

Universidade:

presente!

XXXI SIC

21.25. OUTUBRO . CAMPUS DO VALE

SENSOR COLORIMÉTRICO DE NANOCOMPÓSITOS PARA A INDÚSTRIA ALIMENTÍCIA

Autora: Loara Costa Gessi; Orientadora: Griselda Ligia Barrera de Galland

Introdução

Os plásticos inteligentes são aqueles que possuem sensores capazes de responderem a um determinado estímulo externo reprodutível e específico, seja ele elétrico, térmico, de oxirredução seja ele pela variação de pH. Dessa forma, o material pode alterar propriedades como a cor. Na indústria de embalagens alimentícia, os plásticos inteligentes fornecem, além das funções básicas de contenção e de proteção, substâncias que são capazes de interagir e revelar características dos produtos que as mantêm, por exemplo, a deterioração.

Os sensores por indicadores de pH devem ser encapsulados para resistir às condições de processamento da embalagem, além de garantir que o alimento não entre em contato direto com os mesmos.

Objetivo

Desenvolver um plástico inteligente com sensor colorimétrico de pH de nanocompósitos encapsulado em sílica para a indústria de embalagens alimentícias, a fim informar de forma simples se o alimento está "próprio" ou "impróprio" para consumo. Analisar o melhor método de síntese do encapsulado por vias sol-gel de rotas básica e ácida.

Metodologia

Obtenção do encapsulado do indicador púrpura de bromocresol (RBC):

Rota básica com NH₄OH (RB1)

- Indicador púrpura de bromocresol;
 - etanol;
 - ***** TEOS;
 - ♦ NH₄OH.

- Agitação magnética por 3 h;
- repouso por 24 h;
- lavagem com etanol;
- separação do sobrenadante;
- secagem em estufa;
- maceração.

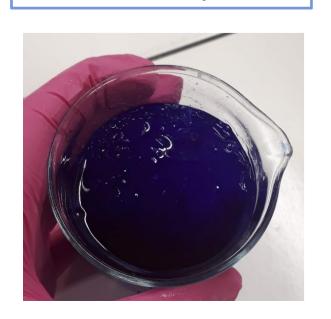
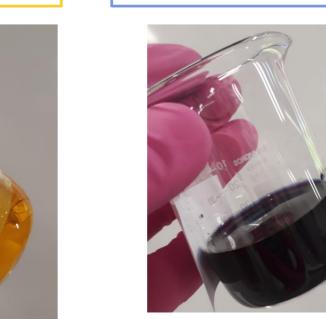


Figura 1 – Síntese por RB1 Fonte: A autora, 2019.


Rota básica com HF (RA)

- Indicador púrpura de bromocresol;
 - etanol;
 - TEOS;
- água destilada; HF PA.

- Agitação magnética
 - por 10 min; secagem em T_{amb};
- lavagem com etanol;
- separação do sobrenadante;
- secagem em estufa; maceração.

Rota básica com

 NH_4OH/NH_4F (RB2)

Indicador púrpura

etanol;

água deionizada;

♦ NH₄OH/NH₄F;

***** TEOS.

Agitação magnética

secagem em T_{amb};

lavagem com

separação do

secagem em estufa;

maceração.

por 10 min;

etanol;

sobrenadante;

de bromocresol;

Figura 3 – Síntese por RB2 Figura 2 - Síntese por RA Fonte: A autora, 2019. Fonte: A autora, 2019.

inteligente Fonte: A autora, 2019.

Filme de plástico inteligente

- Polímero;
- solvente;
- encapsulado de RBC.

- Agitação magnética; derramamento no molde;
- secagem em T_{amb}.

Figura 5 – Filmes inteligentes com diferentes concentrações de encapsulado Fonte: A autora, 2019.

Resultados e conclusões

Realizou-se um teste visual para confirmar que os encapsulados eram capazes de alterar a cor com a variação de pH. Primeiro com o encapsulado puro e depois preso no polímero.

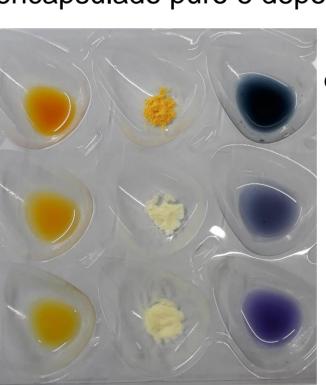


Figura 6 - Mudança de cor do encapsulado de sílica. De cima para baixo encapsulado por: RB2; RA e RB1. Fonte: A autora, 2019.

Figura 7 - Mudança de coloração do filme inteligente Fonte: A autora, 2019.

Tabela 1 - Tamanho hidrodinâmico de nanopartículas em água por espalhamento dinâmico de luz (DLS)

Amostra	Z-Ave (d.nm)
Branco por RA	628,3
Encapsulado por RA	127,6
Branco por RB1	391,2
Encapsulado por RB1	107,8
Branco por RB2	513,7
Encapsulado por RB2	234,3

Intensidade 300 100 200 400 500 Tamanho hidrodinâmico (nm)

Figura 7 – Dispersão das nanopartículas por RB1 pelo DLS Fonte: A autora, 2019.

Foi possível desenvolver uma plástico inteligente com sensor colorimétrico a pH. O método mais satisfatório foi por RB1, visto que o tamanho da partícula foi menor e a quantidade de encapsulado foi maior.

Agradecimentos

Referências

CAPELETTI, Larissa. Efeitos da rota sol-gel no encapsulamento de indicadores colorimétricos e fluorimétricos e em suas performances como sensors de pH e gás amônia. UFRGS, 2010. GELESKY, Marcos. Nanopartículas de ródio encapsuladas em sílica utilizando líquidos iônicos e aplicação em reações de hidrogenação. UFRGS, 2008.

IBRAHIM, Ismail et al. Preparation of spherical silica nanoparticles: Stober silica. Helwan University. Journal of American Science, 2010.