
PHYSICAL REVIEW B 101, 035149 (2020)

Quantum critical behavior and thermodynamics of the repulsive
one-dimensional Hubbard model in a magnetic field
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2Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal, Germany

3Instituto de Física da UFRGS, Avenida Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul, Brazil

(Received 22 October 2019; revised manuscript received 11 January 2020; published 29 January 2020)

Even though the Hubbard model is one of the most fundamental models of highly correlated electrons,
analytical and numerical data describing its thermodynamics at nonzero magnetization are relatively scarce. We
present a detailed investigation of the thermodynamic properties for the one-dimensional repulsive Hubbard
model in the presence of an arbitrary magnetic field for all values of the filling fraction and temperatures
as low as T ∼ 0.005t . Our analysis is based on the system of integral equations derived in the quantum
transfer matrix framework. We determine the critical exponents of the quantum phase transitions and also
provide analytical derivations for some of the universal functions characterizing the thermodynamics in
the vicinities of the quantum critical points. Extensive numerical data for the specific heat, susceptibility,
compressibility, and entropy are reported. The experimentally relevant double occupancy presents an interesting
doubly nonmonotonic temperature dependence at intermediate values of the interaction strength and also at
large repulsion and magnetic fields close to the critical value. The susceptibility in zero magnetic field has a
logarithmic singularity at low temperatures for all filling factors similar to the behavior of the same quantity in
the spin-1/2 isotropic Heisenberg model. We determine the density profiles for a harmonically trapped system
and show that while the total density profile seems to depend mainly on the value of chemical potential at the
center of the trap the distribution of phases in the inhomogeneous system changes dramatically as we increase
the magnetic field.
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I. INTRODUCTION

Originally introduced to describe interacting electrons in
narrow energy bands, the Hubbard model [1–5] is a paradig-
matic model of condensed matter physics which has been
used to describe the Mott metal-insulator transition and band
magnetism, and is believed to capture essential physics of
high-Tc superconductivity.

Ultracold fermions in optical lattices provide realizations
of the Hubbard model in a very clean environment with a high
degree of control over temperature, chemical potential, on-
site repulsion, tunneling amplitude, and even dimensionality.
Very recently, experimental realizations of the repulsive one-
dimensional (1D) Hubbard model were reported together with
observations of antiferromagnetic spin correlations [6,7], in-
commensurate magnetism [8], and measurement of nonequi-
librium transport properties [9]. The many-body physics of 1D
systems presents features which distinguish them from their
higher-dimensional counterparts. In one dimension Fermi liq-
uid theory breaks down and for many systems the appropriate
low-energy description is given by the Tomonaga-Luttinger
liquid (TLL) theory [10] which predicts counterintuitive phe-
nomena such as spin-charge separation in multicomponent
systems [11]. In addition, many relevant models are integrable
and the exact solutions of such models play an important
role in the study of nonperturbative effects in strongly cor-
related systems. Fortunately, the 1D Hubbard model belongs
to this class of systems and can be solved using the nested
Bethe ansatz [12]. At zero temperature a relatively large

body of knowledge has been accumulating steadily, including
elementary excitations [13–21], complete sets of eigenstates
[22], magnetic properties [23–26], symmetries [27–30], and
correlation functions [31–59].

In this paper we study the properties of the Hubbard model
at finite temperature. The first thermodynamic description
of the model was derived shortly after the Lieb and Wu
solution by Takahashi [60] assuming the string hypothesis and
using the thermodynamic Bethe ansatz (TBA) [61]. Unfortu-
nately, in this case the TBA produces an infinite number of
nonlinear integral equations, which are extremely important
in the study of low-temperature properties but very hard to
implement numerically. It took almost twenty years until a
numerical implementation, with reasonable accuracy, of this
system of equations was reported in the literature [62–65].
Certain simplifications appear in the strong-coupling limit and
in the spin-disordered regime [66–69]. A different system
of equations describing the thermodynamics of the Hubbard
model for all filling fractions was derived in [70] making use
of the quantum transfer matrix (QTM) [71–76] (at half filling
similar equations were derived in [77,78]). This description
involves only six auxiliary functions and while the numerical
implementation is also nontrivial, accurate numerical data can
be obtained for almost all values of the relevant physical pa-
rameters. Another advantage of the QTM is that it also allows
for the investigation of some correlation functions at finite
temperature [77–79]. The complexity of both thermodynamic
descriptions resulted in relatively few results in the literature
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for the temperature dependence of various thermodynamic
quantities, especially in the presence of a magnetic field.
Recent experimental realizations of the repulsive 1D Hub-
bard model [6–9] involve both spin balanced and imbalanced
systems and temperatures in the range of T ∈ [0.2t, 1.5t] for
which thermal effects are extremely significant. For these
reasons in this paper we perform a detailed study of the
thermodynamic properties and quantum critical behavior of
the model in a magnetic field and for a wide interval of
temperatures: T ∈ [0.005t, 3t].

At zero temperature the phase diagram of the Hubbard
model is very rich with a multitude of quantum phase tran-
sitions (QPTs) induced by either the variation of the chemical
potential or magnetic field. In the vicinity of the quantum
critical points the thermodynamics is expected to be universal
and completely characterized by the universality class of the
transition [80]. Our analysis of 6 QPTs showed that in all
cases the critical exponents are z = 2 and ν = 1/2 but the
universal thermodynamics is not necessarily the one of free
fermions. For example, the transitions from the vacuum to
the non-half-filled system with zero magnetization (at zero
magnetic field) or fully polarized system (at nonzero magnetic
field) belong to the universality class of the spin-degenerate
impenetrable particle gas [81] for which the universal ther-
modynamics is described by Takahashi’s formula (35). The
dependence of the specific heat, magnetic susceptibility, com-
pressibility, entropy, and double occupancy on the magnetic
field is extremely complex at low temperatures. Particularly
interesting is the presence of two minima in the dependence
on temperature of the double occupancy as a result of the
competition between charge and spin modes and related to
the Pomeranchuk effect [82]. The magnetic susceptibility
at zero magnetic field presents a logarithmic dependence
on the temperature for all filling fractions similarly to the
case of the spin-1/2 isotropic Heisenberg model (XXX spin
chain) [83,84]. We show that the interval of temperatures for
which the TLL description is valid (linear dependence of the
specific heat) decreases at lower filling fractions and also as
the coupling strength increases. Experimental realizations in
optical lattices require the presence of a confining parabolic
potential which breaks the integrability of the model. In
this case the solution of the homogeneous model coupled
with the local density approximation can provide accurate
results in the case of slowly varying potentials and a large
number of particles. The density profiles computed in this
way show that while the total density profile is almost un-
changed as we increase the magnetic field the distribution
of phases present in the inhomogeneous system is extremely
sensitive.

The plan of the paper is as follows. In Sec. II we intro-
duce the Hubbard model, and we review the properties of
the ground state in Sec. III. The thermodynamic description
obtained in the QTM framework is presented in Sec. IV.
In Sec. V we investigate the quantum critical behavior and
the universal thermodynamics in the vicinity of the quantum
critical points. Detailed results for the specific heat, magnetic
susceptibility, and compressibility at below half filling are
reported in Sec. VI and in the half-filled case in Sec. VII.
Sections VIII and IX contain the dependence of the double
occupancy and entropy on filling fraction and magnetic field.

An analysis of the density profiles of the model in the presence
of a trapping potential using the local density approximation is
presented in Sec. X. We conclude in Sec. XI. Some technical
details regarding the numerical implementation of the two
types of convolutions appearing in the QTM equations can
be found in Appendices A and B.

II. THE HUBBARD MODEL

The one-dimensional Hubbard model describes interacting
fermions on a lattice. Assuming an arbitrary magnetic field the
Hamiltonian is

H = Hkin + Hint + Hext, (1)

where

Hkin = −t
L∑

j=1

∑
a={↑,↓}

(c†
j+1,ac j,a + c†

j,ac j+1,a), (2a)

Hint = U
L∑

j=1

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)
, (2b)

Hext = −
L∑

j=1

[μ(n j,↑ + n j,↓) + H (n j,↑ − n j,↓)]. (2c)

In the defining relations (2) L is the number of lattice
sites of the system, c†

j,a and c j,a are creation and annihilation
operators of an electron of spin a (a ∈ {↑,↓}) at site j of
the lattice, and n j,a = c†

j,ac j,a. The operators c†
j,a and c j,a are

Fermi operators and satisfy canonical anticommutation rela-
tions {c j,a, ck,b} = {c†

j,a, c†
k,b} = 0, {c j,a, c†

k,b} = δ j,kδa,b with
j, k ∈ {1, . . . , L} and a, b ∈ {↑,↓}. The two real numbers
t and U quantify the strength of the tight-binding and the
Coulomb interaction terms. Due to the various symmetries of
the Hubbard model we may map systems with U < 0 to U >

0 and μ � 0 to μ � 0; see Eqs. (41) and (45). Hence, without
loss of generality we focus on the case of repulsive interaction
between the electrons (U > 0) and electron densities between
0 and 1 (“half filling”). Also, we measure energies in units
of t , which is equivalent to setting t = 1. We will also set
kB = μB = 1 in the rest of the paper. We restore the units
in the figures and their captions. Finally, μ and H are the
chemical potential and magnetic field.

III. THERMODYNAMICS AT ZERO TEMPERATURE

The main goal of this paper is the investigation of the
quantum critical behavior and thermodynamic properties of
the repulsive Hubbard model in a magnetic field. First, it
is useful to remind the reader of the description of the
ground state and the phase diagram at zero temperature
which allows for the identification of the quantum phase
transitions. We will also review the charge and spin veloci-
ties and the known analytical formulas for the ground state
susceptibilities.

The ground state of the model is described by a sys-
tem of integral equations for root densities first obtained
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in [12]:

ρ(k) = 1

2π
+ cos k

∫ A

−A
dλ a1(sin k − λ)σ (λ), (3a)

σ (λ) =
∫ Q

−Q
dk a1(λ − sin k)ρ(k)

−
∫ A

−A
dλ′ a2(λ − λ′)σ (λ′), (3b)

with the kernels defined by

al (x) = 1

2π

2lu

(lu)2 + x2
, u = U

4t
. (4)

For a system of N electrons of which M have spin down the
parameters Q and A fix the particle density n and magnetiza-
tion per site m via

n =N

L
=

∫ Q

−Q
dk ρ(k), (5)

m =N − 2M

2L
= 1

2

[∫ Q

−Q
dk ρ(k) − 2

∫ A

−A
dλ σ (λ)

]
, (6)

and the ground state free energy per site is (e is the energy per
site)

f = e − μn − 2Hm,

=
∫ Q

−Q
dk (−2 cos k − μ − 2u − H )ρ(k)

+ 2H
∫ A

−A
dλ σ (λ) + u. (7)

The dressed energies satisfy the following system of integral
equations:

κ̄ (k) = −2 cos k − μ − 2u − H +
∫ A

−A
dλ a1(sin k − λ)ε(λ),

(8a)

ε(λ) = 2H +
∫ Q

−Q
dk cos k a1(sin k − λ)κ̄ (k)

−
∫ A

−A
dλ′a2(λ − λ′)ε(λ′), (8b)

and they play an important role in the investigation of the
phase diagram at zero temperature. In addition to fixing the
particle density and magnetization the integration boundaries
are also the points at which the dressed energies switch sign.
As functions of the chemical potential and magnetic field they
are determined from the conditions

κ̄ (±Q) = 0, ε(±A) = 0. (9)

A. Ground state phase diagram

At zero temperature and μ � 0, H � 0 the Hubbard model
presents five phases [5,85] and we should point out that due
to the particular form of the Hamiltonian (1) the system is
at half filling (n = 1) for μ = 0. For a fixed value of the
magnetic field by varying the chemical potential the Hubbard
model presents quantum phase transitions at the quantum

FIG. 1. Ground state phase diagram in μ-H coordinates for
u = 1. The value of μ−(0) is given by Eq. (13) and H0(u) =
2(1 + u2)1/2 − 2u. In terms of the densities and magnetization the
five phases are characterized by I: n = m = 0, II: n↑ > 0, n↓ = 0,
III: n↑ = 1, n↓ = 0, IV: 0 < n < 1, m � 0, and V: n = 1, m � 0.

critical points (QCPs). The universality classes of these QPTs
and the associated universal thermodynamics in the vicinity
of the QCPs will be studied in Sec. V. The phases can
be distinguished by the densities of spin-up and spin-down
electrons n↑, n↓ which serve as order parameters. The five
phases and boundaries (which are critical lines of QCPs) are
as follows (see Fig. 1):

Phase I (n = m = 0): Vacuum. This phase is characterized
by zero density of electrons and Q = A = 0. The boundary is
defined by the condition

μ � μ0(H ) = −2 − 2u − H. (10)

Clearly, all correlation functions are trivial.
Phase II (n↑ > 0, n↓ = 0): Partially filled, spin-polarized

band. The total density is 0 < n < 1 and the magnetization
m = n/2. In this phase the parameter Q can take values
between 0 and π and A = 0. The chemical potential is related
to Q and H via

cos Q = − 1
2 (μ + H + 2u),

and the magnetic field satisfies Hc � H � Hu with

Hc = 2u

π

∫ Q

0
dk cos k

cos k − cos Q

u2 + (sin k)2
, (11a)

Hu = 2 − μ − 2u. (11b)

The density is given by n = arccos(1 − μ−μ0(H )
2 )/π . Here,

the density-density correlation function and the one-particle
Green’s function decay algebraically with free fermion expo-
nents, the spin-spin correlation functions are trivial.

Phase III (n↑ = 1, n↓ = 0): Half-filled, spin-polarized
band. The total density is n = 1 and the magnetization is
m = 1/2. The boundaries are given by (Q = π, A = 0)

H � H0(u) = 2(1 + u2)1/2 − 2u, (12a)

μ � 2 − 2u − H. (12b)
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The correlation functions are frozen. Note that the bound-
aries of phase III in the μ-H plane are straight lines; the one
described by (12a) is strictly horizontal.

Phase IV (0 < n < 1, m � 0): Partially filled and mag-
netized band. In this phase 0 < Q < π, 0 < A � ∞. The
density-density and spin-spin correlation functions as well as
the Green’s functions decay algebraically.

Phase V (n = 1, m � 0): Half-filled and magnetized band.
In this region Q = π and 0 < A � ∞. At H = 0 the value of
the chemical potential μ− which separates phase IV and phase
V is given by

μ−(H = 0) = 2 − 2u − 2
∫ ∞

0

dω

ω

J1(ω)e−ωu

cosh(ωu)
. (13)

For H > 0 the boundary between phase IV and phase V
is determined by the condition κ̄ (±π ) = 0 [in Eqs. (8) we
set Q = π ]. As only charge-neutral excitations are gapless,
the density-density and spin-spin correlation functions decay
algebraically, and the one-particle Green’s function decays
exponentially.

The exponents of the algebraic decay of correlation func-
tions in phases IV and V are given by conformal weights
resp. Luttinger liquid parameters that are obtained [5] from
the dressed charge discussed below in Sec. III C.

B. Spin and charge velocities

The charge and spin velocities can be calculated from

vc = κ̄ ′(k)

2πρ(k)

∣∣∣∣
k=Q

, vs = ε′(k)

2πσ (λ)

∣∣∣∣
λ=A

, (14)

where the derivatives of the dressed energies satisfy the fol-
lowing system of integral equations:

κ̄ ′(k) = 2 sin k + cos k
∫ A

−A
dλ a1(λ − sin k)ε′(λ),

ε′(λ) =
∫ Q

−Q
dk a1(λ − sin k)κ̄ ′(k)−

∫ A

−A
dλ′a2(λ − λ′)ε′(λ′).

The charge and spin velocities play an important role in
the low-temperature description of the Hubbard model. In this
regime certain phases are described by the TLL theory and the
free energy takes the form [10,11,86]

fII = eII − πT 2

6

1

vc
, phase II, (15a)

fIV = eIV − πT 2

6

(
1

vc
+ 1

vs

)
, phase IV, (15b)

fV = eV − πT 2

6

1

vs
, phase V. (15c)

Therefore, the entropy and the specific heat in phases II, IV,
and V have a linear dependence on temperature for tempera-
tures close to zero and the slope (also known as the specific
heat coefficient) can be determined from the knowledge of the
velocities.

The dependence of the velocities on the filling factor at
zero and nonzero magnetic field is presented in Fig. 2. To
our knowledge the only result reported in the literature (see
[34] and Chap. VI of [5]) is the case of zero magnetic field

FIG. 2. Density dependence of the charge and spin velocities
(a0 is the lattice spacing) for H = 0 (upper panels), H = 0.3t/μB

(middle panels), and H = 0.5t/μB (bottom panels).

which is presented in panels (a) and (b) of Fig. 2. The charge
velocity is zero at both n = 0 and n = 1 signaling the quantum
phase transitions between phases I and IV and IV and V (for
H = 0 and 0 < n < 1 the system is in phase IV). For weak
interactions vc presents a rapid variation close to half filling.
The spin velocity is zero only at n = 0 and reaches a finite
value at n = 1.

The presence of a magnetic field introduces additional
complications. For small values of n and H > 0 the system
is fully polarized (phase II, A = 0) and from Eqs. (3) and (8)
we have ρ(k) = 1/2π and κ̄ (k) = −2 cos k − μ − 2u − H .
Together with Eq. (5) and the definitions (14) they imply
that in phase II vc = 2 sin(πn) and vs = 0. For every value
of U and H < H0(U ) there is a critical value of n at which
the system crosses in phase IV and vs becomes nonzero. The
charge velocity is continuous at this critical value of density
but the derivative is discontinuous. Numerical results for the
velocities in the presence of a magnetic field are presented
in panels (c)–(f) of Fig. 2. For H = 0.3 and U = {1, 2, 4, 8}
the transition from phase II to IV can be seen clearly in the
discontinuity of the derivative of vc which coincides with
the value of n for which vs becomes nonzero [see panels
(c) and (d) of Fig. 2]. For H = 0.5 and U = 8 we have
H > H0(8) = 0.4721 . . ., and for these values of the magnetic
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FIG. 3. Magnetic field dependence of the charge and spin veloc-
ities for two fixed values of the density n = 0.5 (upper panels) and
n = 0.8 (lower panels). For large values of the magnetic field the
charge velocities are vc(n) = 2 sin(πn).

field and interaction strength the system is found in phase II
for all densities which means that vc = 2 sin(πn) and vs = 0
for n ∈ [0, 1]. This can be seen in panels (e) and (f) of Fig. 2.

Figure 3 presents the dependence of the spin and charge
velocities on magnetic field at fixed density. Here at low
values of H the system is found in phase IV and as the
magnetic field is increased we cross into phase II for which
vc = 2 sin(πn) and vs = 0.

At half filling only the spin degrees of freedom are gapless
and vc = 0. The dependence of the spin velocity at half filling
as a function of the magnetic field is presented in Fig. 4. vs is
monotonically decreasing as H is increased and vanishes like
[H0(U ) − H]1/2 in the vicinity of H0(u) = 2(1 + u2)1/2 −
2u. Another interesting feature is the logarithmic behavior
vs(H ) ∼ vs(0) + a/ log(H/H0) for small values of H as can
be seen in the right panels of Fig. 4.

FIG. 4. Left panel: The spin velocity at half filling as a function
of the magnetic field for different values of U . In the vicinity of
H0(U ) the velocity behaves like vs ∼ [H0(U ) − H ]1/2. Right panels:
The logarithmic behavior of the spin velocity at small values of H .

C. Susceptibilities at zero temperature

The spin and charge susceptibilities in the grand-canonical
ensemble are defined as

χ (μ, H ) = 2
∂m

∂H
, κ (μ, H ) = ∂n

∂μ
. (16)

Below we list known analytical formulas for the suscepti-
bilities in each of the five phases at zero temperature. Our
presentation follows Chap. VI of [5] (we should point out
that our spin susceptibility contains an additional factor of 2
compared with the definition employed in [5]).

Phases I and III. In these phases the spin and charge
susceptibilities are both zero.

Phase II. The system is fully polarized with density n =
arccos(1 − μ−μ0(H )

2 )/π and

κ (μ, H ) = 1

πvc
= 1

π [4 − (μ + 2u + H )2]1/2
. (17)

Note that κ (μ, H ) and the grand-canonical spin susceptibility
χ (μ, H ) are identical, implying that the canonical spin sus-
ceptibility is zero.

Phase IV. We introduce an important quantity called the
dressed charge matrix and defined by ([35,36,87–89] and
Chap. VIII of [5])

Z =
(

Zcc Zcs

Zsc Zss

)
=

(
ξcc(Q) ξcs(A)
ξsc(Q) ξss(A)

)
, (18)

where ξab(k), a, b ∈ {c, s}, satisfy the system of integral
equations

ξcc(k) = 1 +
∫ A

−A
dλ′ ξcs(λ

′)a1(λ′ − sin k), (19a)

ξcs(λ) =
∫ Q

−Q
dk cos k′ξcc(k′)a1(sin k′ − λ)

−
∫ A

−A
dλ′ ξcs(λ

′)a2(λ′ − λ), (19b)

ξsc(k) =
∫ A

−A
dλ′ ξss(λ

′)a1(λ′ − sin k), (19c)

ξss(λ) = 1 +
∫ Q

−Q
dk′ cos k′ξsc(k′)a1(sin k′ − λ)

−
∫ A

−A
dλ′ ξss(λ

′)a2(λ′ − λ). (19d)

The susceptibilities are expressed in terms of the elements
of dressed charge matrix and velocities as

χ (μ, H ) = (Zcs − 2Zss)2

2πvs
+ (Zcc − 2Zsc)2

2πvc
, (20)

κ (μ, H ) = Z2
cc

πvc
+ Z2

cs

πvs
. (21)

Phase V. At half filling and magnetization m < 1/2 we
have

χ (H, n = 1) = 4ξ 2
s (A)

πvs
, κ (H, n = 1) = 0, (22)
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where ξs(A) is the dressed charge for the half-filled band and
satisfies the integral equation

ξs(λ) = 1 −
∫ A

−A
dλ′ a2(λ − λ′)ξs(λ

′). (23)

IV. THERMODYNAMICS AT FINITE TEMPERATURE

The first thermodynamic description of the Hubbard model
was derived by Takahashi in the framework of the TBA and
assuming the string hypothesis [60]. While extremely impor-
tant the infinite system of nonlinear integral equations derived
using this method is very hard to implement numerically.
For this reason in this paper we are going to investigate the
thermodynamic properties of the Hubbard model using the
quantum transfer matrix formalism [71–76] which has the ad-
vantage of providing a thermodynamic description involving
a finite number of auxiliary functions [70]. More precisely we
employ only 6 auxiliary functions denoted by b±, c±, and c±,

and we define

B± := 1 + b±, B± := 1 + 1/b±,

C± := 1 + C±, C± := 1 + c±,

� lnC := ln(C+/C−), � lnC := ln(C+/C−).

These functions satisfy the following system of nonlinear
integral equations derived in [70]:

ln b± = −βH − K2,±α−α ∗ lnB+ + K2,±α+α ∗ lnB−

− K1,±α • � ln(c/C), (24a)

ln c± = �±
c + K1,−α ∗ lnB+ − K1,α ∗ lnB−

+ K1,0 • � lnC ± 1
2� lnC, (24b)

ln c± = �
±
c − K1,−α ∗ lnB+ + K1,α ∗ lnB−

− K1,0 • � lnC ± 1
2� lnC, (24c)

where u = U/4, 0 < α < u, fα (x) = f (x + iα), and

K1(x) = u/π

x(x + 2iu)
, (25a)

K1(x) = u/π

x(x − 2iu)
, (25b)

K2(x) = 2u/π

x2 + 4u2
. (25c)

The driving terms are

�±
c (x) = −βU/2 + β(μ + H ) + ln φ±0(x), (26)

�
±
c (x) = −βU/2 − β(μ + H ) − ln φ±0(x), (27)

ln φ±0(x) = ±2β(1 − x2)1/2, (28)

and the two types of convolutions appearing in Eqs. (24) are
defined by

K ∗ f =
∫ +∞

−∞
K (x − y) f (y) dy, (29)

K • f = p.v.
∫ +1

−1
K (x − y) f (y) dy, (30)

where p.v. denotes the principal-value integral. The grand-
canonical potential of the system can be obtained from

− βφ(μ, H, T,U )

= β(μ + H/2 + U/4) −
∫ +1

−1
K ln[(1 + c+ + c+)

× (1 + c− + c−)] dx +
∫ +∞

−∞
[(Kα−2u − Kα ) lnB+

− (K−α−2u − K−α ) lnB−] dx,

with K(x) = −[2π (1 − x2)1/2]−1. In the noninteracting case,
U = 0, the grand-canonical potential is known analytically,

φFF (μ, H, T ) = − T

2π

∫ π

−π

dk ln[1 + e
2 cos k−μ−H

T ]

− T

2π

∫ π

−π

dk ln[1 + e
2 cos k−μ+H

T ], (31)

and in the limit of infinite repulsion we have [61]

φ∞(μ, H, T ) = − T

2π

∫ π

−π

dk ln

[
1 + 2 cosh

(
H

T

)
e

2 cos k−μ

T

]
.

(32)

The integral equations (24) can be solved by a simple
iterative procedure. First, we make an initial guess of the six
functions, which are then plugged into the right-hand side
of (24) obtaining an approximate solution. This process is
iterated until the difference between the functions obtained
in two successive steps is smaller than a given error. This
algorithm requires an efficient numerical treatment of the
two types of convolutions appearing in the integral equations
which is detailed in Appendices A and B. Another difficulty
lies in the fact that while for the first type of convolution we
use the fast Fourier transform, for the second type we use a
Chebyshev quadrature which means that the six functions are
discretized on different grids requiring the use of interpolation
at each iterative step.

V. QUANTUM CRITICAL BEHAVIOR

At low temperatures the Hubbard model shows thermo-
dynamically activated behavior in the gapped phases I and
III, and algebraic dependence on temperature in the gapless
phases II, IV, and V; see (15). The various types of behavior
hold inside the phases. At the boundaries—here referred to as
quantum critical lines—rather complex crossover behavior is
observed which is one of the main objectives of this paper.

The Hubbard model presents a multitude of quantum phase
transitions and quantum critical lines. The effects of the QPTs
can be measured at low but finite temperatures in the quantum
critical (QC) region which is characterized by strong coupling
of quantum and thermal fluctuations [80]. In the vicinity of
the quantum critical points the thermodynamics is expected to
be universal and determined by the universality class of the
transition. For example, in the case of a QPT induced by the
variation of the chemical potential at fixed magnetic field
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the pressure is assumed to satisfy [90]

p(μ, H, T ) ∼ pr (μ, H, T ) + T
d
z +1PH

(
μ − μc(H )

T
1
νz

)
, (33)

with pr the regular part of the pressure, d the dimension, PH

a universal function, and μc(H ) the quantum critical point.
The correlation length exponent ν and the dynamical critical
exponent z determine the universality class of the transition.
Other relevant thermodynamic quantities can be derived from
(33) using thermodynamic identities.

The universality class of a QPT can be determined by plot-
ting the “scaled” quantity [p(μ, H, T ) − pr (μ, H, T )]T − d

z −1

(or other suitable thermodynamic function) as a function of
the chemical potential and for several values of temperature
[90]. If the z and ν exponents are chosen correctly then
all the curves intersect at μc(H ). It is efficient to choose a
thermodynamic parameter for which the regular part is known
from previous theoretical considerations. Plotting the “scaled”
quantities as functions of [μ − μc(H )]/T

1
νz all curves col-

lapse to the universal function PH .

A. QPTs induced by the variation of the chemical
potential at zero magnetic field

We will first investigate the QPTs induced by the varia-
tion of the chemical potential at zero magnetic field. In the
attractive case a similar analysis can be found in [91,92]. In
addition to the determination of the QCPs and the universality
class of the transitions a problem of considerable impor-
tance is represented by the identification of the boundaries of
the QC regions. It was argued recently [81,93–96] that the
grand-canonical specific heat c(g)

V = −T (∂2φ/∂T 2)μ,H can be
used for this task. The specific heat presents two lines of
local maxima fanning out from the QCP and the location of
these maxima can be identified with the boundaries of the
QC region. Another useful quantity which can be used to
distinguish the various phases at low temperatures [97] is the
compressibility Wilson ratio defined by

Rκ
W = π2

3
T

κ

c(g)
V

, (34)

where κ is the compressibility of the system. In Fig. 5 we
present the dependence of the grand-canonical specific heat
and compressibility Wilson ratio on chemical potential and
temperature for U = 4 and H = 0. The system presents two
QPTs between phases I and IV with critical point μ(I→IV )

c =
−2u − 2 = −4 and between phases IV and V with μ(IV →V )

c ≡
μ−(0) = −0.6433 [μ−(0) is given by Eq. (13)]. The bound-
aries of both critical regions can be identified with the lines
of maxima of the specific heat fanning out from the critical
points. The Wilson ratio presents anomalous enhancements in
the QC regions and is almost constant in the other regimes.

The identification of the universality classes of the QPTs is
done by employing the scaling relation for the density which
at zero temperature is zero in phase I and 1 in phase V. Taking
the derivative with respect to μ of Eq. (33) we obtain

n(μ, H, T ) ∼ ∂ pr

∂μ
(μ, H, T ) + T

d
z +1− 1

νz P ′
H

(
μ − μc(H )

T
1
νz

)
.

FIG. 5. (a) Chemical potential and temperature dependence of
the grand-canonical specific heat for U = 4t and zero magnetic
field. The boundaries of the critical regions identified with the
maxima of c(g)

V are highlighted by dashed white lines. The two QCPs
are μ(I→IV )

c = −4t and μ(IV →V )
c ≡ μ−(0) = −0.6433t . (b) Chemical

potential and temperature dependence of the Wilson ratio Rκ
W . Note

the anomalous enhancement in the quantum critical regions.

The curves (n − nr )T − d
z −1+ 1

νz with nr = ∂ pr/∂μ = 0 for the
first transition and nr = 1 for the second transition intersect
at the critical points μc when the critical exponents are z = 2
and ν = 1/2 as can be seen in Fig. 6.

Even though both QPTs are characterized by the same
critical exponents the universal thermodynamics in the vicin-
ity of the QCPs is not given by the same universal function
PH (x). For the transition between phases I to IV we can
analytically derive the universal function as follows. Close
to the first critical point the system is characterized by very
low densities and it is equivalent to the repulsive Gaudin-
Yang model (two-component fermions with repulsive delta
interaction). For this continuum model the QPT between the
vacuum and the TLL phase belongs to the universality class
of spin-degenerate impenetrable particle gas [81] with the
universal thermodynamics described by Takahashi’s formula
[61] (x = [μ − μc(H )]/T, y = H/T )

p = T 3/2

2π

∫ +∞

−∞
ln

[
1 + (1 + e−2|y|)e−k2+x

]
dk. (35)

For H = 0 we have e−2|y| = 1 and

PH (x) = 1

2π

∫ +∞

−∞
ln

[
1 + 2e−k2+x

]
dk. (36)

A comparison of the numerical data with the analytical
predictions of Eq. (36) can be seen in Fig. 6(b) which confirms
the validity of our analytical derivation. Equation (36) is valid
for all U > 0. In the case of free fermions on the lattice
the system still presents a QPT between the vacuum and
the partially filled and magnetized band phase with the QCP
μc(H ) = −2 − H (see Chap. 6.1 of [5]) with the thermody-
namics described by the free fermionic formula.
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FIG. 6. Plots of the scaled densities (n − nr )T −1/2 as functions of
the chemical potential at different temperatures in the vicinities of the
QCPs: μ(I→IV )

c = −4t (a) and μ(IV →V )
c = −0.6433t (c). For the first

transition nr = 0 and for the second nr = 1. The dashed vertical lines
pass through the QCPs. Plotting the scaled densities as functions
of (μ − μc )/T all curves collapse to the universal function P ′

H (x)
(b) for the first transition and (d) for the second transition. In panels
(b) and (d) the black diamonds represent the analytical predictions
for the universal function P ′

H (x) obtained from the derivative of
Eq. (36) (b) and Eq. (37) (d) with a = 0.462 and b = −1.

We should point out that the QC regions have physical
properties which are different from the ones of the surround-
ing phases, particularly in the case of the correlation func-
tions. For example, at low temperatures, phase I can be well
described by a dilute classical gas in which thermal effects
play an important role while in phase IV the quantum effects
dominate and the system is described by a two-component
TLL. In the QC region between phases I and IV both quantum
and thermal effects are important producing distinct correla-
tion functions.

As we will show below all the other QPTs investigated
in this paper have critical exponents z = 2 and ν = 1/2 and
therefore it is sensible to assume that the scaling of the
pressure for these transitions is given by p = T 3/2P (x) with
the universal function

P (x) = a

2π

∫ +∞

−∞
ln

[
1 + e−k2+b x

]
dk, (37)

where a and b are free parameters and x = [μ − μc(H )]/T
for the chemical-potential-induced QPTs and x = [H −
Hc(μ)]/T for the magnetic field ones. The parameter a takes
some positive real number and is related to the square root
of the mass of the particle with parabolic energy-momentum
dispersion. The parameter b describes the strength of the
coupling of the external field, chemical potential, or magnetic
field to some particle number and typically takes values ±1
for particle and hole type excitations and ±2 for magnetic
excitations: a change of the particle number carries energy

FIG. 7. (a) Chemical potential and temperature dependence of
the grand-canonical specific heat for U = 4t and H = 0.1t/μB.
The boundaries of the critical regions identified with the max-
ima of c(g)

V are highlighted by dashed white lines. The three
QCPs are μ(I→II )

c = −2u − 2 − H = −4.1t, μ(II→IV )
c = −3.429t ,

and μ(IV →V )
c = −0.6453t . (b) Chemical potential and temperature

dependence of the Wilson ratio Rκ
W .

±μ and a spin-flip results in ±2H ; see (2). An exception is
realized by the phase transition from II to IV where particles
with parabolic dispersion enter the system on a background
of majority particles with finite density. There the Hubbard
interaction leads to an effective parameter b different from −1.

For the transition between phases IV and V the best fit is
obtained for a = 0.462 and b = −1 and is shown in panel (d)
of Fig. 6.

B. QPTs induced by the variation of the chemical
potential at nonzero magnetic field

In the presence of a magnetic field the repulsive Hubbard
model presents three QPTs induced by the variation of the
chemical potential. It can be seen in Fig. 7 for U = 4 and
H = 0.1 that the specific heat presents two lines of maxima
to the left and right of each QCP and that the Wilson ratio
also presents maxima in each quantum critical region while
being almost constant outside of them. The values of the
three QCPs are μ(I→II )

c = −2u − 2 − H = −4.1, μ(II→IV )
c =

−3.429, and μ(IV →V )
c = −0.6453.

For the determination of the critical exponents we use the
scaling of the densities for the I → II and IV → V transitions
[nr (phase I) = 0 and nr (phase V) = 1] and the density of
down spins for the II → IV transition [n↓,r (phase II) = 0].
Using n↓ = −(∂φ/∂μ + ∂φ/∂H )/2 we find

n↓(μ, H, T ) ∼ n↓,r (μ, H, T )

+ 1 − μ′
c(H )

2
T

d
z +1− 1

νz P ′
H

(
μ − μc(H )

T
1
νz

)
.

For all QPTs the critical exponents are z = 2 and ν = 1/2
as can be seen from Fig. 8. Similarly to the previous case,
even though the critical exponents are the same the universal
function PH (x) seems to be different for each QPT. For the
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FIG. 8. Plots of the scaled total densities (n − nr )T −1/2 and
density of down spins (n↓ − n↓r )T −1/2 as functions of the chem-
ical potential at different temperatures in the vicinities of the
QCPs μ(I→II )

c = −4.1t (a), μ(II→IV )
c = −3.429t (c), and μ(IV →V )

c =
−0.6453t (e). The regular parts are nr (phase I) = 0, n↓,r (phase II) =
0, and nr (phase V) = 1. The dashed vertical lines pass through the
QCPs. Plotting the scaled quantities as functions of (μ − μc )/T all
curves collapse to the universal functions P ′

H (x) [(b), (d), and (f)]. In
panel (b) the black diamonds represent the analytical predictions for
the universal function P ′

H (x) obtained from the derivative of Eq. (38).
In panels (d) and (f) the analytical predictions for the universal
functions are obtained from Eq. (37) with a = 3.1, b = 0.4 (d) and
a = 0.476, b = −1 (f).

I → II transition from Eq. (35) (e−2|y| ∼ 0 at low tempera-
tures) the universal function at finite magnetic field is

PH (x) = 1

2π

∫ +∞

−∞
ln

[
1 + e−k2+x

]
dk. (38)

In panel (b) of Fig. 8 it is shown that this analytical formula
agrees perfectly with the numerical data. Together with the
previous result this proves that the transition I → IV belongs
to the universality class of the spin-degenerate impenetrable
particle gas which is characterized by Takahashi’s formula
Eq. (35). The transition I → II belongs to the strong-field limit
of the spin-degenerate impenetrable particle gas and is better
known as simply the impenetrable particle gas.

FIG. 9. (a) Magnetic field and temperature dependence of the
grand-canonical specific heat for U = 4t at half filling (μ = 0). The
boundaries of the critical region identified with the maxima of c(g)

V are
highlighted by dashed white lines. The QCP is H (V →III )

c ≡ H0(U ) =
0.8284t/μB. (b) Magnetic field and temperature dependence of the
Wilson ratio Rχ

W .

For the II to IV and IV to V transitions the best fits for
the universal function are obtained using Eq. (37) with a =
3.1, b = 0.4 (II → IV) and a = 0.476, b = −1 (IV → V) as
can be seen in panels (d) and (f) of Fig. 8.

C. QPTs induced by the variation of the
magnetic field at half filling

The Hubbard model also presents QPTs induced by the
variation of the magnetic field when the chemical potential is
fixed. The most interesting is the transition between phases
V and III at half filling. For magnetically induced phase
transitions the scaling relation (33) becomes

p(μ, H, T ) ∼ pr (μ, H, T ) + T
d
z +1Pμ

(
H − Hc(μ)

T
1
νz

)
. (39)

Also in this case the relevant dimensionless ratio is the sus-
ceptibility Wilson ratio [98] defined by

Rχ
W = 4

3
π2T

χ

c(g)
V

, (40)

where χ is the magnetic susceptibility. The dependence on the
magnetic field and temperature of the grand-canonical specific
heat and Wilson ratio Rχ

W for U = 4 and μ = 0 is presented
in Fig. 9. The specific heat presents lines of maxima which
define the boundaries of the critical region, and the Wilson
ratio presents anomalous enhancement in the vicinity of the
QCP defined by Hc ≡ H0(U ) = 0.8284 [H0(U ) is defined in
Eq. (12a)]. The scaling of the magnetization which satisfies

2m(μ, H, T ) ∼ mr (μ, H, T ) + T
d
z +1− 1

νz P ′
μ

(
H − Hc(μ)

T
1
νz

)

is presented in Fig. 10 [mr (phase III) = 1/2]. The critical
exponents of this transition are also z = 2 and ν = 1/2.
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FIG. 10. (a) Plot of the scaled magnetization (m − mr )T −1/2

versus magnetic field at different temperatures in the vicinity of
the QCP H (V →III )

c ≡ H0(U ) = 0.8284t/μB. The regular part of the
magnetization is mr (phase III) = 1/2. (b) Universal function P ′

μ(x)
obtained from the collapse of all the curves plotted as functions of
(H − Hc )/T . The black diamonds represent the analytical predic-
tions for the universal function P ′

μ(x) obtained from the derivative
of Eq. (37) for a = 0.8 and b = −2.

The universal function is given by Eq. (37) with a = 0.8
and b = −2. The value for b agrees with the one obtained in
[92] for the attractive Hubbard model. It should be noted that
the connection between the thermodynamics of the repulsive
and attractive model is given by (see Chap. II of [5])

φ(μ, H, T, u) = φ(H, μ, T,−u) − μ + H, (41)

and the equivalent transition in the attractive case is a
chemical-potential-induced one [I to V in the terminology of
[92] and their x is −x in Eq. (37)].

VI. THERMODYNAMIC PROPERTIES
BELOW HALF FILLING

In this section we will investigate the effect of the magnetic
field on the thermodynamic properties of the repulsive Hub-
bard model below half filling, n ∈ [0, 1). We will mainly focus
on the canonical specific heat, the grand-canonical magnetic
susceptibility, and compressibility defined by

c(c)
V = −T

[(
∂2φ

∂T 2

)
μ,H

+
(

∂n

∂T

)2

μ,H

(
∂n

∂μ

)−1

T,H

]
, (42)

χ = −
(

∂2φ

∂H2

)
μ,T

, (43)

κ = −
(

∂2φ

∂μ2

)
H,T

. (44)

The thermodynamic properties of the system with n ∈ (1, 2]
are related to similar quantities below half filling using the
following symmetry of the grand-canonical potential (Chap. II
of [5]):

φ(μ, H, T, u) + μ = φ(−μ, H, T, u) − μ. (45)

[Note that this elegant symmetry relation is literally satis-
fied if we extend in (2) the term μ(nj,↑ + n j,↓) to μ(n j,↑ +
n j,↓ − 1).] For the densities and magnetization we find

(μ � 0, H � 0)

n(μ) = 2 − n(−μ), m(μ) = m(−μ), (46a)

n↑(μ) = 1 − n↓(−μ), n↓(μ) = 1 − n↑(−μ), (46b)

which shows that for our Hamiltonian (1) the system is at
half filling for μ = 0. From Eq. (45) the connection between
the thermodynamic quantities below and above half filling is
given by [n ∈ [0, 1)]

c(c)
V (n) = c(c)

V (2 − n), χ (n) = χ (2 − n), κ (n) = κ (2 − n).

(47)

A. Specific heat

The first numerical investigations of the specific heat were
performed by Shiba and Pincus [99,100] who considered
finite chains for up to 6 lattice sites at half filling. The
low-temperature properties for the entire phase diagram were
studied by Takahashi [85] using the TBA equations [60]. For
small temperatures the specific heat in phases II, IV, and V is
linear in T and in phases I and III it behaves like T 3/2e−α/T .
On the critical lines c(c)

V is proportional to T 1/2. The specific
heat coefficient which characterizes the linear dependence on
the temperature (c(c)

V ∼ γ T ) is given by

γII = π

3

1

vc
, phase II, (48a)

γIV = π

3

(
1

vc
+ 1

vs

)
, phase IV, (48b)

γV = π

3

1

vs
, phase V, (48c)

with vc,s the charge and spin velocities. Numerical investi-
gations of the specific heat using the TBA equations can be
found in [62,63,67]. At zero magnetic field extensive results
derived using the QTM thermodynamics (24) can be found in
[70] and Chap. XIII of [5]. At low temperatures the grand-
canonical specific heat c(g)

V = −T ( ∂2φ

∂T 2 )μ,H and the canonical
specific heat c(c)

V are very similar but at high temperatures
differences appear.

In Fig. 11 we present the temperature dependence
of the specific heat in zero magnetic field for n =
{0.1, 0.4, 0.7, 0.9, 1} and U = {0, 4, 8,∞} (see also Tables I
and II). For fillings n � 0.7 and small to moderate values
of the interaction strength, U � 4, the specific heat presents
a single maximum which moves to lower temperatures as
U increases. For larger values of the repulsion this single
maximum splits into two maxima. The origin of the lower
temperature maximum is due to the spin excitations while the
higher one is due to the charge excitations (which are gapped
at n = 1). For densities smaller than 0.5 the specific heat
starts to develop a shoulder which becomes a low temperature
maximum even for U = 0 and n ∼ [0, 0.2]. The positions
and the relative magnitudes of the two maxima depend in a
complex way on the filling factor and the interaction strength.
The case of infinite repulsion is somewhat special. Here we
have only one maximum for n close to 0.5, and the curves for
n = 0.1 and n = 0.9, which present two maxima, coincide.
This is due to the fact that for U = ∞ and H = 0 the system
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FIG. 11. Temperature dependence of the specific heat in zero
magnetic field for various filling fractions and interaction strengths.

is equivalent to a system of free spins and the symmetry (45)
with finite values for μ stays in the Mott phase with fixed
particle density 1. For density n ∈ [0, 1) we have c(c)

V (n) =
c(c)

V (1 − n). A similar relation holds for the compressibility
but not for the magnetic susceptibility. At half filling c(c)

V ∼ 0
for T > 0.

The temperature dependence of the specific heat in a
magnetic field below half filling is presented in Fig. 12 for
H = {0, 0.1, 0.2, 0.3} and U = {4, 8}. We have chosen values
of the magnetic field which are smaller than H0(U ) which
fully polarizes the system even at n = 1 [H0(4) = 0.8284
and H0(8) = 0.4271]. The results for n = 0.1 are almost
similar for both values of U which is easily explainable by
the reduced role of the interaction at low fillings. At H = 0
the specific heat presents two maxima, the first one being
situated at very low temperatures T < 0.005t and very large
slopes for the linear behavior. Switching the magnetic field
fully polarizes the system, and the specific heat coefficient
is the same for all values of H . For small values of the
magnetic field the two maxima structure is still present but it

TABLE I. Specific heat coefficients for U = 4. The square paren-
theses identify the phase of the system at T = 0.

Specific heat coefficients U = 4

γ H = 0 H = 0.1 H = 0.2 H = 0.3

n = 0.1 14.60 [IV] 1.694 [II] 1.694 [II] 1.694 [II]
n = 0.4 2.183 [IV] 2.453 [IV] 4.117 [IV] 0.550 [II]
n = 0.7 1.396 [IV] 1.422 [IV] 1.469 [IV] 1.556 [IV]
n = 0.9 1.421 [IV] 1.440 [IV] 1.471 [IV] 1.525 [IV]

TABLE II. Specific heat coefficients for U = 8. The square
parentheses identify the phase of the system at T = 0.

Specific heat coefficients U = 8

γ H = 0 H = 0.1 H = 0.2 H = 0.3

n = 0.1 24.70 [IV] 1.694 [II] 1.694 [II] 1.694 [II]
n = 0.4 2.915 [IV] 4.363 [IV] 0.550 [II] 0.550 [II]
n = 0.7 1.869 [IV] 1.954 [IV] 2.171 [IV] 2.818 [IV]
n = 0.9 2.248 [IV] 2.316 [IV] 2.469 [IV] 2.817 [IV]

disappears for H = 0.3 becoming a shoulder. Also, compared
with a similar structure without the magnetic field, the first
maximum is dominant and moves to higher temperature with
H . For n = 0.4 only the H = 0,U = 8 curve presents two
maxima and for T � 0.025t, c(c)

V is monotonically increasing
with H . At larger fillings n = {0.7, 0.9} the largest maximum
is obtained for zero magnetic field but at higher temperatures
the specific heat again increases with H . The insets of Fig. 12
present the TLL predictions c(c)

V = γ T in the shaded regions
and our numerical data outside of these regions. For each
case the right boundary of the shaded regions represents the
lowest temperature accessible with our numerical scheme. For
a given value of the Coulomb repulsion and magnetic field
the area of applicability of the TLL theory is given by the
interval of temperature in which the specific heat is almost
linear. From the insets we see that this interval is largest close
to half filling where we have linearity of the specific heat up to
almost T = 0.05t . This interval shrinks dramatically for low
filling fractions. At n = 0.1,U = 4 and zero magnetic field
the TLL theory is valid for T < 0.005t and the interval shrinks
even further as we increase the Coulomb repulsion.

B. Susceptibility

At zero temperature and zero magnetic field the magnetic
susceptibility was investigated in [14,24,25,101]. The influ-
ence of a magnetic field was investigated in the very thorough
article of Carmelo, Horsch, and Ovchinnikov [26] and in
[102]. An interesting feature of the ground state susceptibility
is that for all values of the filling fraction and on-site repulsion
it presents a logarithmic dependence at low magnetic fields
(H � 1) [102], i.e.,

χ (T = 0) = χ0

(
1 + 1

2 ln(a/H )
− ln ln(a/H )

4[ln(a/H )]2

)
, (49)

where a is a constant. At finite temperature, numerical data for
the magnetic susceptibility can be found in [62,63,67,70,103].
In [102] (see also [104]) the authors speculated that the
susceptibility should also have a logarithmic dependence on
temperature at any filling fraction and value of U , a conjecture
which is confirmed by our numerical data.

In Fig. 13 we present the temperature dependence of
the susceptibility in zero magnetic field for various filling
fractions (see also Tables III and IV). For finite values of
the interaction strength the behavior is similar for all density
values: the susceptibility is finite at T = 0 and presents a
maximum which is inversely proportional with the filling
fraction and whose position moves to higher temperatures
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FIG. 12. Temperature dependence of the specific heat in the presence of a magnetic field. The insets present a zoom of the data at low
temperatures. The shaded regions contain the theoretical predictions c(c)

V = γ T with specific heat coefficients given in Tables I and II.

as n increases. At higher temperatures the susceptibility is
an increasing function of the filling fraction. An interesting
feature on which we will elaborate later is the presence of
a logarithmic singularity at very low temperatures for 0 <

FIG. 13. Temperature dependence of the susceptibility in zero
magnetic field for various filling fractions and interaction strengths.

U < ∞. The case of infinite repulsion is different. Here the
magnetization is m = n tanh(H/T )/2 and the susceptibility is
infinite at T = 0 for any value of n.

The influence of a magnetic field on the temperature depen-
dence of the susceptibility is presented in Fig. 14. The general
structure is the same as in the case of zero magnetic field: a
finite value at T = 0 followed by a maximum at low temper-
atures. As long as the magnetic field is not strong enough to
fully polarize the system in the ground state the susceptibility
increases with H at low temperatures and the position of the
maximum moves to higher temperatures as the magnetic field
decreases [see panels (c), (d), (g), and (h) of Fig. 14]. When
the magnetic field polarizes the system the susceptibility is
strongly suppressed and becomes a monotonically decreasing
function of H at low temperatures [see panels (a), (b), (e), and
(f) of Fig. 14].

TABLE III. Susceptibilities at zero temperature and U = 4. The
square parentheses identify the phase of the system. Note that we are
dealing with the grand-canonical spin susceptibility which may be
nonzero in the spin-polarized phase and independent of the field. In
fact, this spin susceptibility χ is identical to the compressibility κ;
see, e.g., Table V.

Susceptibilities at T = 0 and U = 4

χ H = 0 H = 0.1 H = 0.2 H = 0.3

n = 0.1 7.713 [IV] 0.515 [II] 0.515 [II] 0.515 [II]
n = 0.4 0.926 [IV] 1.332 [IV] 2.561 [IV] 0.167 [II]
n = 0.7 0.543 [IV] 0.639 [IV] 0.690 [IV] 0.764 [IV]
n = 0.9 0.500 [IV] 0.577 [IV] 0.611 [IV] 0.656 [IV]
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FIG. 14. Temperature dependence of the susceptibility in the presence of a magnetic field. The values at T = 0 denoted by squares (H = 0),
disks (H = 0.1t/μB ), triangles (H = 0.2t/μB ), and diamonds (H = 0.3t/μB ) are computed using Eqs. (17) and (20) and given in Tables III
and IV. The insets show the behavior at high temperatures.

In both cases at higher temperatures the susceptibility is
largest at H = 0. The most interesting feature is the logarith-
mic singularity at low temperatures in zero magnetic field as
can be seen in Fig. 15 where we present our numerical results
together with the fits using

χ (T ) = χ (T = 0) + a

ln(T0/T )
, (50)

where a and T0 are free parameters. At quarter filling an
infinite slope of the susceptibility was obtained from renor-
malization group calculations [104]. The same logarithmic
dependence was discovered in the case of the susceptibility
of the XXX spin chain in [83,84]. While one can say that this
phenomenon can be intuitively inferred at half filling and large
values of U due to the equivalence of the spin sector with
the XXX spin chain the logarithmic dependence at below half
filling which can be seen in the numerical data even at n = 0.1
and U = 4 is intriguing.

TABLE IV. Susceptibilities at zero temperature and U = 8. The
square parentheses identify the phase of the system.

Susceptibilities at T = 0 and U = 8

χ H = 0 H = 0.1 H = 0.2 H = 0.3

n = 0.1 13.92 [IV] 0.515 [II] 0.515 [II] 0.515 [II]
n = 0.4 1.403 [IV] 3.123 [IV] 0.167 [II] 0.167 [II]
n = 0.7 0.816 [IV] 1.041 [IV] 1.280 [IV] 1.897 [IV]
n = 0.9 0.807 [IV] 0.999 [IV] 1.168 [IV] 1.502 [IV]

C. Compressibility

The compressibility was investigated analytically and nu-
merically at zero temperature in [26] and at finite temperature

FIG. 15. Logarithmic dependence of the susceptibility in zero
magnetic field. The disks are numerical data and the lines represent
best fits using Eq. (50).
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FIG. 16. Temperature dependence of the compressibility in zero
magnetic field for various filling fractions and interaction strengths.

in [62,63,67,70]. The temperature dependence of the com-
pressibility in zero magnetic field and various densities and
interaction strengths can be found in Fig. 16 (see also Tables V
and VI). For 0 < U < ∞ and n = 1 (half filling) the charge
sector has a gap resulting in zero compressibility at T = 0
and exponentially activated behavior at low temperatures.
At arbitrary filling fractions κ is nonzero and in general
presents only one maximum. However at very low fillings
the compressibility is strongly enhanced and it can present
two maxima at very low temperatures. Similarly to the case
of the specific heat at U = ∞ the compressibility satisfies
κ (n) = κ (1 − n) for n ∈ [0, 1) (the curves for n = 0.1 and
n = 0.9 coincide as in Fig. 11).

The influence of the magnetic field on compressibility is
shown in Fig. 17. The presence of a magnetic field which
polarizes the system at n = 0.1 depresses the compressibility
below the zero-field value. In addition κ presents only one
maximum. Magnetic fields below the critical value in general
enhance the compressibility and move the maximum to lower
temperatures. For densities close to n ∼ 0.5 large values of

TABLE V. Compressibilities at zero temperature and U = 4. The
square parentheses identify the phase of the system.

Compressibilities at T = 0 and U = 4

κ H = 0 H = 0.1 H = 0.2 H = 0.3

n = 0.1 0.662 [IV] 0.515 [II] 0.515 [II] 0.515 [II]
n = 0.4 0.278 [IV] 0.291 [IV] 0.403 [IV] 0.167 [II]
n = 0.7 0.217 [IV] 0.218 [IV] 0.221 [IV] 0.227 [IV]
n = 0.9 0.231 [IV] 0.232 [IV] 0.234 [IV] 0.240 [IV]

TABLE VI. Compressibilities at zero temperature and U = 8.
The square parentheses identify the phase of the system.

Compressibilities at T = 0 and U = 8

κ H = 0 H = 0.1 H = 0.2 H = 0.3

n = 0.1 0.587 [IV] 0.515 [II] 0.515 [II] 0.515 [II]
n = 0.4 0.223 [IV] 0.250 [IV] 0.167 [II] 0.167 [II]
n = 0.7 0.194 [IV] 0.195 [IV] 0.201 [IV] 0.217 [IV]
n = 0.9 0.307 [IV] 0.309 [IV] 0.319 [IV] 0.339 [IV]

H seem to develop a second maximum at low temperatures
similarly to the case of low fillings but a similar phenomenon
was reported also for zero magnetic field in [70].

VII. THERMODYNAMIC PROPERTIES AT HALF FILLING

Historically the half-filling case constitutes one of the
most investigated regimes of the Hubbard model starting with
the initial paper of Lieb and Wu [12]. At half filling the
charge sector has a gap and therefore the low-temperature
thermodynamics is influenced only by the spin excitations. At
zero magnetic field and temperature the dressed charge for
the half-filled band is ξ (A = ∞) = 1/

√
2 [105] resulting in a

specific heat coefficient and susceptibility (the compressibility
is zero as a consequence of the charge gap)

γHF(H = 0) = π

3

1

vs
, χHF(H = 0) = 4

2πvs
, (51)

with the spin velocity

vs = 2I1

(
π

2u

)/
I0

(
π

2u

)
, (52)

where In(z) is the modified Bessel function of the first kind
which for integer n has the integral representation In(z) =
1
π

∫ π

0 ez cos θ cos(nθ ) dθ. For magnetic fields H < H0(U ) the
system is partially polarized (phase V) and for H > H0(U ) is
fully polarized (phase III).

In Figs. 18(a) and 18(b) we present the temperature depen-
dence of the specific heat for U = 4 and U = 8 and several
values of the magnetic field H = {0, 0.3} < H0(U ), H =
H0(U ), and H = 0.9 > H0(U ). At low and moderate inter-
action strengths and magnetic field below H < H0(U ) the
specific heat is linear in temperature [γ (U = 4, H = 0) =
0.853, γ (U = 4, H = 0.3) = 0.933] and presents a single
maximum which decreases with the increase of H . The results
for U = 8 show the double-peak structure with the second
maximum being proportional to the magnetic field [γ (U =
8, H = 0) = 1.433, γ (U = 8, H = 0.3) = 1.928]. The spe-
cific heat coefficients monotonically increase as H approaches
H0(U ) (the spin velocity decreases), the value for which
they become infinite, signaling the QPT from phase V to
phase III. At the critical field the specific heat behaves like
c(c)

V ∼ a(U ) T 1/2 with a(U = 4) = 0.261 and a(U = 8) =
0.332 and presents only one maximum. For H = 0.9 >

H0(U ) the system presents thermally activated specific heat
c(c)

V ∼ T 3/2e−α/T .
Results for the susceptibility are shown in Figs. 18(c)

and 18(d). For H = 0 and H = 0.3 the curves present only
one maximum which moves to lower temperatures with
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FIG. 17. Temperature dependence of the compressibility in the presence of a magnetic field. The values at T = 0 denoted by squares
(H = 0), disks (H = 0.1t/μB ), triangles (H = 0.2t/μB ), and diamonds (H = 0.3t/μB ) are computed using Eqs. (17) and (21) and given in
Tables V and VI. The insets show the behavior at high temperatures.

increasing magnetic field and the zero field susceptibil-
ity presents logarithmic behavior for low temperatures (see
Fig. 15). For T = 0 and magnetic fields lower than but close
to H0(U ) the susceptibility diverges like 1/(H0 − H )1/2 and
for H > H0(U ) vanishes. As a function of the temperature χ

is divergent at low T and H = H0(U ) and behaves like e−β/T

for H > H0(U ).
At half filling and zero temperature the compressibility is

zero for all values of the magnetic field. At low temperatures
it behaves like e−β/T and presents a single maximum which
moves to higher temperatures as U is increased [Figs. 18(e)
and 18(f)]. At half filling the compressibility is a decreasing
function of the magnetic field for all temperatures.

VIII. DOUBLE OCCUPANCY

The computation of the correlation functions in the
Hubbard model is an extremely difficult task even though in
principle the wave functions and energy levels are known.
However, one particular correlation function, which is also
experimentally accessible, the double occupancy, can be
determined from the thermodynamics of the system in a
manner similar to the derivation of the contact in the case of
continuous short range interaction models [106–117]. The
double occupancy at site j defined by 〈nj,↑n j,↓〉 quantifies
the probability that a lattice site has two electrons. Due to
translation invariance we have 〈nj,↑n j,↓〉 = 〈nk,↑nk,↓〉 for any
j, k ∈ {1, . . . , L} and we define 〈n↑n↓〉 = ∑L

j=1〈n j,↑n j,↓〉/L.
Using the definition of the grand-canonical potential
φ = − ln Z/(βL) with Z = Tr[e−βH−μN−2Hm] and
the Helmann-Feynman theorem we find ( ∂φ

∂U )μ,H,T =

Tr[
∑L

j=1 (n j,↑ − 1
2 )(n j,↓ − 1

2 )e−βH−μN−2Hm]/(LZ ) and
therefore

〈n↑n↓〉 =
(

∂φ

∂U

)
μ,H,T

+ n

2
− 1

4
. (53)

At half filling the double occupancy was investigated in
[82,99,100,118–120] and for the spin-disordered regime in
[68]. The dependence on the temperature at any filling and
zero magnetic field was studied by Campo [121] using the
QTM equations.

The double occupancy d (n) takes values between 0 and
1 and unlike many other thermodynamic functions it is not
symmetric with respect to n = 1. From (45) we find by
differentiation with respect to u the relation d (n) = d (2 −
n) + n − 1. At zero temperature it is a continuous function
of n ∈ [0, 2] but the derivative is discontinuous at half filling.
Numerical results for different temperatures and magnetic
fields are presented in Fig. 19. For free particles on the
lattice one would expect that 〈n↑n↓〉 would monotonically
increase with temperature. In the Hubbard model due to the
repulsive interaction term this simple picture does not hold.
At zero magnetic field and U = 4 [panel (a) of Fig. 19] the
free particle picture holds for small filling fractions where
the interaction is not that important. For n ∼ 0.3 a crossover
appears and the double occupancy for T = 0.1 is larger than
the equivalent quantity at T = 0.5 for n ∈ (0.3, 1). Switching
a magnetic field [panel (b) of Fig. 19] moves the crossover
density closer to half filling. At fixed temperature the mag-
netic field suppresses the double occupancy as can be seen in
Figs. 19(c) and 19(d). This is due to the fact that the magnetic
field polarizes the system and therefore the probability to have
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FIG. 18. Temperature dependence of the specific heat, suscepti-
bility, and compressibility at half filling in the presence of a magnetic
field. The insets present a zoom of the specific heat data at low
temperatures. The shaded regions are inaccessible numerically and
contain the theoretical predictions c(c)

V ∼ γ T for H < H0(U ), c(c)
V ∼

aT 1/2 for H = H0(U )t/μB, and c(c)
V ∼ T 3/2e−α/T for H = 0.9t/μB.

The susceptibilities at T = 0 denoted by squares (H = 0) and disks
(H = 0.3t/μB ) are computed using Eq. (22).

two electrons is doubly penalized by the Pauli principle and
the repulsive interaction. Also at fixed temperature 〈n↑n↓〉 is a
monotonically decreasing function of interaction strength and
magnetic field as the system becomes more easily polarizable
as U increases.

At half filling and zero temperature and magnetic field the
double occupancy can be obtained in analytic form from the
ground state energy of Lieb and Wu

〈n↑n↓〉0(U ) = 1

2

∫ ∞

0
dωJ0(ω)J1(ω)sech2(ωU/4), (54)

with Jn(ω) = 1
π

∫ π

0 cos(ω sin θ − nθ ) dθ the nth Bessel func-
tion of the first kind. At low temperatures (T � t ) we have
[78,120]

〈n↑n↓〉(T ) �
T �t

〈n↑n↓〉0(U ) − 1
2C(2π/U )T 2 + O(T 3) (55)

FIG. 19. Double occupancy as a function of the density for
different values of temperature, magnetic fields, and U = {4t, 8t}.
The insets contain the results for the density in the (1,2] interval.

with

C(x) = x2

12

(
1 − I0(x)[I0(x) + I2(x)]

I1(x)2

)
, (56)

and at high temperatures (T > t2/U ) the following expansion
is valid [65,120]:

〈n↑n↓〉(T ) �
T >t2/U

− 1

2
[−TU + TU cosh(U/2T )]−1

+ tanh(U/4T )sech2(U/4T )/(8T 2)

+ 1

2

1 − 4U −2

eU/2T + 1
+ 1/U 2 + O(T −4). (57)

At half filling the dependence of the double occupancy
on the temperature in the presence of a magnetic field for
U = {3, 4, 8, 12} is shown in Fig. 20. At low temperatures
and for all values of the coupling strength the double oc-
cupancy decreases with increasing temperature. This is rela-
tively counterintuitive but it facilitates spin excitations which
are entropically preferred (also notice that at zero magnetic
field the function C(x) is positive for all U [120]). It is easy
to see from (53) and the definition of the entropy that at half
filling these quantities satisfy the Maxwell relation ∂s/∂U =
−∂〈n↑n↓〉/∂T which shows that the decrease of the double
occupancy is accompanied by an increase of the entropy
which is an analog of the Pomeranchuk effect [122,123]. For
large values of the on-site repulsion (U � 4) and moderate
magnetic fields the double occupancy presents only one min-
imum which moves to lower temperatures with increasing H .
At intermediate values of U it can be seen in Fig. 20(a) that
〈n↑n↓〉 presents a two-minima phenomenon which was first
reported in [82] in the case of zero magnetic field. Here we
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FIG. 20. Double occupancy at half filling as a function of the
temperature for different values of U and magnetic fields H =
{0, 0.15t/μB, 0.3t/μB}. The double occupancy presents two minima
for intermediate values of U (a) and for large values of U and
magnetic field close to the critical value (d) [H0(12) ∼ 0.3245t/μB].

show that a similar doubly nonmonotonic (two local minima)
behavior is present at large interaction strengths and magnetic
fields close to the critical value H0(U ) [see Fig. 20(d)]. Also
in this case the specific heat presents three maxima instead
of two as in the case of zero or moderate magnetic field.

For all values of the interaction strength and half filling the
double occupancy is a monotonically decreasing function of
the magnetic field.

IX. ENTROPY

In the left panels of Fig. 21 we present the dependence of
the entropy s = −( ∂φ

∂T )μ,H on the density for different temper-
atures and magnetic fields. Similar results at zero magnetic
field were reported in [121]. The right panels contain the
ratios between the entropy of the Hubbard model and that of a
system of free fermions at the same density. The dependence
of the entropy on the filling factor is highly nonmonotonic
at low temperatures. For U = 4 and zero magnetic field the
T = 0.1 curve presents two local maxima in the [0,1] interval
and minima at end points (the entropy is symmetric in n with
respect to n = 1). Increasing the temperature the dependence
becomes smoother with the well known high temperature
enveloping curve

s(T � 1) = 2 ln

(
2

2 − n

)
− n ln

(
n

2 − n

)
. (58)

The origin of the two maxima is due to the quantum phase
transitions phase I to phase IV for the first maximum and
phase IV to phase V for the second one. In the presence of
a magnetic field the entropy presents three maxima at low
temperatures as a consequence of the three QPTs (phase I
to phase II, phase II to phase IV, and phase IV to phase V)
present in the phase diagram for H < H0(U ). For a fixed
temperature the magnetic field decreases the entropy at low
fillings compared with the H = 0 case and close to half filling
the effect is inverse [see Fig. 21, panels (e) and (f)]. It should
be noted that for U = 8, H = 0.5 is larger than H0(8) and
therefore the entropy presents only two maxima as the system

FIG. 21. (a), (b), (e), (f): Dependence of the entropy on the density for different temperatures and magnetic fields. (c), (d), (g), (h):
Dependence of the ratio of the entropy of the Hubbard model to the entropy of lattice free fermions on the filling factor.
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has only two QPTs (phase I to phase II and phase II to
phase III).

The ratio s/sFF with sFF the entropy of a system of lattice
free fermions at the same density measures the deviations
from the free system. We see in Fig. 21, panels (c), (d), (g),
and (h), that this ratio presents large deviations from 1 as we
increase the interaction strength (as expected) but also as we
increase the magnetic field as long as H < H0(U ).

X. DENSITY PROFILES

The experimental realization of various physical models
of interest using ultracold atoms in optical lattices requires
a trapping potential. In the case of the Hubbard model the
presence of a harmonic trap is equivalent with the addition to
the Hamiltonian (1) of a site-dependent potential of the type

Htrap =
∑
j,σ

mω2
e

2
j2n jσ , (59)

with ωe the effective trap frequency. The addition of such
a term breaks the integrability of the Hubbard model but
considering a large system and a slowly varying trapping
potential the thermodynamic properties of the inhomogeneous
system can be computed using the homogeneous solution and
the local density approximation (LDA) [124]. Replacing the
site index j with a dimensionless variable x the LDA assumes
that each region at distance x from the center of the trap can
be well approximated by a homogeneous system with

μ(x) = μ(0) − mω2
e

2
x2, H (x) = H (0), (60)

where μ(0) and H (0) are the values of the chemical potential
and magnetic field at the center of the trap. For given values of
μ(0), H (0) [or equivalently n(0) and H with n(0) the density
at the center of the trap] the density profiles can be computed
using the QTM equations (24) and (60). Density profiles
for the balanced system were previously investigated using
quantum Monte Carlo simulations [125], density functional
theory [121,126], and density-matrix renormalization group
[127,128].

We are going to investigate density profiles with 0 <

n(0) � 2 in the presence of a magnetic field. The phase
diagram at zero temperature for both negative and positive
values of the chemical potential (corresponding to n ∈ [0, 2])
is shown in Fig. 22. The properties of the phases at μ > 0
which are in one-to-one correspondence with the five regimes
analyzed in Sec. III A can be determined using the symmetry
relation (45) and Eqs. (46). For given values of U , m, and ωe

we introduce a radius denoted by RT F and defined by

2μ0 − mω2
e

2
R2

T F = 0, (61)

with μ0 = 2(U/4) + 2 the value of the chemical potential for
which the density in the center of the trap is n(0) = 2 at zero
temperature and magnetic field. RT F is the distance from the
center of the trap at which the density profile is zero for a
system in the ground state with n(0) = 2 and H = 0.

In Fig. 23 we present the density profiles for a system with
interaction strength U = 8, T = 0.025, and three values of the

FIG. 22. Phase diagram at zero temperature for U = 8 and both
positive and negative values of the chemical potential. The three
horizontal lines pass through H = {0, 0.25t/μB, 0.5t/μB} and the
disks on each one correspond to values of the chemical potential for
which the density is (from left to right) n = {0.8, 1, 1.5, 2}.

magnetic field H = {0, 0.25, 0.5} where H = 0.5 > H0(8).
The temperature chosen is so low that our results are almost
indistinguishable from the T = 0 case. The structure of the
density profiles is intricate, especially for n(0) > 1, but it can
be easily understood by looking at the phase diagram from
Fig. 22. Consider the case of n(0) = 2 and H = 0.5. Moving
further from the center of the trap (increasing x) is equivalent
with the chemical potential moving in the phase diagram from
right to left along a horizontal line (in this case the starting
value of μ is the rightmost point on the H = 0.5 line of
Fig. 22). As x increases from zero the system crosses the
following phases in order: IR, IIR, IIIR, III, II, and finally I. The
total density profile can be described as a band insulator at the
trap center surrounded by metallic regions in turn surrounded
by Mott insulators [124]. For n(0) = 2 and H = 0.25 (the
starting value of the chemical potential is the rightmost point
on the H = 0.25 line) the system crosses the phases: IR, IIR,
IVR, VR, V, IV, II, and I. While the total density profile is
similar with the previous case (the metallic regions present
angular points at the IIR → IVR and IV → II transitions) the
spin-up and spin-down density profiles are very different as
H = 0.5 is larger than the critical field while H = 0.25 is
below H0(8). Zero magnetic field is characterized by n↑(x) =
n↓(x) = n(x)/2 and it comprises the phases IR, IVR, VR, V,
IV, and I. The profiles with n(0) < 2 can be understood in
the same way and noticing that in this case the starting point
of the chemical potential moves to the left which means that
the system can skip some of the phases enumerated in the
n(0) = 2 case. At n(0) = 1.5 the total density profiles can be
characterized by a metallic center surrounded by Mott insula-
tor plateaus while for n(0) = 1 we encounter the situation of
a Mott insulator at the center surrounded by metallic wings.
Finally, for n(0) = 0.8 the system is completely metallic. In
all cases the structure of the total density profile is similar for
the same value of the density at the center of the trap but the
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FIG. 23. Density profiles for the Hubbard model in the presence of a trapping potential at T = 0.025t , U = 8t , and H = 0.5t/μB (top
row); H = 0.25t/μB (middle row); and H = 0 (bottom row). The profiles are symmetric with respect to x. Here we present only the x > 0
region. At this temperature the density profiles are effectively indistinguishable from the ones at T = 0. The black, violet, and green lines
represent the total density n(x) = n↑(x) + n↓(x), the density of spin-up electrons n↑(x), and the density of spin-down electrons n↓(x). Each
phase of the system is highlighted in the same color as in the phase diagram presented in Fig. 22.

density profiles of the components are heavily influenced by
the presence of the magnetic field.

XI. CONCLUSIONS

In this paper we have studied the influence of the magnetic
field on the quantum critical behavior and thermodynamic
properties of the 1D repulsive Hubbard model. Even though
all the QPTs investigated were characterized by critical ex-
ponents z = 2 and ν = 1/2 the universal thermodynamics in
the vicinity of the QCPs is not described by free fermions
in all cases. The transitions from the vacuum belong to the
universality class of spin-degenerate impenetrable particle gas
and the universal thermodynamics is given by Takahashi’s
formula. The influence of the magnetic field on the thermo-
dynamic properties is very important at low temperature and
small filling fractions. The magnetic susceptibility at zero
magnetic field presents an infinite slope at low temperatures
for all values of the filling fractions. The double occupancy
exhibits two minima as a function of temperature in two

situations: (a) at intermediate values of U and (b) for large
values of the repulsion and magnetic fields close to the critical
value. In all the other cases the double occupancy presents
only one minimum. In the experimentally relevant case of a
trapped system the magnetic field does not influence strongly
the overall density profiles but changes dramatically the distri-
bution of phases in the inhomogeneous system. An interesting
extension of our work is the case of the Hubbard model with
impurities. This will be addressed in a future publication.
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APPENDIX A: NUMERICAL IMPLEMENTATION
OF THE FIRST TYPE OF CONVOLUTION

From the numerical point of view the main difficulty in
the implementation of the QTM integral equations (24) is the
treatment of the convolutions. The first type of convolution is
defined by

K ∗ f =
∫ +∞

−∞
K (x − y) f (y) dy, (A1)

where the kernels [defined in (25)] can be
K2,±α−α (x), K1,±α (x), or K1,±α (x) with 0 < |α| < u and
fα (x) = f (x + iα). The integrands are ln[1 + b±(x)] or
ln[1 + 1/b±(x)]. In general the most efficient way of treating
convolutions is using the fast Fourier transform (FFT).
However, in order to obtain accurate results FFT requires
that the functions are either periodic or they decrease
rather fast at infinity. In our case the kernels are relatively
slowly decaying while the b±(x) functions have constant
asymptotics at infinity, limx→±∞ ln b±(x) = −βH . Denoting
by f (∞) = limx→±∞ f (x) the efficient way of treating this
type of convolution is by subtracting the asymptotic value∫ +∞

−∞
K (x − y) f (y) dy

=
∫ +∞

−∞
K (x − y)[ f (y) − f (∞)] dy

+ f (∞)
∫ +∞

−∞
K (x − y) dy. (A2)

In the first term on the right-hand side now both the kernel and
the integrand vanish at infinity and can be calculated using
FFT and an appropriate cutoff while the second term can be
analytically computed. We find∫ +∞

−∞
K2,0(x − y) dy = 1, (A3a)

∫ +∞

−∞
K2,2α (x − y) dy = 1, (A3b)

∫ +∞

−∞
K1,α (x − y) dy = 0, (A3c)

∫ +∞

−∞
K1,−α (x − y) dy = 1, (A3d)

∫ +∞

−∞
K1,α (x − y) dy = 1, (A3e)

∫ +∞

−∞
K1,−α (x − y) dy = 0. (A3f)

Let us show how to compute these integrals. It is sufficient
to consider the case of

I1 =
∫ +∞

−∞
K1,α (x − y) dy,

all the other cases being amenable to a similar derivation.
Making the change of variables x − y = z we obtain

I1 =
∫ +∞

−∞

u/π

(z + iα)(z + iα + 2iu)
dz.

First, we will consider the case of α > 0. The integrand
has two poles in the complex plane situated at z1 = −iα
and z2 = −iα − 2iu. Closing the contour in the upper half
plane by adding an infinite semicircle (which does not give a
contribution) the integral is analytic inside the closed contour
and we obtain I1 = 0 proving (A3c). In the case of α < 0
again closing the contour in the upper half plane we obtain
I1 = 2π i Res(z = i|α|) which gives I1 = 1 proving (A3d). All
the other integrals can be computed in a similar fashion.

APPENDIX B: NUMERICAL IMPLEMENTATION OF THE
SECOND TYPE OF CONVOLUTION

The numerical implementation of the second type of con-
volution, defined by

K • f = p.v.
∫ +1

−1
K (x − y) f (y) dy,

is more complicated due to the presence of the principal-
value integral and also because the integrands ln[1 + c±(x)]
and ln[1 + c

±(x)] behave like (1 − x2)1/2 in the vicinity of
±1. This weakly singular behavior suggests that the best
way to tackle these convolutions numerically is to employ
Chebyshev quadratures. First we will present some minimal
information on Chebyshev polynomials necessary to derive
relevant quadrature formulas.

1. Chebyshev polynomials

We are going to use only Chebyshev polynomials of the
first and second type defined by [129]

Tn(x) = cos nθ, x = cos θ, θ ∈ [0, π ], (B1)

Un(x) = sin[(n + 1)θ ]

sin θ
, x = cos θ, θ ∈ [0, π ]. (B2)

The zeros of Tn(x) and Un(x) are given by

Tn(x) : xk = cos

[
(k − 1/2)π

n

]
, k = 1, . . . , n,

Un(x) : yk = cos

[
kπ

n + 1

]
, k = 1, . . . , n .

In the z = cos θ variable the Chebyshev polynomials take the
form

Tn(x) = 1

2
[(z +

√
z2 − 1)n + (z −

√
z2 − 1)n], (B3)

Un(x) = 1

2

(z + √
z2 − 1)n + (z − √

z2 − 1)n

√
z2 − 1

. (B4)

2. Chebyshev-Gauss quadrature

In this section we remind the reader of the derivation of
the Chebyshev-Gauss quadrature of the second kind which
will constitute the basis for a similar result for principal-value
integrals. We want to obtain a quadrature for the integral

I ( f ) =
∫ 1

−1
f (x) dx, (B5)
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where f (x) ∼ (1 − x2)1/2 at the end points of the interval, but
this requirement can be dropped. We approximate f (x) by a
function of the form

Jn−1[ f (x)] = (1 − x2)1/2
n−1∑
j=0

b jUj (x), (B6)

and we introduce

In−1( f ) =
∫ 1

−1
Jn−1[ f (x)] dx, (B7)

which constitutes an approximation of the integral (B5)
using an interpolating polynomial of order n − 1. Using
the second kind of discrete orthogonality formula (8.33 of
[129])

di j =
n∑

k=1

(
1 − y2

k

)
Ui(yk )Uj (yk )=

{
1
2 (n + 1), i = j � n − 1,

0, i �= j,

with yk = cos(kπ/n + 1), k = 1, . . . , n, the zeros of the
Chebyshev polynomials of the second type, we obtain

bj = 2

n + 1

n∑
k=1

(1 − yk )1/2 f (yk )Uj (yk ). (B8)

Integrating (B6) we find In−1( f ) = ∑n−1
j=0 b ja j with a j =∫ 1

−1(1 − x2)1/2Uj (x) dx. The coefficients a j can be calculated
analytically with the result

a j =
∫ π

0
sin[( j + 1)θ ] sin θ dθ =

{
π
2 , j = 0,

0, j > 0.

Collecting everything we find∫ 1

−1
f (x) dx ∼ In−1( f ) =

n∑
k=1

ωk f (yk ), (B9)

with

ωk = π

n + 1
sin

[
kπ

n + 1

]
, k = 1, . . . , n, (B10a)

yk = cos

[
kπ

n + 1

]
, k = 1, . . . , n. (B10b)

Formulae (B9) and (B10) represent the Chebyshev-Gauss
quadrature of the second kind which are very efficient in the
numerical integration of functions which behave like (1 −
x2)1/2 at the end points of [−1, 1].

3. Chebyshev-Gauss quadrature for principal-value integrals

The same method can be used to derive a quadrature
formula for principal-value integrals of the type

IC ( f ) = p.v.
∫ 1

−1

f (x)

y − x
dx, |y| < 1. (B11)

Using the same approximation (B6) for the f (x) function and
repeating verbatim the steps from the previous section we
obtain IC,n−1( f ) = ∑n−1

j=0 b ja j[y] with

a j[y] = p.v.
∫ 1

−1
(1 − x2)1/2 Uj (x)

y − x
dx = πTj+1(y), (B12)

where the final result was derived using Theorem 9.1 of [129].
Together with (B8) we find that IC,n−1( f ) = ∑n

k=1 ωk (y) f (yk )
with

ωk (y) =
n−1∑
j=0

2πTj+1(y)

n + 1
sin

[
kπ

n + 1

]
Uj

[
cos

(
kπ

n + 1

)]
.

Using sin[ kπ
n+1 ]Uj[cos( kπ

n+1 )] = sin[ ( j+1)kπ

n+1 ] we obtain the
main result of this Appendix

p.v.
∫ 1

−1

f (x)

y − x
dx ∼ IC,n−1( f ) =

n∑
k=1

ωk (y) f (yk ), (B13)

with

ωk (y) =
n∑

j=1

2π

n + 1
Tj (y) sin

[
( j + 1)kπ

n + 1

]
, (B14a)

yk = cos

[
kπ

n + 1

]
, k = 1, . . . , n. (B14b)
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