

Universidade: presente!

21.25. OUTUBRO . CAMPUS DO VALE

Reatividade de Complexos à Base de Ródio com Ligantes Ciclopentadienila Funcionalizados com Alcoxissilanos em Relação à Sílica: Estudo em Reações de Hidrogenação Catalítica

Introdução

A catálise é um processo de extrema importância na indústria química. A heterogeneização de catalisadores permite alta seletividade e conversão junto com o benefício da fácil separação do catalisador e produtos. Portanto, neste trabalho estudamos a heterogeneização de complexos de ródio com ligantes ciclopendienila para catálises de hidrogenações através da fixação em sílica possibilitada pelas terminações alcoxissilano.

Esquema 1- Reações de síntese do Cp funcionalizado com terminações etoxissilano

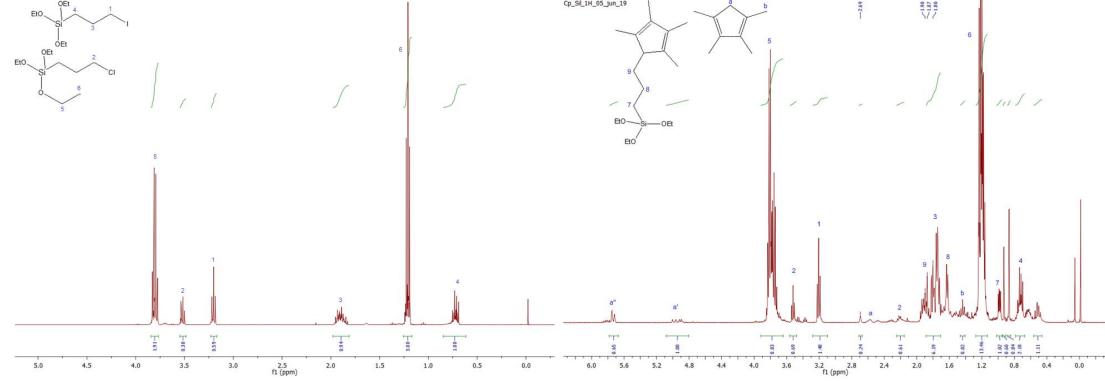
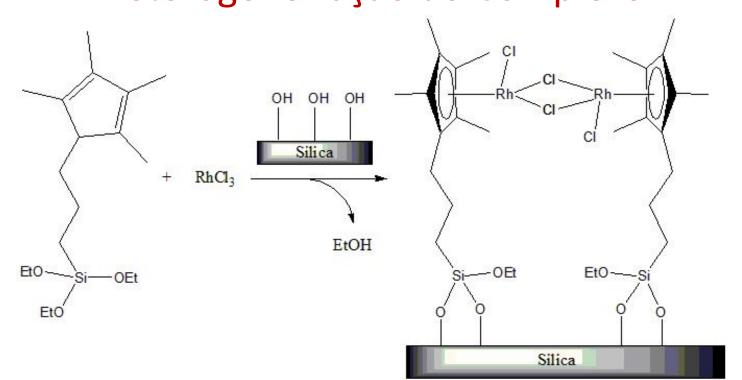



Figura 1- Espectros ¹H-RMN do produto da síntese do Cp funcionalizado

Por análise de RMN de hidrogênio observou-se uma conversão de aproximadamente 80% para a síntese do 3-iodopropiltrietoxissilano, porém somente 51% para a funcionalização do 2,3,4,5-tetrametilciclopentadieno.

Heterogeneização do Complexo

Esquema 2- Reação da síntese do complexo Cp/Rh e sua fixação em sílica

Hidrogenações

Tabela 1- Conversão, seletividade e velocidades iniciais das hidrogenações de 1-hexeno catalisadas com o complexo Rh-Cp/Aerosil

Evn	Conversão (%)	Seletividade (%)		Vincial (mal//L min)
Exp.	Conversão (%) –	n-hexano	Isômeros	— V incial (mol/(L.min))
1	100	100	0	0,067
2	100	100	0	0,089
3	99	100	0	0,080
4	100	100	0	0,095
5	100	100	0	0,027
6	98	100	0	0,038
7	98	100	0	0,105
8	98	98	2	1 1
9	100	100	0	0,162
10	100	100	0	0,057
11	100	51	49	0,033
12	99	100	0	0,053
13	100	48	52	0,042
14	91	100	0	0,050
15	100	100	0	0,078

Solvente: MeOH, 30°C, 40 bar H₂ por 18 horas. Razão molar 1-hexeno/Ródio: 190:1

Os produtos de hidrogenações foram analisados por cromatografia gasosa. O catalisador proporcionou conversão e seletividade altas para o n-hexano, e as quatorze reciclagens mostram a robustez do sistema.

Referências

- E.S.S. A, B.L. Booth, G.C. Ofunne, C. Stacey, P.J.T. Tait, Silica-supported Cyclopentadienyl-Rhodium(I), -Cobalt(I), and -Titanium(IV) Complexes, J. Organomet. Chem., 1986, 315, 143.
- P. Jutzi, T. Heidemann, B. Nevmann, H.G. Stammler, Funktionaliserte siliciumverbindugen ω-tetramethyl ω-pentamethylcyclopentadieneylalkyl-ligand: Molekulare baustien zur darstellung von metall-haltigen polymeren, *J. Organomet. Chem.*, **1994**, 472, 72.