

XXXI SIC

21.25. OUTUBRO . CAMPUS DO VALE

Design of a Near-Threshold Digital Library at 0.3 V in CMOS 28 nm

Rodrigo N. Wuerdig and Sergio Bampi - Informatics Institute - UFRGS

Introduction

- ► To design a digital standard-cell library capable of operating at the Minimum Energy Point (MEP) (Voltage Supply around 300mV).
- ► To explore new Near-Threshold Voltage (NTV) library design methods.

Figure 1: Representation of a cell-based design.

Library Development Workflow

- ► State of the Art Review ✓
- **▶** Evaluate Transistor Sizing Methodologies ✓
- **▶** Develop Library SPICE Descriptions ✓
- **▶** Cell Library Characterization In Progress
- **▶** Layout Generation
 - ▶ Design Rules Check DRC
 - ▶ Layout Versus Schematic LVS
 - ▶ Parasitic Extraction PEX
- **►** Multi-Corner Characterization

Table 1: Target Corners

Corner	Temperature (C)	Supply Voltage (V)	Process
NTV - Worst Case	-40	0.27	Worst
NTV - Nominal Case	25	0.30	Nominal
NTV - Best Case	125	0.33	Best
Worst Case	125	0.81	Worst
Nominal Case	25	0.90	Nominal
Best Case	-40	0.99	Best

► Test Library under a vast amount of Test Setups

- → HDL Development and Test
 - ► ISCAS Benchmarks
- ▶ Logical Synthesis
- ▶ Physical Synthesis
- ▷ SPICE Simulation of the Extracted Circuit
- ► Tape-out (fabrication) of Test VLSI Circuits

Table 2: Library Main Characteristics

Technology / Process Node	TSMC 28 nm	
Nominal Supply Voltage	0.9 V	
Target Library Supply Voltage	0.3 V	
Compatibility Features	9-track commercial cells	
Number of Logic Cells	$31+7$ extra *	
Number of Different Functions	14	

*Extra Cells are Composed by Asynchronous-friendly Cells (e.g. C-Elements)

Results

- Rodrigo N. Wuerdig, Vitor G. Lima, Filipe Baumgratz, Rafael Soares, and Sergio Bampi, "Evaluating Cell Library Sizing Methodologies for Ultra-Low Power Near-Threshold Operation in Bulk CMOS", 26th IEEE ICECS, 2019, submitted.
- Rodrigo N. Wuerdig, Filipe D. Baumgratz, and Sergio Bampi, "A 1 GHz 64b Serial Peripheral Interface for 40 nm Bulk CMOS Technology", 19th SForum, 2019.

Design space exploration values used to set the trade-off functions (TOFs 1,2, and 3), and TOF trajectory, for specific drive strengths and supply voltage (0.3 V in this case).

Conclusion & Future Work

The Trade-off functions (TOFs) method, proposed by Rodrigo et al., provided a transistor size that increases library cells energy efficiency relatively to commercial equivalents, and they can be used to explore bi- and three-dimensional search spaces, towards even more advanced optimization algorithms.

- ► Future Work
 - ▶ Improve the presented Workflow
 - \triangleright Evaluate the use of dynamic threshold transistors for performance improvement under low V_{DD} regimes

 - ► Evaluate Impacts of Aging and Variability of FETs

Contact Information

- Web: http://inf.ufrgs.br/ rnwuerdig/
- ► Email: rodrigo.wuerdig@inf.ufrgs.br
- ► Phone: +55 (51) 99706-8444

