithm 5 and, besides the input graph G and the number of colors C, comprises

three main parameters: maximum number of iterations itmax, the size of the tabu list L

and the amount of neighboring colorings to be evaluated rep. For our experiments, we set

itmax = 10000, L = 7 and rep = 100.

After constructing a random initial solution and initializing some variables, the
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Algorithm 4 Greedy coloring

1: procedure GREEDY-COLORING(G = (V , E))
2: // Create a solution vector, initially containing no valid color for each vertex.
3: Sol[vi]← −1 ∀vi ∈ V
4: // Define a set with all possible colors (n colors are enough for a fully-connected

graph)
5: A ← {0, 1, · · · , n− 1}
6: // Define an empty set of unavailable colors
7: U ← ∅
8: // Assign the first color to the first vertex
9: Sol[0]← 0

10: // For each other vertex
11: for i = 1 . . . n do
12: for j = 0 . . . n do
13: if (vi, vj) ∈ E ∧ Sol[j] 6= −1 then
14: // If a neighbor is already colored by a color z, add z to the unav. set
15: U ← U + Sol[j]
16: end if
17: end for
18: // Candidate colors for i are all avail. colors minus the unav. ones
19: C ← A− U
20: // Color of i is the lowest candidate color
21: Sol[i]← min(C)
22: // Reset unavailable set to the next vertex
23: U ← ∅
24: end for
25: // Minimal coloring returned
26: return max(Sol) + 1
27: end procedure

algorithm starts by identifying candidate vertices to be changed on the next solution – i.e.

vertices that, in the current solution, are part of a conflict (Lines 12 to 16). Then Tabucol

selects a random neighbor of the given solution (Lines 19 and 20) and evaluate if such

neighbor has less conflicts (Line 21) – if not, it will select another neighbor; if it has, then

the aspiration level of the given solution may be updated and the pair (vertex, new color)

is removed from the tabu list, and the algorithm goes to Line 35-37 where it adds the

current solution to the tabu list and updates the current solution with the new solution. If

the new solution has not achieved a better aspiration level (Line 28), it evaluates if the new

solution is in the tabu list: if positive, it rejects the new solution and continues searching

neighboring colorings; otherwise the new solution is accepted and Tabucol moves on to

Line 35-37. Its output is a truth-value indicating if it found a valid coloring given the input

number of colors.
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Algorithm 5 Tabucol
1: procedure TABUCOL(G = (V, E), C, itmax, L, rep)

2: Col← [0, 1, · · · , C − 1]

3: Sol[vi]← randompick(Col) ∀vi ∈ V
4: Tabu← queue(size = L)

5: it← 0

6: // Initially, from n conflicts we aspire to reach n− 1 conflicts

7: Asp← {n : n− 1, · · · , 1 : 0}
8: while it < itmax ∧ f(Sol) > 0 do

9: Cand← ∅
10: for (i, j) ∈ E do

11: if Sol[i] == Sol[j] then

12: Cand← Cand+ i+ j

13: end if

14: end for

15: Sol′ ← copy(Sol)

16: for r = 0 . . . rep do

17: vert← randompick(Cand)

18: Sol′[vert]← randompick(Col − Sol[vert])
19: if f(Sol′) < f(Sol) then

20: if f(Sol′) < Asp[f(Sol)] then

21: Asp[f(Sol)← f(Sol′)− 1

22: if (vert, Sol′[vert]) ∈ Tabu then

23: Tabu← Tabu− (vert, Sol′[vert])

24: end if

25: break . Jump to Line 33

26: else

27: if (vert, Sol′[vert]) /∈ Tabu then

28: break . Jump to Line 33

29: end if

30: end if

31: end if

32: end for

33: Tabu← Tabu+ (vert, Sol[vert])

34: Sol← Sol′

35: it← it+ 1

36: end while

37: return TRUE if f(Sol) == 0 else FALSE

38: end procedure
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We also compared our model to a NeuroSAT (previously described in Section 3.6.1)

version, under the TGN framework, which reproduced training and test accuracy of the

original model. We set NeuroSAT parameters to the same values of our model, that is

d = 64, tmax = 32 and learning rate = 2 × 10−5. We also needed to reduce our k-GCP

instances (training and test) to CNF SAT problems. Although such reduction can be done

in polynomial time, its main drawback is the huge amount of variables it generates. To

reduce from GCP to SAT one is required to create C ∗ |V| variables, C ∗ |V| clauses to

ensure that there will be no uncolored vertex, C ∗ |E| clauses to ensure that each edge

has its source and target colored differently and (C − 1) ∗ |V| clauses to ensure that at

most one color will be assigned to each vertex, thus causing a significant increase of nodes

and edges in the resulting SAT graph in comparison to the original GCP graph, whose

requirement is just C embeddings for colors and |V| embeddings for vertices. Algorithm 6

presents the entire procedure to reduce a GCP to a SAT formula. We have trained this

NeuroSAT version until it reached a Sigmoid Cross Entropy loss of 0.41 at epoch 1222,

considering the same training dataset we described before.

Note that both heuristics are able to output a valid color assignment while our

model and NeuroSAT are trained solely as classifiers.

4.4 Experimental Results

We trained our model on an NP -complete GCP version, since we fed it not only

the graph but also a target number of colors C which was either equal to the chromatic

number χ of that graph (positive label) or equal to the chromatic number minus 1 (negative

label). During test, however, we emulate the NP -hard problem by feeding each graph

repeatedly to the model, with C ranging5 from 2 to χ+3. The same procedure was applied

to test NeuroSAT and Tabucol – the greedy algorithm already produces a local minimal

coloring. In total, 4096 unseen test instances were fed to our model, NeuroSAT, Tabucol

and Greedy algorithm following this procedure. These instances were produced in the

same fashion as the training ones (see Section 4.2).

Figure 4.3 shows how our model and these three baselines performed over the test

instances (average of 10 runs). For both our model and NeuroSAT, we selected as the best

solution (vertical axis) the first C which yielded a positive prediction (prediction > 0.5).

As the horizontal axis stands for the actual χ of those instances, one can evaluate each

5We ignored the trivial case of a fully-disconnected graph with χ = 1
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Algorithm 6 k-GCP to SAT reduction

1: procedure REDUCTION(G = (V , E), C)
2: // A formula is a set of clauses, initially empty
3: F ← ∅
4: // Create variables matrix: each cell must have a unique value
5: V ars[vi, cj]← i _ j ∀vi ∈ V ∀cj ∈ {0, · · · , C − 1}
6: // Ensure that at least one color is assigned to each vertex
7: for vi ∈ V do
8: CL← [ ]
9: for j = 0 . . . C − 1 do

10: CL← CL+ V ars[i, j]
11: end for
12: F ← F + CL
13: end for
14: // Ensure that each edge has its endpoints colored differently
15: for (u, v) ∈ E do
16: for j = 0 . . . C − 1 do
17: CL← −V ars[u, j] +−V ars[v, j]
18: F ← F + CL
19: end for
20: end for
21: // Ensure that at most one color is assigned to each vertex
22: for vi ∈ V do
23: for j = 0 . . . C − 2 do
24: CL← −V ars[i, j] +−V ars[i, j + 1]
25: F ← F + CL
26: end for
27: end for
28: return F
29: end procedure

model by the main diagonal values. Along the first six chromatic numbers our model

slightly outperforms the Tabucol algorithm regarding a binary accuracy metric – hit only

when the exact chromatic number is achieved – however, it demonstrates a drop on its

performance at the highest chromatic number, where the Tabucol achieves around 90%

of accuracy. Nevertheless, our model’s average accuracy across all test instances was

75.09% and its absolute deviation from the exact chromatic number averaged 0.25, while

Tabucol scored 70.80% and 0.29, NeuroSAT scored 46.20% and 0.69 and the greedy

algorithm achieved only 13.56% and 1.55, respectively. The performance of NeuroSAT

is quite disappointing as it can roughly achieve around 60% of accuracy for χ = 4 and

χ = 6, whereas our model keeps its performance always above 60% for all chromatic

numbers. However, at the top border of our experiment, χ = 7, Tabucol achieves the

best performance among all models. Both our method and Tabucol presented a noisy
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performance for χ = 6, as they misclassified a significant portion of such instances with

best solution C = 7 (32% for our model and 68% for Tabucol). We analyzed the edge

density6 of our test instances (see Figure 4.4) and verified a great amount of overlap

between the distribution of edge density of instances with χ = 6 and χ = 7, this may have

led both our model and Tabucol to be unable to distinguish between them as they did to

other chromatic numbers. Note that the same phenomenon occurred to NeuroSAT, but in

the backward direction, as it classifies most of the χ = 7 instances as C = 6. The overlap

presented by instances with χ = 3 and χ = 4, however, did not decrease the performance

of GNN-GCP and Tabucol.

6The ratio between the actual number of edges and the total amount of possible edges. In an undirected
graph this is: dens = m/(n× (n− 1)/2)
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Figure 4.3: Prediction distributions over 4096 unseen test instances, with similar features
to those seen in training, for our model (GNN-GCP), Tabucol, a Greedy heuristic and
NeuroSAT. Note that the darker the main diagonal (highlighted in bold), the better the
results. Source: author.
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All 4 methods were able to keep a stable performance regardless of the number

of vertices of the test instances (see Figure 4.5, left plot). While GNN-GCP and Tabucol

achieved around 75% of accuracy, NeuroSAT remained stable around 50% and the Greedy

algorithm never guessed the right χ for more than 25% of the instances of any number of

vertices. When the performance is compared to the edge density of our instances, however,

some trends arise: there is a clear drawback of using both heuristics when the edge density

increases; GNN-GCP also presents a lower performance as the edge density increases,

but NeuroSAT remains somewhat stable. The most dense instances, from 0.7 onwards,
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Figure 4.4: Density plot of the edge density of our test instances grouped by their chromatic
number. Instances with chromatic number 6 and 7 presented a large overlap as well as 3
and 4. Source: author.
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however represent only 1% of our test dataset, thus the noisy performance of GNN-GCP

and NeuroSAT upon them may be not statistically relevant. Such instances are very hard

to generate as their search space are huge and even a CSP-Solver takes very long to solve

them or even returns an uncertainty flag.

So far we have seen GNN-GCP performance on the chromatic number problem,

but even though we trained GNN-GCP on instances whose C was true (C = χ) or false

(C = χ− 1) only by a narrow margin, we could only argue it can solve the GCP problem

(decision version) if as the margin goes wider, the model still provides the right answer,

despite being positive or negative. We can see that in Fig. 4.6: our model’s predictions

undergo a regime remindful of a phase transition – as we fed our model with C values

closer to χ it became unsure about its prediction, nevertheless the model is quite sure about

its prediction on the upper (C = χ+ 2) and lower (C = χ− 2) bounds.
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Figure 4.5: Average accuracy of each method regarding number of vertices of test instances
(left plot) and binned edge density (right plot). Source: author.
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4.4.1 Performance on Different Graph Distributions

In order to assess the performance of GNN-GCP in unseen instances, both larger

and smaller than those it was trained upon, we gathered 20 instances from the COLOR02/03/04

Workshop dataset7 and fed them to our model and to the previously cited heuristics (Tabucol

and Greedy). “Queen” graphs are drawn from chessboards, where each vertex corresponds

to a square in the board and each edge represents a legal move by the queen. Queen

graphs are hamiltonian and biconnected. “Myciel” graphs are triangle-free but the coloring

number increases in problem size. “Insertions” graphs are similar to “Myciel” but with

additional disconnected vertices to increase graph size while keeping the same edge den-

sity. “mug88_1” is an almost 3-colorable graph with a hard-to-find 4-clique inside it. The

remainder are graphs created by Donald Knuth and built upon book’s characters, where

each vertex is a character and an edge indicates that these two characters met each other

during the history. These instances have up to 835% more vertices than the training ones,

and also have chromatic numbers exceeding the boundaries seen during training. We also

fed them to the NeuroSAT model, but it was not able to output a positive answer within the

range of C ∈ [2, 3, · · · , χ+ 5] for all instances. This suggests that these different graph

distributions are not well suited for the trained NeuroSAT model.
7<https://mat.tepper.cmu.edu/COLOR02/>

https://mat.tepper.cmu.edu/COLOR02/
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Figure 4.6: Average prediction – above 0.5 means a positive answer – extracted from
GNN-GCP fed with testing instances with size ranging from 40 to 60. Each instance was
fed seven times to the model with target C ∈ [χ− 2, χ+ 2]
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As both Tabucol and the greedy algorithm produce a valid color assignment, they

never underestimate the chromatic number, as our model eventually does (see Table 4.1).

When it comes to predict the exact chromatic number, our model only achieved 5 hits,

against 12 and 7 from Tabucol and the greedy algorithm, respectively. Nevertheless,

our model’s absolute deviation from the actual chromatic number accounted for 1.15,

standing in between Tabucol (0.33) and the greedy algorithm (2.15). Despite its overall

low performance on these instances, it is worthy reminding that upon training our model

have never seen instances with more than 60 vertices and χ higher than 7.

4.4.2 Exploring Vertex Embeddings

The capability of GNN-like models to generate meaningful embeddings and to learn

an algorithm to solve its task was already highlighted by Selsam et al. (2019). Following

their findings, even though we trained our model only to produce a boolean answer, we

also expected to decode valid color assignments to each vertex. To achieve that, we

extracted vertex embeddings from test instances which were fed to our model along with

their exact chromatic number as C and resulted in a GNN-GCP’s positive prediction.

These embeddings were then clustered into C groups whose centroids were initialized

with the final color embeddings from our model – we made the a priori assumption that

the model internally places non-adjacent vertices near each other, thus resulting into color

assignments. For each cluster of each instance we computed how many conflicts were
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Table 4.1: Chromatic number produced by our model and two heuristics on some in-
stances of the COLOR02/03/04 dataset. As our model faces unseen graph sizes and larger
chromatic numbers it tends to underestimate its answers.

Instance Size χ
Computed χ

GNN-GCP Tabucol Greedy
queen5_5 25 5 6 5 8
queen6_6 36 7 7 8 11
myciel5 47 6 5 6 6

queen7_7 49 7 8 8 10
queen8_8 64 9 8 10 13

1-Insertions_4 67 4 4 5 5
huck 74 11 8 11 11
jean 80 10 7 10 10

queen9_9 81 10 9 11 16
david 87 11 9 11 12

mug88_1 88 4 3 4 4
myciel6 95 7 7 7 7

queen8_12 96 12 10 12 15
games120 120 9 6 9 9

queen11_11 121 11 12 NA 17
anna 138 11 11 11 12

2-Insertions_4 149 4 4 5 5
queen13_13 169 13 14 NA 21

myciel7 191 8 NA 8 8
homer 561 13 14 13 15

Average 116.9 8.6 8 8.55 10.75
HITS 5 12 7

Abs. Dev. from χ 1.15 0.33 2.15
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Figure 4.7: After performing a k-means (k = C) algorithm on the vertex embeddings, we
computed the ratio of conflicts (adjacent vertices on the same cluster) for each cluster. In
this experiment, we fed our model with the exact chromatic number for each instance and
selected the embeddings only for positive predictions (above 50%) of the GNN-GCP. The
left plot shows that the clusters have less meaning as the chromatic number grows. The
right plot shows how the clustering correlates to the final prediction – when the model is
more confident that there is a valid coloring, the clusters have less conflicts.

raised – the ratio between the amount of adjacent vertices belonging to that cluster and

the number of 2-combinations without repetition of these vertices. We then computed the

average conflicts per cluster/color. Naturally, a perfect valid color assignment for a given

instance would yield zero conflicts.

According to Figure 4.7 (leftmost boxplots) our model faces more difficulties in

assigning correct vertices to clusters when C grows – regarding instances with C = 7

the average conflicts ratio within the seven clusters achieved around 30%. On the other

hand, this metric drops off to below 5% regarding 3-coloring instances. We also verified a

moderate negative correlation (−0.6 – Spearman’s Rank Correlation) between the positive

certainty of our model and the number of conflicts, as seen in Figure 4.7 (rightmost

boxplots), which goes along with the natural thought that the fewer the conflicts within

each instance’s clusters, the more certain our model is of a positive answer. Among these

instances, our model together with the clustering procedure were able to provide a valid

color assignment to only 3 examples, nevertheless its behavior suggests that it is able to

respond positively when some inferior threshold w.r.t. conflicts is reached.

Figure 4.8 helps visualizing the distribution of vertices along the dimensions

(internal outcome of our model) and how their clustering affects the GNN predictions.

The clusters separability (measured with a silhouette score S ∈ [−1,+1] over the 64-

dimensional clustered embeddings) increases together with our model’s certainty of a

positive answer and the inverse ratio of conflicts within each cluster: the leftmost example

resulted in a clustering with 28.9% of average conflicts and a S equals to 0.29, even though

our model should have answered it positively, its prediction was only 6.3% (any answer
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Figure 4.8: Vertex embeddings (after a PCA-2D procedure) of three different test instances,
with χ = 4. The axes and the surrounding curves are meaningless as we are simply
interested in visualizing how the clusters behavior are related to our model outcomes. All
these three instances should imply in a positive answer, but our model only answered
positively to the second and to the third one. Pred. stands for the certainty of our model
and Conf. stands for the average ratio of conflicts of all clusters.

Pred. = 6.3%, Conf. = 28.9% Pred. = 61.2%, Conf. = 19.2% Pred. = 97.7%, Conf. = 7.9%

below 50% is considered negative); when fed with the middle instance, however, our

model was able to answer properly (61.2%) as not only the average of conflicts decreased

to 19.2% but also the silhouette coefficient increased to 0.39; finally, in the last example

our model was quite sure about its positive answer, which goes along with the clustering

procedure outcomes: only 7.9% of conflicts within each cluster and a silhouette score of

0.44.
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5 CONCLUSIONS AND FUTURE WORK

Throughout this dissertation we explained how a Graph Neural Network model can

be designed to solve the decision version of GCP, such model works by allowing several

timesteps of message-passing between the projected elements (vertices and colors) of the

given problem – note that GNNs do not directly manipulate a problem’s symbols but rather

refine their hyperdimensional projections. Our model employs a connectionist architecture

in its kernel in a way that allows the symbolic structure of the problem to be reflected upon

its computation: messages are properly computed from vertices to colors (and vice-versa),

then they are aggregated according to the graph’s adjacency information and used to update

the next vertex and color embeddings. We also demonstrated how the proposed model can

be trained on very hard instances, whose candidate number of colors is either equal to the

chromatic number or just one unit smaller.

We compared our model to 3 other baselines, including a neural-symbolic one, in

regards to their strict accuracy and how their performance relates to some features of the

test graphs. The results we provided in Section 4.4 help answering the research questions

we postulated before:

1. Can a Graph Neural Network solve the decision version of the Graph Coloring

problem only from the network structure and a number of colors which is close to

the chromatic number?

Yes, when we evaluated our model under the chromatic number answer, it correctly

indicated the chromatic number of 75% of the test instances, while Tabucol heuristic

achieved 70% and NeuroSAT only 46%. Such performances are not, however,

equally distributed over the five chromatic numbers we tested. Our model clearly

presents some difficulties while classifying instances whose chromatic number is

higher. However, when we consider the most traditional version of GCP (3-coloring)

our model presents an outstanding performance of 93%.

2. Does such GNN generalize its performance to larger/smaller number of colors?

Yes, we plotted an acceptance curve (Figure 4.6) which shows that as we increase the

target number of colors C the model becomes more and more certain of its positive

answer, and it also becomes more certain (of a negative answer) when we decrease

C to a number lower than the actual chromatic number.
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3. Does the strategy employed by NeuroSAT to decode assignments from GNN internal

states work under this new architecture?

The original NeuroSAT paper described a simple 2-clustering procedure over literal

embeddings in order to separate them into “True” and “False” literals. We followed

such strategy and clustered vertex embeddings into C groups, where the initial

centroid of each group was set to the corresponding final color embedding, but

only 3 out of 4096 instances accepted the assignment yielded by such clustering

procedure.

4. Can this specialized GNN learn meaningful and interpretable internal states?

Yes, despite not being able to decode valid assignment, we found evidences suggest-

ing that intra-cluster conflicts – neighboring vertices that had their final embeddings

near each other – are correlated to our model prediction. That is, instead of building

a perfect clustering, our model seems to give a positive/negative answer based on a

threshold of separability among vertex embeddings.

Neural-symbolic approaches have recently received a lot of attention due to their

capabilities of interpretability, explainability and combining low and high level reasoning.

The Graph Neural Network model (and its subfamilies) is arguably the most promising

technique to bridge the gap between connectionistic and symbolic artificial intelligence

as their applications are both manifold and successful so far. Nevertheless, much of these

applications – particularly regarding NP -Complete problems – are still not comparable to

state-of-the-art solvers, such as the NeuroSAT itself (SELSAM et al., 2019) and the work

by Prates et al. (2019a) on the TSP. Even so, we are just beginning to understand how such

GNN-like models can be engineered to solve combinatorial problems. For instance, our

results suggest that a general model, such as NeuroSAT, may not be as competitive as one

may envision at first sight: as any problem in NP can be reduced to SAT, one may think

all SAT results will hold to any reduced problem. We verified that this is not true for graph

coloring problems whose reduction yielded more than 120 variables on average – Selsam

et al. (2019) only reported GCP results for graphs with 10 vertices. But, as happened to

NeuroSAT as well, our results are not yet comparable to state-of-the-art solvers of GCP –

for instance, we know for a fact that CSP and SAT state-of-the-art solvers would achieve a

better performance than our model given a fair computation time budget.

The most prominent benefit of our technique, and of neural-symbolic ones in

general, is to dismiss the need of hand-coding constraints of problems – e.g. both Tabucol
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and any other GCP heuristic would require some explicit rule to determine that two adjacent

vertices cannot be assigned to the same color. While such benefit may not be as relevant as

an overall accuracy to final stakeholders, we expect that our research helps fostering the

research over specialized GNN models and how they reason over their specific problems.

With respect to the current state of our model, we can envision some further research

paths: we chose to not feed a priori information to our model, each color embedding

is connected to all vertices. This could be changed so that an initial greedy coloring is

informed to the GNN, ensuring that adjacent vertices are not communicating with the

same color embedding, this will require our model to use more than C color embeddings

during its computation, but one could expect that the additional colors may have their

embeddings clustered/collapsed into the original C embeddings at the final timestep. A

much simpler change can also be done regarding the initial color embeddings: we chose to

randomly initialize them, but ideally they could be placed equidistant over a hypersphere.

This, however, may not yield relevant improvements as we saw that GNNs are capable

of refining such embeddings until they acquire some useful meaning. When it comes to

decoding valid assignments from vertex embeddings, we also have designed a variant of

GNN-GCP whose goal was to minimize the number of conflicts intra-cluster: basically,

we changed the MLP Vvote to a Softmax output with size C, so it becomes a multi-class

classifier, then we used matrix multiplications with the adjacency matrix to identify color

assignments which yielded a conflict: the sum of the fuzzy values of conflicting color

assignments is defined as loss. Unfortunately, such model was still not able to learn

anything useful, as its loss almost never dropped. It is also worth mentioning that we

successfully decoded valid assignments from GNN-GCP for three 3-coloring problems.

This and the findings of Avelar et al. (2018) and recently of Toenshoff et al. (2019), who

trained specific GNN-based models for each problem, may suggest that we are currently

“polluting” our GNN internal states by feeding graph coloring problems with C ranging

from 3 to 7, and that training a GNN-GCP for each specific c-coloring may lead to better

results regarding decoding assignments.
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APPENDIX A — TYPED GRAPH NETWORK FOR THE GRAPH COLORING

PROBLEM: DEFINITIONS

The Typed Graph Network framework provided by (PRATES et al., 2019b) requires

4 kinds of definitions. First, which graph elements will be assigned to a type of embedding

– we define that vertices of type V will have an embedding size d, the same size of

embeddings for vertices of type C. Second, we need to define adjacency matrices between

these different types of embeddings – note that, if one type is not used to update another

type, then no adjacency information between these types is needed, we defined a V V

adjacency matrix between vertices V and V C between V and C vertices. Optionally, we

may need to translate embeddings of one type to messages to another type: we defined

message-functions from embeddings V to messages received by C, and vice-versa. Finally,

we set the update-functions: an update of vertices of a given type may comprise any other

types as long as their adjacency information is provided. To update vertices C we used only

the incoming messages sent by their neighbors of type V . To update vertices V , however,

we used not only incoming messages from its C neighbors but also raw embeddings of

their own type neighbors.
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1 tgn = GraphNN(
2 {

3 # τV = Rd

4 'V': d,

5 # τC = Rd

6 'C': d
7 },
8 {

9 # M ∈ B|V|×|V|
10 'VV': ('V','V'),

11 # VC ∈ 1|V|×|C|
12 'VC': ('V','C')
13 },
14 {
15 # µV→C : τV → τC
16 'V_msg_C': ('V','C'),
17 # µC→V : τC → τV
18 'C_msg_V': ('C','V')
19 },
20 {

21 # V(t+1),V
(t+1)
h ← φV (V

(t)
h ,MVV ×V(t),

22 MVC × µC→V (C(t)))
23 'V': [
24 {
25 'mat': 'M',
26 'var': 'V'
27 },
28 {
29 'mat': 'VC',
30 'var': 'C',
31 'msg': 'C_msg_V'
32 }
33 ],

34 # C(t+1),C
(t+1)
h ← φC(C

(t)
h ,MVCᵀ × µV→C(V(t)))

35 'C': [
36 {
37 'mat': 'VC',
38 'msg': 'V_msg_C',
39 'transpose?': True,
40 'var': 'V'
41 }
42 ]
43 },
44 )

Listing A.1: TGN kernel of an end-to-end differentiable neural-symbolic model to answer
whether or not a given graph accepts a k coloring.
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APPENDIX B — RESUMO EXPANDIDO

Técnicas baseadas em aprendizado profundo têm recorrentemente atingido de-

sempenho de estado-da-arte em diversas áreas ao longo dos últimos anos. Ainda há, no

entanto, uma certa falta de compreensão em como problemas simbólicos e relacionais

podem se beneficiar de modelos cuja arquitetura é baseada em aprendizado profundo.

O caminho mais promissor para essa tão desejada integração consiste em arquiteturas

neurais cuja propriedade de compartilhamento de parâmetros baseia-se em grafos e, dessa

forma, podem ser treinadas para aprender características complexas de dados relacionais.

Diversos problemas NP -Completos, tais como satisfatibilidade booleana e problema do

caixeiro viajante, apresentam esse tipo de característica. Em ambos casos, um metamodelo

chamado Graph Neural Network (GNN) pode trabalhar diretamente com entradas em

formato de grafos, que representam uma instância do problema, e aprender a produzir uma

resposta binária para o problema em questão. Nessa dissertação, estamos particularmente

focados em aplicar um modelo de GNN ao problema da coloração de grafos: o modelo que

propomos se aproveita de propriedades específicas desse problema ao contemplar tanto

vértices quanto cores com representações internas na sua arquitetura e ao fazer com que

tais representações passem por diversas etapas de troca de mensagens. Nesse sentido, a

arquitetura que propomos é capaz de refletir a estrutura relacional do problema original,

sem necessidade de uma redução em tempos polinomial para outro problema, enquanto

ainda emprega uma estratégia de compartilhamento de parâmetros em função de vértices e

cores. Nós também demonstramos como treinar tal modelo com instâncias muito difíceis,

geradas de uma maneira adversarial: nós geramos pares de instâncias que são grafos no

limite da satisfatibilidade – uma instância positiva e outra negativa que diferem apenas por

uma única aresta, tal aresta faz com que a segunda instância não seja colorável por um dado

número de cores C, enquanto a primeira permanece sendo minimamente colorável com C.

Obtivemos uma acurácia de 83% durante treinamento e verificamos que nosso modelo é

capaz de generalizar, até certo ponto, esse desempenho para instâncias de teste – não-vistas

durante treinamento e que foram amostradas de diferentes distribuições. Nós mostramos

que esse desempenho superou o desempenho de duas heurísticas e o desempenho de uma

suposta abordagem neuro-simbólica generalista. Por fim, nós exploramos a memória

interna do nosso modelos e encontramos evidências de como o seu raciocínio é construído

em volta dos valores de representação de vértices e cores. Em suma, nossos resultados

sugerem fortemente que GNNs são, de fato, ferramentas poderosas para resolver proble-
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mas combinatoriais mas que seu aprendizado pode ser amplamente melhorado quando as

propriedades de um problema são totalmente agregadas à arquitetura neural e nenhuma

conversão de problema é feita.
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